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Abstract
Let A be a Hölder continuous cocycle over a hyperbolic dynamical system with values in
the group of diffeomorphisms of a compact manifold M. We consider the periodic data of
A, i.e., the set of its return values along the periodic orbits in the base. We show that if the
periodic data of A is bounded in Diff q(M), q > 1, then the set of values of the cocycle is
bounded in Diff r (M) for each r < q . Moreover, such a cocycle is isometric with respect to
a Hölder continuous family of Riemannian metrics on M.

Keywords Cocycle · Diffeomorphism group · Periodic orbit · Hyperbolic system ·
Symbolic system

Mathematics Subject Classification 37D20 · 54H15

1 Introduction and statement of the results

Group-valued cocycles over hyperbolic systems have been extensively studied starting with
the work of A. Livšic [14,15], who obtained definitive results for commutative groups and
made some progress for more general ones. The subsequent research was focused on non-
abelian groups, starting with compact groups and proceeding to more general ones, see [12]
for a survey of results prior to 2008. The case of GL(d,R) and Lie groups is now relatively
well understood, see for example [4,7,9,20,21]. Cocycles with values in diffeomorphism
groups give another important and dynamically natural class, which is harder to analyze.

In this paper we consider the group Diff r (M) of Cr diffeomorphisms of a compact
connected manifold M and study cocycles over a hyperbolic dynamical system with values
in Diff r (M). By a hyperbolic system we mean either a transitive Anosov diffeomorphism
of a compact connected manifold, or a topologically mixing diffeomorphism of a locally
maximal hyperbolic set, or a mixing subshift of finite type, see Sect. 2.1. We focus on the
problem of obtaining information about the cocycle from its periodic data, that is, its return
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values along the periodic orbits in the base. This is one of the central questions for cocycles
over hyperbolic systems. The basic problem in this area is to show that a cocycle with the
identity periodic data is cohomologous to the identity cocycle. This was done in [4,16] under
additional assumptions on growth of the cocycle and recently in [1,5,8] just from the periodic
data.

In this paper we obtain results for much broader class of cocycles, which have uniformly
bounded periodic data. We show that all iterates of such a cocycle remain uniformly bounded
and the cocycle is, in a sense, a cocycle of isometries.

Definition 1.1 Let f be a homeomorphism of a compact metric space X and let A be a
function from X to Diff r (M). The Diff r (M)-valued cocycle over f generated by A is the
map A : X × Z → Diff r (M) defined by A(x, 0) = Id and for n ∈ N,

A(x, n) = An
x = A( f n−1x) ◦ · · · ◦ A(x) and A(x,−n) = A−n

x = (An
f −n x )

−1.

Clearly, A satisfies the cocycle equation An+k
x = An

f k x
◦ Ak

x .

Cocycles can be considered in any regularity. We say that a cocycleA is bounded, contin-
uous, or Hölder continuous if this property holds for its generator A(x) = Ax . We call a set
S in Diff r (M) bounded if ‖g‖Cr and ‖g−1‖Cr are bounded uniformly in g ∈ S. Here ‖.‖Cr

denotes the usual Cr norm adapted to the manifold setting, see Sect. 2.2, where a distance
dCr between diffeomorphisms is also defined. A Diff r (M)-valued cocycle A is β-Hölder,
0 < β ≤ 1, if there exists c > 0 such that

dCr (Ax ,Ay) ≤ c dX (x, y)β for all x, y ∈ X .

Hölder continuity is the most natural setting for cocycles over hyperbolic systems, especially
since we include non-smooth systems in the base.

For a cocycle A, we consider the periodic data set AP and the set of all values AX ,

AP = {Ak
p : p = f k p, p ∈ X , k ∈ N} and AX = {An

x : x ∈ X , n ∈ Z}.
Our main results are the following two theorems. The first one gives boundedness of the

cocycle and the second one yields an invariant metric.

Theorem 1.2 Let (X , f ) be a hyperbolic system, let M be a compact connected manifold,
let k ∈ N, and let A be a bounded Diff k+1(M)-valued cocycle over f which is Hölder
continuous as a Diff q(M)-valued cocycle with q = k + γ , 0 < γ < 1.

(i) If the periodic data set AP is bounded in Diff q(M), then the value set AX is bounded
in Diff r (M) for any r < q.

(ii) If AP is bounded in Diff 1(M), then AX is also bounded in Diff 1(M).

Boundedness of cocycles allows, in particular, to obtain higher regularity of a continuous
transfer map between them by the results in [17,18].

Theorem 1.3 Let (X , f ) and M be as above, and let A be a bounded Diff 2(M)-valued
cocycle over f that is β-Hölder continuous as a Diff q(M)-valued cocycle with q = 1 + γ ,
0 < γ < 1. If the periodic data set AP is bounded in Diff q(M), then there exists a family
of Riemannian metrics {τx : x ∈ X} on M such that

Ax : (M, τx ) → (M, τ f x ) is an isometry for each x ∈ X .

Moreover, for any α < γ each τx is α-Hölder continuous on M and depends Hölder
continuously on x in Cα distance with exponent β(γ − α).
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We note that uniform boundedness of the periodic data is crucial in our theorems. Indeed,
S. Hurtado constructed in [6] an example of Diff∞(S3×S1)-valued cocycles over a Bernoulli
shift for which every periodic value Ak

p is an isometry of some C∞ Riemannian metric on

M, but the cocycle has positive exponential growth rate of derivatives. Also, our C1+Hölder
regularity assumption for the cocycle is essential as it is known that an isometry of any
α-Hölder Riemannian metric is C1+α [24].

2 Preliminaries

2.1 Hyperbolic dynamical systems

See [11] for details.
Transitive Anosov diffeomorphisms A diffeomorphism f of compact connected manifold X
is called Anosov if there exist a splitting of the tangent bundle T X into a direct sum of two
D f -invariant continuous subbundles Es and Eu , a Riemannian metric on X , and a number
λ such that

‖Dx f (vs)‖ < λ < 1 < λ−1 < ‖Dx f (vu)‖ (2.1)

for any x ∈ X and unit vectors vs ∈ Es(x) and vu ∈ Eu(x). The stable and unstable
subbundles Es and Eu are tangent to the stable and unstable foliations W s and W u . The local
stable manifold of x , W s

loc(x), is a small ball in W s(x) centered at x so that

dX ( f n x, f n y) ≤ λndX (x, y) for all y ∈ W s
loc(x) and n ∈ N.

Local unstable manifolds are defined similarly. We assume that they are small enough so that
W s

loc(x) ∩ W u
loc(z) consists of a single point for any sufficiently close x, z ∈ X .

A diffeomorphism is said to be (topologically) transitive if there is a point x in X with
dense orbit. All known examples of Anosov diffeomorphisms have this property.

