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Abstract—Security constraints are necessary in unit commit-
ment problems to guarantee reliable commitments. However,
only a small subset of security constraints can bind in the
unit commitment problem. This paper presents a data-aided
prescreening approach that could identify and remove non-
dominating security constraints. This approach takes advantage
of both deterministic and statistical methods, which leverages
the historical data and linear programming (LP) solution. Lazy
constraints are used in optimization solver to maintain solution
integrity. Case studies presented here use Midcontinent Indepen-
dent System Operator (MISO) data, and simulation results show
that the proposed prescreening approach significantly improves
computational performance.

Index Terms—Security Constraint, Transmission Congestion,
Optimal Power Flow, Lazy Constraint, Unit Commitment.

I. INTRODUCTION

SECURITY constrained unit commitment (SCUC) is dis-
cussed extensively in the literature and well implemented

in daily power system operation by independent system oper-
ators (ISO) and Regional Transmission Organizations (RTO)
[1]. It is a challenging task to obtain optimal solution in an
acceptable time due to the enormous size of the problem.
SCUC’s objective is to maximize social welfare subject to
a variety of constraints, such as generator physical limits,
power balance, reserve requirements, and transmission security
constraints [2].

SCUC, by nature, is a nonconvex and large scale mixed in-
teger optimization problem. It belongs to the np-hard problem
class. Recent improvements in modeling, optimization solver,
and efficient algorithm enable system operators to obtain
optimal or near-optimal solutions. SCUC can be generally
solved by Lagrangian Relaxation (LR) and Mixed Integer
Linear Programming (MILP), performance comparison can be
found in [2]. MISO has adopted MILP approach for the Co-
optimized Energy and Ancillary Service Market since 2009.
Day Ahead Market (DAM) is a financial market, and the
market-clearing process requires solving SCUC problem for
all planned operation periods. It is crucial to obtain a near
optimal solution (MILP gap under 0.1%) while meeting the
time requirement (1200 seconds) [3].

In DAM, security constraints are defined as power flow
transmission constraint for transmission lines considering N-1
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security rule according to North American Electric Relia-
bility Corporation (NERC). There are over 15000 security
constraints formulated for MISO’s DAM. Incorporating all
security constraints in the model could cause computational
intractability, which means optimality and solution time re-
quirements cannot be guaranteed. Many research efforts have
gone into improving SCUC computational performance. De-
composition approaches, such as Benders decomposition and
Lagrangian decomposition, divide the original problem, which
is difficult to solve, into smaller pieces, acceleration comes
from solving the smaller problems in parallel. However, in
general, decomposition approaches may have either bloating
problem or convergence problem. Data driven approach, such
as warm start, gives the solver a starting node, which may
help in some situations. However, good quality of warm
start information can help filter out inferior nodes and poor
quality of warm start information may hurt more than they
help. It is not always optimistic to obtain high quality of
warm start information. Based on the observation of com-
putationally challenging cases in MISO, security constraints
are the primary driving factor of slow the computational
performance of SCUC. Models with fewer security constraints
can generally reach acceptable optimality gap with less time.

Reducing non-binding hard constraints often help reduce
solution time for MILP problems. The goal of this research is
to effectively reduce the size of security constraint set in the
SCUC model and improve solution quality, while maintain
solution integrity. From experience, only a small fraction of
security constraints are binding. MISO has identified over 200
routinely binding and critical security constraints per interval,
known as ”watchlist”. Additional constraints may be identified
and added to watchlist through the interaction between Simul-
taneous Feasibility Test (SFT) and DAM Security Constrained
Economic Dispatch (SCED) [3].

