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Abstract— Flexible ramping products (FRPs) have been
implemented by several independent system operators (ISOs) to
procure adequate flexible resources. Currently, system operators
estimate the system level ramping requirements ignoring the
spatiotemporal correlations among various uncertainty sources.
This leads to overestimates/underestimates of ramping
requirements. In addition, the explicit FRPs model considers only
the generation ramping limitation. Other security constraints,
such as the transmission limits, are not considered, which leads to
deliverability issues of FRPs. To deal with these shortcomings of
current FRPs models, this paper proposes a deliverable FRPs
based on a distributionally-robust chance constrained multi-
interval optimal power flow (DRCC-MIOPF) considering the
spatiotemporal correlation of wind power and demand
uncertainties endogenously. Furthermore, an asymmetrical affine
policy (AAP) is proposed to leverage generation flexibility and
mitigate the uncertainty in different directions. The pricing
mechanism of the FRPs is proposed using a novel uncertainty-
contained locational marginal price (U_LMP) which is derived
from the proposed AAP-DRCC-MIOPF model. New components
representing the price of FRPs are added into the traditional LMP
formulation. Finally, the PJM 5-bus, IEEE 39-bus and IEEE 118-
bus systems case studies validate the proposed FRPS approach.
The payment of uncertain demand and wind power on FRPs are

analyzed.

Index Terms—  Flexible ramping products (FRPs),
Spatiotemporal correlation, electricity market, locational
marginal price (LMP).

NOMENCLATURE
Cit Generator 7 bid price ($/MWh) at time ¢,
Gi¢ Power output of generator i (MW) at time ¢,
GM**/GM™M  Generator i upper/lower limits (MW),
D, Demand level (MW) at bus i at time ¢,
P;. Wind power (MW) at bus i at time ¢,
GSF,; Generation shift factor of bus i to line /,
LU, Line limit of line /,
Gexp,it Generation output of generator at bus i (MW)
at time ¢ under forecasted wind and demand,
Pexpit Forecast wind power (MW) at bus i at time ¢,
Dexp,it Forecast demand (MW) at bus i at time ¢,
Bit Generation balancing factor for the system
imbalance at bus 7 at time ¢,
Bu.it Generation balancing factor for the up

reserve at bus i at time ¢,
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Bp,it Generation balancing factor for the down
reserve at bus i at time ¢,

AG; . Generation corrective power response to
mitigate the system uncertainty at time ¢,

AP; Wind power output uncertainty at time ¢,

AD; Demand uncertainty at time ¢,

PF;, Active power flow on /™ line at time ¢,

Saje Percentage of standard deviation to expected
value of demand at time ¢,

$w.it Percentage of standard deviation to expected
value of wind power at time ¢,

fexp Generation cost corresponding to the

forecasted wind and demand,
) Sparse covariance matrix of wind power and
demand forecast errors,

Oi¢ Standard deviation of wind power plant
(WPP) i-th power forecast error at time ¢,

Opr 1t Standard deviation of the power flow on the
[-th transmission at time ¢,

Og,it Standard deviation of the i-th generation
unit’s power output at time ¢,

RY/R? Ramp-up/-down limits (MW/minutes) of the

i-th generation unit,
At Length of the time interval (minutes) in the
studied multi-interval model,
Generation i’s power ramp at time ¢,
Standard deviation of the generation i’s ramp
at time £.
The other variables will be explained in the text.

Ramp; ,

Tgit

I. INTRODUCTION

LEXIBLE ramping products (FRPs) have been
implemented by several independent system operators
(ISOs) such as California Independent System Operator
(CAISO) and Midcontinent Independent System Operator
(MISO) to procure adequate flexible ramping resources for
mitigating system imbalances because of renewable power and
demand forecast errors in their real time operation [1], [2]. In
these designs, specifically in the real-time markets, the flexible
ramping capacity is reserved by adding additional ramping
requirements in the original real-time economic dispatch
(RTED) models [3], such that the FRPs are co-optimized with
energy and other ancillary services. In this type of models, the
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ramping requirements are usually evaluated based on the
system net-load variation [4].

Current FRPs models consider the generation ramping
limitation in the RTED [5]. However, the impacts of the flexible
ramping capacity on other system security constraints such as
the transmission limits are not considered. This might lead to
deliverability issues of the FRPs in real time operation. To deal
with these issues, Ref. [6] proposed an approach to address the
reserve capacity deliverability on a zonal basis considering the
system’s discrete contingencies. The bus-level delivery of the
ramping capabilities has not been addressed in this study. Ref.
[7] proposed the deliverable ramping products considering
transmission constraints and the deliverability of ramping
products through a robust optimization model. In this model,
the uncertainty of demand and wind power were represented
using the interval uncertainty sets which did not take the
spatiotemporal correlations of demand and wind power
uncertainties into consideration. Similarly, Ref. [8] proposed an
uncertainty marginal price based on robust optimization in the
unit commitment problem ignoring the spatiotemporal
correlation. Ref. [9] demonstrated that considering the
spatiotemporal correlation of the renewable power outputs and
the system electricity demand could bring reliability and
economic benefits in system ramping requirements evaluation.

However, it is still challenging to consider the
spatiotemporal correlations of uncertain demand and wind
power, which might lead to overestimating/underestimating the
system ramping requirements. These misestimates of ramping
requirements will affect not only the generation schedules and
system operating costs, but also result in system security risks.
In addition, currently demand pays the total cost of ancillary
services in the energy and ancillary services co-optimized
markets [10]. In a low renewable energy penetrated system,
demand is the major source of real time uncertainty and
variability. Consequently, this mechanism might work
efficiently. However, in a high wind power penetration system,
wind power brings additional significant ancillary services
requirements. How to allocate the ancillary services cost, such
as flexible ramping products costs, among demand and wind
power to improve the fairness and efficiency of the market
operation is an urgent issue.