Mixing diffeomorphisms of locally maximal hyperbolic sets More generally, let f be a diffeo-
morphism of a manifold N . A compact f -invariant set X ⊂ N is called hyperbolic if there
exist a continuous D f -invariant splitting TXN = Es ⊕ Eu , and a Riemannian metric on an
open set U ⊃ X such that (2.1) holds for all x ∈ X . Local stable and unstable manifolds
are defined similarly for any x ∈ X and we denote their intersections with X by W s

loc(x)

and W y
loc(y). The set X is called locally maximal if X = ⋂

n∈Z f −n(U ) for some open set
U ⊃ X . This property ensures that W s

loc(x) ∩ W y
loc(y) exists in X . The map f |X is called

topologically mixing if for any two open non-empty subsets U , V of X there is N ∈ N such
that f n(U ) ∩ V �= ∅ for all n ≥ N . Topological mixing implies transitivity.

Mixing subshifts of finite type Let M be k × k matrix with entries from {0, 1} such that all
entries of M N are positive for some N . Let

X = { x = (xn)n∈Z : 1 ≤ xn ≤ k and Mxn ,xn+1 = 1 for every n ∈ Z }.
The shift map f : X → X is defined by ( f (x))n = xn+1. The system (X , f ) is called a
mixing subshift of finite type. We fix λ ∈ (0, 1) and consider the metric

d(x, y) = dλ(x, y) = λn(x,y), where n(x, y) = min { |i | : xi �= yi }.
The following sets play the role of the local stable and unstable manifolds of x

W s
loc(x) = { y : xi = yi , i ≥ 0 }, W u

loc(x) = { y : xi = yi , i ≤ 0 }.
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Indeed, for all x ∈ X , y ∈ W s
loc(x), y′ ∈ W u

loc(x), and n ∈ N,

d( f n x, f n y) = λn d(x, y) and d( f −n x, f −n y) = λn d(x, y),

and for any x, z ∈ X with d(x, z) < 1 the intersection of W s
loc(x) and W u

loc(z) consists of a
single point, y = (yn) such that yn = xn for n ≥ 0 and yn = zn for n ≤ 0.

2.2 Distances on the space of diffeomorphisms

We fix a smooth background Riemannian metric and the corresponding distance dM onM.
Recall that Diff r (M), r ≥ 1, is the set of Cr diffeomorphisms of M. The Cr topology on
Diff r (M) can be defined using coordinate patches and the Cr norm for the Euclidean space.

For diffeomorphisms g and h of M we set

dC0(g, h) = max
t∈M dM(g(t), h(t)) + max

t∈M dM(g−1(t), h−1(t)).

For any g ∈ Diff r (M), r ∈ N, we can define its Cr size as

|g|Cr = ‖g‖Cr + ‖g−1‖Cr , where ‖g‖Cr = max
t∈M dM(g(t), t) + max

1≤i≤r
max
t∈M ‖Di

t g‖,

where Di
t g is the derivative of g of order i at t and its norm is defined as the norm of the

corresponding multilinear form from TtM to Tg(t)M with respect the Riemannian metric.
For r = k + α, k ∈ N, 0 < α < 1, the definition is similar with

‖g‖Cr = ‖g‖Ck + sup { ‖Dk
t − Dk

t ′ ‖ · dM(t, t ′)−α : t, t ′ ∈ M, 0 < dM(t, t ′) < ε0},
where ε0 is chosen small compared to the injectivity radius of M so that the tangent bundle
is locally trivialized via parallel transport and the difference makes sense.

We call a set S bounded in Diff r (M) if {|g|Cr : g ∈ S} is bounded.
A natural distance dCr (g, h) on Diff r (M), r ∈ N, was defined in [4] as the infimum of

the lengths of piecewise C1 paths in Diff r (M) connecting h with g and h−1 with g−1, where
the length of a path ps is

�Cr (ps) = max
0≤i≤r

max
t∈M

∫

‖ d
ds (Di

t ps)‖ ds,

see [4, Section 5] for details. For r = k + α, one also adds the corresponding Hölder term:

�Cr (ps) = �Ck (ps) + max
t∈M

∫

| d
ds ‖(Dk ps)‖α,t | ds, where

‖Dk g‖α,t = sup { ‖Dk
t ′ − Dk

t ‖ · dM(t ′, t)−α : t ′ ∈ M, 0 < dM(t, t ′) < ε0}.
Wewill consider distances only between sufficientlyCr -close diffeomorphisms, r > 1. Then
the distance dCr (g, h) is Lipschitz equivalent to ‖g − h‖Cr + ‖g−1 − h−1‖Cr , where the
difference is understood using local trivialization. More specifically, there exist constants κ

and δ0 > 0 depending only on r and the Riemannian metric so that

κ−1dCr (g, h) ≤ ‖g − h‖Cr + ‖g−1 − h−1‖Cr ≤ κ dCr (g, h), (2.2)

provided that either dCr (g, h) < δ0|g|−1
Cr or ‖g − h‖Cr + ‖g−1 − h−1‖Cr < δ0|g|−1

Cr . The
first inequality in (2.2) can be obtained using an interpolating path

ps(t) = expg(t)(s · exp−1
g(t) h(t))
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betweenCr -close diffeomorphisms. It is analogous to the “straight line homotopy” g+s(h −
g)with d

ds ps = h − g. The Cr closeness of g and h ensures that each ps is a diffeomorphism
as its differential is invertible. The second inequality follows from the mean value theorem.
When the diffeomorphisms are not necessarily close, we have a one-sided estimate

|g|Cr ≤ exp(κ ′ dC0(g, h)) · (|h|Cr + dCr (g, h)). (2.3)

where the constant κ ′ depends only on the Riemannian metric. It is given by [4, Lemma 5.1]
for r ∈ N and is obtained similarly for r = k + α.

3 Proof of Theorem 1.2

3.1 Slow growth of the cocycle

First we show that the cocycle has slow growth using an extension of the following recent
result by Avila, Kocsard, and Liu.

Theorem 3.1 [1, Theorem 2.5] Let f : X → X be a hyperbolic homeomorphism and let
A : X → Diff 1+γ (M), γ > 0, be a Hölder continuous cocycle.

If AP = Id, that is the cocycle has the identity periodic data, then

lim
n→±∞ n−1 log ‖DtA

n
x‖ = 0 for all (x, t) in X × M. (3.1)

Proposition 3.2 The conclusion of Theorem 3.1 holds under the weaker assumption on the
periodic data, that the set AP is bounded in Diff 1(M).

