Boundedness and invariant metrics for
diffeomorphism cocycles over hyperbolic
systems

Victoria Sadovskaya

Geometriae Dedicata

ISSN 0046-5755
Volume 202
Number 1

Geom Dedicata (2019) 202:401-417 GEOMETRIAE
DOI 10.1007/510711-019-00421-9 DEDIC AT A

@ Springer

@ Springer



Your article is protected by copyright and

all rights are held exclusively by Springer
Nature B.V.. This e-offprint is for personal
use only and shall not be self-archived

in electronic repositories. If you wish to
self-archive your article, please use the
accepted manuscript version for posting on
your own website. You may further deposit
the accepted manuscript version in any
repository, provided it is only made publicly
available 12 months after official publication
or later and provided acknowledgement is
given to the original source of publication
and a link is inserted to the published article
on Springer's website. The link must be
accompanied by the following text: "The final
publication is available at link.springer.com”.

@ Springer



Geometriae Dedicata (2019) 202:401-417
https://doi.org/10.1007/510711-019-00421-9

ORIGINAL PAPER

@ CrossMark

Boundedness and invariant metrics for diffeomorphism
cocycles over hyperbolic systems

Victoria Sadovskaya’

Received: 29 August 2018 / Accepted: 2 January 2019 / Published online: 17 January 2019
© Springer Nature B.V. 2019

Abstract

Let A be a Holder continuous cocycle over a hyperbolic dynamical system with values in
the group of diffeomorphisms of a compact manifold M. We consider the periodic data of
A, i.e., the set of its return values along the periodic orbits in the base. We show that if the
periodic data of A is bounded in Diff? (M), ¢ > 1, then the set of values of the cocycle is
bounded in Dift” (M) for each r < g. Moreover, such a cocycle is isometric with respect to
a Holder continuous family of Riemannian metrics on M.

Keywords Cocycle - Diffeomorphism group - Periodic orbit - Hyperbolic system -
Symbolic system

Mathematics Subject Classification 37D20 - 54H15

1 Introduction and statement of the results

Group-valued cocycles over hyperbolic systems have been extensively studied starting with
the work of A. LivSic [14,15], who obtained definitive results for commutative groups and
made some progress for more general ones. The subsequent research was focused on non-
abelian groups, starting with compact groups and proceeding to more general ones, see [12]
for a survey of results prior to 2008. The case of GL(d, R) and Lie groups is now relatively
well understood, see for example [4,7,9,20,21]. Cocycles with values in diffeomorphism
groups give another important and dynamically natural class, which is harder to analyze.

In this paper we consider the group Diff” (M) of C" diffeomorphisms of a compact
connected manifold M and study cocycles over a hyperbolic dynamical system with values
in Diff” (M). By a hyperbolic system we mean either a transitive Anosov diffeomorphism
of a compact connected manifold, or a topologically mixing diffeomorphism of a locally
maximal hyperbolic set, or a mixing subshift of finite type, see Sect. 2.1. We focus on the
problem of obtaining information about the cocycle from its periodic data, that is, its return

Supported in part by NSF Grant DMS-1764216.

B Victoria Sadovskaya
sadovskaya@psu.edu

1 Department of Mathematics, The Pennsylvania State University, University Park, PA 16802, USA

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10711-019-00421-9&domain=pdf

402 Geometriae Dedicata (2019) 202:401-417

values along the periodic orbits in the base. This is one of the central questions for cocycles
over hyperbolic systems. The basic problem in this area is to show that a cocycle with the
identity periodic data is cohomologous to the identity cocycle. This was done in [4,16] under
additional assumptions on growth of the cocycle and recently in [1,5,8] just from the periodic
data.

In this paper we obtain results for much broader class of cocycles, which have uniformly
bounded periodic data. We show that all iterates of such a cocycle remain uniformly bounded
and the cocycle is, in a sense, a cocycle of isometries.

Definition 1.1 Let f be a homeomorphism of a compact metric space X and let A be a
function from X to Diff” (M). The Diff” (M)-valued cocycle over f generated by A is the
map A : X x Z — Dift" (M) defined by A(x,0) =1d and forn € N,

Ale,n) = AL = A(f" ') 00 A) and Alx, —n) = A" = (A%, )7

Clearly, A satisfies the cocycle equation A"+* = A’}kx oAk,

Cocycles can be considered in any regularity. We say that a cocycle A is bounded, contin-
uous, or Holder continuous if this property holds for its generator A(x) = A,. We call a set
S in Diff” (M) bounded if || g||cr and ||g ™" ||¢c» are bounded uniformly in g € S. Here ||| cr
denotes the usual C" norm adapted to the manifold setting, see Sect. 2.2, where a distance
dcr between diffeomorphisms is also defined. A Diff” (M)-valued cocycle A is B-Holder,
0 < B < 1, if there exists ¢ > 0 such that

der(Ay, Ay) < cdx(x,y)P forallx,y e X.

Holder continuity is the most natural setting for cocycles over hyperbolic systems, especially
since we include non-smooth systems in the base.
For a cocycle A, we consider the periodic data set A p and the set of all values Ay,

Ap={A%: p=f'p. pe X, keN} and Ax ={A}: xe X, nel}

Our main results are the following two theorems. The first one gives boundedness of the
cocycle and the second one yields an invariant metric.

Theorem 1.2 Let (X, f) be a hyperbolic system, let M be a compact connected manifold,
let k € N, and let A be a bounded Diff**' (M)-valued cocycle over f which is Holder
continuous as a Diff? (M)-valued cocycle withq =k +y,0 <y < L.

(i) If the periodic data set Ap is bounded in Diff? (M), then the value set Ay is bounded
in Diff" (M) for any r < q.
(i) If Ap is bounded in Diff1 (M), then Ay is also bounded in Diﬁ‘1 (M).

