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We develop a numerical method for construction of an adaptive display image from a
given display image which is an artificial scene displayed in a computer screen. The
adaptive display image is encoded on an adaptive pixel mesh obtained by a merging
scheme from the original pixel mesh. The cardinality of the adaptive pixel mesh is
significantly less than that of the original pixel mesh. The resulting adaptive display
image is the best Lp piecewise constant approximation of the original display image.
Under the assumption that a natural image, the real scene that we see, belongs to a
Besov space, we provide the optimal Lp error estimate between the adaptive display
image and its original natural image. Experimental results are presented to demonstrate
the visual quality, the approximation accuracy and the computational complexity of the
adaptive display image.
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1. Introduction

Images play an important role in science, engineering and social activities. A natural
image is a real scene observed by human eyes. Normally, a natural image is captured
by a camera and displayed on a computer screen by using a pixel matrix called
a pixel mesh. In this paper, we shall refer to the image displayed on a computer
screen as a display image. It is also called a digital image or an observed image in the
literature. In general, a display image corresponds to a pixel mesh which is a uniform
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partition of the image domain with a cardinality determined by its resolution. For
example, displaying an n × n display image needs a pixel mesh of cardinality n2.
We observe that at a portion of the image domain where the pixel values of the
image do not change rapidly it may not be necessary to store all the values. This
observation motivates us to construct a non-uniform pixel mesh, adapted to a given
image, which encodes an adaptive display image with a significantly less cardinality
but preserving the visual quality of the original display image.

The main purpose of this paper is to develop a merging scheme which generates
an adaptive pixel mesh from a given uniform pixel mesh of a display image. Based
on the adaptive pixel mesh, one can obtain an adaptive display image, which is
the best Lp piecewise constant approximation of the original display image on the
adaptive pixel mesh. The resulting adaptive display image approximates well the
original image and has significantly less cardinality than that of the original image.
We provide an analysis of the approximation accuracy of the adaptive display image
that approximates the original display image. Mathematically, a natural image is
a time-continuous function, and a display image is its piecewise constant approx-
imation on a pixel mesh. In order to study the approximation error of adaptive
display images, we consider the Lp(T) error between the adaptive display image
and its original natural image under the assumption that a natural image belongs
to a Besov space, where T denotes the domain of a natural image (it is also called
the field of view (FOV)). In passing, we point that the proposed merging scheme is
in fact a reverse process of the basic dividing scheme discussed in [7, 13, 22, 23] in
the context of adaptive wavelet approximation.

We organize this paper in six sections. In Sec. 2, we discuss proper function
spaces for measuring the smoothness of natural images and display images. We
propose in Sec. 3 the merging scheme for the construction of an adaptive pixel
mesh. Section 4 is devoted to analysis of the Lp(T) error between an adaptive display
image and its original natural image by assuming that a natural image belongs to a
Besov space. In Sec. 5, we present numerical results which demonstrate the visual
quality and the approximation accuracy of the resulting adaptive display image.
We draw conclusions in Sec. 6.

2. Natural Images and Besov Spaces

We first discuss natural images. A natural image is a scene that a human being sees
by his or her eyes. Mathematically, it is a 2D time-continuous intensity function of
a projection of a 3D scene in the real world, whose values represent the brightness
or the number of proton of a point of the scene, [16]. Values of a natural image are
bounded if light sources are not considered. Besides, most of natural images in the
real world consist of some smooth regions separated by edges. It seems that for a
common sense, the more edges it has, the less “smooth” it is. The smoothness of a
natural image is an important characteristic, in many applications such as wavelet
compression of images and image denoising/deblurring.
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In most of cases, we do not know the exact mathematical formulation of natural
images. However, we shall assume natural images are locally integrable so that we
can “observe” them by some devices, such as cameras. We call this “observed”
image the display image. A display image is an artificial scene showed in a display
device, which is a piecewise constant approximation of its natural image.

What kind of functions can we use to represent natural images? In other words,
what kind of function spaces do natural images belong to? This is a long standing
interesting research problem. Since the natural image is supposed to be locally
integrable and has a bounded domain, the first space that one may consider is the
Lp(T) space. Recall that for the FOV T := [0, 1]×[0, 1] of natural images (or display
images), the Lp(T) space, 0 < p ≤ ∞, is defined by

Lp(T) :=

{
f : ‖f‖Lp(T) :=

(∫
T

|f(x)|pdx
)1/p

< ∞
}

0 < p < ∞,

L∞(T) := {f : ‖f‖L∞(T) := ess sup
x∈T

|f(x)| < ∞},

where x := (x1, x2). In particular, when p = 2, the space L2(T) is a Hilbert space.
For simplicity, when f is defined on T, its Lp(T) norm is denoted by ‖f‖p. Since
we assume a natural image is a bounded time-continuous function, we know that
it belongs to L∞(T). It was indicated in [6] that natural images, belonging to
Lp(T), are naturally distributional images and carry more structures than general
distributional images, such as the “layer-cake representation” which can be found
in [17]. Many medical imaging applications assume that natural images belong to
Lp(T), especially L2(T). This is mainly because these applications (such as mag-
netic resonance imaging) are related with orthogonal bases, wavelets or the Fourier
transform. However, for some specific image processing applications, such as denois-
ing, deblurring or compression, it is often assumed that natural images belong to
certain subspaces of Lp(T) (for example, the bounded variation (BV) space and
Sobolev spaces), depending upon specific applications.

The total variation (TV) denoising model proposed in [20] is popular among
image denoising models. It assumes that natural images belong to the BV space.
Functions of the BV space can represent well edges of an image since they con-
tain characteristic functions of simple sets. This is a basic assumption of image
restoration, image segmentation, image deconvolution and image compression for
which the TV model is used. For piecewise constant noisy display images, the TV
model denoises well while preserving sharp edges, although the model has some
drawbacks. It was pointed out in [19] that the TV minimization tends to create
constant patches in display images and causes the staircase effect. Consequently,
the TV model does not always represent well texture or oscillatory details of an
image, as it has been analyzed in [18]. Also, it was shown in [1, 15] that natural
images are not well represented by functions of BV.