Proof This can be seen in the first three paragraphs of theProof of Theorem 1.1 in Section 5 of
[1]. Indeed, assuming (3.1) does not hold, they show existence of a periodic point p = f n p
in X and t ∈ M for which some singular value of the derivative DtA

n
p is arbitrarily large.

This contradicts boundedness of AP in Diff 1(M). ��

We consider the vector bundle V over X × M with fiber V(x,t) = TtM and the linear
cocycle

B(x,t) = DtAx on V over the map F(x, t) = ( f x,Ax (t)).

The iterates of B are given by Bn
(x,t) : Tt M → TAn

x (t)M, where

Bn
(x,t) = DtA

n
x = DAn−1

x (t)A f n−1x ◦ ... ◦ DAx (t)A f x ◦ DtAx .

Since the periodic data set AP is bounded in Diff q(M) and hence in Diff 1(M), Propo-
sition 3.2 applies and yields (3.1), which implies that all Lyapunov exponents of B(x,t) are
zero with respect to any F-invariant measure on X × M. It is well-known that the latter
implies sub-exponential growth of the norm, see e.g. [23]. More precisely, for each ε > 0
there exists Kε such that for all x ∈ X ,

sup {‖DtA
n
x‖ : t ∈ M} ≤ Kεe|n|ε for all n ∈ Z,

where the case of n < 0 follows from the similar estimates of the inverse of A. Since the
cocycleAx is bounded inCk+1, it follows that higher derivatives also grow sub-exponentially,
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see e.g. [4, Lemma 5.5]: for each ε > 0 there exists Kε such that for all x ∈ X and
1 ≤ i ≤ k + 1,

sup {‖Di
tA

n
x‖ : t ∈ M} ≤ Kεe|n|ε for all n ∈ Z.

Therefore, since q ≤ k + 1, for each ε > 0 there exists Kε such that for all x ∈ X ,

|An
x |Cq ≤ Kεe|n|ε for all n ∈ Z.

3.2 Holonomies

In this section we establish existence and regularity of holonomies for the cocycle A. This
is a fundamental property of cocycles with sufficiently slow growth. For Diff q(M)-valued
cocycles with integer q ≥ 2, the holonomies in Diff q−1(M) were constructed in [2] using
estimates from in [4].We consider an arbitrary q > 1 and obtain holonomies in Diff r (M) for
any r < q . This allows us to obtain our main results with any q > 1 and have an arbitrarily
small loss of regularity. Using the results from [2] in our arguments would result in the loss
of several derivatives as in [2, Theorem 1.1].

Our proof follows the usual approach of showing that {(An
y)

−1◦An
x } is a Cauchy sequence

by estimating the distances between consecutive terms. The main difficulty for cocycles of
diffeomorphisms is bounding the distortion of distances produced by composition on the left
and on the right. These estimates are given in Lemmas 3.5 and 3.6 below. Themain difference
with [2] is that we work with non-integer q and r and obtain a distortion estimate (3.5) of
Hölder rather than Lipschitz type. This allows us to loose arbitrarily small part of q , at the
expense of obtaining lower Hölder regularity of the resulting holonomies along W s in (H3).

Proposition 3.3 Let A be a Diff q(M)-valued cocycle over a hyperbolic dynamical system,
where q = k + γ with k ∈ N and 0 < γ < 1. Let r = k + α, where 0 < α < γ . Suppose
that A is β-Hölder in Diff q(M), and for each ε > 0 there exists Kε such that

|An
x |Cq ≤ Kεeεn for all n ∈ N. (3.2)

Then for any x ∈ X and y ∈ W s(x), the limit

Hs
x,y = HA,s

x,y = lim
n→+∞(An

y)
−1 ◦ An

x (3.3)

exists in Diff r (M) and satisfies

(H1) Hs
x,x = Id and Hs

y,z ◦ Hs
x,y = Hs

x,z , which imply (Hs
x,y)

−1 = Hs
y,x ;

(H2) Hs
x,y = (An

y)
−1 ◦ Hs

f n x, f n y ◦ An
x for all n ∈ N;

(H3) There exists a constant c such that for all x ∈ X and y ∈ W s
loc(x),

dCr (Hs
x,y, Id) ≤ c dX (x, y)βρ, where ρ = q − r ,

moreover,

dCr

(
(An

y)
−1 ◦ An

x , Id
)

≤ c dX (x, y)βρ for all n ∈ N. (3.4)

The maps Hs
x,y are called the stable holonomies of A. It is convenient to view Hs

x,y as a
Cr diffeomorphism from Mx to My , i.e., from the fiber at x to the fiber at y. The unstable
holonomies are defined similarly: for y ∈ W u(x),

Hu
x,y = HA,u

x,y = lim
n→−∞(An

y)
−1 ◦ An

x
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Remark 3.4 For the conclusion to hold, we do not need (3.2) to be satisfied for each ε > 0,
just for a sufficiently small one so that e2ε(1+r)λβρ < 1, where λ is as in (2.1).

First we give some estimates for distances and norms. Lemma 3.5 follows directly from
Propositions 5.5 in [3], where the estimates are obtained for compositions of smooth maps
between open sets in Euclidean spaces.

Lemma 3.5 [3] For any r ≥ 1 there exist constants Mr and M ′
r such that for any h, g ∈

Cr (M),

‖h ◦ g‖Cr ≤ M ′
r

(
1 + ‖g‖r−1

C1

) (‖h‖C1‖g‖Cr + ‖h‖Cr ‖g‖C1
) + ‖h‖C0

≤ Mr ‖h‖Cr (1 + ‖g‖Cr )r .

The next lemma relies on further results of [3] which involve differences of functions. We
apply these results to close diffeomorphisms using estimate (2.2), and so we need to ensure
sufficient closeness of the diffeomorphisms h1 and h2, as well as that of the compositions
g ◦ h1 ◦ g̃ and g ◦ h2 ◦ g̃.

Lemma 3.6 Let q = k + γ , r = k + α, and ρ = q − r , where k ∈ N and 0 < α < γ ≤ 1.
There exists a constant M = M(r , q,M) such that for any g, g̃ ∈ Diff q(M) and h1, h2 ∈
Diff r (M)

dCr (g ◦ h1 ◦ g̃, g ◦ h2 ◦ g̃)

≤ M
(‖g‖Cq (1 + ‖g̃‖Cr )rρ + ‖g̃−1‖Cq (1 + ‖g−1‖Cr )rρ

) · dCr (h1, h2)
ρ

(3.5)

provided that dCr (h1, h2) ≤ δ0|h1|−1
Cr and the right hand side of (3.5) is less than

δ0
(
M2

r (1 + |h1|Cr )r (‖g‖Cr (1 + ‖g̃‖Cr )r + ‖g̃−1‖Cr (1 + ‖g−1‖Cr )r )
)−1

, (3.6)

where δ0 is as in (2.2).