Boundedness of cocycles allows, in particular, to obtain higher regularity of a continuous
transfer map between them by the results in [17,18].

Theorem 1.3 Let (X, f) and M be as above, and let A be a bounded Dijfz(/\/t)-valued
cocycle over f that is B-Hdélder continuous as a Diff (M)-valued cocycle withq = 1 + vy,
0 < y < 1. If the periodic data set Ap is bounded in Diff? (M), then there exists a family
of Riemannian metrics {t, : x € X} on M such that

Ax : (M, 1) = (M, Ty) is an isometry for each x € X.
Moreover, for any o < y each t, is a-Holder continuous on M and depends Holder

continuously on x in C* distance with exponent (y — o).
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We note that uniform boundedness of the periodic data is crucial in our theorems. Indeed,
S. Hurtado constructed in [6] an example of Diff>* (3 x S')-valued cocycles over a Bernoulli
shift for which every periodic value .A’[‘, is an isometry of some C° Riemannian metric on

M, but the cocycle has positive exponential growth rate of derivatives. Also, our C 1+Holder
regularity assumption for the cocycle is essential as it is known that an isometry of any
a-Holder Riemannian metric is C11¢ [24].

2 Preliminaries

2.1 Hyperbolic dynamical systems

See [11] for details.
Transitive Anosov diffeomorphisms A diffeomorphism f of compact connected manifold X
is called Anosov if there exist a splitting of the tangent bundle T X into a direct sum of two
Df -invariant continuous subbundles E* and E*, a Riemannian metric on X, and a number
A such that

IDxf@) <A <1<i™' < |[Def ) 2.1

for any x € X and unit vectors v* € E®(x) and v* € E"(x). The stable and unstable
subbundles E* and E* are tangent to the stable and unstable foliations W* and W*. The local

stable manifold of x, W} (x), is a small ball in W* (x) centered at x so that

dx(f"x, f"y) < A'dx(x,y) forally e W}, .(x)andn € N.

Local unstable manifolds are defined similarly. We assume that they are small enough so that
W . (x) N W[ (z) consists of a single point for any sufficiently close x, z € X.

A diffeomorphism is said to be (fopologically) transitive if there is a point x in X with
dense orbit. All known examples of Anosov diffeomorphisms have this property.

Mixing diffeomorphisms of locally maximal hyperbolic sets More generally, let f be a diffeo-
morphism of a manifold N'. A compact f-invariant set X C N is called hyperbolic if there
exist a continuous Df -invariant splitting Ty N' = E* @ E*, and a Riemannian metric on an
open set U D X such that (2.1) holds for all x € X. Local stable and unstable manifolds
are defined similarly for any x € X and we denote their intersections with X by W, (x)
and Wlﬂc (»). The set X is called locally maximal if X = (),cz f~"(U) for some open set
U D X. This property ensures that W) (x) N Wl{)c(y) exists in X. The map f|x is called
topologically mixing if for any two open non-empty subsets U, V of X there is N € N such

that f"(U)NV # @ forall n > N. Topological mixing implies transitivity.

Mixing subshifts of finite type Let M be k x k matrix with entries from {0, 1} such that all
entries of M™ are positive for some N. Let

X={x=nez 1 1 <x, <k and M,, =1 foreveryn € Z}.

»Xn+1

The shift map f : X — X is defined by (f(x)), = x,+1. The system (X, f) is called a
mixing subshift of finite type. We fix A € (0, 1) and consider the metric

d(x,y) =d(x,y) = A" where n(x,y) =min{li| : x; # y;}.
The following sets play the role of the local stable and unstable manifolds of x

Wh.x)={y: xi=y, i>=0}, WiH.(x)={y: xi=y, i <0}.
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Indeed, forall x € X,y € W), (x),y" € W/! (x),andn € N,
d(f"x, f'y)=A"d(x,y) and d(f"x, f7"y) =r"d(x,y),

and for any x, z € X with d(x, z) < 1 the intersection of W} (x) and W}/ (z) consists of a
single point, y = (y,) such that y, = x,, forn > 0 and y,, = z, forn < 0.

2.2 Distances on the space of diffeomorphisms

We fix a smooth background Riemannian metric and the corresponding distance d ¢ on M.

Recall that Diff" (M), r > 1, is the set of C" diffeomorphisms of M. The C" topology on

Diff” (M) can be defined using coordinate patches and the C” norm for the Euclidean space.
For diffeomorphisms g and 4 of M we set

d h) = d 1), ht dm(g7 @), 1)),
co(g, h) max Mg () ())+§2% Mg (@) )
For any g € Diff" (M), r € N, we can define its C” size as

lglcr = llgllcr + lg  ler,  where [lgllcr = max daq(g(t), 1) + max max || Dig],
teM I<i<rteM

where Df g is the derivative of g of order i at ¢ and its norm is defined as the norm of the
corresponding multilinear form from 7; M to T ;)M with respect the Riemannian metric.
Forr =k+a,k € N,0 < a < 1, the definition is similar with

lglicr = ligllcx +sup{ IDf — DX -dag(e, )™ 2 1,1 € M, 0 < dpm(t, ') < o),

where € is chosen small compared to the injectivity radius of M so that the tangent bundle
is locally trivialized via parallel transport and the difference makes sense.

We call a set S bounded in Diff” (M) if {|g|cr : g € S} is bounded.

A natural distance dcr (g, h) on Diff" (M), r € N, was defined in [4] as the infimum of
the lengths of piecewise C! paths in Diff” (M) connecting i with g and 2~! with g !, where
the length of a path pj is

ter(ps) = max max / 14 (Df py)ll ds,

0<i<rteM

see [4, Section 5] for details. For » = k + «, one also adds the corresponding Holder term:

€er(po) = s (po) s [ 11D poylaslds. - where
ID*glla, = sup { IDX — DE|l - dpa (', )™ 0 1 e M, 0 <dm(t, 1) < €).