An intrinsic idea is that natural images may belong to more general spaces,
such as Besov spaces. Roughly speaking, functions of the Besov space Bα

q (Lp(T))
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are those that belong to Lp(T) having the α order of smoothness. We now review
the definition of Besov spaces (see, for instance [4]). Let Z denote the set of all
integers and R the set of all real numbers. For f ∈ Lp(T) and h ∈ R2, we define
the difference operators by

Δ0
hf(x) := f(x), Δk+1

h f(x) := Δk
hf(x + h) − Δk

hf(x),

x ∈ T, k = 0, 1, . . . ,

where Δk
hf(x) is defined for x ∈ Tkh := {x ∈ T : x + kh ∈ T} with k > 0. For

α > 0, we choose r ∈ Z such that r − 1 ≤ α < r. Then for α > 0 and 0 < p, q ≤ ∞,
the Besov space seminorm is defined by

|f |Bα
q (Lp(T)) :=

(∫ ∞

0

[t−αωr(f, t)p]q
dt

t

)1/q

,

with the supremum when q = ∞, where ωr(f, t)p is the Lp(T)-modulus of smooth-
ness defined by

ωr(f, t)p := sup
|h|≤t

(∫
Trh

|Δr
hf(x)|pdx

)1/p

,

with the usual change to the essential supremum when p = ∞. We say a function
f ∈ Bα

q (Lp(T)) if |f |Bα
q (Lp(T)) < ∞. The Besov space norm is

‖f‖Bα
q (Lp(T)) := ‖f‖p + |f |Bα

q (Lp(T)).

In particular, when p = q = 2, the Besov space Bα
2 (L2(T)) reduces to the Sobolev

space Hα(T). When 0 < α < 1, 1 ≤ p ≤ ∞ and q = ∞, the Besov space Bα
∞(Lp(T))

is the Lipschitz space Lip(α, Lp(T)).
It is well-documented in [4, 5, 8–10] that performance of wavelet-based image

processing algorithms in many image processing applications was analyzed under
the assumption that natural images belong to Besov spaces. In [14], the BV space
and generalized homogeneous Besov spaces were used to decompose a display image
into a piecewise smooth component and an oscillatory component (texture or noise).
A theory for analyzing errors of the wavelet compression of display images was
introduced in [8], based on the assumption that natural images belong to a class
of Besov spaces Bα

q (Lq(T)), 0 < α < 1, p > 0, 1/q = α/2 + 1/p. Furthermore,
according to this theory, it was indicated that display images have the same order
of smoothness as their natural images, and it was strongly suggested that the order
of smoothness of natural images and display images ranges from 0.3 to 0.6 which can
be estimated by the wavelet compression method. Natural images were considered
in [4] to belong to Besov spaces Bα

q (Lq(T)), 0 < α < 1, 1/q = α/2+1/2, of minimal
order of smoothness, embedded in L2(T). An experiment presented there used the
wavelet compression method to estimate the order of smoothness of a class of 24
display images, and the numerical results suggest that the order of smoothness of
many natural images and display images ranges from 0.3 to 0.7. It was assumed
in [3] that natural images belong to the Besov space Bα

∞(L2(T)), with 0 < α < 1,
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instead of BV (T), for the purpose of image deblurring, and it was shown that most
of natural images are not of BV space and a rich class of natural images and display
images belong to Bα

∞(L2(T)) or Bγ
∞(L1(T)) ∩ Bβ

∞(L2(T)), with 0.2 < γ, β < 0.7.
Since Besov spaces can characterize the order of smoothness of natural images and
their multiscale nature, it is wildly accepted that functions of Besov spaces can well
represent natural images.

In this paper, we adopt the assumption that natural images belong to Besov
spaces Bα+ε

τ (Lv(T)), 1 < p < ∞, 0 < α < α + ε ≤ min(1, 2 − 2/p) with ε > 0,
p ≤ v ≤ ∞ and 0 < τ ≤ ∞. In fact, Bα+ε

τ (Lv(T)) is continuously embedded in
Bα

q (Lq(T)), 0 < α < 1, 1/q = α/2 + 1/p, and it contains Bα+ε
τ (L2(T)) when p = 2.

In what follows, for simplicity, we use Bα
p,q to denote the Besov space Bα

q (Lp(T)).
In the mean time, we use | · |Bα

p,q
and ‖ · ‖Bα

p,q
to represent the seminorm and the

norm of Besov space Bα
p,q, respectively.

3. Construction of Adaptive Display Images

In this section, we describe a merging scheme which is used to generate an adaptive
pixel mesh from the pixel mesh of a given display image for construction of an adap-
tive display image. The resulting adaptive display image is the best Lp piecewise
constant approximation of its original display image on the adaptive pixel mesh.

A display image, displayed on a computer screen, is an approximation of a
natural image. It is stored as an n×m matrix in the bitmap format. For simplicity,
in this paper we consider gray-scale images and assume that n = m. Each entry
of this matrix is a pixel value, which is sampled by a measuring device such as
a charge coupled device (CCD) or a complementary metal oxide semiconductor
(CMOS) camera. These cameras use optical lens to project objective scenes onto
smaller ones which can be covered by camera sensors. The range of the smaller
scene is the FOV. We assume that sensors of the cameras have n× n sensing units
(or camera pixels), each of which is related to a sensitivity function and a sensing
area. The sensing units capture the corresponding pixel values in the same time
and store the sample data in the memory. In general, screens of display devices are
formed by display pixel matrices. Each display pixel is a small rectangle, and the
color displayed by each pixel is depending on the corresponding pixel value. When
the computer receives an operation to show a display image, it will get pixel values
of the corresponding matrix from the memory. Then the computer will use n × n

display pixels to show the display image. If the display pixel is small enough, we
cannot distinguish between the display image and its natural image by our eyes.
For more details of display images, readers are referred to [16].