The overwhelming number of security constraints have
attracted much attention in literature. Umbrella constraint
concept is introduced in [4] and [5]. The umbrella con-
straints are dominating constraints defined as the minimum
set of constraints that shapes the feasibility region of the
original problem. Binding constraints is a subset of umbrella
constraints, which can only be determined after solving the
original MILP problem. Authors in [6] propose an efficient
method to eliminate non-active constraints in standard SCUC,
and [7], [8] further take uncertainty into consideration. Authors
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in [9] developed methods to eliminate large numbers of linear
security constraints in the high-dimensional mixed-integer
SCUC problem. Heuristic approaches are applied to remove
potentially non-binding constraints in [3] and [10], which
addresses the conservatism due to large number of constraints
maybe non-binding but are dominating in the reduced con-
straint set. It is seen that warm start and setting proper lazy
constraint could improve the SCUC solution performance [11],
[13]. Our work in this paper is an extension from [6], [7], [8].

In this paper, we aim to reduce SCUC problem size by
reducing security constraints set in the SCUC formulation.
We propose a two-step prescreening approach to identify
and eliminate non-dominating security constraints. Step 1 is
a numerical method that employs necessary conditions to
identify the potential dominating security constraints. Step 2
solves a LP problem to find the truly dominating constraints
that further shrinks the pool of potentially dominating security
constraints. Lazy constraint resembles a call back function
within the optimization solver that checks constraint violation.
If set inaccurately, the performance will degenerate due to
the overhead that put back the violated constraints. Motivated
by this, we introduce a data-aided lazy constraint setting to
further improve the performance. The contributions of this
paper are three-fold. First, we propose a data-driven approach
to determine the confidence interval of net power injection
for the calculation of power flow. Second, we employ lazy
constraints to resolve potential inaccuracy issue caused by data
driven approach. Third, we carry out simulations and validate
the performance using the real data from MISO.

The paper is organized as following. Section II, a hybrid
prescreening of the two-step deterministic and statistical ap-
proaches are presented. Historical data and lazy constraints
are employed to tighten the security constraint pool in the
optimization model. In Section III, proposed method is tested
on the MISO SCUC model. Section VI concludes the paper.

II. SECURITY CONSTRAINT PRESCREENING PROCEDURE

It is a challenge to deal with the large number of se-
curity constraints in real world systems. Some ISOs/RTOs
develop special procedures to identify creditable security con-
straints and add only those constraints into the DAM SCUC
model. Iterative approaches are often employed to conduct
Simultaneous Feasibility Test (SFT) so that any additional
security constraint causing violation can be added to the
model eventually. For instance, MISO evaluates outages and
other relevant information to build the watchlist, which is a
much smaller subset of the full set of security constraints.
However, the system operator may still confront situations
where optimization engine cannot find an acceptable solution
within the time limit. There is an emerging and practical need
to find acceleration techniques to improve the optimization
performance. In this section, we present a two-step approach
to build the watchlist.

A. Two-Step Prescreening

The power flow fl in line l can be calculated based on
equation below

fl =
∑
m

Γl,mP
inj
m ,

where Γl,m is the power transfer distribution factor (PTDF)
for line l with respect to bus m, and P inj

m is the net power
injection at bus m. Given the PTDF and relative accurate load
forecasting, net power injection interval solely depends on
generator commitment and virtual bid/offer. In order to iden-
tify all the potentially dominating constraints, we choose the
most conservative approach to determine net power injection
interval by taking the physical limits of generator output and
max/min of virtual bid/offer.
P inj
m is calculated based on (1)

P inj
m =

∑
i∈m

Pi +
∑
k∈m

P v
k −

∑
n∈m

Dn −
∑
f∈m

Dflex
f , (1)

where Pi is the generator’s dispatch, P v
k is virtual bid/offer,

Dn is the fixed demand, Dflex
f is the price-sensitive demand.

i, k, n and f are indices for generator, virtual, fixed demand,
and price-sensitive demand, respectively. The maximum and
minimum net power injections are as the following.