In Ref. [11], [12], a security constrained unit commitment
model was proposed based on chance constrained (CC)
optimization to consider the wind power uncertainty. In [13]-
[15], the chance constrained optimization was applied in the AC
OPF problems to maintain the system security considering the
uncertain renewable power output. In Ref. [16]-[18],
distributionally robust CC-OPF models have been studied to
mitigate the uncertainties in system operation. In these previous
studies, the FRPs were not explicitly considered and priced. In
addition, the chance constraints in these studies deployed a
symmetric affine policy (SAP) which required the generators to
respond symmetrically under the negative and positive system
imbalance conditions. To address the aforementioned issues in
the current FRPs modeling, a distributionally-robust chance
constrained multi-interval OPF (DRCC-MIOPF) model is
proposed. The flexible ramping requirements are endogenously

modeled considering the spatiotemporal correlation of wind
power outputs and demand. The impacts of FRPs are
considered in all of the system security constraints, such as
generation capacity limitations, ramping capability and the
transmission constraints. Therefore, the delivery of FRPs in the
real time operation is guaranteed. Furthermore, different from
the previous SAP model, an asymmetrical affine policy (AAP)
is proposed to leverage the flexibility of generators to mitigate
the system uncertainty in different directions, which increases
the system operational flexibility and reduces the operating
cost. Finally, the prices of FRPs are derived from the proposed

AAP-DRCC-MIOPF model to allocate the FRPs costs to the

uncertainty sources and compensate the controllable generation

resources providing the FRPs. The main contributions of this
paper can be summarized as follows:

1) Deliverable FRPs have been proposed to guarantee the
delivery of the FRPs in real time operation.

2) The spatiotemporal correlation of demand and wind power
uncertainties has been considered in the FRPs model which
evaluates the system ramping requirements accurately.

3) Anasymmetrical affine policy (AAP) is adopted to deploy
the generation flexibility to mitigate the uncertainties in
different directions to reduce the costs.

4) An uncertainty-contained locational marginal price
(U_LMP) mechanism is proposed and decomposed to price
the FRPs for the uncertain demand and wind power.

5) The FRPs cost is allocated based on the actual demand and
wind power ramping requirements because of their
variability instead of a heuristic allocation mechanism.

The rest of this paper is organized as follows: Section II
presents the spatiotemporal correlation in the FRPs modeling;

Section III proposes the asymmetrical affine policy (AAP) based

distributionally-robust chance constrained multi-interval OPF

(AAP-DRCC-MIOPF) model; Section IV derives the prices of

FRPs from the proposed AAP-DRCC-MIOPF model; Section V

performs the case studies on the PJM 5-bus, IEEE 39-bus and

IEEE 118-bus systems to validate the proposed method; and

Section VI concludes the paper.

II. FLEXIBLE RAMPING PRODUCTS WITH SPATIOTEMPORAL
CORRELATION

In the system RTED, FRPs mitigate the system demand and
wind power forecast uncertainties. In this process, the temporal
correlation between adjacent time intervals should be
considered. For example, when the temporal correlation is
positive, the variation directions of two intervals’ power are
likely to be the same. This leads to a lower ramping
requirement. In contrast, if the temporal correlation is negative,
the variation directions of two intervals’ power are likely to be
opposite, which requires a higher ramping capability.

The effect of the spatiotemporal correlation on the ramping
requirement is demonstrated using four Gaussian distributed
random variables (representing the power outputs of two
demands at two consecutive time intervals), for the sake of
illustration. Other distributions have a similar observation
which can be demonstrated using numerical simulation.
Consider the ramping random variable R, defined by:
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Re=Vie+ Vo —Vig1 = Vara (1)
where Vi, Vo, Vie—q and V,,_; represent four Gaussian
distributed random variables such as two demands (demand 1
and 2) at two intervals ¢ and #-1. The explicit formulation of R,
is given by [19]:

R~N(E(Vye) +E(Vor) = E(Vigoq) —E(Voioq), 02, + 02, +
0fe1 + 031+ 2Y101402¢ + 2Vt 101410201 —
2010140101 — 2p202,t02,t—1) (2)

where E(-) represents the expectation of random variables; p;

and p, are the temporal correlation between two intervals of

two demands, respectively; y; and y;_, represent the spatial
correlation between two demands at two intervals. From the
formulation in Eq. (2), it is obvious that the variation range of

R, is determined by not only the variation of two intervals

random variables, but also their spatiotemporal correlation.

Ignoring this spatiotemporal correlation can lead to

overestimates/underestimates of ramping requirements.

Similarly, if V; is the net-demand, i.e., the demand minus
wind power, then similarly R, in Eq. (2) are decided by not only
the variation of individual demand at each interval, but also the
spatiotemporal correlations of wind power plants (WPPs) and
demands. Therefore, the spatiotemporal correlation of both

WPPs and demands should be taken into consideration in the

FRPs modeling.

III. AAP BASED CHANCE-CONSTRAINED MIOPF

A. Asymmetrical Affine Policy for Forecast Uncertainty

In previous CC-OPF research, a SAP was used to determine
the corrective control of generators for the renewable and
demand power forecast uncertainty [15]-[17], [20]. The main
advantages of the SAP are that the generator’s output change
depends linearly on the forecast errors regardless of the
uncertainty direction. However, in the SAP, the generators’
upward and downward responses are symmetrical which
restricts the generation resources from providing the corrective
control when their power output is at their upper or lower limits,
as illustrated in Fig. 1 (SAP case). In fact, in the SAP case, once
the output G drops to its minimum G,,;,, AGp (the downward
response) becomes zero and because of the symmetric nature of
the SAP approach, AGy (the upward response) is forced to zero
as well.