Proof We use (2.2) to estimate the distance between close diffeomorphisms together with
the following estimate from [3, Propositions 6.2(iii)]:

‖g ◦ h̃1 − g ◦ h̃2‖Cr ≤ M ′ ‖g‖Cq ‖h̃1 − h̃2‖ρ
Cr .

Using this and Lemma 3.5 we obtain

‖g ◦ h1 ◦ g̃ − g ◦ h2 ◦ g̃‖Cr = ‖g ◦ (h1 ◦ g̃) − g ◦ (h2 ◦ g̃)‖Cr

≤ M ′‖g‖Cq · ‖h1 ◦ g̃ − h2 ◦ g̃‖ρ
Cr = M ′‖g‖Cq · ‖(h1 − h2) ◦ g̃‖ρ

Cr

≤ M ′‖g‖Cq (Mr (1 + ‖g̃‖Cr )r )ρ ‖h1 − h2‖ρ
Cr = M ′′‖g‖Cq (1 + ‖g̃‖Cr )rρ ‖h1 − h2‖ρ

Cr .

It follows that

‖g ◦ h1 ◦ g̃ − g ◦ h2 ◦ g̃‖Cr + ‖g̃−1 ◦ h−1
1 ◦ g−1 − g̃−1 ◦ h−1

2 ◦ g−1‖Cr

≤ M ′′ ‖g‖Cq (1 + ‖g̃‖Cr )rρ · ‖h1 − h2‖ρ
Cr

+ M ′′ ‖g̃−1‖Cq (1 + ‖g−1‖Cr )rρ · ‖h−1
1 − h−1

2 ‖ρ
Cr

= M ′′ (‖g‖Cq (1 + ‖g̃‖Cr )rρ + ‖g̃−1‖Cq (1 + ‖g−1‖Cr )rρ
) · κ dCr (h1, h2)

ρ.

By (2.2), this yields the same estimate for κ−1dCr (g ◦ h1 ◦ g̃, g ◦ h2 ◦ g̃) and gives (3.5) with
M = M ′′κ2, provided that this estimate is at most δ0 · |g ◦ h1 ◦ g̃|−1

Cr . The latter follows from
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the last assumption of the lemma and the following estimate for |g ◦ h1 ◦ g̃|Cr . Applying
Lemma 3.5 twice, we get

‖g ◦ h1 ◦ g̃‖Cr = ‖(g ◦ h1) ◦ g̃‖Cr ≤ Mr ‖g ◦ h1‖Cr (1 + ‖g̃‖Cr )r

≤ M2
r ‖g‖Cr (1 + ‖h1‖Cr )r (1 + ‖g̃‖Cr )r .

Similarly,

‖(g ◦ h1 ◦ g̃)−1‖Cr ≤ M2
r ‖g̃−1‖Cr (1 + ‖h−1

1 ‖Cr )r (1 + ‖g−1‖Cr )r ,

and hence

|g ◦ h1 ◦ g̃|Cr ≤ M2
r (1 + |h1|Cr )r (‖g‖Cr (1 + ‖g̃‖Cr )r + ‖g̃−1‖Cr (1 + ‖g−1‖Cr )r ) .

��
Proof of Proposition 3.3 We fix x ∈ X and construct Hs

x,y for any y ∈ W s
loc(x) sufficiently

close to x . Then the map Hs can be extended to the whole leaf W s(x) by the invariance
property (H2).

For y ∈ W s
loc(x), we have dX ( f n x, f n y) ≤ dX (x, y)λn for all n ∈ N, where 0 < λ < 1

is as in (2.1). We consider the sequence of diffeomorphisms {(An
y)

−1 ◦An
x } and show that it

is Cauchy in Diff r (M).
We apply Lemma 3.6 with h1 = Id and h2 = (A f n y)

−1 ◦ A f n x to estimate the distance
between consecutive terms. We will verify assumption (3.6) later.

dCr

(
(An

y)
−1 ◦ An

x , (An+1
y )−1 ◦ An+1

x

)

= dCr

(
(An

y)
−1 ◦ Id ◦ An

x , (An
y)

−1 ◦ (A f n y)
−1 ◦ A f n x ◦ An

x

)

≤ M
(
‖(An

y)
−1‖Cq (1 + ‖An

x‖Cr )rρ + ‖(An
x )

−1‖Cq (1 + ‖An
y‖Cr )rρ

)

× dCr
(
Id, (A f n y)

−1 ◦ A f n x
)ρ

.

Using condition (3.2) we estimate

‖(An
y)

−1‖Cq (1 + ‖An
x‖Cr )rρ ≤ Kεeεn(1 + Kεeεn)rρ ≤ K ′

εeεn(1+rρ).

Thus we have

dCr

(
(An

y)
−1 ◦ An

x , (An+1
y )−1 ◦ An+1

x

)
≤ 2K ′

ε eεn(1+rρ) · dist( f n y, f n x)βρ

≤ 2K ′
ε eεn(1+rρ) · (dX (x, y)λn)βρ = K ′′

ε dX (x, y)βρ · θn, where θ = eε(1+rρ)λβρ.

(3.7)
To verify assumption (3.6), we similarly estimate

‖(An
y)

−1‖Cr (1 + ‖An
x‖Cr )r + ‖(An

x )
−1‖Cr (1 + ‖An

y‖Cr )r ≤ K ′′
ε eεn(1+r).

We take ε > 0 such that θ eε(1+r) < 1, and in particular θ < 1. Since

K ′′
ε dX (x, y)βρ · θn ≤ K ′′′

ε e−εn(1+r),

we conclude that (3.6) is satisfied of all n ∈ N provided that dX (x, y) is small enough.
Therefore, by (3.7), {(An

y)
−1 ◦ An

x } is a Cauchy sequence in Diff r (M), and so it has a
limit there. Properties (H1) and (H2) are easy to verify. Properties (H3) and (3.4) are obtained
as follows. For every n ∈ N we have
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dCr

(
(An

y)
−1 ◦ An

x , Id
)

= dCr

(
(An

y)
−1 ◦ An

x , (A0
y)

−1 ◦ A0
x )

)

≤
n−1∑

k=0

dCr

(
(Ak

y)
−1 ◦ Ak

x , (Ak+1
y )−1 ◦ Ak+1

x

)
≤ K ′′

ε dX (x, y)βρ
∞∑

n=0

θn ≤ c dX (x, y)βρ.

Taking the limit as n → ∞ we obtain dCr (Hs
x,y, Id) ≤ c dX (x, y)βρ. ��

3.3 Boundedness of the cocycle

We assume that the periodic data set bounded in | · |Cq in Proposition 3.7 and bounded in
| · |C1 in Proposition 3.9.