We now review a mathematical model of display images. Throughout this paper,
we shall use f to denote a generic function while use u to represent a natural image
and un to represent its display image with a resolution level n. Let N denote the
set of the natural numbers and N+ the set of positive integers. For n ∈ N+, we set
Zn := {0, 1, . . . , n−1}. For a set A, we let A2 := A⊗A, where ⊗ denotes the tensor
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product. We divide T into n × n equal size display pixels

T
(n)
j :=

[
j1
n

,
j1 + 1

n

]
×

[
j2
n

,
j2 + 1

n

]
,

where j := (j1, j2) ∈ Z2
n is the position of a pixel. We call Tn := {T(n)

j }j∈Z2
n

the
pixel mesh with a resolution level n. For a natural image u ∈ Lp(T), 0 < p ≤ ∞,
the pixel value uj captured by a sensing unit at the position j can be evaluated by

uj :=
∫
T
(n)
j

s
(n)
j (x)u(x)dx,

where s
(n)
j is the sensitivity function at pixel T

(n)
j . The sensitivity function of a

CCD camera is well modeled by averaging the natural image u over the sensing
area. Thus, we can rewrite the pixel value as

uj =
1

|T(n)
j |

∫
T
(n)
j

u(x)dx, (3.1)

where |T(n)
j | is the area of T(n)

j . Note that uj is bounded, which means |uj | < ∞,
due to u ∈ Lp(T). For a square Q ⊂ T and x ∈ R2, we define the characteristic
function χQ(x) of Q by

χQ(x) :=

{
1, x ∈ Q,

0, otherwise.

Here, we assume that the display pixel is a little square and has the same size as
the camera pixel. The display image un can then be represented by a piecewise
constant function determined via pixel values uj computed by (3.1) through the
formula

un(x) :=
∑
j∈Z2

n

uj χ
T
(n)
j

(x), x ∈ T. (3.2)

Note that the display image model (3.2) was also used in [4, 8] for analyzing errors
of the wavelet compression for images, where the display image is called “observed
image”.

In practice, displaying a display image with a resolution level n needs a pixel
mesh with cardinality n2. When n is large, n2 is huge and as a result it will require a
large amount of computing time to process the image. Do we really need n2 pixels?
Can we construct an approximate image of a display image such that the cardinality
of its pixel mesh is significantly less than that of the original pixel mesh, and its
visual quality is comparable to that of the original display image? We provide an
answer to these questions.

We first describe a merging scheme for the design of the adaptive pixel mesh.
To this end, we define necessary notation. For Q ⊂ T and f ∈ Lp(Q), 0 < p ≤ ∞,
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we denote by C p
Qf : Lp(Q) → R the best Lp constant approximation of f on Q. We

define the Lp local error of f on Q by

E(f,Q)p := ‖f − C p
Qf‖Lp(Q).

It can be seen easily from the definition of local error E(f,Q)p that for any Q ⊂
Q′ ⊂ T and f ∈ Lp(T), the following inequality holds:

E(f,Q)p ≤ E(f,Q′)p. (3.3)

For simplicity, we use Tk
j to denote a pixel at position j with size 2π

2k × 2π
2k . We define

the parent pixel of Tk
j by Pk

j := Tk−1

(� j1
2 �,� j2

2 �) in the sense that Tk
j ⊂ Tk−1

(� j1
2 �,� j2

2 �). In

the mean time, we say that Tk
j is a children pixel of Tk−1

(� j1
2 �,� j2

2 �). The set of children

pixels of Tk
j is denoted by

Ck
j :=

{
Tk+1
(2j1,2j2)

,Tk+1
(2j1+1,2j2)

, Tk+1
(2j1,2j2+1),T

k+1
(2j1+1,2j2+1)

}
.

Moreover, if two pixels have the same parent pixel, we say that they are brother
pixels. For the brother pixels of Tk

j , one can obtain the parent pixel of Tk
j first and

then find its children pixels. In other words, the set of the brother pixels of Tk
j can

be obtained by

Bk
j := Ck−1

(� j1
2 �,� j2

2 �)

∖
{Tk

j}.
Note that each pixel has only one parent pixel, four children pixels and three brother
pixels.

The merging scheme merges brother pixels into their parent pixel based on
the Lp local error of the display image on those pixels and an input parameter δ,
called the global error. We denote by Mδ the adaptive pixel mesh generated by the
merging scheme with the global error δ. Each pixel Q ∈ Mδ is called an adaptive
pixel. Note that an adaptive pixel is a square. If the Lp local error of a display image
on a pixel is less than or equal to δ but the Lp local error on the corresponding
parent pixel is larger than δ, then this pixel is an adaptive pixel. Each adaptive
pixel is the largest pixel such that the Lp local error of the display image on it is
not greater than the global error.

The merging scheme begins with a pixel mesh Tn. We put Tn into a first-in
first-out (FIFO) queue Q in an arbitrary order, and let Mδ be empty. Note that
the Lp local error of a display image on any original pixel in Tn is zero. First, we
remove one pixel on the front of Q, denoted by Tk

j and test the Lp local error of the
display image on it. If its Lp local error is less than or equal to the global error δ,
we find its brother pixels. If all its brother pixels’ Lp local errors are less than δ, we
merge these four pixels into their parent pixel and put it into the rear of Q. After
that, we remove its brother pixels from Q. If one of their Lp local error is larger
than the global error, from (3.3), we know that the Lp local error of their parent
pixel is also larger than the global error, which means that Tk

j is an adaptive pixel.
Thus, we put it into Mδ. Otherwise, if the Lp local error of the display image on
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Tk
j is larger than δ, then its children pixels’ Lp local errors must be less than δ.

In other words, its children pixels are adaptive pixels. This is because the pixels in
Q are either the original pixels or the pixels constructed by merging their children
pixels, and the Lp local error of the display image on any original pixels is zero.
Repeat this process until Q is empty, in which case we output the adaptive pixel
mesh Mδ.

We next describe the merging scheme in an algorithm format. Suppose that n

is a power of 2. For a given global error δ > 0 and a display image un, the merging
scheme can be described as follows.

In the initial state, Tn is put into the pixel FIFO queue Q in an arbitrary order,
and the adaptive pixel mesh Mδ is ∅.

Step 1. If Q is empty, output Mδ and stop.
Step 2. Remove one pixel Tk

j in the head of Q and conduct the following:

(1) If E(un,Tk
j )p ≤ δ, find the brother pixels of Tk

j and perform

(a) If all its brother pixels’ Lp local errors are less than or equal to δ,
then remove the brother pixels of Tk

j from Q and put their parent
pixel Tk−1

(� j1
2 �,� j2

2 �) into the rear of Q.

(b) If one of its brother pixels’ Lp local error is larger than δ, then put
Tk
j into Mδ.

(2) If E(un,Tk
j )p > δ, put the children pixels of Tk

j into Mδ.

Step 3. Go to Step 1.

