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Abstract— Flexible ramping products (FRPs) have been 
implemented by several independent system operators (ISOs) to 
procure adequate flexible resources. Currently, system operators 
estimate the system level ramping requirements ignoring the 
spatiotemporal correlations among various uncertainty sources. 
This leads to overestimates/underestimates of ramping 
requirements. In addition, the explicit FRPs model considers only 
the generation ramping limitation. Other security constraints, 
such as the transmission limits, are not considered, which leads to 
deliverability issues of FRPs. To deal with these shortcomings of 
current FRPs models, this paper proposes a deliverable FRPs 
based on a distributionally-robust chance constrained multi-
interval optimal power flow (DRCC-MIOPF) considering the 
spatiotemporal correlation of wind power and demand 
uncertainties endogenously. Furthermore, an asymmetrical affine 
policy (AAP) is proposed to leverage generation flexibility and 
mitigate the uncertainty in different directions. The pricing 
mechanism of the FRPs is proposed using a novel uncertainty-
contained locational marginal price (U_LMP) which is derived 
from the proposed AAP-DRCC-MIOPF model. New components 
representing the price of FRPs are added into the traditional LMP 
formulation. Finally, the PJM 5-bus, IEEE 39-bus and IEEE 118-
bus systems case studies validate the proposed FRPS approach. 
The payment of uncertain demand and wind power on FRPs are 
analyzed. 

Index Terms— Flexible ramping products (FRPs), 
Spatiotemporal correlation, electricity market, locational 
marginal price (LMP). 

NOMENCLATURE 

𝑐𝑐𝑖𝑖,𝑡𝑡 Generator i bid price ($/MWh) at time t, 
𝐺𝐺𝑖𝑖,𝑡𝑡 Power output of generator i (MW) at time t, 
𝐺𝐺𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚/𝐺𝐺𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  Generator i upper/lower limits (MW), 
𝐷𝐷𝑖𝑖,𝑡𝑡 Demand level (MW) at bus i at time t, 
𝑃𝑃𝑖𝑖,𝑡𝑡 Wind power (MW) at bus i at time t, 
𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙,𝑖𝑖 Generation shift factor of bus i to line l, 
𝐿𝐿𝐿𝐿𝑙𝑙  Line limit of line l, 
𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 Generation output of generator at bus i (MW) 

at time t under forecasted wind and demand,  
𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 Forecast wind power (MW) at bus i at time t, 
𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 Forecast demand (MW) at bus i at time t, 
𝛽𝛽𝑖𝑖,𝑡𝑡 Generation balancing factor for the system 

imbalance at bus i at time t, 
𝛽𝛽𝑈𝑈,𝑖𝑖,𝑡𝑡 Generation balancing factor for the up 

reserve at bus i at time t, 
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𝛽𝛽𝐷𝐷,𝑖𝑖,𝑡𝑡 Generation balancing factor for the down 
reserve at bus i at time t, 

∆𝐺𝐺𝑖𝑖,𝑡𝑡 Generation corrective power response to 
mitigate the system uncertainty at time t, 

∆𝑃𝑃𝑖𝑖 ,𝑡𝑡 Wind power output uncertainty at time t, 
∆𝐷𝐷𝑖𝑖 ,𝑡𝑡 Demand uncertainty at time t, 
𝑃𝑃𝑃𝑃𝑙𝑙,𝑡𝑡 Active power flow on lth line at time t, 
𝜉𝜉𝑑𝑑,𝑗𝑗,𝑡𝑡 Percentage of standard deviation to expected 

value of demand at time t, 
𝜉𝜉𝑤𝑤,𝑗𝑗,𝑡𝑡 Percentage of standard deviation to expected 

value of wind power at time t, 
𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 Generation cost corresponding to the 

forecasted wind and demand, 
𝚵𝚵 Sparse covariance matrix of wind power and 

demand forecast errors, 
σ𝑖𝑖,𝑡𝑡  Standard deviation of wind power plant 

(WPP) i-th power forecast error at time t, 
𝜎𝜎𝑃𝑃𝑃𝑃,𝑙𝑙,𝑡𝑡 Standard deviation of the power flow on the 

l-th transmission at time t, 
𝜎𝜎𝑔𝑔,𝑖𝑖,𝑡𝑡 Standard deviation of the i-th generation 

unit’s power output at time t, 
𝑅𝑅𝑖𝑖𝑈𝑈/𝑅𝑅𝑖𝑖𝐷𝐷 Ramp-up/-down limits (MW/minutes) of the 

i-th generation unit, 
∆𝑡𝑡 Length of the time interval (minutes) in the 

studied multi-interval model, 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖,𝑡𝑡 Generation i’s power ramp at time t, 
𝑟𝑟𝑔𝑔,𝑖𝑖,𝑡𝑡 Standard deviation of the generation i’s ramp 

at time t. 
The other variables will be explained in the text. 