We will consider distances only between sufficiently C”-close diffeomorphisms, r > 1. Then
the distance dcr (g, h) is Lipschitz equivalent to ||g — |lcr + lg~" — A~ ||cr, where the
difference is understood using local trivialization. More specifically, there exist constants k
and §p > 0 depending only on r and the Riemannian metric so that

k'der(g ) < llg —hller +llg™" —h 7 er < kder(g, ), 2.2)

provided that either dcr (g, h) < 80|g|5,1 or |lg—hllcr + g7 —h  er < 80|g|5,1. The
first inequality in (2.2) can be obtained using an interpolating path

Ps (1) = expy(p) (s - expyp) h(0)
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between C"-close diffeomorphisms. It is analogous to the “straight line homotopy” g +s(h —
g) with % ps = h—g. The C” closeness of g and & ensures that each pj is a diffeomorphism
as its differential is invertible. The second inequality follows from the mean value theorem.
When the diffeomorphisms are not necessarily close, we have a one-sided estimate

|glcr < exp(c’ dco(g, ) - (1hlcr +dcr (g, h)). (2.3)

where the constant «” depends only on the Riemannian metric. It is given by [4, Lemma 5.1]
for r € N and is obtained similarly for r = k + «.

3 Proof of Theorem 1.2
3.1 Slow growth of the cocycle

First we show that the cocycle has slow growth using an extension of the following recent
result by Avila, Kocsard, and Liu.

Theorem 3.1 [1, Theorem 2.5] Let f : X — X be a hyperbolic homeomorphism and let
A X — Diff"tY (M), y > 0, be a Hélder continuous cocycle.
If Ap = Id, that is the cocycle has the identity periodic data, then

lilil n! log | DA% =0 forall (x,t)in X x M. 3.
n— oo

Proposition 3.2 The conclusion of Theorem 3.1 holds under the weaker assumption on the
periodic data, that the set Ap is bounded in Diff' (M).

Proof This can be seen in the first three paragraphs of the Proof of Theorem 1.1 in Section 5 of
[1]. Indeed, assuming (3.1) does not hold, they show existence of a periodic point p = f"p
in X and 7 € M for which some singular value of the derivative D, A, is arbitrarily large.

This contradicts boundedness of A p in Diff ' (M). O

We consider the vector bundle V over X x M with fiber V(, ;) = T; M and the linear
cocycle

B,y = DiAx on V overthemap F(x,t) = (fx, Ay()).

The iterates of B are given by B?x,t) : Ty M — Tpn(y M, where

.lex,t) = DA = D‘Aﬁ—l(t).Afn—lx o..0Dg (Afx o DiA,.
Since the periodic data set Ap is bounded in Diff ¢ (M) and hence in Diff Lo, Propo-
sition 3.2 applies and yields (3.1), which implies that all Lyapunov exponents of B, ;) are
zero with respect to any F-invariant measure on X x M. It is well-known that the latter

implies sub-exponential growth of the norm, see e.g. [23]. More precisely, for each € > 0
there exists K. such that for all x € X,

sup {| DALt € M} < Keel™ foralln € Z,

where the case of n < 0 follows from the similar estimates of the inverse of A. Since the
cocycle A, is bounded in C¥*! it follows that higher derivatives also grow sub-exponentially,
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see e.g. [4, Lemma 5.5]: for each ¢ > 0 there exists K such that for all x € X and
l1<i<k+1,

sup {|DIA"|| 1t € M} < Kcel™€ foralln € Z.
Therefore, since g < k + 1, for each € > 0 there exists K, such that for all x € X,

A" |cq < Keel™€ foralln € Z.

3.2 Holonomies

In this section we establish existence and regularity of holonomies for the cocycle A. This
is a fundamental property of cocycles with sufficiently slow growth. For Diff¢ (M)-valued
cocycles with integer ¢ > 2, the holonomies in Diff 7~! (M) were constructed in [2] using
estimates from in [4]. We consider an arbitrary ¢ > 1 and obtain holonomies in Diff” (M) for
any r < ¢. This allows us to obtain our main results with any ¢ > 1 and have an arbitrarily
small loss of regularity. Using the results from [2] in our arguments would result in the loss
of several derivatives as in [2, Theorem 1.1].

Our proof follows the usual approach of showing that {(Ag)_1 o A%} is a Cauchy sequence
by estimating the distances between consecutive terms. The main difficulty for cocycles of
diffeomorphisms is bounding the distortion of distances produced by composition on the left
and on the right. These estimates are given in Lemmas 3.5 and 3.6 below. The main difference
with [2] is that we work with non-integer ¢ and r and obtain a distortion estimate (3.5) of
Holder rather than Lipschitz type. This allows us to loose arbitrarily small part of g, at the
expense of obtaining lower Holder regularity of the resulting holonomies along W* in (H3).