Gmax G

i_'IGD l
T AGrr

l G
AG
b AG

Gmin G

SAP AAP-U AAP-D
Fig. 1 Illustration of SAP and AAP
However, when the generator’s power output is at the upper
limit, it still can provide the downward response and the

3

generators at the lower limit can provide the upward response.
Consequently, the solutions from the SAP model might be
suboptimal. In [21], a linear weight and piece-wise affine policy
for generators’ corrective control was proposed to differentiate
the small and large system deviations. In this policy, the
generators’ corrective control was still symmetrical within the
small deviation range. The generators control action was not
differentiated based on the system imbalance directions.

To fully leverage the generation’s flexibility, an AAP for the
forecast uncertainty is adopted. The flexibility of generators
will be deployed in an improved manner as shown in Fig. 1
(AAP cases).

The SAP based corrective control is represented in Eq. (3).
Git = Gexpit t Bg:tut 3)

The proposed AAP based corrective control dissociates
upward and downward balancing responses as in (4) and (5).
Gir = Gexpit t B{I,i,tut' if 1Tﬁ-’t >0 (4)
Gi,t = Gexp,i,t + Bg,i,tut' if 1Tﬁ; <0 (5)
where u, represents the uncertainty of demand and wind power
forecast at time ¢ ﬁ{t is the balancing factor in the SAP model;
U is the realized system imbalance including the demand and
wind power forecast errors; By ;. and B ;, are the balancing
factor for the up/down response in the proposed AAP model.

B. AAP based CC-MIOPF

When the wind power and demand forecast uncertainties
(AP; ¢ and AD; ;) are considered, the generation output is shown
in Eq. (6), including a corrective response component AG; ;.

Gi,t = Gexp,i,t + AGi,t (6)
P = Pexp,i,t + AP, (7)
Di,t = Dexp,i,t + ADi,t (®)
AGy,e = ﬁu,i,t(_ Ziv=1 AP + Ziv=1 ADi,t) 9
Z?l=1 ﬁU,i,t =1 (10)
AGpe = BD,i,t(_ Z?’=1 AP, + Zév=1 ADi,t) (1D

1iv:1 ﬁD,i,t =1 (12)

Because the formulation of AGy ;¢ and AGp ; , are the same
except using the Sy ; . and B ; . respectively, in the following
text, the U and D subscripts are omitted in several equations to
make the model description concise. The uncertainty
components in the following text with U in the subscript means
that it is calculated with ;.. The uncertainty components
with D in the subscript means that it is calculated with Sp ; ;.

In this paper, the total generation cost at different intervals
is minimized, as shown in Eq. (13a). We study the system
dispatch over a one-hour period comprising T = 12 five-
minute intervals. Thus, the CC-MIOPF model is to minimize
the generation cost of forecasted demand and wind power.
min fexp = ZteT(ZIiV:1 Ci,tGexp,i,t) (13a)
st. Y (Gip + Piy) — Xy Dy = 0:2,VE € {1,-,T} (13b)
Pr(X, GSF;(Gie + Py — D) < LU) = 1—€Vt €

{1,---,T}, VI € Lines (13¢)
Pr(Y, GSF(Gie + Py — Dy ) = —LU)) = 1 —€,Vt €

{1,---,T}, V1€ Lines (13d)
Pr(G,, < G"*)>1-¢Vt€{l, -, TLYi€Gen (13¢)
Pr(G"™ <G, )=1—¢Vte{l,,TLYi€Gen  (13)

U.S. Government work not protected by U.S. copyright.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2019.2958531, IEEE

Transactions on Power Systems

Pr(G;; — G-y <R/ -At)>1—¢,Vt€{2,-, T}, Vi€ Gen(13g)
Pr(Gi;—y — Gy <RP -At) >1—¢,Vt € {2,-+,T},V i € Gen(13h)
where (13¢)—(13h) represent the chance constraints considering
the impacts of wind power and demand forecast uncertainties
on the violation probabilities of power flow limits, generation
upper/lower limitation, and generation ramping capability. 4, is
the dual variable associated with the power balance constraint.
Considering the uncertainties of demand and wind power
outputs, the power flow uncertainty can be formulated with a
combination of demand and wind power uncertainties. First,
assume that the uncertain part of the wind power output AP has
0 mean and the covariance matrix as X, , for every time interval
shown in Eq (17) [13], [18]. The uncertain part of demand AD
has a 0 mean and the covariance X4, shown in Eq. (18). The
standard deviation of the random power flow is below.

OpF Lt =

\/al,w,t B 2w, At (B) + 10 (B g (Be) (14)
where a;,, ;(B;) and a; 4.(B,) are a one-column matrix with the
i-th element as shown in Eq. (15) and (16):

i e(Be) = — Xk=1 GSFyy By + GSFy; (15)
ayia0e(Be) = Xk=1GSFyy Brr — GSFy; (16)
2
o, Oy t10
Ty = [ w,t1 Pw,1,2 \;/,t,l w,t,Z] 17
Pw,1,20w,t,10w t,2 Ow,t,2
2
O i1 Pd,1,204,t104d,t,2
Lge = [ 2 ] (18)
Pd,1,29d,t,104d 1,2 04,2

where p,, ; , and pg 1 , are the spatial correlation of WPPs, and
demand illustrated with two demands and two WPPs,
respectively.

Therefore, the AAP based chance constraints of (13¢) and
(13d) can be reformulated [22] as:

Iivzl[GSFl,i(Gexp,i,t + Pexp,i,t - Dexp,i,t)] + KeaPF,U,l,t < LUl

(19)
Zlivzl[GSFl,i(Gexp,i,t + Pexp,i,t - Dexp,i,t)] - KeaPF,U,l,t =
—LU, (20)
gvzl[GSFl,i(Gexp,i,t + Pexp,i,t - Dexp,i,t)] + KGUPF,D,I,C < LUI
(21)
ngzl[GSFl,i(Gexp,i,t + Pexp,i,t - Dexp,i,t)] - KGUPF,D,I,C =
—LU, (22)

where 0pp ;¢ and oprp ;¢ are calculated using Eq. (14) with
Bui¢ and Bp ;  respectively; K. is the coefficient to control the
robustness of the forecast errors in the chance constraints,
which will be explained in the next subsection.