I.  INTRODUCTION 

LEXIBLE ramping products (FRPs) have been 
implemented by several independent system operators 

(ISOs) such as California Independent System Operator 
(CAISO) and Midcontinent Independent System Operator 
(MISO) to procure adequate flexible ramping resources for 
mitigating system imbalances because of renewable power and 
demand forecast errors in their real time operation [1], [2]. In 
these designs, specifically in the real-time markets, the flexible 
ramping capacity is reserved by adding additional ramping 
requirements in the original real-time economic dispatch 
(RTED) models [3], such that the FRPs are co-optimized with 
energy and other ancillary services. In this type of models, the 
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ramping requirements are usually evaluated based on the 
system net-load variation [4].  

Current FRPs models consider the generation ramping 
limitation in the RTED [5]. However, the impacts of the flexible 
ramping capacity on other system security constraints such as 
the transmission limits are not considered. This might lead to 
deliverability issues of the FRPs in real time operation. To deal 
with these issues, Ref. [6] proposed an approach to address the 
reserve capacity deliverability on a zonal basis considering the 
system’s discrete contingencies. The bus-level delivery of the 
ramping capabilities has not been addressed in this study. Ref. 
[7] proposed the deliverable ramping products considering 
transmission constraints and the deliverability of ramping 
products through a robust optimization model. In this model, 
the uncertainty of demand and wind power were represented 
using the interval uncertainty sets which did not take the 
spatiotemporal correlations of demand and wind power 
uncertainties into consideration. Similarly, Ref. [8] proposed an 
uncertainty marginal price based on robust optimization in the 
unit commitment problem ignoring the spatiotemporal 
correlation. Ref. [9] demonstrated that considering the 
spatiotemporal correlation of the renewable power outputs and 
the system electricity demand could bring reliability and 
economic benefits in system ramping requirements evaluation. 

However, it is still challenging to consider the 
spatiotemporal correlations of uncertain demand and wind 
power, which might lead to overestimating/underestimating the 
system ramping requirements. These misestimates of ramping 
requirements will affect not only the generation schedules and 
system operating costs, but also result in system security risks. 
In addition, currently demand pays the total cost of ancillary 
services in the energy and ancillary services co-optimized 
markets [10]. In a low renewable energy penetrated system, 
demand is the major source of real time uncertainty and 
variability. Consequently, this mechanism might work 
efficiently. However, in a high wind power penetration system, 
wind power brings additional significant ancillary services 
requirements. How to allocate the ancillary services cost, such 
as flexible ramping products costs, among demand and wind 
power to improve the fairness and efficiency of the market 
operation is an urgent issue. 

In Ref. [11], [12], a security constrained unit commitment 
model was proposed based on chance constrained (CC) 
optimization to consider the wind power uncertainty. In [13]–
[15], the chance constrained optimization was applied in the AC 
OPF problems to maintain the system security considering the 
uncertain renewable power output. In Ref. [16]–[18], 
distributionally robust CC-OPF models have been studied to 
mitigate the uncertainties in system operation. In these previous 
studies, the FRPs were not explicitly considered and priced. In 
addition, the chance constraints in these studies deployed a 
symmetric affine policy (SAP) which required the generators to 
respond symmetrically under the negative and positive system 
imbalance conditions. To address the aforementioned issues in 
the current FRPs modeling, a distributionally-robust chance 
constrained multi-interval OPF (DRCC-MIOPF) model is 
proposed. The flexible ramping requirements are endogenously 

modeled considering the spatiotemporal correlation of wind 
power outputs and demand. The impacts of FRPs are 
considered in all of the system security constraints, such as 
generation capacity limitations, ramping capability and the 
transmission constraints. Therefore, the delivery of FRPs in the 
real time operation is guaranteed. Furthermore, different from 
the previous SAP model, an asymmetrical affine policy (AAP) 
is proposed to leverage the flexibility of generators to mitigate 
the system uncertainty in different directions, which increases 
the system operational flexibility and reduces the operating 
cost. Finally, the prices of FRPs are derived from the proposed 
AAP-DRCC-MIOPF model to allocate the FRPs costs to the 
uncertainty sources and compensate the controllable generation 
resources providing the FRPs. The main contributions of this 
paper can be summarized as follows: 
1) Deliverable FRPs have been proposed to guarantee the 

delivery of the FRPs in real time operation. 
2) The spatiotemporal correlation of demand and wind power 

uncertainties has been considered in the FRPs model which 
evaluates the system ramping requirements accurately. 