Proposition 3.3 Let A be a Diff?(M)-valued cocycle over a hyperbolic dynamical system,
where g = k +y withk € Nand0 < y < 1. Letr = k + o, where 0 < a < y. Suppose
that A is B-Holder in Diff1 (M), and for each € > 0 there exists K such that

[A%|ca < Kee®"  foralln € N. (3.2)
Then for any x € X and 'y € W*(x), the limit
s _ opghs _ g —1
Hy,=H/} = nEToo(A;) o A" (3.3)
exists in Diff" (M) and satisfies

(H1) H;’ =1d and H o H} = H} , whichimply (HS )~ =
(H2) H{, = (A}~ 10anx pmy 0 A% foralln € N;

(H3) There exzsts a constant ¢ such thazfor allx € Xandy € W} (x),

Hy

dcr (H;y, Id) < cdx(x, y)ﬂp, where p =q —r,

moreover,
der ((A;’,)f1 o A%, 1d> <cdx(x, y)ﬂp foralln € N. (3.4)

The maps Hy , are called the stable holonomies of A. It is convenient to view Hy | as a
C" diffeomorphism from M, to M,, i.e., from the fiber at x to the fiber at y. The unstable
holonomies are defined similarly: for y € W*(x),

HY, =H" = lim (A1)~ oAl
xy = Hiyt= lm (AT e Ay
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Remark 3.4 For the conclusion to hold, we do not need (3.2) to be satisfied for each € > 0,
just for a sufficiently small one so that ¢2¢(1*7)38? < 1, where A is as in (2.1).

First we give some estimates for distances and norms. Lemma 3.5 follows directly from
Propositions 5.5 in [3], where the estimates are obtained for compositions of smooth maps
between open sets in Euclidean spaces.

Lemma 3.5 [3] For any r > 1 there exist constants M, and M such that for any h, g €
C'M),
lhogler = My (1+1g15") (Illcrgler + allerIgler) + o
<M, |hller(X +liglier)".

The next lemma relies on further results of [3] which involve differences of functions. We
apply these results to close diffeomorphisms using estimate (2.2), and so we need to ensure
sufficient closeness of the diffeomorphisms /7 and k3, as well as that of the compositions
gohjiogandgohyog.

Lemma3.6 Letg =k+y,r=k+a,andp =g —r, wherek e Nand) <a <y < 1.
There exists a constant M = M(r, q, M) such that for any g, g € Diff?(M) and hy, h; €
Diff" (M)

dcr(gohiog, gohyog)
<M (lgllca L+ 1glcr)™? + 18 Mo (L + llg™ Iler)?) - der (hy, ho)?

provided that dcr (hy, hy) < dolhy |E,1 and the right hand side of (3.5) is less than

(3.5)

r ~ r ~— - r -1
8o (M2 (1 + hilcn)" Ugller A+ 1glen™ + 187 ler L+ g™ en™) ™ . (3.6)

where 8y is as in (2.2).

Proof We use (2.2) to estimate the distance between close diffeomorphisms together with
the following estimate from [3, Propositions 6.2(iii)]:

ligohi —gohaller <M lglica iy — hallZ.
Using this and Lemma 3.5 we obtain

lgohiog—gohyoglcr =lgo(hiog) —go(hrod)llcr
< M'ligllca - llh1 0 § — hy 0 gl = M'llgllca - lI(h1 — ha) o &%
< M'ligllca (My (1 + 11gllcr))? llhy — hall2r = M Igllca (L + 1l by — hall2.
It follows that
lgohiog—gohyogler + 18 ohi'og™ =g ohy o g icr
<M liglica 1+ 18lcr)” - 1y — hallg
+ M E  ea A+ g er)™” - by = h3 12
=M"(lIglcs A+ 18lc)™ + 18 lea (1 + 1187 er)?) - k der (., ha)” .

By (2.2), this yields the same estimate for k ~'dcr (g ohy 0§, gohsog) and gives (3.5) with
M = M"«?, provided that this estimate is at most 8o - |g o i o §|E,l The latter follows from
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the last assumption of the lemma and the following estimate for |g o &1 o g|cr. Applying
Lemma 3.5 twice, we get

lgohiogllcr = l(gohi)oglier <My llgohiler(+ [18llcr)”
< M2 |lgller (1 + Nhtller)” (1 + 18ller)
Similarly,
(g ohi o) lier < M21IE M ler (1 + 1A ler) (1 + g™ er) s
and hence
lgohiogler < M2 (L+ |hiler) (lgler (L+ 1&ler)” + 18 er (L + lg ™ ler)) -

m}

Proof of Proposition 3.3 We fix x € X and construct Hy , for any y € W, (x) sufficiently
close to x. Then the map H*® can be extended to the whole leaf W*(x) by the invariance
property (H2).

Fory € W} (x), we have dx (f"x, f"y) < dx(x,y)A" foralln € N, where 0 < A < 1
is as in (2.1). We consider the sequence of diffeomorphisms {(A;)_1 o A%} and show that it
is Cauchy in Diff” (M).

We apply Lemma 3.6 with 41 = Id and hp = (A f» y)’l o Agny to estimate the distance
between consecutive terms. We will verify assumption (3.6) later.

der (A7 o AL, (AT o)
= der (AN oldo AL, (AT o (Agny) T oAy 0. AL)
=M (II(A?,)“ llea (14 1A )™ + I1CAD ™ lea (1 + IIAféIIcr)’p)
x der (1d, (A py) " oA pny)” .
Using condition (3.2) we estimate
ICAD  lea (1 + [ALler)” < Kee (14 Kee™)? < Kl e 170,
Thus we have
der ((A';)—‘ o AL, (A3TH! oﬂz“) < 2K eI dist(f"y, f1x)P

< 2K, e"IFTP) L (dy (x, y) AP = K/ dx(x, V)PP 6", where 6 = <170\ Pr
3.7
To verify assumption (3.6), we similarly estimate

ICAD  Mler (T4 1A e + IAD ™  er (14 1A o) < KL e,
We take € > 0 such that 0 ¢! < 1, and in particular 6 < 1. Since
Ké/dx(x, y)ﬁ,o . o" < Ké//e_en(]+r),

we conclude that (3.6) is satisfied of all n € N provided that dx (x, y) is small enough.