The generators’ limits in AAP-based chance constraints are
illustrated in Fig. 2. In (13e) and (13f), the standard deviation
of the generation output is below.
it = v Bu,it (B Zutbw it (Be) + bait (B Zasbaic(Br)

(23)
where og,; represents the random generation corrective
response, and b;(B,) is a one-column matrix with the elements
as below.

bw,i,t(ﬂt) = [—ﬁi,t
bd,i,t(ﬂt) = [ﬁi,t

—Biel”

NW
ﬁi,t]T

ND

24

(25)

4
where NW and ND are the numbers of WPPs and demand.
Then (13¢) and (13f) can be reformulated as:

Gt + Keag,u,i,t < Gimax (26)
Gie = KeOgpie = G™™ 27)

where gy ;. and op ;. are calculated using Eq. (23) with
Bui¢ and Bp ;. in Eq. (24) and (25) respectively; the equality
constraints in (14) and (23) can be reformulated as second order
cone (SOC) constraints as below by introducing the auxiliary
variables Npg yi¢, MpF,D,LE> Ngu,its and NgD,it-

Z, (a,,:(Bu,t) < noruie O, 28)
—= I/PF,U,Lt" YU,Lt
Zd,t1/2_ |4 (Bu,) | )
2,/ 1[aiw:(Bo,e)] < noroiei O] (29)
! 2t @ra t(Bpo)] , PEDLEEDLE
-XWtUZ - -bwit(ﬁut)-
' e I S ngvieiOguie  (30)
202 [PaicBup) ) G C
'Z 1/2 b 'b ) 1
w,t vz W,L,t(BD,t) < ng,D,i,t: eg,D,i,t (31)
Za: % 1 bait(Bpr) |

. 2
where 9y, ¢, 9p ¢, Ogu,ic, and 8y p;; are the dual variables

associated with the constraints on the left side of the colons.

AAP-U AAP-D
T dGUr
G T AG

U1

t
l Gr—l
AG,
Dt
laG‘:D. t1 l

t-1 t -1 t
Fig. 2 Generation limitation under AAP
For the generation ramping constraints in (13g) and (13h),
the AAP-based ramping up and down chance constraints can be
formulated as below as shown in Fig. 2.

Rampil,]t = Gexp,i,t + AGil,]t - Gexp,i,t—l - AGil,)t—l (32)
Rampgt = Gexp,i,t—l + AGil,]t—l - Gexp,i,t - AGLL,)f (33)
Ewe'/? Bywic(Be)
“w,t Uw,i,t t
' ok < Tyuie Qui 34
|” Ed,tl/z] [Bu,a,i,t(ﬂt)] L Uit Puit (34)
BU,W,i,t(ﬂt) = [_bw,i,t—l(BD,t) bw,i,t(BU,t)]T (35)
BU,d,i,t(Bt) = [_bd,i,t—l(ﬂD,t) bd,i,t(ﬁu,t)]T (36)
Euwe'/ Bpw,ic(Be)
—-w,t D,w,i,t t
' o S Typit: i 37
BD,w,i,t(Bt) = [bw.i,t—l(ﬁu,t) _bw,i,t(ﬂn,t)]T (38)
BD,d,i,t(ﬁt) = [bd.i.t—l(BU,t) _bd,i,t(ﬂn,t)]T (39)
Zyi1 Zwi t]
B = [v o 40
wit [zw,t,t—l zw,t ( )
Lat-1 Zaia t]
Ear = |y L 41
e zd,t,t—l zd,t 1)

Note that in (35) and (36), the balancing factor for the
interval t-1 is Bp . and for the interval t is By, for the up ramp.
In contrast, the balancing factor for t-1 is By, and for tis fp,
for the down ramp in (38) and (39). This is illustrated in Fig. 2.

In (40) and (41), the covariance matrix components are listed
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below.

Tt = Ywi1,t-1,t0w1,t-10w1,t 0 ] (42)
T 0 Yw2,t-1,t0w2,t—-10w2,t

5 _ [Ywite-10w1,e0mwe-1 ] (43)

wibt=1 0 Ywz,t,t—-10w2,tOw2,t-1

i, = Yd1,t-1,t0d1,t-10d1,¢ 0 ] (44)
e 0 Yaz,t-1,t0d2,t-10dz2,t

Ty = Yd1,t,t-10d1,t0d1,t—-1 0 ] (45)
" 0 Yaz,t,t-19d2,t0d2,t-1

where yy,c—1¢ and y4._1¢ are temporal correlation of WPPs
and demands; X, ;,_1 and Z,,;_4 ; are the covariance matrixes
of the WPPs forecast errors between intervals 71 and ¢
including the temporal correlation; Z,,,_4 and X, , in Eq. (40)
are from Eq. (17).

Then, the AAP-based CC-MIOPF model is formulated as:

min fexp (46a)
s.t. Constraints (10), (12), (15)-(18), (24), (25), (28)-31),
(34)-(45) (46b)
gvzl(Gexp,i,t + Pexp,i,t) - Zévzl Dexp,i,t =0:4; (46¢)
Zlivzl[GSFl,i(Gex it T Pexpit — Dex ,i,t)] + Kenpruie <
D D 4
LUz wy (46d)
N . . - ] - >
i= , i, i i ULt =
Z 1[GSFIL(Gexth+Pexth Dexplt)] KenPFl{lt
=LU;: u'y't (46¢)
ngzl[GSFl,i(Gexp,i,t + Pexp,i,t - Dexp,i,t)] + KenPF,D,l,t <
LU pip (46f)
gvzl[GSFl,i(Gexp,i,t + Pexp,i,t - Dexp,i,t)] - KenPF,[?,l,t 2
—LU;:upy  (46g)
Gexp,i,t + Keng,U,i,t < Gl?m.lx: wﬁ.ax (46h)
Gexp,i,t - Keng,D,i,t 2 G{mn: wﬁm (461)
Gexp,i,t - Gexp,i,t—l + Kerg,U,i,t < RiU FAt: Ti'n%ax. (46j)
Gexp,i,t - Gexp,i,t—l - Kerg,D,i,t 2 _RiD A Ti,n;m (46k)

where the variables on the right side of the colons are the dual
variables of the constraints on the left side of the colons.