P
inj
m =

∑
i∈m

P i +
∑
k∈m

P
v

k −
∑
n∈m

Dn, (2)

P inj
m =

∑
k∈m

P v
k −

∑
n∈m

Dn −
∑
f∈m

D
flex
f . (3)

Net power injection interval is ∆P inj
m = P

inj
m − P inj

m , where
overline/underline represent the maximum/minimum physical
limits, respectively.

1) Step One: With the net power injection, we can apply
Theorem 3 in [7] to determine those non-binding constraints.
For self-contained, we present the result directly here. Denote
P v = −

∑
m P inj

m and fvl =
∑Nd

m=1 Γl,mP
inj
m . If there exists

an integer j ∈ [1, Nd] such that

Γl,m1
≥ Γl,m2

≥ · · · ≥ Γl,md
(4)

j−1∑
n=1

∆P inj
mn
≤ P v ≤

j∑
n=1

∆P inj
mn

(5)

j−1∑
n=1

(
Γl,mn − Γl,mj

)
∆P inj

mn
+ Γl,mjP

v + fvl ≤ Fl (6)

Denote the remaining security constraint set as J1. Ac-
cording to our experience in real systems, J1 are still with
considerable size, and many constraints in J1 are not binding
at the optimal point. Hence, we employ a data-driven method
to tighten the remaining sets by leveraging historical data. The
goal is to determine the 95% confidence interval of generator
output, which can be substituted in (2) and (3). The new
upper and lower bound of net power injection are denoted as
P

inj∗
m , P inj∗

m , respectively. The new net power injection interval,

∆P inj∗
m = P

inj∗
m − P inj∗

m ≤ ∆P inj
m

Denote the set of new remaining security constraints as J∗1 .
Due to the smaller net power injection,

J∗1 ⊆ J1



holds. If the true net power injection is outside of [P
inj∗
m , P inj∗

m ],
then J∗1 might miss binding constraints. To address this issue,
we employ the lazy constraint set

J1\J∗1
in the optimization engine. Lazy constraints will be discussed
in Section II-B.

2) Step Two: J1 detected by Step 1 are the potentially dom-
inating security constraints, and the redundancy still exists. We
apply procedure two to further tighten security constraint set.
An LP model is formulated. The objective is to maximize
the fl respecting all other security constraints in J1. l is a
dominating constraint if and only if fl > Fl. It is formulated
as

(C) fl := max
{P inj

m}

∑
m

Γl,mP
inj
m (7)

s.t.
∑
m

P inj
m = 0, m ∈M (8)

P inj
m ≤ P inj

m ≤ P
inj
m, m ∈M (9)∑

m

Γl′,mP
inj
m ≤ Fl′ , l′ ∈ J1 \ l (10)

where equation (8) is the power balance constraint. It is
equivalent to

∑
n Pn =

∑
dDd, but in a slightly different

format. M is the set of bus indices. F is the power flow
limit. We are able to identify the power flow violation as
long as the network topology and lower/upper bound of net
power injection are available. This feature enables wide range
applications. Theorem 3 in [7] is also based on the net power
injection model, although identification rate might not be as
high as problem (C). For simplicity, we do not present the
power flow in negative direction, which is similar.

It is time consuming to solve thousands of LP like (C).
As we are only interested in whether fl > Fl holds, it is
not necessary to completely solve problem (C). Instead, we
can solve problem (C∗), which is a feasibility check for the
optimized model. The model will be infeasible if constraint
(15) conflicts with others, which means the maximum power
flow on l cannot be greater than its power flow limit. Hence,
security constraint l is not a dominating constraint, and vice
versa.