It can be easily seen that the merging scheme is a reverse process of the basic
dividing scheme studied in [7, 13, 22, 23]. The basic dividing scheme was used in
[13] to partition the domain of a function in a Besov space in order to construct
the best piecewise polynomial approximation on the adaptive mesh to approximate
the function. Similarly, an adaptive tree process was used in [7, 22, 23] to obtain
nonlinear wavelet representations of a function in a Besov space. The goal of these
schemes is to construct a piecewise polynomial approximation of a function in a
Besov space. The basic dividing scheme begins with a continuous domain, and it
constructs an adaptive mesh by repeatedly dividing the domain. Here, we construct
an adaptive mesh in a different way: the merging scheme starts with a finest uniform
pixel mesh, and it generates an adaptive pixel mesh by merging pixels.

With the adaptive pixel mesh Mδ generated by the merging scheme, we can
construct an adaptive display image. Specifically, for a given global error δ > 0 and
a display image un, the adaptive display image on the adaptive pixel mesh Mδ is
defined by

un,δ(x) :=
∑

Q∈Mδ

(C p
Qun)χQ(x). (3.4)
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In fact, as we can see from (3.4), the adaptive display image un,δ is the best Lp

piecewise constant approximation of the display image un on the adaptive pixel
mesh Mδ.

Since the merging scheme merges brother pixels into their parent pixel, it is no
doubt that the cardinality of the resulting adaptive pixel mesh is less than that of
the original pixel mesh. The question is how close the adaptive display image and
its original nature image can be. To answer this question, we consider the Lp(T)
error between an adaptive display image and its original natural image in Sec. 4.

4. Error of an Adaptive Display Image from its Natural Image

In this section, we estimate the Lp(T) error between an adaptive display image
un,δ and its original natural image u under the assumption that the natural image
belongs to the Besov space Bα+ε

v,τ , for 0 < α < α + ε ≤ 1 with ε > 0, 1 < p < ∞,
p ≤ v ≤ ∞, 0 < τ ≤ ∞.

We shall bound ‖u−un,δ‖p by estimating ‖u−un‖p and ‖un−un,δ‖p. The first
term is the Lp(T) error between a display image and its original natural image,
while the second term is the Lp(T) error between an adaptive display image and
its original display image.

We now estimate ‖u−un‖p. We first establish that if a natural image u ∈ Lp(T),
then its corresponding display image un also belongs to Lp(T). To this end, for
Q ⊂ T and f ∈ Lp(Q), we define the average fQ : Lp(Q) → R of f on Q as

fQ :=
∫
Q

1
|Q|f(x)dx.

The following simple fact concerns an upper bound of the average fQ.

Lemma 4.1. If 1 ≤ p ≤ ∞ and Q ⊂ T, then for all f ∈ Lp(Q),

|fQ| ≤ |Q|−1/p‖f‖Lp(Q).

Proof. We prove this result by applying the Hölder inequality. For 1 ≤ p < ∞, we
let p′ := (1 − 1/p)−1. From the definition of fQ and the Hölder inequality, we have
that

|fQ| ≤
∣∣∣∣∫

Q

1
|Q|dx

∣∣∣∣1/p′ ∣∣∣∣∫
Q

1
|Q| |f(x)|pdx

∣∣∣∣1/p

. (4.1)

Since
∫
Q

1
|Q|dx = 1, it follows from (4.1) that

|fQ| ≤
∣∣∣∣∫

Q

1
|Q| |f(x)|pdx

∣∣∣∣1/p

=
1

|Q|1/p
‖f‖Lp(Q).

For p = ∞, from the definition of fQ, we have that

|fQ| ≤
∣∣∣∣∫

Q

1
|Q|dx

∣∣∣∣ ‖f‖L∞(Q) = ‖f‖L∞(Q),

which yields the desired estimate.



December 12, 2019 17:29 WSPC/S0219-5305 176-AA 1941011

10 M. Zhi & Y. Xu

We now estimate a bound on ‖un‖p.

Proposition 4.2. If 1 ≤ p ≤ ∞ and u ∈ Lp(T) is a natural image, then for all
n ∈ N+, the corresponding display images un have the estimate

‖un‖p ≤ ‖u‖p.

Proof. This is done by estimating ‖un‖p
p using Lemma 4.1. From the definition of

un and the norm ‖ · ‖p, we have that

‖un‖p
p =

∫
T

∣∣∣∣∣∣
∑

j′∈Z2
n

uj′ χ
T
(n)
j′

(x)

∣∣∣∣∣∣
p

dx. (4.2)

By the definition of the characteristic function, we get that∑
j′∈Z2

n

uj′ χ
T
(n)
j′

(x) = uj for x ∈ Tk
j . (4.3)

Substituting (4.3) into (4.2) yields

‖un‖p
p =

∑
j∈Z2

n

∫
T
(n)
j

∣∣∣∣∣∣
∑

j′∈Z2
n

uj′ χ
T
(n)
j′

(x)

∣∣∣∣∣∣
p

dx =
∑
j∈Z2

n

∫
T
(n)
j

|uj |pdx,

which implies

‖un‖p
p =

∑
j∈Z2

n

|uj |p|T(n)
j |. (4.4)

Since u ∈ Lp(T), applying Lemma 4.1 to uj which has the expression (3.1), we
obtain that

|uj | ≤ 1

|T(n)
j |1/p

‖u‖
Lp(T

(n)
j )

. (4.5)

Combining (4.4) with (4.5) yields

‖un‖p
p ≤

∑
j∈Z2

n

|T(n)
j | 1

|T(n)
j |

‖u‖p

Lp(T
(n)
j )

=
∑
j∈Z2

n

‖u‖p

Lp(T
(n)
j )

= ‖u‖p
p,

which completes the proof.

We recall the definition of an useful sharp maximal function f#
α,p and the smooth

space Cα
p (T), which were introduced in [11]. For 0 < α < 1, 0 < p < ∞, f ∈ Lp(T)

and x ∈ T, we define the sharp maximal function by

f#
α,p(x) := sup

x∈Q

|Q|−(α/2+1/p)E(f,Q)p,

where the sup is taken over all squares Q ⊂ T containing x. Furthermore, we recall
the definition of space Cα

p (T) which measures smoothness of order α in Lp(T)
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through the sharp maximal function f#
α,p. For 0 < p < ∞, we say that f belongs to

Cα
p (T) if f#

α,p ∈ Lp(T). We define the seminorm

|f |Cα
p (T) := ‖f#

α,p‖p

and the norm

‖f‖Cα
p (T) := ‖f‖p + |f |Cα

p (T).