C. Distributionally-Robust Model

Although the Gaussian distribution is used to illustrate the
spatiotemporal correlation in Section II, in the chance
constrained formulation, the distribution is not predetermined
for the forecast uncertainties of demand and wind power. Using
only the mean /i and covariance E obtained from the historical
forecast errors data, for € € (0,1), the distributionally-robust
chance constrained (DRCC) model is determined with the value
of K, decided by Eq. (47).

K.=J(1—-¢)/e 47)

If the forecast error distribution is assumed to be
symmetrical, the model is formulated [22] with the value of K,:

5

The proof for Eq. (47) and (48) is in [22]. The values of K,
in the symmetrically distributionally-robust case (Sym. Dist.
R.), the distributionally-robust case (Dist. R.), and Gaussian
distribution case are 3.1623, 4.3589, and 1.645, when € is 5%
[23].

IV. PRICING MODEL OF FLEXIBLE RAMPING PRODUCTS

After obtaining the multi-interval generation scheduling
solution considering the flexible ramping requirements, it is
important to obtain the financial settlement, i.e. who should pay
how much for the FRPs and how to compensate the controllable
resources providing the FRPs.

In the current FRPs design, the energy, FRPs and other
ancillary services are co-optimized and an explicit FRPs
requirements constraint is modeled [1], [2]. Therefore, the
shadow prices of the FRPs requirement constraints are
employed to derive the FRPs prices, which reflect the coupled
effects of the generation schedule and FRPs and other ancillary
services schedules. However, in the proposed model in this
paper, there is no explicit FRPs requirement constraints. The
FRPs are procurement endogenously considering the
uncertainty of demand and variable generation at different time
intervals. Although it has the aforementioned deliverability
advantages over the traditional FRPs procurement, it also
brings new challenges for FRPs price derivation. Current
ancillary services pricing approaches [24], [25] cannot be used
due to the lack of explicit FRPs requirement constraints.

In this paper, an uncertainty contained LMP (U _LMP)
model is proposed to settle the FRPs. To obtain the U_LMP for
the uncertain demand and wind power, the Lagrangian function
of the model (46) is first formulated. Please refer to APPENDIX
Eq. (A1) for details. Then the U LMP for the demand at Bus i
considering its uncertainty is derived from the Lagrangian
function in (A1) as shown in APPENDIX Eq. (A2). After that,
the U LMP can be decomposed into several components
similar to the current LMP formulation in Eq (49), where (52)-
(54) are the uncertainty components.

If 9y ¢ is larger than 0, Constraint (28) is binding, and the
following equality in Eq. (52) holds:

1/2
[zw,t / ] [al,w,t(ﬂU,t)
Zdltl/Z a,q:(Bus) 2

And when 9y,;, = 0, Constraint (28) is an inequality
constraint as in Eq. (53).

[zw,tl/2 ] [al,w,t(ﬁu,t)
Zdltl/z a,q:(Bus) 2
Similar relationships can be applied to other SOC constraints
and their dual variables in Eq. (29)-(31) and Eq. (34), (37).
Consequently, the uncertainty components of U LMP are
formulated as Eq. (52) to (54).

(50)

NpruLt =

(1

NpruLt =

K. =+/1/2¢ (48)
oL(x)
U_LMPLoad,iyt = 6Dex:;it

U_LMP_FRPy 44 ¢

=X+ Z?& GSFl,i(#Tui?} - #ﬁ% + #flui?% - /«‘%‘?) + U_LMP_PF 4t + U LMP Gy o0q,: +

(49)

ND
a1-iq,t(Bp,)Ea,it X)) Pa,ij0i—jdt(Bpe)€ajtDexp,jt

U_LMP_PFaq¢ = X151 Oy

NPF,ULE

al—i,d,t(ﬁu,t)fd,i,tzﬁyzﬁPd,i,jal—j,d,t(ﬂU,t)fd,j,tDexp,)‘,t " ZM

1=19p,1¢ (52)
NPFED,Lt
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ND
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ND
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SO (53)
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+

Tg,U,jt+1

N
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U_LMP_PF , U.LMP_G , and U_LMP_FRP are the
components representing the uncertainty prices associated with
the transmission power flow violation, generation limits
violations, and generation ramping capability violations.
U_LMP_FRP is the price that the uncertain demand should pay
for the FRPs in the system. Note that when the demand has no
uncertainty (¢4 ;. = 0), it will not pay these uncertainty prices.
Note that in the U LMP formulation the value of the forecast
uncertainty (standard deviation) is expressed as a percentage
value of the forecast mean value. If the value of the standard
deviation is represented by a constant instead, which is not
associated with the value of its forecast mean, the U _LMP still
can be formulated using a similar approach. &g ;. and &, ;.
represent the percentage of the standard deviation of demand
and wind power to their forecast mean values, respectively.

The U _LMP for the uncertain wind power can be derived in
a similar manner, as shown in Eq. (55). Thus, in the proposed
model, the uncertain demand and wind power will pay the
controllable resources for the flexibility services to mitigate
their uncertainty.