Proposition 3.7 Suppose that a cocycle A satisfies the assumptions of Proposition 3.3 and
its periodic data set AP is bounded in Diff q(M), where q = k + γ , k ∈ N, 0 < γ < 1.
Then its value set AX is bounded in Diff r (M) for any r < q.

Proof The base systems that we are considering satisfy the following closing property.

Lemma 3.8 (Anosov Closing Lemma [11, 6.4.15–17]) Let (X , f ) be a topologically mixing
diffeomorphism of a locally maximal hyperbolic set. Then there exist constants c, δ′ > 0
such that for any x ∈ X and k ∈ N with dist(x, f k x) < δ′ there exists a periodic point p ∈ X
with f k p = p such that the orbit segments x, f x, . . . , f k x and p, f p, . . . , f k p satisfy

dX ( f i x, f i p) ≤ c dX (x, f k x) for every i = 0, . . . , k.

For subshifts of finite type this property can be observed directly.
Since the map f is transitive, we can consider a point z ∈ X whose orbit O(z) = { f nz :

n ∈ Z} is dense in X . Let f n1 z and f n2 z be two points of O(z)with δ := dist( f n1 z, f n2 z) <

δ′, where δ′ is as in Lemma 3.8. We assume that n1 < n2 and denote

w = f n1 z and k = n2 − n1, so that δ = dist(w, f kw) < δ′.

Then there exists p ∈ X with f k p = p such that dist( f iw, f i p) ≤ cδ for i = 0, . . . , k.
We fix ε > 0 and take r1 = q − ε. Let y be the point of intersection of W s

loc(p) and
W u

loc(w). Then by Proposition 3.3 (H3) there exists a constant c1 independent of p and y
such that

dCr1 ((A
k
p)

−1 ◦ Ak
y, Id) ≤ c1δ

βε.

We use Lemma 3.6 with g = Ak
p , h1 = (Ak

p)
−1 ◦Ak

y , and h1 = Id = g̃. Since the set AP is
bounded in Diff q(M), all norms in (3.5) and (3.6) are similarly uniformly bounded and, in
particular, condition (3.6) is satisfied if δ′ is chosen small enough. We conclude that

dCr1 (A
k
y, A

k
p) ≤ c(|Ak

p|Cr ) · dCr1 ((A
k
p)

−1 ◦ Ak
y, Id)

ε ≤ c1δ
βε2 .

Thus the set {|Ak
y |Cr1 } is bounded by (2.3). A similar argument, using unstable holonomies,

shows that the set {|Ak
w|Cr2 } is bounded for r2 = r1 − ε = q − 2ε.

Therefore, there exists a constant c2 such that whenever δ := dist( f n1 z, f n2 z) < δ′ with
k = n2 − n1 > 0, we have |Ak

f n1 z |Cr2 < c2.

We take m ∈ N such that the set { f j z : | j | ≤ m} is δ′-dense in X and set

cm = max { |A j
z |Cr2 : | j | ≤ m}.
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Letn > m. Then there exists j with | j | ≤ m, such thatdX ( f nz, f j z) ≤ δ′. UsingLemma3.5,
we obtain that

‖An
z ‖Cr2 = ‖An− j

f j z
◦ A

j
z ‖Cr2 ≤ Mr2(1 + ‖A j

z ‖Cr2 )
r2‖An− j

f j z
‖Cr2

≤ Mr2(1 + cm)r2 · c2 ≤ c3.

The cases of {‖(An
z )

−1‖Cr2 } and of n < −m are similar. Thus there exists a constant c such
that

|An
z |Cr2 ≤ c for all n ∈ Z.

Since O(z) is dense in X and |An
z |Cr2 is continuous on X for each n, we conclude that |An

x |Cr2

is uniformly bounded in x ∈ X and n ∈ Z. Since ε is arbitrary, the proposition follows. ��
Proposition 3.9 Suppose that a cocycle A satisfies the assumptions of Proposition 3.3 with
q = 1 + γ , γ > 0, and its periodic data set AP is bounded in Diff 1(M). Then its value set
AX is also bounded in Diff 1(M).

Since AX is bounded in | · |C0 , it suffices to show that the first derivatives are uniformly
bounded. As in the previous proof, we consider the points z, w, p, and y = W s

loc(p) ∩
W u

loc(w). Then by (3.4) there exists a constant c independent of p and y such that

dC1((Ak
p)

−1 ◦ Ak
y, Id) ≤ c and hence ‖Dt

(
(Ak

p)
−1 ◦ Ak

y

)±1 ‖ ≤ c′

for some c′. Since Ak
y = Ak

p ◦ ((Ak
p)

−1 ◦ Ak
y) and the set AP is bounded in | · |C1 , we

conclude that ‖Dt (A
k
y)

±1‖ is bounded uniformly in t , k, and y, as above, and thus the set

{Ak
y} is bounded in | · |C1 . Then a similar argument shows that the set {Ak

w} is also bounded
in | · |C1 . Therefore, there exists a constant c′′ such that whenever dist( f n1 z, f n2 z) < δ′ with
k = n2 − n1 > 0, we have |Ak

f n1 z |C1 < c′′.
We take m ∈ N such that the set { f j z : | j | ≤ m} is δ′-dense in X and let

cm = max { |Am
z |C1 : | j | ≤ m}.

Since for any n > m there exists j , | j | ≤ m, such that dX ( f nz, f j z) ≤ δ′, we have

‖Dt (A
n
z )‖ = ‖DAn− j (t)(A

j
z ) ◦ Dt (A

n− j
f j z

)‖ ≤ |A j
z |C1 · |An− j

f j z
|C1 ≤ cmc′′

and similarly for ‖Dt (A
n
z )

−1‖ and for n < −m. Thus the set {|An
z |C1 : n ∈ Z} is bounded,

and it follows that AX is bounded | · |C1 . ��
This completes the proof of Theorem 1.2.

4 Proof of Theorem 1.3

We recall that q = 1 + γ , where 0 < γ < 1. We fix 0 < α < γ and set r = 1 + α. Since
the periodic data set AP is bounded in Diff q(M), the cocycle A satisfies the conclusion of
Proposition 3.3, and in particular has stable and unstable holonomies in Diff r (M). Also, the
set of values AX is bounded in Diff r (M) by Proposition 3.7.

As in Sect. 3.1, we consider the linear cocycle B(x,t) = DtAx over the map F(x, t) =
( f (x),Ax (t)) on the vector bundle V over X × M with fiber V(x,t) = TtM.