When p = ∞, we say that f ∈ Cα
∞(T) if f#

α,1 ∈ L∞(T), and define

|f |Cα∞(T) := ‖f#
α,1‖∞

and

‖f‖Cα∞(T) := ‖f‖∞ + |f |Cα∞(T).

In fact, when p > 1 and α ∈ Z+, the space Cα
p (T) turns out to be the Sobolev space

Wα
p (T). For simplicity, we use the notation Cα

p for Cα
p (T).

The Lp local error of the average approximation of f on Q is defined by

Ef (Q)p := ‖f − fQ‖Lp(Q).

For any Q ⊂ T and f ∈ Lp(Q), we call C̃ p
Qf : Lp(Q) → R the near best Lp constant

approximation of f on Q if

‖f − C̃ p
Qf‖Lp(Q) ≤ cE(f,Q)p, for a positive constant c.

It is well-known that fQ is the best L2 constant approximation of f on Q (see,
for example, [8]). Moreover, fQ is also a near best Lp constant approximation of
f with constant 2 for 1 ≤ p ≤ ∞ on Q. In fact, it was proved in [8, Theorem 2]
that the best L1 constant approximation is a near best Lp constant approximation
for 0 < p ≤ ∞, and pointed out without proof that fQ is a near best Lp constant
approximation of f for 1 ≤ p ≤ ∞ on Q. For the completeness of this paper, we
provide a proof in the following.

Proposition 4.3. If 1 ≤ p ≤ ∞ and Q ⊂ T, then for all f ∈ Lp(Q), fQ is a near
best Lp constant approximation of f on Q in the sense that

Ef (Q)p ≤ 2E(f,Q)p.

Proof. This proof is done by applying Lemma 4.1 with the fact that (f − v)Q =
fQ − v, for a constant v. We first observe that

‖fQ‖Lp(Q) =
(∫

Q

|fQ|pdx
)1/p

= |Q|1/p|fQ|.

It follows from Lemma 4.1 that

‖fQ‖Lp(Q) ≤ ‖f‖Lp(Q). (4.6)
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By the triangle inequality, we get that

Ef (Q)p ≤ ‖fQ − C p
Qf‖Lp(Q) + ‖f − C p

Qf‖Lp(Q). (4.7)

We consider the first term on the right-hand side of (4.7). Since the average of a
constant is the constant itself, for any v ∈ R, we have that (f − v)Q = fQ − v. In
particular, substituting v := C p

Qf , we obtain that

fQ − C p
Qf = (f − C p

Qf)Q.

Combining this with (4.6) yields that

‖fQ − C p
Qf‖Lp(Q) ≤ ‖f − C p

Qf‖Lp(Q). (4.8)

Finally, substituting (4.8) into (4.7) yields that

Ef (Q)p ≤ 2‖f − C p
Qf‖Lp(Q) = 2E(f,Q)p,

proving the desired estimate.

From the definition of f#
α,p, for any x ∈ Q, we have that

f#
α,p(x) ≥ |Q|−(α/2+1/p)E(f,Q)p. (4.9)

Combining this with Proposition 4.3 leads to the estimate

Ef (Q)p ≤ 2|Q|α/2+1/pf#
α,p(x). (4.10)

Now, we are ready to give an upper bound on ‖u − un‖p when u ∈ Cα
p .

Proposition 4.4. If 0 < α < 1, 1 ≤ p < ∞, and u ∈ Cα
p is a nature image, then

there exists a positive constant c such that for all n ∈ N+,

‖u − un‖p ≤ cn−α‖u‖Cα
p
.

Proof. We first comment that un ∈ Lp(T). Because of u ∈ Cα
p , we know that

u ∈ Lp(T). Hence, Proposition 4.2 ensures that un ∈ Lp(T) as well. Since the value
of un on T

(n)
j is a constant uj and uj = u

T
(n)
j

, we obtain that

‖u − un‖p =

⎛⎝ ∑
j∈Z2

n

Eu(T(n)
j )p

p

⎞⎠1/p

. (4.11)

We shall first show that Eu(T(n)
j )p can be bounded by |u|

Cα
p (T

(n)
j )

, and then using

this fact with (4.11), establish the upper bound of ‖u − un‖p.
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Note that u#
α,p is well-defined due to u ∈ Lp(T). By substituting f := u and

Q := T
(n)
j into (4.10), we obtain that for x ∈ T

(n)
j ,

Eu(T(n)
j )p ≤ 2|T(n)

j |α/2+1/p u#
α,p(x). (4.12)

Notice that

|T(n)
j |1/pEu(T(n)

j )p =

(∫
T
(n)
j

Eu(T(n)
j )p

pdx

)1/p

. (4.13)

Combining (4.12) and (4.13), we obtain that

Eu(T(n)
j )p ≤ 2|T(n)

j |α/2

(∫
T
(n)
j

|u#
α,p(x)|pdx

)1/p

. (4.14)

In the mean time, from the definition of | · |
Cα

p (T
(n)
j )

, we have that

(∫
T
(n)
j

|u#
α,p(x)|pdx

)1/p

= |u|
Cα

p (T
(n)
j

)
. (4.15)

Substituting (4.15) into (4.14) yields that

Eu(T(n)
j )p ≤ 2|T(n)

j |α/2|u|
Cα

p (T
(n)
j )

. (4.16)

Since |T(n)
j | = |T|n−2, combining (4.11) and (4.16), we get that

‖u − un‖p ≤ 2|T|α/2n−α

⎛⎝ ∑
j∈Z2

n

|u|p
Cα

p (T
(n)
j )

⎞⎠1/p

. (4.17)

Moreover, by the definition of | · |Cα
p
, we find that⎛⎝ ∑

j∈Z2
n

|u|p
Cα

p (T
(n)
j )

⎞⎠1/p

= |u|Cα
p
. (4.18)

Finally, from (4.17) and (4.18), we achieve that

‖u − un‖p ≤ 2|T|α/2n−α|u|Cα
p
≤ cn−α‖u‖Cα

p
,

where c = 2|T|α/2.