_ dL(x)
opP exp,it

U LMPyingir = = + XML GSF_ i (u]i —

KIEE + uilbt — 1BE) —
U_LMP_PFyina;c —
U_LMP Gying,it —

U_LMP_FRPying it (55)

V. CASE STUDIES

In this section, we carry out numerical simulations and
studies for the proposed AAP-DRCC-MIOPF. First, a modified
PJM 5-bus system is studied to illustrate the concept. Then, the
IEEE 39-bus and IEEE 118-bus systems are tested. All of the
simulations are performed in GAMS [26], which is widely
utilized to solve large-scale complex optimization problems.

A. PJM 5-Bus System

The PJM 5-bus system is depicted in Fig. 3, and the system
parameters can be found in [27]-[30]. In this study, the system
peak demand is 1,500 MW, and the total demand is distributed
among buses B, C, and D equally. Two WPPs are located at bus
B and bus C. The demand curve and two WPPs’ forecast mean
power curves are from CAISO at 6 a.m. on 02/01/2018 [31],
shown in Fig. 4. The time interval is 5-minutes long, i.e. 12
intervals in one-hour simulation.

(54)

Tg.D,jt+1
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Fig. 3. PI]M 5-bus system and generation parameters
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Fig. 4. Demand and wind power curves

B. Comparison between SAP and AAP

This subsection performs the comparison between the
traditional SAP and the proposed AAP based DRCC-MIOPF
models. The standard deviations of wind power and demand are
assumed to be 10% and 3% of their forecasted expected values.
Assuming that the forecasting errors of demand and wind
power are following a Gaussian distribution, the confidence
level of chance constraints are 95% (€ = 0.05). Then the value
of K. is 1.645 [22]. The distributional robustness of the
forecasting errors will be investigated in subsection V.E.

The temporal correlation coefficients of demand and wind
power are 0.6 and 0.9. The spatial correlation coefficients of
demand and wind power are 0.5 and 0.6. The sensitivity of
spatiotemporal correlation will be investigated in the subsection
V.D. The generation schedules and their balancing factors are
depicted in Fig. 5 and 6. Gen 5’s actual generation output under
different system imbalance conditions at various time intervals
from the SAP and AAP models are shown in Fig. 7.

U.S. Government work not protected by U.S. copyright.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2019.2958531, IEEE

Transactions on Power Systems

(a) SAP
< 1000
2 800
5 m G5
2 600
5 G4
400
2 200 o
kS I |
s, Arrrrrrrrrl "¢
8 mGl
123456789101112
Time interval
(b) AAP
< 1000
2 800
5 G5
2 600
5 G4
400
£ G3
5 200 I T I Ll -2
g o rrrrerrrrrruol
S 1234567809101112 =61
Time interval
Fig. 5. Generation schedules with SAP and AAP CC-OPF
(a) SAP
g 80% I I I I | "G5
S 60% Ga
g 40%
3 20% |\ G3
0% [N uG2
123456789101112 »g1
Time interval
(b) AAP_U
0, -
s wow LTI
5 o =G5
E 60%
0 G4
E 40%
3 20% G3
0% I mG2
123456789101112 mGl
Time interval
(c)AAP_D
I NN .
£ 80% =G5
€ 60% ! Ga
()
E 40% i
3 20% |||||||||=.. a3
0% l I I I I I I | I | .G2
123456789101112 ug

Time interval

Fig. 6. Balance factors with SAP and AAP CC-OPF

The system operating cost from SAP and AAP based
DRCC-MIOPF models are $155,567.9 and $154,920.4. The

7

cost is thus reduced by 0.42% with the proposed AAP model.
Therefore, by allowing the generation response to follow
different uncertainty directions, the system operating costs can
be reduced. Note that this cost saving will change with actual
system conditions, especially the degree of the system ramping
shortage. Additional studies about the generation costs from
SAP and AAP models under different distribution assumptions
will be investigated in subsection V.E.

(a)
Gen5 power response under system imbalance with SAP
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Fig. 7. Gen5 power response with SAP and AAP

As shown in Fig. 5 and 6, the balancing factors change
significantly, even though the difference in generation
schedules is not very large. In the SAP model, G3 cannot
provide the reserve from the 1% to the 6™ intervals because its
power output is at its lower limit during these intervals. In the
AAP model, although G3’s power output is still at the lower
limit from the 1% and 9" intervals, it can provide the upward
reserve as shown in Fig. 6(b). In addition, G1 provides the
downward reserve with its power at the upper limit. Therefore,
the proposed AAP-DRCC-MIOPF model provides more
flexibility in the generation scheduling to mitigate the system
uncertainty and reduce the operating cost.

Fig. 7 demonstrates Gen 5’s power output under different
system imbalance levels at different time intervals for the SAP
and AAP models. It is obvious that in the SAP model the
generation responses under the positive and the negative system
imbalance are symmetrical (the slope does not change under the
positive and the negative system imbalance) as shown in Fig.
7(a). While in Fig. 7(b), the slopes for the positive and negative
response are different. Therefore, the generator can have
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additional flexibility to mitigate the system imbalance due to
the forecast errors based on the imbalance directions.

C. Deliverability of FRPs

This subsection studies the FRPs deliverability with the
current FRPs model and the proposed model. To investigate the
deliverability, the transmission power flow realization under
the demand and wind power uncertainty is evaluated. The
current FRPs model will be represented without the FRPs in the
transmission power flow chance constrained limits. 10,000
samples of the demand and wind power at each interval are
obtained using the Gaussian distribution to evaluate the actual
power flow realization. Fig. 8 depicts the actual power flow on
Line 6 with demand and wind power uncertainty realization at
different time intervals.
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Fig. 8. Transmission power flow realization without/with considering FRPs in
transmission constraints

The black dashed line shows the line capacity limit. The
percentage numbers shown in Fig. 8 are the power flow limit
violation probability at each interval. Fig. 8(a). presents the
simulation results for 10,000 samples with the existing FRP
model. It can be observed that the current FRPs model leads to
significantly higher transmission overloading probabilities,
compared with the proposed model. It shows that the chance of
transmission overloading is as high as 87.24% and 11 out of 12
intervals have overloading in more than 30% of samples. In

contrast, Fig. 8 (b) shows no more than 4.58% of 10,000
samples have transmission overloading for all intervals, when
the risk level is set to 5%. Therefore, the delivery of FRPs in
the proposed model can be guaranteed within the predetermined
risk level.