The Proof of Theorem 1.3 is organized as follows. In Sect. 4.1 we construct an everywhere
defined boundedmeasurable family τ̂ of inner products on the vector bundleV invariant under
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the cocycleB. In Sect. 4.2we show that τ̂ isHölder continuous along eachfiberMx in X×M.
In Sect. 4.4 we establish essential invariance of τ̂ under the holonomies of the linear cocycle
B along the stable and unstable sets in the skew product. In Sect. 4.5, we consider a natural
invariant measure μ̂ for the skew product that projects to the measure of maximal entropy
μ for X . Then using the above essential invariance with respect to μ̂ we show that τ̂x , the
restriction of τ̂ toMx , is μ-essentially invariant under the stable and unstable holonomies of
the cocycle A, as a Riemannian metric on the whole fiber Mx . This yields essential Hölder
continuity of τ̂x along the stable and unstable leaves in X , and hence global Hölder continuity.

The arguments in Sects. 4.1 and 4.4 are similar to those in [9,10,19] for conformality of
linear cocycles over hyperbolic and partially hyperbolic systems. However, the skew product
F is not a volume preserving smooth partially hyperbolic system as in [10], so we adapt
arguments to our case. More importantly, F is not accessible and so we need arguments in
Sect. 4.2 to show regularity along the “center”M and in Sect. 4.5 to deduce global regularity.

4.1 An invariant boundedmeasurable family �̂ of inner products onV

In this section, it suffices to assume that the cocycleA is bounded in |·|C1 , and hence ‖Bn
(x,t)‖

is uniformly bounded in (x, t) ∈ X × M and n ∈ Z.
The space T m of inner products onRm identifies with the space of real symmetric positive

definitem×m matrices, which is isomorphic to GL(m,R)/SO(m,R). The group GL(m,R)

acts transitively on T m via A[E] = ATE A, where A ∈ GL(m,R) and E ∈ T m . The space
T m is a Riemannian symmetric space of non-positive curvature when equipped with a certain
GL(m,R)-invariant metric [13, Ch.XII, Theorem 1.2]. Using the background Riemannian
metric on V , we can identify an inner product with a symmetric linear operator. For each
(x, t) ∈ X × M, we denote the space of inner products on V(x,t) by T(x,t), and so we obtain
a bundle T over X × M with fiber T(x,t). We equip the fibers of T with the Riemannian
metric mentioned above. We call a continuous (Hölder continuous, measurable) section of
T a continuous (Hölder continuous, measurable) Riemannian metric on V . A metric metric
τ is called bounded if the distance between τ(x,t) and τ̃(x,t) is uniformly bounded on X ×M
for a continuous metric τ̃ on V . For the linear cocycle B, the pullback of an inner product
τF(x,t) on VF(x,t) to V(x,t) is given by

(
B∗

(x,t)(τF(x,t))
)

(v1, v2) = τF(x,t) (Bz(v1), (Bz)v2) for v1, v2 ∈ V(x,t).

We say that a metric τ is B-invariant if B∗(τ ) = τ .
Let τ be a continuous metric on V . We consider the set

S(x, t) = { (Bn
(x,t))

∗(τFn(x,t)) : n ∈ Z } ⊂ T(x,t).

Since the cocycle B is bounded, the sets S(x, t) have uniformly bounded diameters. Since
the space T(x,t) has non-positive curvature, for every (x, t) there exists a unique smallest
closed ball containing S(x, t) [13, Ch.XI, Theorem 3.1]. We denote its center by τ̂(x,t). By
the construction, the metric τ̂ is invariant under B.

For any k ≥ 0, the set

Sk(x, t) = { (Bn
(x,t))

∗(τFn(x,t)) : |n| ≤ k} (4.1)

depends continuously on (x, t) in Hausdorff distance, and so does the center τ k
(x,t) of the

smallest ball containing Sk(x, t) byLemma4.1 below. Since Sk(x, t) → S(x, t) inHausdorff
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distance as k → ∞ for any (x, t), the metric τ̂ is the pointwise limit of continuous metrics
τ k
(x,t), and hence τ̂ is Borel measurable.

Lemma 4.1 Let S1 and S2 be bounded sets in T m and let B(c1, r1) and B(c2, r2) be the
smallest closed balls containing S1 and S2, respectively. Then dT m (c1, c2) ≤ dH(S1, S2),
where dH is the Hausdorff distance.

Proof Suppose dH(S1, S2) < ε. Then, since S1 ⊂ B(c1, r1), we have S2 ⊂ B(c1, r1 + ε),
and hence B(c2, r2) ⊂ B(c1, r1 + ε) by minimality. Similarly, B(c1, r1) ⊂ B(c2, r2 + ε).

If dT m (c1, c2) > ε, we obtain a contradiction. Indeed, suppose r2 ≥ r1. Any two points
in T m lie on a unique geodesic, which is isometric to R. Therefore there exists a point c on
the geodesic through c1 and c2 with

dT m (c, c2) = r2 and dT m (c, c1) = dT m (c, c2) + dT m (c2, c1) > r2 + ε ≥ r1 + ε.

This point is in B(c2, r2), but not in B(c1, r1 + ε). Thus dist(c1, c2) ≤ ε. ��

4.2 Hölder continuity of �̂ along the fibersMx in X×M

We recall that by Proposition 3.7 the value setAX is bounded in Diff r (M), where r = 1+α.
We start with an α-Hölder continuous metric τ on V and obtain a bounded Borel measur-

able metric τ̂ , as in the previous section. Below we show that τ̂ is Hölder along the fibers.
We denote by τ̂x the restriction of the metric τ̂ to the fiber Mx .

Proposition 4.2 For each x ∈ X the metric τ̂x is α-Hölder continuous onMx , more precisely,
there exists a constant c such that

dT (τ̂ (x, t), τ̂ (x, t ′)) ≤ c dM(t, t ′)α for all x ∈ X and t, t ′ ∈ M. (4.2)

Proof We use the following lemma. It was proven in [9] for conformal structures rather than
inner products, but the proof works without significant modifications.

Lemma 4.3 (cf. [9, Lemma 4.5]) Let τ be an inner product on R
m and B be a linear trans-

formation of R
m sufficiently close to the identity. Then

dT (τ, B(τ )) ≤ c1(τ ) · ‖B − Id ‖,

where the function c1(τ ) is bounded on compact sets in T m.