(C∗) max 0 (11)

s.t.
∑
m

P inj
m = 0, m ∈M (12)

P inj
m ≤ P inj

m ≤ P
inj
m, m ∈M (13)∑

m

Γl′,mP
inj
m ≤ Fl′ , l′ ∈ J1 \ l (14)∑

m

Γl,mP
inj
m > Fl (15)

B. Identify Lazy Constraint

The proposed two-step prescreening approach can signifi-
cantly reduce the size of U in the SCUC model. However,
only a portion of J2 is binding at the solution point. Denote
set of the active constraints at the solution point as JB . The

Fig. 1: Data-Aided Prescreening with Lazy Constraints. CI and
IR provide a point statistically close to the real solution. Security
constraints with values below power flow limits in certain extent are
treated as lazy constraints, which reduce the size of MILP and helps
solve the problem faster if set properly.

question that naturally arises is how we can effectively shrink
the size of J2 to an approximation of JB without jeopardizing
the security. When data-driven approaches are employed, it
becomes challenging to guarantee JB is all included. For-
tunately, the concept of lazy constraint can exactly address
this challenge. Lazy constraints are designed to incorporate
user confidence in the optimization model to improve solution
quality. Constraints that believed to be less probable to bind
at the optimal solution can be marked as lazy. The model
is initially optimized without any lazy constraints. Once a
solution is found, the lazy constraints are checked with the
current solution. If any lazy constraints are violated, they will
be added back to the reduced model. Optimization process
continues till an optimal solution is found without any lazy
constraint violations. Users should exercise best judgement to
mark lazy constraints, since the intention of lazy constraints
is to shrink constraints set and optimize a smaller and easier
model. However, if set inappropriately, it may result in more
iterations to put back the lazy constraints and solution time
may suffer.

It is crucial to separate prescreening result J2 into the active
constraint pool J act, and lazy constraint pool J lazy, where J act∪
J lazy = J2 and J act ∩ J lazy = ∅. If the active pool is over-
conservative, J act ≈ J2, performance improvement would be
negligible. If the pool is over-optimistic, JB\J act ⊆ J lazy is
large more constraints are added back in the MILP searching
process, which may increase solution time.

The key to establish a relatively accurate active constraint
pool is to obtain an approximation of SCUC solution. We
developed two approaches to achieving such goal. The first
is Commitment Initialization (CI) inspired by [11], [13], and
the second is based on Integer Relaxation (IR). Procedures are
shown in Fig. 1. Both approaches solve a LP problem. The LP



solution offers insight into the security constraint relationship
with the SCUC model. We use this information to establish the
lazy constraint pool. The basic idea is to find a much smaller
active constraint pool J act, and the pool of lazy constraint is

J lazy = J2 \ J act

1) Integer Relaxation: Relaxing integer variables in the
SCUC model will yield a LP model, which takes very little
time to solve. The LP solution is by no means an accurate
representation of the MILP solution. However, it provides
insights to where the solution point may be. We are solely
interested in the net power injection from LP solution P inj,r

m .
We establish a boundary of net power injection, P

inj,r
m and

P inj,r
m , to accommodate uncertainties resulting from the the

difference between LP and MILP solutions as shown in (16)
and (17)

P
inj, r
m = min {(1 + β) ∗ P inj,r

m , P
inj
m} (16)

P inj, r
m = max{(1− β) ∗ P inj,r

m , P inj
m}, (17)

where β is the parameter to be tuned.
To set the lazy constraint, we take the following steps.

1) Build DAM SCUC (MILP) model
2) Apply the two-step prescreening method, obtain J2
3) Relax integer variables, solve LP problem, extract P inj, r

m

4) Select β, calculate P
inj, r
m , P inj, r

m

5) Apply the two-step prescreening method on P
inj, r
m , P inj, r

m ,
resulting J act

6) Obtain lazy constraint pool, J lazy = J2\J act

2) Commitment Initialization: According to the persistence
studies conducted with MISO cases, 90% of previous day
commitment is identical to the current day commitment. We
exploit this fact as a warm start to the SCUC model [13]. The
basic idea is to get an approximated power flow by solving a
LP problem with initialized commitment. The resulting power
flow, f cl , for each line is often close to the true MILP solution.
Given power flow from LP solution f cl , power flow limit Fl,
and threshold γ, if

f cl
Fl
≥ γ, l ∈ J2 (18)

holds, security constraint for line l is considered as potentially
binding, which is put to the active constraint set J act. If
equation (18) does not hold, this constraint for line l is set
as lazy. We have J lazy = J2\J act.