Therefore, by (3.7), {(J‘l’;)’1 o A%} is a Cauchy sequence in Diff” (M), and so it has a
limit there. Properties (H1) and (H2) are easy to verify. Properties (H3) and (3.4) are obtained
as follows. For every n € N we have
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dor (AN 0 AL 1d) = dor (AN~ oAz (AN 0 AD)

n—1 o0
= D der (A5 0k, (AT o AR < Kldx(x, 1) Y107 < cdx(x ).
k=0 n=0

Taking the limit as n — oo we obtain dcr (Hj;’y, Id) < cdy(x, y)Pr. ]

3.3 Boundedness of the cocycle

We assume that the periodic data set bounded in | - |ce in Proposition 3.7 and bounded in
| - |c1 in Proposition 3.9.

Proposition 3.7 Suppose that a cocycle A satisfies the assumptions of Proposition 3.3 and
its periodic data set Ap is bounded in Diff{(M), whereq = k+y, ke N0 <y < 1.
Then its value set A is bounded in Diff" (M) for any r < q.

Proof The base systems that we are considering satisfy the following closing property.

Lemma 3.8 (Anosov Closing Lemma [11, 6.4.15-17]) Let (X, f) be a topologically mixing
diffeomorphism of a locally maximal hyperbolic set. Then there exist constants ¢, §' > 0
such that for any x € X and k € Nwithdist(x, f*x) < 8’ there exists a periodic point p € X
with f*p = p such that the orbit segments x, fx, ..., f*xand p, fp, ..., f*p satisfy

dX(fix,fip) < cdy(x, ka) forevery i =0, ..., k.

For subshifts of finite type this property can be observed directly.

Since the map f is transitive, we can consider a point z € X whose orbit O(z) = {f"z :
n € Z}isdensein X. Let f"'zand f"2z be two points of O (z) with § := dist(f"'z, f"2z) <
8, where §’ is as in Lemma 3.8. We assume that n; < n, and denote

w=f"z and k=ny—n;, sothat §=dist(w, ffw) <4

Then there exists p € X with f¥p = p such that dist(f'w, f'p) < csfori =0,... k.

We fix € > 0 and take r; = g — €. Let y be the point of intersection of W, (p) and
W .(w). Then by Proposition 3.3 (H3) there exists a constant ¢; independent of p and y
such that

den ((A%) ™' o A%, 1d) < c18P€.

We use Lemma 3.6 with g = A’I‘,, hy = (A’;)_1 o A’)‘,, and 7 = Id = g. Since the set Ap is
bounded in Diff? (M), all norms in (3.5) and (3.6) are similarly uniformly bounded and, in
particular, condition (3.6) is satisfied if 8’ is chosen small enough. We conclude that

den (A5, AR < (A e) - den (A%) 1 o A, T0)° < 18P

Thus the set {|Al}‘, |cr1 } is bounded by (2.3). A similar argument, using unstable holonomies,

shows that the set {IAIfU |cr2} is bounded forr, = r; — e = g — 2e.

Therefore, there exists a constant ¢, such that whenever § := dist(f"'z, f"2z) < §' with
k =no —ny > 0, we have |Al}nlz|cr2 < .

We take m € N such that the set { f/z : |j| < m} is §'-dense in X and set

cm = max { |[Af|cn 1 |j]| < m}.
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Letn > m.Thenthereexists j with | j| < m,suchthatdy (f"z, f/z) < §'. Using Lemma3.5,
we obtain that

IAZ e = IAT] 0 Azl < My (14 [ Azllcn) 1A' i

SM,(1+cn)? -2 <cs.

The cases of {||(Ag’)_] llc2} and of n < —m are similar. Thus there exists a constant ¢ such
that

|[AZlcr» < c foralln € Z.

Since O (z) is dense in X and |A”|cr is continuous on X for each nn, we conclude that [ A’} |cr2
is uniformly bounded in x € X and n € Z. Since € is arbitrary, the proposition follows. 0O

Proposition 3.9 Suppose that a cocycle A satisfies the assumptions of Proposition 3.3 with
g =1+vy,y >0, and its periodic data set Ap is bounded in Diﬁ‘1 (M). Then its value set
Ayx is also bounded in Diﬁ‘1 (M).

Since Ay is bounded in | - |0, it suffices to show that the first derivatives are uniformly
bounded. As in the previous proof, we consider the points z, w, p, and y = W} (p) N
W .(w). Then by (3.4) there exists a constant ¢ independent of p and y such that

+1
der (k)™ 04X, 1d) < ¢ andhence ||D; ((A’;,)—l oAf;) I<d

for some ¢’. Since A’; = A’; o ((.A’;,)_] o .Afé) and the set Ap is bounded in | - |1, we
conclude that || Dy, (.A';)i] | is bounded uniformly in ¢, k, and y, as above, and thus the set
{A"‘,} is bounded in | - |-1. Then a similar argument shows that the set {Akw} is also bounded

in|- |c1. Therefore, there exists a constant ¢” such that whenever dist( "'z, f"2z) < §’ with
k =ny —n; > 0, we have |Al}n1z|cl <.

We take m € N such that the set { f/z : |j| < m} is 8'-dense in X and let
cm =max { |AT |1 [j] < m).
Since for any n > m there exists j, | j| < m, such that dx(f"z, f/z) < &', we have
1D AD = 1D 01y (AD) 0 DUATTHI = WAL e - AT e < eme”

and similarly for || D, (A’;)’1 | and for n < —m. Thus the set {|A?|c1 : n € Z} is bounded,
and it follows that Ax is bounded | - 1. O
This completes the proof of Theorem 1.2.

4 Proof of Theorem 1.3

We recall thatg = 1 + y, where 0 < y < 1. We fix 0 < o < y and setr = 1 + «. Since
the periodic data set Ap is bounded in Diff? (M), the cocycle A satisfies the conclusion of
Proposition 3.3, and in particular has stable and unstable holonomies in Diff” (M). Also, the
set of values Ay is bounded in Diff” (M) by Proposition 3.7.