Indeed, Cα
p (T) is a natural extension of the Sobolev space Wα

p (T), which was
discussed in [12]. The result of the Lp(T) error between a function in the Sobolev
space and its best piecewise constant approximation on a non-uniform partition
mesh is well-known. For example, in [21] (see Theorem 6.1), it was proved that
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for any non-uniform partition � := {a = x0 < x1 < · · · < xn−1 < xn = b}, if
1 ≤ p ≤ q ≤ ∞ and f ∈ W 1

p [a, b], then

inf
c∈Rn

∥∥∥∥∥∥f −
∑
j∈Zn

cjχ�(n)
j

∥∥∥∥∥∥
q

≤ �̄−(1−1/p+1/q)‖f‖W 1
p [a,b],

where c := {cj}j∈Zn ∈ Rn, �(n)
j := [xj , xj+1) and �̄ := maxj∈Zn(xj+1 − xj).

Now, we turn to estimating ‖un − un,δ‖p.

Proposition 4.5. If 1 < p < ∞ and 0 < α < min(1, 2 − 2/p), then there exists a
positive constant c such that for all δ > 0, n = 2k, k ∈ N+, natural images u ∈ Cα

p ,
their corresponding display images un and adaptive display images un,δ,

‖un − un,δ‖p < c|Mδ|−α/2‖u‖Cα
p
.

Proof. We first comment that u, un and un,δ all belong to Lp(T) if u ∈ Cα
p . Clearly,

we know that u ∈ Cα
p implies u ∈ Lp(T). Besides, by Proposition 4.2, we have that

un ∈ Lp(T) as well. In addition, from the merging scheme, we know that

‖un − un,δ‖p =

⎛⎝ ∑
Q∈Mδ

E(un,Q)p
p

⎞⎠1/p

≤ (|Mδ|δp)1/p
,

which implies

‖un − un,δ‖p ≤ |Mδ|1/pδ. (4.19)

Thus, combining the triangle inequality and (4.19), we have that

‖un,δ‖p ≤ ‖un‖p + ‖un − un,δ‖p < ∞,

which implies un,δ ∈ Lp(T).
For any adaptive pixel Q ∈ Mδ, from the merging scheme, we know that its

parent pixel Q′ satisfies

E(un,Q′)p > δ. (4.20)

Furthermore, from the definition of E(un,Q′)p, we have that

E(un,Q′)p ≤ ‖un − C p
Q′u‖Lp(Q′). (4.21)

Since C p
Q′u is a constant, according to Proposition 4.2, we get that

‖un − C p
Q′u‖Lp(Q′) ≤ E(u,Q′)p. (4.22)

Therefore, combining (4.20)–(4.22), we obtain that

δ < E(u,Q′)p. (4.23)

By (4.9), for any x ∈ Q′, we have that

|Q′|−(α/2+1/p)E(u,Q′)p ≤ u#
α,p(x). (4.24)
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Let q := (α/2 + 1/p)−1. Note that |Q′| = 4|Q|. Then for any x ∈ Q, combining
(4.23) and (4.24), we get that

δ < 41/q|Q|1/qu#
α,p(x). (4.25)

Because of u ∈ Cα
p , we know that u#

α,p ∈ Lp(T). Since 0 < α < min(1, 2 − 2/p),
it can be seen easily that 1 < q = (α/2 + 1/p)−1 < p. According to the Hölder
inequality, we get that u#

α,p ∈ Lq(T) and

‖u#
α,p‖q ≤ |T|1/q−1/p‖u#

α,p‖p. (4.26)

Furthermore, from (4.25), we have that

|Q|1/qδ =
(∫

Q

δqdx
)1/q

<

(∫
Q

4|Q||u#
α,p(x)|qdx

)1/q

= 41/q|Q|1/q‖u#
α,p‖Lq(Q),

which implies that

δ < 41/q‖u#
α,p‖Lq(Q). (4.27)

Note that (4.27) is true for any Q ∈ Mδ. Therefore, from the definition of Cα
p norm,

combining (4.26) and (4.27), we achieve that

|Mδ|δq =
∑

Q∈Mδ

δq < 4
∑

Q∈Mδ

‖u#
α,p‖q

Lq(Q) = 4‖u#
α,p‖q

q

≤ 4|T|1−q/p‖u#
α,p‖q

p ≤ 4|T|1−q/p‖u‖q
Cα

p
,

which yields

δ < 41/q|T|1/q−1/p|Mδ|−1/q‖u‖Cα
p
. (4.28)

Since 1/p− 1/q = −α/2, combining (4.19) and (4.28), we observe that

‖un − un,δ‖p < |Mδ|1/p41/q|T|1/q−1/p|Mδ|−1/q‖u‖Cα
p

= c|Mδ|−α/2‖u‖Cα
p
,

where c := 41/q|T|−α/2.

Now, we are going to show that Bα+ε
v,τ is continuously embedded in Cα

p . We use
the notation A ↪→ B to denote space A is continuously embedded in B. We recall
a well-known Besov embedding, which can be found in [10]. If 0 < α < α + ε ≤ 1
with ε > 0, 0 < p ≤ ∞ and 0 < τ, q ≤ ∞, then the following continuous embedding
holds

Bα+ε
p,τ ↪→ Bα

p,q.

According to the Hölder inequality, we have that if 0 < α < α + ε ≤ 1 with ε > 0,
1 ≤ p ≤ v ≤ ∞ and 0 < τ, q ≤ ∞, then the following continuous embedding
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holds:

Bα+ε
v,τ ↪→ Bα

p,q. (4.29)

From (4.29), we can immediately derive that if 0 < α < α + ε ≤ 1 with ε > 0,
0 < τ ≤ ∞ and 1 ≤ p ≤ v ≤ ∞, then

Bα+ε
v,τ ↪→ Bα

p,p. (4.30)

In addition, a continuous embedding theorem about Cα
p was proved in [11] (see [11,

Theorem 7.1]). If α > 0 and 1 ≤ p ≤ ∞, then the following continuous embeddings
hold:

Bα
p,p ↪→ Cα

p ↪→ Bα
p,∞. (4.31)

Combining (4.30) and (4.31), we find that if 0 < α < α + ε ≤ 1 with ε > 0,
0 < τ ≤ ∞ and 1 ≤ p ≤ v ≤ ∞, then

Bα+ε
v,τ ↪→ Cα

p . (4.32)

In particular, for any function f ∈ Bα+ε
v,τ , there exists a positive constant c such

that

‖f‖Cα
p
≤ c‖f‖Bα+ε

v,τ
. (4.33)

Finally, we are ready to estimate ‖u − un,δ‖p.