1) Build DAM SCUC (MILP) model
2) Apply the two-step prescreening method, obtain J2
3) Fix UCs with initial commitment, solve resulting LP

problem
4) Calculate power flow, f cl , based on LP solution
5) Choose threshold γ, use (18) to identify J act

6) Obtain lazy constraint pool J lazy = J2\J act

Security constraints are known to be a major cause of
SCUC solution deterioration. SCUC solution quality cannot be
guaranteed while including all watchlist security constraints.
The combined approach of the two step security constraint pre-
screening and lazy constraint settings, MILP model optimiza-
tion performance significantly improves by having a smaller

set of active constraints. Model integrity is also maintained
while having the potential optimal solution check against lazy
constraints.

III. CASE STUDY

In this section, we carry out numerical simulations for
MISO cases and analyze the performance of prescreening in
MISO market-clearing optimization engine. By using histori-
cal data and knowledge, such as Initial Commitment and un-
certainty of net power injection, we integrate the prescreening
with lazy constraint in the optimization model. The statistical
approach helps tighten net power injection range with a given
confidence interval, thus building a smaller watchlist with
fewer security constraints. Section III-A illustrates dominating
constraints detection rate and performance of the two step de-
terministic prescreening method. In Section III-B, dominating
constraints detected by the two-step deterministic prescreening
are enforced in the SCUC model. Lazy constraints are applied
based on the procedure discussed in II-B. Numerical simu-
lations are carried out on MISO HIPPO project engine [14],
using Gurobi 7.5 in Centos with Intel Xeon E5@3.50GHz, 64
GB RAM [12].

A. Dominating Constraint Detection

We apply the two-step deterministic prescreening to all
security constraints in the MISO DAM SCUC model. Dom-
inating constraint detection rate and prescreening time is
shown in Table I. Case 17 has the fastest processing time
of 13.95 seconds (step-1: 4.88s, step-2: 9.07s), 49% of the
security constraints are dominating (original: 6604, step-1:
3451, step-2: 3152). In Case 1, prescreening time is 18.52
seconds (step-1: 6.03s, step-2: 12.49s), 43% of the security
constraints are dominating (original: 9895, step-1: 4806, step-
2: 4251). Step-2 needs to screen 3451 constraints in Case 17
and 4806 constraints in Case 1, which is 40% increase in
constraint count. Step-2 processing time is increased by 38%
( 12.49−9.079.07 ). The two step method is consistent through all
cases in the study, and processing time scales linearly with
quantity of security constraints in the model. The two-step
deterministic prescreening method is applied to over 80 MISO
DAM cases. Result shows that 8075 security constraints are
initially modeled on average. Prescreening determines 45% of
the original constraints are dominating (3634 = 8075 ∗ 45%),
which will remain in the model. 4421 redundant constraints
are safely removed from SCUC model prior to optimization.
Average prescreening processing time is 16.65 seconds by
solving problem (C∗) in step-2, comparing with 53.28 seconds
by solving problem (C).

B. Application of Prescreening to MISO SCUC

In the case study, MISO DAM SCUC optimization engine
terminates if MILP Gap reaches 0.1% or optimization time
reaches 1200 seconds [3]. In this section, we consider case that
has base solution time longer than 1000 seconds as hard case.
Otherwise, it is considered as easy cases. Following solution
approaches are applied to the DAM SCUC model:



TABLE I: MISO Case Prescreening Result

Case# Original1 Constr Cnt2 Dom%3 Time4

Easy

3 6948 3602 51.84% 14.32
8 9431 4168 44.19% 18.29
12 7454 3221 43.21% 19.86
14 6260 3130 50.00% 14.85