In the chain of inequalities below, we use the following: the pullback action is an isometry;
the metric τ is α-Hölder continuous and in particular bounded; Lemma 4.3; and the fact that
sinceAX is bounded in | · |C1+α , the norm ‖(Bn

(x,t))
±1‖ is bounded and there is a constant c2

such that

‖Bn
(x,t) − Bn

(x,t ′)‖ ≤ c2 dM(t, t ′)α.
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For each n ∈ Z we have

dT
(
(Bn

(x,t))
∗(τFn(x,t)), (B

n
(x,t ′))

∗(τFn(x,t ′))
)

≤ dT
(
(Bn

(x,t))
∗(τFn(x,t)), (B

n
(x,t))

∗(τFn(x,t ′))
)

+ dT
(
(Bn

(x,t))
∗(τFn(x,t ′)), (B

n
(x,t ′))

∗(τFn(x,t ′))
)

≤ dT
(
τFn(x,t), τFn(x,t ′)

) + dT
(
τFn(x,t ′), (B

n
(x,t))

−1Bn
(x,t ′))

∗(τFn(x,t ′))
)

≤ c3 dM(t, t ′)α + c1(τFn(x,t ′))‖(Bn
(x,t))

−1Bn
(x,t ′) − Id‖

≤ c3 dM(t, t ′)α + c4‖(Bn
(x,t))

−1‖ · ‖Bn
(x,t) − Bn

(x,t ′)‖
≤ c3 dM(t, t ′)α + c4c5c2 dM(t, t ′)α = c6 dM(t, t ′)α.

Thus for each n,

dT
(
(Bn

(x,t))
∗(τFn(x,t)), (B

n
(x,t ′))

∗(τFn(x,t ′))
)

≤ c dM(t, t ′)α for all t, t ′ ∈ M,

where the constant c = c6 is independent of x and n. It follows immediately that theHausdorff
distance between the sets Sk(x, t) and Sk(x, t ′) given by (4.1) satisfies

dH(Sk(x, t), Sk(x, t ′)) ≤ c dM(t, t ′)α for all x ∈ X and t, t ′ ∈ M.

Hence by Lemma 4.1 the center τ k
(x,t) of the smallest closed ball containing Sk(x, t) also

satisfies

dT (τ k
(x,t), τ

k
(x,t ′)) ≤ c dM(t, t ′)α for all x, k, t, t ′.

Passing to the limit as k → ∞, we obtain (4.2). ��

4.3 Stable and unstable sets for F

We consider the map F(x, t) = ( f (x),Ax (t)) of the set X × M. While it is not partially
hyperbolic in the classical sense, we can define the stable sets W̃ s for F using the stable
holonomies Hs

x,y given by Proposition 3.3. The unstable sets W̃ u are defined similarly. For
any (x, t) ∈ X × M, we set

W̃ s(x, t) = {(y, t ′) ∈ X × M : y ∈ W s(x), t ′ = Hs
x,y(t)}.

We will only use the following contraction property for these sets:

dX×M(Fn(x, t), Fn(y, t ′)) → 0 as n → ∞
for any (x, t) ∈ X × M and (y, t ′) ∈ W̃ s(x, t). It holds since

dX×M(Fn(x, t), Fn(y, t ′)) = dX×M
(
( f n x,An

x (t)), ( f n y,An
y(t

′))
)

= dX ( f n x, f n y) + dM(An
x (t),A

n
y(t

′)) → 0 as n → ∞
as dX ( f n x, f n y) → 0 and

An
y(t

′) = Hs
f n x, f n y ◦ An

x ◦ Hs
y,x (t

′) = Hs
f n x, f n y ◦ An

x (t),

where dCr (Hs
f n x, f n y, Id) ≤ c dX ( f n x, f n y)βρ → 0 by (H3) in Proposition 3.3.
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4.4 Essential invariance of �̂ under the holonomies

For convenience, in the remaining two sections we will use the push forward of an inner
product by a linear map, which is defined as the pull-back by its inverse: L∗ = (L−1)∗.

First we show that τ̂ is essentially invariant under the derivatives of Hs along the stable
sets of F in X ×M. These derivatives can be interpreted as stable holonomies of the cocycle
B. The statement and proof for the unstable holonomies are similar.

Proposition 4.4 Let ν be an ergodic F-invariant probability measure on X × M. If τ is a
ν-measurable B-invariant metric on V , then τ is essentially Hs-invariant, more precisely,
there exists an F-invariant set E ⊂ X × M with ν(E) = 1 such that

τ̂ (y, t ′) = (Dt Hs
x,y)∗(τ̂ (x, t)) for all (x, t), (y, t ′) ∈ E with (y, t ′) ∈ W̃ s

loc(x, t).

Proof To simplify the notations, we write τ for τ̂ and d for dT , and for y ∈ W s
loc(x), t ∈ Mx ,

and t ′ = Hs
x,y(t) ∈ My , we set

z = (x, t), z′ = (y, t ′) so z′ ∈ W̃loc(z), zn = Fn(z), and z′
n = Fn(z′).

Since τ is ν-measurable, by Lusin’s Theorem there exists a compact set S ⊂ X ×Mwith
ν(S) > 1/2 so that τ is uniformly continuous and hence bounded on S. Let E be the set of
points in X × M for which the asymptotic frequency of visiting S equals ν(S) > 1/2. By
Birkhoff Ergodic Theorem, ν(E) = 1.

Suppose that both z and z′ are in E . We will show that

d
(
τ(z′), (Dt Hs

xy)∗(τ (z))
)

= 0, that is, τ(z′) = (Dt Hs
xy)∗(τ (z)).

Property (H2) of the holonomies, Hs
x,y = (An

y)
−1 ◦ Hs

f n x, f n y ◦ An
x , implies

Dt Hs
x,y = DAn

y(t
′)(A

n
y)

−1 ◦ DAn
x (t) Hs

f n x, f n y ◦ DtA
n
x

= (Bn
(y,t ′))

−1 ◦ DAn
x (t) Hs

f n x, f n y ◦ Bn
(x,t) = (Bn

z′)−1 ◦ DAn
x (t) Hs

f n x, f n y ◦ Bn
z .

Since the metric τ is invariant under the cocycle B, and B induces an isometry on the space
of inner products, we have

d
(
τ(z′), (Dt Hs

xy)∗(τ (z))
)

= d
(
τ(z′), ((Bn

z′)−1)∗ (DAn
x (t) Hs

f n x, f n y ◦ Bn
z )∗(τ (z))

)

= d
(
(Bn

z′)∗(τ (z′)), (DAn
x (t) Hs

f n x, f n y)∗(B
n
z )∗(τ (z))

)

= d
(
τ(z′

n), (DAn
x (t) Hs

f n x, f n y)∗(τ (zn))
)

≤ d (τ (z′
n), τ (zn)) + d

(
τ(zn), (DAn

x (t) Hs
f n x, f n y)∗(τ (zn))

)
.

(4.3)

Since z, z′ ∈ E , there exists a sequence {ni } such that both zni and z′
ni

are in S for each i .