As in Sect. 3.1, we consider the linear cocycle B ) = D;A, over the map F(x, ) =
(f(x), Ax(t)) on the vector bundle V over X x M with fiber V(, sy = T; M.

The Proof of Theorem 1.3 is organized as follows. In Sect. 4.1 we construct an everywhere
defined bounded measurable family 7 of inner products on the vector bundle V invariant under
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the cocycle B. In Sect. 4.2 we show that 7 is Holder continuous along each fiber M in X x M.
In Sect. 4.4 we establish essential invariance of T under the holonomies of the linear cocycle
B along the stable and unstable sets in the skew product. In Sect. 4.5, we consider a natural
invariant measure [ for the skew product that projects to the measure of maximal entropy
w for X. Then using the above essential invariance with respect to /i we show that 7, the
restriction of 7 to M, is u-essentially invariant under the stable and unstable holonomies of
the cocycle A, as a Riemannian metric on the whole fiber M. This yields essential Holder
continuity of 7, along the stable and unstable leaves in X, and hence global Holder continuity.

The arguments in Sects. 4.1 and 4.4 are similar to those in [9,10,19] for conformality of
linear cocycles over hyperbolic and partially hyperbolic systems. However, the skew product
F is not a volume preserving smooth partially hyperbolic system as in [10], so we adapt
arguments to our case. More importantly, F is not accessible and so we need arguments in
Sect. 4.2 to show regularity along the “center” M and in Sect. 4.5 to deduce global regularity.

4.1 Aninvariant bounded measurable family Tof inner productson V

In this section, it suffices to assume that the cocycle A is bounded in | - | -1, and hence || B?x,t) I
is uniformly bounded in (x,7) € X x M and n € Z.

The space 7™ of inner products on R™ identifies with the space of real symmetric positive
definite m x m matrices, which is isomorphic to GL(m, R)/S O (m, R). The group GL(m, R)
acts transitively on 7™ via A[E] = ATEA, where A € GL(m,R) and E € T™. The space
7™ is a Riemannian symmetric space of non-positive curvature when equipped with a certain
G L(m, R)-invariant metric [13, Ch. XII, Theorem 1.2]. Using the background Riemannian
metric on V, we can identify an inner product with a symmetric linear operator. For each
(x,t) € X x M, we denote the space of inner products on V(x ;) by 7(x 1), and so we obtain
a bundle 7 over X x M with fiber 7(, ;). We equip the fibers of 7 with the Riemannian
metric mentioned above. We call a continuous (Holder continuous, measurable) section of
7 a continuous (Holder continuous, measurable) Riemannian metric on V. A metric metric
7 is called bounded if the distance between 7(, ;) and T(x, ) is uniformly bounded on X x M
for a continuous metric T on V. For the linear cocycle B, the pullback of an inner product
TF(x,r) ON VF(x.r) 10 V(x 1) 1S given by

(fo,,)(TF(x,z))> (W1, v2) = Tr@,n (B (v1), (B)vp) forvy, vz € Vi ).

We say that a metric t is B-invariant if B*(t) = t.
Let 7 be a continuous metric on V. We consider the set

S, 1) = { (B, )" (Trrn) : n € L} C Tixypy.

Since the cocycle B is bounded, the sets S(x, ) have uniformly bounded diameters. Since
the space 7y ;) has non-positive curvature, for every (x, t) there exists a unique smallest
closed ball containing S(x, r) [13, Ch.XI, Theorem 3.1]. We denote its center by 7(, ;). By
the construction, the metric T is invariant under B.
For any k > 0, the set
S, 1) = {(B, ) (tpreny) : Inl k) (4.1)

(x,t

depends continuously on (x, ) in Hausdorff distance, and so does the center 1'(]; 0 of the

smallest ball containing Sk(x, 1) by Lemma 4.1 below. Since SK(x, ) = S(x, r) in Hausdorff
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distance as k — oo for any (x, ), the metric 7 is the pointwise limit of continuous metrics
r(]; e and hence 7 is Borel measurable.

Lemma4.1 Let S| and Sy be bounded sets in T™ and let B(cy,r1) and B(ca, r2) be the
smallest closed balls containing Sy and S», respectively. Then drm(cy, c2) < dg(S1, S2),
where dp is the Hausdorff distance.

Proof Suppose dy(Si, S2) < €. Then, since S; C B(cy, r1), we have S C B(cy, r1 + €),
and hence B(c, r2) C B(cy, r1 + €) by minimality. Similarly, B(cy, r1) C B(ca, r2 + €).

If drm(cy, c3) > €, we obtain a contradiction. Indeed, suppose r; > ri. Any two points
in 7™ lie on a unique geodesic, which is isometric to R. Therefore there exists a point ¢ on
the geodesic through ¢ and ¢ with

dym(c,c2) =1y and dgm(c,c1) =dgm(c,c2) +dgm(ca,c1) > +e€>r +e.

This point is in B(cz, r3), but not in B(cy, r1 4 €). Thus dist(cy, ¢2) < €. m]

4.2 Hélder continuity of 7 along the fibers M, in X x M
We recall that by Proposition 3.7 the value set Ay is bounded in Diff” (M), where r = 1 +«.
We start with an e-Ho6lder continuous metric T on V and obtain a bounded Borel measur-

able metric 7, as in the previous section. Below we show that 7 is Holder along the fibers.
We denote by 7, the restriction of the metric 7 to the fiber M.