Hard

1 9895 4251 42.96% 18.52
5 6950 3681 52.96% 15.70
16 10400 4198 40.37% 18.17
17 6604 3152 47.73% 13.95
21 9540 5186 54.36% 23.06
22 8300 4569 55.05% 20.72

Average5 N/A 8075 3654 45.25% 16.65
1 Security constraint count in DAM SCUC model
2 Dominating constraint count after prescreen
3 Percentage of security constraint remained in the model
4 Prescreening time, step 2 solving (C∗), in seconds
5 Average value over 80 cases

• Base solution: Optimize DAM SCUC directly
• Two-step solution: Prescreen security constraints in

DAM SCUC model, remove redundant constraints. Op-
timize the MILP model, no lazy constraint settings are
applied.

• IR solution: Prescreening DAM SCUC model, remove
redundant constraints. Apply IR approach to set lazy
constraints in MILP model, optimize. β is set to 0.6.

• CI solution: Prescreen DAM SCUC model, remove
redundant constraints. Apply CI Approach to set lazy
constraints, then optimize. γ is set to 0.8.

There are totally 46 cases where base solution time is
over 300 seconds. Fig. 2 illustrates the SCUC optimization
time comparison between base solution and best of various
prescreening solution approaches (two-step, IR, CI). Each blue
dot represents the ratio between prescreened SCUC solution
time and base case solution time for a given case. With
prescreening techniques, 63% of the cases (26/46) can be
solved with 80% or less time than base case. 22% of the cases
(10/46) are solved with 50% or less time. Applications of CI
and IR approach are restricted by the availability of initial
commitment and generator dispatch statistics, tuning hyper
parameter β and γ. Lazy constraint setting is a heuristic ap-
proach to best guess the binding constraints. The results show
that good lazy constraint pool could significantly improve the
solution performance in terms of solution time and quality.

Since easy cases take fewer than 1000 seconds to reach
MILP gap below 0.1%, we are mainly interested in solu-
tion time by aforementioned solution approaches. Results
are shown in Table II. Prescreening in Case 8 improves
SCUC solution time by 58 (298 - 240) seconds. CI Approach
determines 3138 out of 4368 constraints are lazy constraints,
and at the end of optimization, 191 constraints are deemed to
be non-lazy and put back to the MILP model. CI Approach
further decreased solution time by 51 (240-189) seconds. With
IR, more constraints are set as lazy, and results in more putting
backs, which take a toll on the solution time, 209 seconds.
On the other hand, in Case 14, IR is able to achieve better
solution time, 442 seconds, than CI Approach, 520 seconds.
The solution time resulting from the two lazy constraint setting

Fig. 2: Ratio between Prescreened SCUC Solution Time and Base
Case SCUC Solution Time in Descending Order

TABLE II: Easy Case SCUC Solution Summary

Case# Approach Time1 Gap2 Lz ct3 Lz pb4

3

Base 680 0.08% 0 0
Two-step 622 0.09% 0 0
CI 456 0.10% 2952 191
IR 469 0.10% 3939 860

8

Base 298 0.08% 0 0
Two-step 240 0.08% 0 0
CI 189 0.08% 3138 191
IR 209 0.10% 4137 1069

14

Base 831 0.07% 0 0
Two-step 648 0.09% 0 0
CI 520 0.09% 2419 410
IR 442 0.10% 3062 806

1 SCUC optimization time, unit in seconds
2 SCUC MILP gap (%) when optimization has completed
3 lazy constraint count in MILP model
4 lazy constraint put back count after solving MILP

approaches are highly dependent on availability of initial com-
mitment, and hyper parameters β, γ. Over-optimistic values
can result in large number of constraints being set as lazy
inaccurately. From our studies on MISO SCUC easy cases,
the two-step deterministic prescreening method combined with
lazy constraint settings shows significantly reduction in SCUC
solution time. On average, the aforementioned prescreening
approach saves an average of 292 seconds (30%) in SCUC
optimization time compared with base solution time.