Theorem 4.6. If 1 < p < ∞, and u ∈ Bα+ε
v,τ is a nature image for 0 < α < α+ε ≤

min(1, 2 − 2/p) with ε > 0, p ≤ v ≤ ∞ and 0 < τ ≤ ∞, then there exists a positive
constant c such that for all δ > 0, n = 2k, k ∈ N+,

‖u − un,δ‖p < c(n−α + |Mδ|−α/2)‖u‖Bα+ε
v,τ

.

Proof. By the triangle inequality, we have that

‖u − un,δ‖p ≤ ‖u − un‖p + ‖un − un,δ‖p. (4.34)

From the embedding relation (4.32), we know that u ∈ Bα+ε
v,τ implies u ∈ Cα

p .
Therefore, by Propositions 4.4 and 4.5, we have the upper bound of the first term
and the second term of the right-hand side of (4.34), respectively. Substituting them
into (4.34) and combining the resulting estimate with (4.33), we prove the desired
result.

It was found in [3] that many natural images belong to the Besov space Bα
2,∞

with 0 < α < 1. Note that Bα
2,∞ is a special case of Bα+ε

2,τ . Indeed, according to
Theorem 4.6, we have the following corollary.

Corollary 4.7. If u ∈ Bα+ε
2,τ is a nature image for 0 < α < α + ε ≤ 1 with ε > 0

and 0 < τ ≤ ∞, then there exists a positive constant c such that for all δ > 0,

n = 2k, k ∈ N+,

‖u − un,δ‖2 < c(n−α + |Mδ|−α/2)‖u‖Bα+ε
2,τ

.

Proof. This is a special case of Theorem 4.6 with v = p = 2.



December 12, 2019 17:29 WSPC/S0219-5305 176-AA 1941011

Adaptive display images 17

5. Numerical Experiments

We present in this section numerical experimental results to verify that the visual
quality of the adaptive display image is comparable with that of its original display
image while the cardinality of the adaptive pixel mesh is significantly less than that
of the original pixel mesh.

We choose the testing display images from SAMPLING archive (8 bit) of
“TESTIMAGES” database introduced in [2], whose purpose is providing “natu-
ral” images to test resampling algorithms. Here, “natural” means capturing by
camera directly and without artificial processing. The original resolution of the
display images in this database is 2400. In order to get 2048× 2048 display images,
we select the central 2048× 2048 region of each display image. In what follows, we
choose p = 2. Matlab R2013b is used to run all the experiments presented in this
section.

The first experiment is to show that the cardinality of the adaptive pixel mesh is
significantly less than that of the original pixel mesh, while the corresponding adap-
tive display images have comparable quality with the original display images. We
choose from the database three display images which have low degrees of smooth-
ness. The first one is “Flowers” which represents the natural objects. The second
one is “Building” which represents the man-made building. The third one is “Clips”
which represents the messy man-made things. All of these images have significant
amount of edges. In order to show the adaptive pixel mesh clearly, we choose the
highest resolution 2048×2048 display images. In our adaptive merging scheme, the
global error δ is chosen to be 0.01. The experimental results are shown in Fig. 1.
As shown in this Fig. 1, the quality of the resulting adaptive display images is
comparable to that of the corresponding original display images, while the cardi-
nalities of all these three adaptive pixel meshes are significantly less than those
of the corresponding original pixel meshes. In fact, one cannot tell the difference
between these display images and their corresponding adaptive display images. Last
but not least, the adaptive pixel mesh is dense around the edges of a display image.
This feature can be used for edge detection or image segmentation.

The next experiment is to test the effect of the global error δ on the adaptive
display image. For this experiment, we again choose the three 2048× 2048 display
images tested in the previous experiment. We choose different δ (δ = 0.1, 0.5 and
1.0) and show the difference among the reconstructed adaptive display images.
Results of this experiment are shown in Fig. 2. We can observe from Fig. 2 that
the size of the adaptive pixel depends on δ. The larger the δ is chosen, the bigger
the adaptive pixel’s size is and the fewer the cardinality of the adaptive pixel mesh
has. However, with the increasing of δ, the display images become more and more
blurred. But we still can see the outline of these adaptive display images. Therefore,
the visual quality of the adaptive display image depends on δ. If one wants to
generate an adaptive display image with better quality, it is suggested to choose a
smaller value for δ.
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(a) original “Flowers” (b) original “Building” (c) original “Clips”

(d) adaptive display image (e) adaptive display image (f) adaptive display image

(g) |Mδ|: 499921 (11.92%) (h) |Mδ|: 316555 (7.55%) (i) |Mδ|: 793885 (18.93%)

Fig. 1. The display image, the corresponding adaptive display image and adaptive pixel mesh of
“Flowers”, “Building” and “Clips”. (a)–(c) are the display images with resolution 2048; (d)–(f)
are the adaptive display images of (a)–(c) produced by the adaptive merging scheme with δ = 0.01
and n = 2048; (g)–(i) are the adaptive pixel mesh of (a)–(c), respectively. The percentage in (g)–(i)
is the ratio of |Mδ| to n2.

The last experiment is to compare the L2(T) error ‖u− un‖2 with ‖u− un,δ‖2.
For generality of this experiment, we test all 40 display images in SAMPLING
archive of “TESTIMAGES” database. For the comparison purpose, we take display
images with resolution 2048 as natural images u and obtain their 512× 512 display
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(a) |Mδ|: 50032 (1.19%) (b) |Mδ|: 7765 (0.19%) (c) |Mδ|: 3100 (0.07%)

(d) |Mδ|: 32155 (0.77%) (e) |Mδ|: 4663 (0.11%) (f) |Mδ|: 1783 (0.04%)

(g) |Mδ|: 87676 (2.09%) (h) |Mδ|: 15532 (0.37%) (i) |Mδ|: 6592 (0.16%)

Fig. 2. Adaptive display images of “Flowers”, “Building” and “Clips” with different δ. The
resolution of display images is n = 2048. From left to right, δ is 0.1, 0.5 and 1.0. The percentage
in each subfigure is the ratio of |Mδ| to n2.

images un by averaging the corresponding pixel values. We then construct adaptive
display images un,δ from these display images by using the adaptive merging scheme
with δ = 0.01. We calculate the relative errors

Err1 :=
‖u − un‖2

‖u‖2 , Err2 :=
‖u − un,δ‖2

‖u‖2 , Err3 :=
‖un − un,δ‖2

‖u‖2
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(a) Err1 and Err2 of 40 test images (b) Err3 and Err4 of 40 test images

Fig. 3. (Color line) Err1, Err2, Err3 and Err4 of 40 test images in “TESTIMAGES”. The res-
olution of display images is n = 512 and δ = 0.01. (a) Comparison of Err1 and Err2. The black
circle point is the Err1 of test images while the red star point is Err2. (b) Comparison of Err3 and
Err4. The black cross point is the Err3 of test images while the red plus point is Err4.