Proposition 4.2 Foreachx € X the metric Ty is a-Holder continuous on My, more precisely,
there exists a constant ¢ such that

dr(T(x,1),7(x,t") <cdapm(t,t)* forallx € X andt,t' € M. 4.2)

Proof We use the following lemma. It was proven in [9] for conformal structures rather than
inner products, but the proof works without significant modifications.

Lemma 4.3 (cf [9, Lemma 4.5]) Let T be an inner product on R™ and B be a linear trans-
formation of R™ sufficiently close to the identity. Then

dr (v, B(r)) <ci(v)- 1B -],
where the function c1(t) is bounded on compact sets in T™.

In the chain of inequalities below, we use the following: the pullback action is an isometry;
the metric 7 is w-Holder continuous and in particular bounded; Lemma 4.3; and the fact that
since Ay is bounded in | - |ci1+a, the norm [|(BY, t))il || is bounded and there is a constant c»
such that

1By — Bl < codm(e, 1)

@ Springer



Geometriae Dedicata (2019) 202:401-417 413

For each n € Z we have
dr (Bl ) @)y (Bl ) @rnce)
<dr ((B?X,t))*(TF"(x,z)L (B?X,,))*(TF"(x,t'))>
tdz (Bl ) @rien)s (Bl ) @ner) )
<d7 (TFreny, Threr) +dT (TF"(x,t’)a (B'(lx,,))_lB?x,,/))*(TF"(x,ﬂ)))
< e3dp(t, ) + c1(Tpnge ) (B )7 BY oy — 1|
< c3dpm(t, 1)+ cal (B )T 1By — Bl
< c3dm(t, )Y + cacscrdp(t, 1) = ce dpaqg(t, 1Y,
Thus for each n,
dr ((B?x,,))*(TF"(x,t))» (TB?X’,/))*(TFH(X,;/))) <cdm(t,th)® forallt,t' e M,

where the constant ¢ = ¢¢ is independent of x and n. It follows immediately that the Hausdorff
distance between the sets S¥(x, 1) and S¥(x, ') given by (4.1) satisfies

du(S*(x, 1), S5(x, 1) < cdpm(t, t)* forallx € X and 1,1 € M.

Hence by Lemma 4.1 the center r(]jm) of the smallest closed ball containing Sk(x, 1) also
satisfies

A7 (tf 1y Tl ) < cda(t, 1) forall x, k.1, 1.

Passing to the limit as k — oo, we obtain (4.2). ]

4.3 Stable and unstable sets for F

We consider the map F(x,t) = (f(x), A,(t)) of the set X x M. While it is not partially
hyperbolic in the classical sense, we can define the stable sets WS for F using the stable
holonomies Hy , given by Proposition 3.3. The unstable sets W are defined similarly. For
any (x,1) € X x M, we set

Wi, ) ={(y.1) e X x M: y e W (x), 1" =H} (1)}

We will only use the following contraction property for these sets:
dxx pm(F"(x,1), F"(y,1')) = 0 asn — oo
for any (x,7) € X x M and (y,t) € WS (x, 1). It holds since
doxn (F" (1), (0, 19) = doen ((f7, A2, (f7y, 420D
=dx(f"x, f"y) + dm (AL (1), AS()) = 0 asn — oo

asdyx(f"x, f*y) — 0and

AY ) = Hpuy pnyoAfo H;,x(t/) = Hiju, 0 AL(0),

where dcr (H3, JId) < edy (f"x, f"y)PP — 0 by (H3) in Proposition 3.3.

x, fry
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4.4 Essential invariance of 7 under the holonomies

For convenience, in the remaining two sections we will use the push forward of an inner
product by a linear map, which is defined as the pull-back by its inverse: L, = (L~1)*.

First we show that 7 is essentially invariant under the derivatives of H* along the stable
sets of F in X x M. These derivatives can be interpreted as stable holonomies of the cocycle
B. The statement and proof for the unstable holonomies are similar.

Proposition 4.4 Let v be an ergodic F-invariant probability measure on X x M. If T is a
v-measurable B-invariant metric on V, then t is essentially H*®-invariant, more precisely,
there exists an F-invariant set E C X x M with v(E) = 1 such that

Ty, t) = (DIH;’),)*(‘E(X, 1)) forall (x,t), (v,t') € E with (y,t') € Wfoc(x, 1).

Proof To simplify the notations, we write 7 for T and d for d, and for y € Wi (x),t € My,
andt’ = H{ (1) € My, we set

z=(x.1), 7 =.1) 507 € We(2), zn=F"(z). and z}, = F*(2).

Since t is v-measurable, by Lusin’s Theorem there exists a compact set S C X x M with
v(S) > 1/2 so that t is uniformly continuous and hence bounded on S. Let E be the set of
points in X x M for which the asymptotic frequency of visiting S equals v(S) > 1/2. By
Birkhoff Ergodic Theorem, v(E) = 1.

Suppose that both z and z’ are in E. We will show that

d (v(@), (DiH)L(x(2) =0, thatis, 7)) = (D;H,)u(z(2)).
Property (H2) of the holonomies, H; |, = (A;l,)*l o Hjuy pny o A%, implies
D/H; = D.A;’.(t’)(-Ag)_l o Dany Hpny gny 0 DiAY
= ('B?y,t’)) o D‘Aﬁ(l) H}”x, fry o Blgx,t) = (B’;,) o D.A’;(t) H}”x, fry o 3?

Since the metric 7 is invariant under the cocycle B, and B induces an isometry on the space
of inner products, we have

d (v(@), (DiHL ()
=d (@), (B (Dagin Hiy, goy 0 B (1 ()
= d (B @), (Dar Hiny, pr,)o(BD(2(2))) 43)
= d (v(&). (Dagy Hing, o) (ran))
= d (0. 7)) +d (1@, Dz Hiny, o7 @)

Since z, 7 € E, there exists a sequence {n;} such that both Zp; and z;,i are in S for each i.