Hard cases take longer than 1000 seconds to reach MILP
gap of 0.1%. Results are shown in Table III. Incorporating
prescreening methods helps many cases to reach 0.1% MILP
gap under 1200 seconds, whereas previously they could not. In
Case 17, the base solution cannot reach 0.1% MILP gap within
1200 seconds, the optimization process is terminated, and the
resulting MILP gap is 0.11%. The two-step approach allows
MILP gap to reach 0.1% at 1188 seconds. The CI approach is
able to reach MILP gap 0.09% at 1063 seconds. Prescreening
method can also dramatically reduce MILP solution time in
some hard cases. In Case 1, the two-step approach decreases
SCUC optimization time by 126 seconds from base case
solution. CI and IR are able to reach 0.1% MILP GAP in
270 seconds. Total solution time is reduced by 777 seconds.

Case 1 and 22 simulation results in Fig. 3 illustrate two typ-
ical performance improvements when prescreening is applied.



TABLE III: Hard Case SCUC Solution Summary

Case# Approach Time1 Gap2 Lz ct3 Lz pb4

1

Base 1047 0.07% 0 0
two-step 921 0.06% 0 0
CI 271 0.10% 1592 10
IR 270 0.09% 3203 1042

5

Base 1103 0.10% 0 0
two-step 658 0.07% 0 0
CI 899 0.09% 2366 166
IR 802 0.09% 3409 1170

17

Base 1200 0.11% 0 0
two-step 1188 0.10% 0 0
CI 1063 0.09% 1458 64
IR 1200 0.08% 2087 429

21

Base 1200 0.26% 0 0
two-step 1200 0.19% 0 0
CI 1200 0.10% 3549 8
IR 1201 0.16% 5110 1752

22

Base 1200 0.23% 0 0
two-step 993 0.09% 0 0
CI 872 0.09% 2742 11
IR 669 0.09% 4557 1504

1 SCUC optimization time, unit in seconds
2 SCUC MILP gap (%) when optimization has completed
3 lazy constraint count in MILP model
4 lazy constraint put back count after solving MILP

Fig. 3: Optimization Time Comparison. Figure (a) presents result
for Case 1 where optimality gap is reached within time limit without
prescreening. Figure (b) presents results for Case 22 where optimality
gap is not reached within time limit without prescreening

As shown in Fig. 3(a), optimization engine can get the solution
within 1200 seconds. When IR or CI based prescreening is
employed, it only takes about 25% of the original time to find
the solution with similar optimality gap. In contrast, Fig. 3(b)
shows how prescreening could improve the performance when
the original model could not be solved within 1200 seconds.
It is observed all two-step, IR, and CI based prescreening help
the optimization engine solve the problem within time limit.

In a few hard cases, the solver could not get a solution with
required gap even if the prescreening is applied. For instance,
Case 21 in Fig. 4(a) shows the solver terminates after 1200
seconds. According to Fig. 4(b), prescreening helps reduce
the gap significantly. IR based approach decreases the gap to
0.16% from 0.26% while CI approach almost get to 0.1% gap.

IV. CONCLUSION

In this paper, we aim to build a better security constraint
pool for DAM clearing tool. We propose a data-aided two-
step prescreening approach to identify dominating security
constraints and eliminate inactive ones. It is a hybrid of
deterministic and statistical methods, which leverages the his-

Fig. 4: Gap Comparison. Optimality gap cannot be reached with
or without prescreening. Figure (b) shows the gap differences when
prescreening is applied.

torical data and solution to a relaxed LP. Lazy constraints are
applied in optimization solver to maintain solution integrity.
Studies conducted on MISO DAM SCUC model has shown
that prescreening approaches effectively identify inactiveness
of over 55% security constraints with little computation effort
and help improve SCUC solution quality significantly.
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