Table 1. Err1, Err2, Err3 and Err4 of 40 test images in “TESTIMAGES” (part 1).
The resolution of display images is n = 512. |Mδ| is the cardinality of adaptive pixel
mesh with δ = 0.01, and the percentages are the ratio of |Mδ| to n2.

Display image |Mδ| Err1 Err2 Err3 Err4

Almonds 214885 (81.97%) 0.0645 0.0650 0.0021 0.0005
Apples 124120 (47.35%) 0.0175 0.0187 0.0017 0.0012
Baloons 111337 (42.47%) 0.0226 0.0237 0.0018 0.0011
Bananas 112975 (43.10%) 0.0205 0.0214 0.0015 0.0009
Billiard balls (a) 77770 (29.67%) 0.0226 0.0233 0.0015 0.0007
Billiard balls (b) 119356 (45.53%) 0.0352 0.0363 0.0022 0.0011
Building 123757 (47.21%) 0.0492 0.0498 0.0019 0.0006
Cards (a) 151315 (57.72%) 0.0571 0.0572 0.0010 0.0001
Cards (b) 106486 (40.62%) 0.0413 0.0414 0.0008 0.0001
Carrots 148726 (56.73%) 0.0193 0.0202 0.0015 0.0009
Chairs 55297 (21.09%) 0.0162 0.0178 0.0018 0.0016
Clips 219733 (83.82%) 0.0764 0.0766 0.0014 0.0002
Coins 194665 (74.26%) 0.0592 0.0597 0.0020 0.0005
Cushions 99748 (38.05%) 0.0214 0.0226 0.0018 0.0012
Ducks 75157 (28.67%) 0.0179 0.0195 0.0019 0.0016
Fence 151342 (57.73%) 0.0399 0.0404 0.0016 0.0005
Flowers 194857 (74.33%) 0.0463 0.0467 0.0014 0.0004
Garden table 208999 (79.73%) 0.0642 0.0646 0.0018 0.0004
Guitar bridge 182884 (69.76%) 0.0326 0.0332 0.0016 0.0006
Guitar fret 134284 (51.23%) 0.0356 0.0364 0.0019 0.0008

and

Err4 := Err2 − Err1.

The numerical results are presented in Fig. 3, Tables 1 and 2. It can be seen from
these results that for all 40 test images, Err1 is comparable to Err2, and both Err3
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Table 2. Err1, Err2, Err3 and Err4 of 40 test images in “TESTIMAGES” (part 2). The
resolution of display images is n = 512. |Mδ| is the cardinality of adaptive pixel mesh
with δ = 0.01, and the percentages are the ratio of |Mδ| to n2.

Display image |Mδ| Err1 Err2 Err3 Err4

Guitar head 185704 (70.84%) 0.0594 0.0600 0.0021 0.0006
Keyboard (a) 159883 (60.99%) 0.1135 0.1140 0.0026 0.0005
Keyboard (b) 172699 (65.88%) 0.0496 0.0502 0.0020 0.0006
Lion 128749 (49.11%) 0.0397 0.0399 0.0011 0.0002
Multimeter 172216 (65.70%) 0.0508 0.0515 0.0021 0.0007
Pencils (a) 153400 (58.52%) 0.0327 0.0334 0.0017 0.0007
Pencils (b) 151510 (57.80%) 0.0362 0.0371 0.0021 0.0009
Pillar 141163 (53.85%) 0.0298 0.0304 0.0014 0.0005
Plastic 209938 (80.08%) 0.0319 0.0327 0.0018 0.0008
Roof 138412 (52.80%) 0.0507 0.0509 0.0011 0.0002
Scarf 243634 (92.94%) 0.0662 0.0663 0.0011 0.0001
Screws 229780 (87.65%) 0.0984 0.0985 0.0011 0.0001
Snails 130390 (49.74%) 0.0293 0.0304 0.0020 0.0011
Socks 251896 (96.09%) 0.0716 0.0717 0.0009 0.0001
Sweets 137257 (52.36%) 0.0273 0.0284 0.0019 0.0010
Tomatoes (a) 120379 (45.92%) 0.0178 0.0194 0.0019 0.0016
Tomatoes (b) 100624 (38.39%) 0.0340 0.0355 0.0026 0.0015
Tools (a) 195217 (74.47%) 0.0448 0.0453 0.0016 0.0005
Tools (b) 154963 (59.11%) 0.0399 0.0412 0.0025 0.0013
Wood game 94612 (36.09%) 0.0179 0.0187 0.0013 0.0008

and Err4 are closed to zero while the cardinality of the adaptive pixel mesh is
less than that of the original pixel mesh. Besides, we can see from Tables 1 and 2
that the adaptive merging scheme is suitable for those images which have simple
backgrounds or simple patterns such as “Chairs” and “Ducks”, but less suitable for
texture images, like “Scarf” and “Socks”.

From the three experiments presented above, we conclude that the cardinal-
ity of the adaptive pixel mesh produced by the adaptive merging scheme can be
significantly less than that of the original pixel mesh, with preserving a comparable
image quality. Furthermore, the proposed adaptive reconstruction method is more
suitable for images having simple backgrounds or simple patterns.

6. Conclusions

In this paper, we develop an adaptive reconstruction method for display images.
The method employs an adaptive merging scheme which constructs an adaptive
pixel mesh from the pixel mesh of a display image. The cardinality of the adaptive
pixel mesh can be significantly less than that of the original pixel mesh, while
the resulting adaptive display image has an image quality comparable to that of
the original display image. We have established that the adaptive display image
constructed based on the adaptive pixel mesh is the best Lp piecewise constant
approximation of its original display image. By assuming that natural images belong
to Besov spaces, we estimate the Lp(T) error between the adaptive display image
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and its original natural image. Numerical results presented in this paper confirm
the theoretical estimates.
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