Since 7/ € Wfoc(z), dxx m(2Zn; z,’”) — 0 and hence d(z(zy,)), r(z;”)) — 0 by uniform
continuity of  on S.

By property (H3) of holonomies, dcr (HY, ¥ Id) < cdx(x, )PP, where c is independent
of x and y € W} (x). Hence

1 D.an ) H}"x,f”y —Id| < KdC’(H)S‘"x,f"y’ 1d) < kcdx(x,, yn)ﬂp — 0 asn — oo.
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Using Lemma 4.3 and boundedness of 7 on S, we conclude that the last term in (4.3) tends
t0 0 as n — oo. Therefore, d <t(z’), (D, H;y)*(r(z))) —0. 0

4.5 Holder continuity of T

Now we consider a particular measure on X x M. Let i be the measure of maximal entropy
for (X, f). For each x € X, we have the normalized volume m, on the fiber M, induced
by the metric 7, which is Holder continuous on M. We consider the measure [t on X x M
given by (i = f my dpu(x), that is, for any Borel measurable set S C X x M,

A(S) = /;(mx(Sme)dﬂ(x)~

Clearly, the measure [ is F-invariant. While it is not necessarily ergodic, we can consider
its ergodic components and the corresponding partition & of X x M. The Hopf argument
yields that, up to a set of measure zero, every local stable set is contained in an element of &.
So we can apply Proposition 4.4 to ergodic components of /i we obtain the following.

Corollary 4.5 There exists a set G C X x M with ﬁ(é) = 1 such that % on G is invariant
under the holonomies, that is,

(7)) = (D,H;’y)*(f(z)) forall z = (x,t) € G and all 7 = (v, 1) e Gn Wf;,c(z).

Now we establish p-essential invariance of 7, as a Riemannian metric on the whole fiber
M, under the stable and unstable holonomies of the cocycle A over X.

Proposition 4.6 There exists a set G C X with w(G) = 1 such that orany x, y, y' € G with
y e W) (x)and y’ € WS (x), the diffeomorphisms

HY ot (M, Tx) > (My, Ty) and HY ,: (My, Tx) > (My, Ty) are isometries.
Proof We will obtain a set G* of full measure for the stable holonomies. A similar argument
gives a full measure set G* for the unstable holonomies, and G = G* N G*.

Let G C X x M be as in Corollary 4.5 and let G* = 7 (G) C X, where 7 is the projection

from X x M to X. Then we have u(G*) = 1 and mx(Mx N f}) = 1 for n almost all x € G*.
Discarding a set of measure zero, we can assume that G is F-invariant and

me(MyNG)=1 forall x € G*.

Now we show that if x, y € G* and y € W} .(x), then H; y 1s an isometry between the
fibers (M, 7y) and (My, y). Since Hy , : M, — My is a diffeomorphism, it maps sets
of zero volume to sets of zero volume. The set

E=WM,NnG)N ((H)f,y)_l(/\/ly N é))

satisfies £ C é, H;y(E) - é, and my(E) = 1, and in particular E is dense in M. By
Corollary 4.5 we have

() = (D/H; ,)«(T(z)) forallz e E.
Thus DHy , is isometric on the dense set E and, as the Riemannian metrics 7, and 7, are

«a-Holder continuous along the fibers, we conclude that the diffeomorphism
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H)f’y t(My, Tx) = (M, Ty) is anisometry forall x, y € G° withy € W .(x).

m}

We denote by 7 (M, ) the space of a-Holder continuous Riemannian metrics on M
equipped with C% distance d7. Then the u-essential invariance of T yields u-essential Sp-
Holder continuity of 7 as a function from X to 7 (M, «) along the stable and unstable leaves
in X.

Corollary 4.7 The function x +— Ty is Bp-Holder continuous on G along the stable and
unstable leaves in X as a function from X to T (M, ), that is

dro (30, %) < Cdx(x, )P forallx,y € G withy € W™ (x). 4.4)

Proof By Proposition 3.3 (H3) the holonomies H*/* are Sp-Holder continuous in Diff” (M),
r = 1 + a. By Proposition 4.6, H,f/yu (tx) = Ty forallx,y € G with y € Wlsa/f (x). Now
using Lemma 4.3 and boundedness of 7, we obtain

dr(Fe, %) < erder (HYY,1d) < credx (x, y)P°.

[}

Now the local product structure argument shows that T coincides i almost everywhere with
a Bp-Holder continuous stable and unstable holonomy invariant functiont : X — 7 (M, ).
We consider a small open set U in X with the product structure of stable and unstable leaves,
that is

d
U= Wlsoc(x()) X Wl'zc(x()) éf {leoc(x) N Wllf;c(y) | X € WZSoc(xO)v y € Wlléc(x())} .

We recall that the measure of maximal entropy w is equivalent to the product of its conditional
measures on W} (xo) and W} (xo), which have full support on the corresponding leaves.
Therefore for i almost all local stable leaves in U, the set of points of G on the leaf has full
conditional measure, and hence full support. Without loss of generality, we can assume that
G has no points on the other leaves. Hence for any two points x and y in G N U there exists
apoint w € W (x) NG such that W (w) N W} (y)isalsoin G N U. Then (4.4) and the
local product structure of the stable and unstable manifolds yield that for all x, y € G N U
we have

dr((x), T(y)) < c3dx(x, )PP,

Since this estimate holds for all x, y € G, which is dense in X, T extends to a Bp-Holder
continuous function t : X — 7 (M, «), which is also invariant under the holonomies and
the cocycle. As a function on X x M, t is y-Holder continuous with y = min {«, Bp}. This
completes the proof of Theorem 1.3.
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