D. Impacts of Spatiotemporal Correlation

The proposed model considers the spatiotemporal
correlation of demand and wind power uncertainties. This
subsection investigates the impacts of spatiotemporal
correlation. The spatiotemporal correlations of demand and
wind power uncertainties are simulated separately. The
spatiotemporal correlation varies from -1 to 1 with 0.5 as the
step change. The system operating costs under different
spatiotemporal correlations are shown in Fig. 9.
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Fig. 9. System cost under various wind and demand spatiotemporal
correlations

Fig. 9 illustrates that the system operating cost increases
with the increment of spatial correlation of wind power
uncertainties as well as that of demand uncertainties. In
contrast, it reduces with the temporal correlation of wind power
and demand. It can also be observed that the impact of the
spatial correlation is higher than that of the temporal correlation
for both the wind power and demand. For instance, when the
temporal correlation coefficient of WPPs is 0, the costs increase
4.1% when the spatial correlation coefficient of wind increases
from -1 to 1. When the spatial correlation coefficient of WPPs
is 0, the cost decreases 1.77% when the temporal correlation
coefficient of wind increases from -1 to 1.

From the FRPs formulation, the ramping requirement
decreases with the temporal correlation monotonically.
Therefore, the system operating cost reduces with temporal
correlation. The variation of demands and WPPs power output
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at each interval increase with the spatial correlation shown in
Section II. Therefore, the cost increases with the spatial
correlation. The temporal correlation affects the ramping
constraints. The spatial correlation impacts all the constraints;
thus, it has a higher impact on the system operating cost.

E. Distributional Robustness

This subsection analyzes the influence of the distributional
robustness. The system generation costs and the FRPs costs of
demands and WPPs are listed in Table I. The Bus C LMPs for
the traditional generators, demand, and WPPs are depicted in
Fig. 10. The generation costs of the SAP and AAP models under
different distribution assumptions are listed in Table II.

Table I demonstrates that the system generation costs, and
the FRPs costs of demands and WPPs increase with the chance
constraints robustness to the forecast errors. With a higher
robustness level, the system procures a higher reserve capacity
to mitigate the uncertainty, therefore the operating cost and the
FRPs costs increase with the robustness level.

Table I. 5-bus System Results Under Different Distributions

Gaussian | Sym. Dist. R. Dist. R
Gen Cost ($) 154,920.4 159,728.1 165,458.3
Demand FRPs cost ($) 7.726 1,674.8 4,416.7
Wind FRPs cost ($)) 29.266 5,274.7 12,626.4
32.5 A
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Fig. 10. Bus C LMPs under different distribution assumptions

Fig. 10 demonstrates the LMPs on Bus C for traditional
generator, the uncertain demand and WPP. Regardless of the
distribution assumptions, the demand LMP is the highest, the
second highest is the traditional generation LMP, and the wind
LMP is the lowest. Uncertain demands and WPPs pay a price
for uncertainties because the system needs to procure additional

resources to mitigate their uncertainties.
Table II. Generation Costs Results Under Different Distributions from SAP

and AAP
Gaussian | Sym. Dist. R. Dist. R
SAP 155,567.9 161,367.8 167,010.9
AAP 154,920.4 159,728.1 165,458.3

Table II shows that the proposed AAP leads to a lower
operation cost compared to the SAP model no matter what
distribution assumption is used for the forecasting errors. In
addition, with the increase of the robustness level, the cost
saving increases. For instance, the cost reduces 0.42% from
SAP to AAP in the Gaussian case. In the distributionally robust
case, the cost reduces 0.94% from $167,010.9 to $165,458.3.
This is because the system flexibility requirements increase
with the distributional robustness. The proposed AAP model

gives additional flexibility to the generators compared to the
SAP model to mitigate the uncertainty, which leads to lower
costs. This implies that in a more flexibility constrained system
the proposed AAP model will lead to a higher cost saving.

F. IEEE 39-Bus System

The IEEE 39-bus system integrated with 3 WPPs is shown
in Fig. 11. This system has ten generators with total capacity of
7,367 MW and a total demand of 6,254 MW. The detailed
system parameters are in [32]. Three wind farms are integrated
at buses 11, 24 and 26. The generation parameters are in [33].
Four thermal limits are applied to the following transmission
lines: 800 MW for lines 1-39, 500 MW for lines 2-3, 500 MW
for lines 3—18, and 600 MW for lines 16-17.

®© A
® 25 2

Fig. 11. IEEE 39-bus system with three WPPs

The demand curve is the same as in Fig. 4. The wind power
curves are the same as in Fig. 4, with WPP1 at Bus 26 and WPP
2 at Bus 11. WPP3 at Bus 24 has the same output as WPP1. The
confidence level of chance constraints is 95% [23]. The
standard deviations of wind power and demand are assumed to
be 3% and 1% of their forecasted expected values, respectively.
The temporal correlation coefficients of demand and wind
power are 0.4 and 0.3. The spatial correlation coefficient of
wind power is 0.5. The spatial correlation of demand is ignored
in this study.