Since z′ ∈ W̃ s
loc(z), dX×M(zni , z′

ni
) → 0 and hence d(τ (zni )), τ (z′

ni
)) → 0 by uniform

continuity of τ on S.
By property (H3) of holonomies, dCr (Hs

x,y, Id) ≤ c dX (x, y)βρ, where c is independent
of x and y ∈ W s

loc(x). Hence

‖DAn
x (t) Hs

f n x, f n y − Id‖ ≤ κ dCr (Hs
f n x, f n y, Id) ≤ κc dX (xn, yn)βρ → 0 as n → ∞.
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Using Lemma 4.3 and boundedness of τ on S, we conclude that the last term in (4.3) tends

to 0 as n → ∞. Therefore, d
(
τ(z′), (Dt Hs

xy)∗(τ (z))
)

= 0. ��

4.5 Hölder continuity of �̂

Now we consider a particular measure on X ×M. Let μ be the measure of maximal entropy
for (X , f ). For each x ∈ X , we have the normalized volume mx on the fiber Mx induced
by the metric τ̂ , which is Hölder continuous onMx . We consider the measure μ̂ on X ×M
given by μ̂ = ∫

mx dμ(x), that is, for any Borel measurable set S ⊂ X × M,

μ̂(S) =
∫

X
mx (S ∩ Mx ) dμ(x).

Clearly, the measure μ̂ is F-invariant. While it is not necessarily ergodic, we can consider
its ergodic components and the corresponding partition ξ of X × M. The Hopf argument
yields that, up to a set of measure zero, every local stable set is contained in an element of ξ .
So we can apply Proposition 4.4 to ergodic components of μ̂ we obtain the following.

Corollary 4.5 There exists a set Ĝ ⊂ X × M with μ̂(Ĝ) = 1 such that τ̂ on Ĝ is invariant
under the holonomies, that is,

τ̂ (z′) = (Dt Hs
x,y)∗(τ̂ (z)) for all z = (x, t) ∈ Ĝ and all z′ = (y, t ′) ∈ Ĝ ∩ W̃ s

loc(z).

Now we establish μ-essential invariance of τ̂x , as a Riemannian metric on the whole fiber
Mx , under the stable and unstable holonomies of the cocycle A over X .

Proposition 4.6 There exists a set G ⊂ X with μ(G) = 1 such that or any x, y, y′ ∈ G with
y ∈ W s

loc(x) and y′ ∈ W s
loc(x), the diffeomorphisms

Hs
x,y : (Mx , τ̂x ) → (My, τ̂y) and Hu

x,y′ : (Mx , τ̂x ) → (My′ , τ̂y′) are isometries.

Proof We will obtain a set Gs of full measure for the stable holonomies. A similar argument
gives a full measure set Gu for the unstable holonomies, and G = Gs ∩ Gu .

Let Ĝ ⊂ X ×M be as in Corollary 4.5 and let Gs = π(Ĝ) ⊂ X , where π is the projection
from X ×M to X . Then we haveμ(Gs) = 1 and mx (Mx ∩ Ĝ) = 1 forμ almost all x ∈ Gs .
Discarding a set of measure zero, we can assume that Ĝ is F-invariant and

mx (Mx ∩ Ĝ) = 1 for all x ∈ Gs .

Now we show that if x, y ∈ Gs and y ∈ W s
loc(x), then Hs

x,y is an isometry between the
fibers (Mx , τ̂x ) and (My, τ̂y). Since Hs

x,y : Mx → My is a diffeomorphism, it maps sets
of zero volume to sets of zero volume. The set

E = (Mx ∩ Ĝ) ∩
(
(Hs

x,y)
−1(My ∩ Ĝ)

)

satisfies E ⊂ Ĝ, Hs
x,y(E) ⊂ Ĝ, and mx (E) = 1, and in particular E is dense in Mx . By

Corollary 4.5 we have

τ̂ (z′) = (Dt Hs
x,y)∗(τ̂ (z)) for all z ∈ E .

Thus DHs
x,y is isometric on the dense set E and, as the Riemannian metrics τ̂x and τ̂y are

α-Hölder continuous along the fibers, we conclude that the diffeomorphism
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Hs
x,y : (Mx , τ̂x ) → (My, τ̂y) is an isometry for all x, y ∈ Gs with y ∈ W s

loc(x).

��
We denote by T (M, α) the space of α-Hölder continuous Riemannian metrics on M

equipped with Cα distance dT α . Then the μ-essential invariance of τ̂ yields μ-essential βρ-
Hölder continuity of τ̂ as a function from X to T (M, α) along the stable and unstable leaves
in X .

Corollary 4.7 The function x �→ τ̂x is βρ-Hölder continuous on G along the stable and
unstable leaves in X as a function from X to T (M, α), that is

dT α(τ̂x , τ̂y) ≤ C dX (x, y)βρ for all x, y ∈ G with y ∈ W s/u
loc (x). (4.4)

Proof By Proposition 3.3 (H3) the holonomies Hs/u are βρ-Hölder continuous in Diff r (M),
r = 1 + α. By Proposition 4.6, Hs/u

x,y (τ̂x ) = τ̂y for all x, y ∈ G with y ∈ W s/u
loc (x). Now

using Lemma 4.3 and boundedness of τ̂ , we obtain

dT (τ̂x , τ̂y) ≤ c1 dCr (Hs/u
x,y , Id) ≤ c1c dX (x, y)βρ.

��
Now the local product structure argument shows that τ̂ coincidesμ almost everywherewith

a βρ-Hölder continuous stable and unstable holonomy invariant function τ : X → T (M, α).
We consider a small open set U in X with the product structure of stable and unstable leaves,
that is

U = W s
loc(x0) × W u

loc(x0)
de f= {

W s
loc(x) ∩ W u

loc(y) | x ∈ W s
loc(x0), y ∈ W u

loc(x0)
}
.

We recall that themeasure ofmaximal entropyμ is equivalent to the product of its conditional
measures on W s

loc(x0) and W u
loc(x0), which have full support on the corresponding leaves.

Therefore for μ almost all local stable leaves in U , the set of points of G on the leaf has full
conditional measure, and hence full support. Without loss of generality, we can assume that
G has no points on the other leaves. Hence for any two points x and y in G ∩ U there exists
a point w ∈ W s

loc(x) ∩ G such that W u
loc(w) ∩ W s

loc(y) is also in G ∩ U . Then (4.4) and the
local product structure of the stable and unstable manifolds yield that for all x, y ∈ G ∩ U
we have

dT (τ̂ (x), τ̂ (y)) ≤ c3 dX (x, y)βρ.

Since this estimate holds for all x, y ∈ G, which is dense in X , τ̂ extends to a βρ-Hölder
continuous function τ : X → T (M, α), which is also invariant under the holonomies and
the cocycle. As a function on X ×M, τ is γ -Hölder continuous with γ = min {α, βρ}. This
completes the proof of Theorem 1.3.
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