Table II. IEEE 39-bus System Results Under Different Distributions

Gaussian | Sym. Dist. R. Dist. R
Gen Cost ($) 1,057,289 1,060,661 1,063,726
Demand FRPs cost ($) 0.669 2.583 18.512
Wind FRPs cost ($)) 200.229 624.873 2072.599

The system generation cost, FRPs costs of demand and wind
power are listed in Table II. The LMPs on Bus 24 for the
traditional generator, demand, and wind power are shown in
Fig. 12. Similar to the study in the previous subsection, it is
obvious that the system generation cost, the FRPs costs of
demand and wind power increase with the distributional
robustness. From Fig. 12, it shows that the LMPs for the
traditional generator, demand, and wind power change with the
distributional robustness level. In all distribution cases, the
demand has the highest LMP, and wind power has the lowest.
In this figure, it also shows that the price volatility increases
with the robustness level for the forecast errors. Because the
system is more constrained and tighter of flexibility under a
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high robustness case, then the shadow price for the flexibility
increases.
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Fig. 12. Bus 24 LMPs under different distribution assumptions

G. IEEE 118-Bus System

To test the proposed model in a large system, the IEEE 118-
bus system is used. The system data can be found in [29]. Four
WPPs are connected at Bus 46, Bus 80, Bus 87, and Bus 111.
The demand curve is the same as in Fig. 4. The wind power
curves are the same as in Fig. 4, with WPP1 at Bus 46 and WPP
2 at Bus 80. WPP3 at Bus 87 has the same output as WPP1, and
WPP4 at Bus 111 has the same output as WPP2. The standard
deviations of wind power and demand are assumed to be 4%
and 2% of their forecasted expected values, respectively. The
system simulation results under different distribution

assumptions for the forecasting errors are listed in Table II1.
Table III. IEEE 118-bus System Results Under Different Distributions

Gaussian | Sym. Dist. R. Dist. R
Gen Cost ($) 113675.1 114961.8 116331.5
Demand FRPs cost ($) 12.8 28.6 30.1
Wind FRPs cost ($)) 1034 517.9 1490.5

Table III demonstrated that the system generation cost
increases monotonically with the conservativeness of the
forecasting errors. High conservativeness leads to high reserve
capacity procurement. For the FRPs cost of demand and wind
power, they are also increasing with the conservativeness of the
forecasting errors.

H. Computational Performance

All the case studies are performed in GAMS with MOSEK
as the quadratically constrained programming (QCP) solver
[26], [34]. A Dell laptop with computer processing unit Intel
Core i5 is used for all the case studies. The average
computational times for different systems are listed in Table III.
The computational time of all the cases of the 5-bus system are
less than 1 second. For the 39-bus system, the optimal solutions
can be obtained within 2 seconds for all cases. The solutions of
118-bus system can be obtained in around 5 seconds as shown
in Table IV. To accelerate the proposed model for large
systems, there are two approaches. First, reduce the number of
intervals in the model. There are 12 look-ahead time intervals

10

in the proposed RTED model. While in the actual RTED model
of ISOs, the number of the look-ahead intervals is smaller and
can be adjusted based on the system conditions. We
investigated that the computation time was reduced to less than
1 second when the number of intervals was reduced from 12 to
6 in the 39-bus system. Because the forecasting for the later 6
intervals is not as accurate as the previous 6 intervals, to
schedule more reserve for the longer time horizon can be very
costly. Second, with the 12 intervals unchanged, but only
considering the uncertainty in the first 6 intervals can lead to a
similar computational time reduction. In addition, the iterative
solution procedure introduced in [13] and the decentralized
optimization in [30] can be used to accelerate the proposed

model. This is left to the future work.

Table IV. Average computational time of different cases
PJM 5-bus | IEEE 39-bus | IEEE 118-bus
Comp. Time (s) 0.4 1.3 5.1

VI. CONCLUSIONS

This paper proposes a deliverable flexible ramping products
model considering the spatiotemporal correlation of uncertain
wind power and demand. Because all of the system security
constraints are modeled, the proposed FRPs are deliverable in
the real time operation. An asymmetrical affine policy (AAP)
is proposed for the generators to mitigate the demand and wind
power forecasting errors based on the imbalance directions. It
shows that the proposed AAP-DRCC-MIOPF model leverages
the generation flexibility to mitigate the uncertainty of different
directions and reduces the system cost. The uncertainty
contained LMP (U_LMP) is derived including the price signals
for the FRPs. The uncertain demand and wind power can pay
this price based on their locations, and uncertainty level to the
system operators to procure the FRPs.

How to procure adequate flexible resources in the system
operation and price the system uncertainty efficiently are two
significant issues under a high penetration level of renewable
integration such as wind power. The model proposed in this
paper can obtain the deliverable FRPs in the forward market to
mitigate the uncertainty of both demand and wind power. The
spatiotemporal correlation is endogenously considered, which
can help to evaluate the system ramping requirement
accurately. The derived U LMP can be used to price the
uncertainties of wind power and demand and compensate the
flexible resources in the system.

APPENDIX

The Lagrange function of the model in (46) is expanded in
Eq. (A1). The partial derivative of the Lagrange function to the
demand at bus i is shown in Eq. (A2). Note that here the
uncertainty component of demands (its standard deviation) is
expressed as a percentage value of its forecast mean value.

L(x) = {:1 Zi\]:l Ci,tGexp,i,t - At(E?:l(Gexp,i,t + Pexp,i,t) - Zévzl Dexp,i,t) - Z?/Izl .um;l,? [_ Zﬁvzl GSFl,i(Gexp,i,t + Pexp,i,t -

Dexp,i,t) - KenPF,U,l,t + LUI] - Z{Vil ”iml;ré [Z{V=1 GSFl,i(Gexp,i,t + Pexp,i,t - Dexp,i,t) - KsnPF,U,l,t + LUL] -
ﬁl ”ﬂ)‘? [_ ?]:1 GSFl,i(Gexp,i,t + Pexp,i,t - Dexp,i,t) - KenPF,D,l,t + LUI] - {Vil ”imDLré [Z{\lzl GSFl,i(Gexp,i,t +
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