3) An asymmetrical affine policy (AAP) is adopted to deploy 
the generation flexibility to mitigate the uncertainties in 
different directions to reduce the costs. 

4) An uncertainty-contained locational marginal price 
(U_LMP) mechanism is proposed and decomposed to price 
the FRPs for the uncertain demand and wind power. 

5) The FRPs cost is allocated based on the actual demand and 
wind power ramping requirements because of their 
variability instead of a heuristic allocation mechanism.  

The rest of this paper is organized as follows: Section II 
presents the spatiotemporal correlation in the FRPs modeling; 
Section III proposes the asymmetrical affine policy (AAP) based 
distributionally-robust chance constrained multi-interval OPF 
(AAP-DRCC-MIOPF) model; Section IV derives the prices of 
FRPs from the proposed AAP-DRCC-MIOPF model; Section V 
performs the case studies on the PJM 5-bus, IEEE 39-bus and 
IEEE 118-bus systems to validate the proposed method; and 
Section VI concludes the paper. 

II.  FLEXIBLE RAMPING PRODUCTS WITH SPATIOTEMPORAL 
CORRELATION 

In the system RTED, FRPs mitigate the system demand and 
wind power forecast uncertainties. In this process, the temporal 
correlation between adjacent time intervals should be 
considered. For example, when the temporal correlation is 
positive, the variation directions of two intervals’ power are 
likely to be the same. This leads to a lower ramping 
requirement. In contrast, if the temporal correlation is negative, 
the variation directions of two intervals’ power are likely to be 
opposite, which requires a higher ramping capability. 

The effect of the spatiotemporal correlation on the ramping 
requirement is demonstrated using four Gaussian distributed 
random variables (representing the power outputs of two 
demands at two consecutive time intervals), for the sake of 
illustration. Other distributions have a similar observation 
which can be demonstrated using numerical simulation. 
Consider the ramping random variable 𝑅𝑅𝑡𝑡 defined by: 
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𝑅𝑅𝑡𝑡 = 𝑉𝑉1,𝑡𝑡 + 𝑉𝑉2,𝑡𝑡 − 𝑉𝑉1,𝑡𝑡−1 − 𝑉𝑉2,𝑡𝑡−1 (1) 
where 𝑉𝑉1,𝑡𝑡 ,  𝑉𝑉2,𝑡𝑡 , 𝑉𝑉1,𝑡𝑡−1  and 𝑉𝑉2,𝑡𝑡−1  represent four Gaussian 
distributed random variables such as two demands (demand 1 
and 2) at two intervals t and t-1. The explicit formulation of 𝑅𝑅𝑡𝑡 
is given by [19]: 
𝑅𝑅𝑡𝑡~𝑁𝑁�E�𝑉𝑉1,𝑡𝑡�+E�𝑉𝑉2,𝑡𝑡� − E�𝑉𝑉1,𝑡𝑡−1� − E�𝑉𝑉2,𝑡𝑡−1� ,𝜎𝜎1,𝑡𝑡

2 + 𝜎𝜎2,𝑡𝑡
2 +

𝜎𝜎1,𝑡𝑡−1
2 + 𝜎𝜎2,𝑡𝑡−1

2 + 2𝛾𝛾𝑡𝑡𝜎𝜎1,𝑡𝑡𝜎𝜎2,𝑡𝑡 + 2𝛾𝛾𝑡𝑡−1𝜎𝜎1,𝑡𝑡−1𝜎𝜎2,𝑡𝑡−1 −
2𝜌𝜌1𝜎𝜎1,𝑡𝑡𝜎𝜎1,𝑡𝑡−1 − 2𝜌𝜌2𝜎𝜎2,𝑡𝑡𝜎𝜎2,𝑡𝑡−1� (2) 

where E(∙) represents the expectation of random variables; 𝜌𝜌1 
and 𝜌𝜌2  are the temporal correlation between two intervals of 
two demands, respectively; 𝛾𝛾𝑡𝑡  and 𝛾𝛾𝑡𝑡−1  represent the spatial 
correlation between two demands at two intervals. From the 
formulation in Eq. (2), it is obvious that the variation range of 
𝑅𝑅𝑡𝑡  is determined by not only the variation of two intervals 
random variables, but also their spatiotemporal correlation. 
Ignoring this spatiotemporal correlation can lead to 
overestimates/underestimates of ramping requirements. 

Similarly, if 𝑉𝑉𝑡𝑡  is the net-demand, i.e., the demand minus 
wind power, then similarly 𝑅𝑅𝑡𝑡 in Eq. (2) are decided by not only 
the variation of individual demand at each interval, but also the 
spatiotemporal correlations of wind power plants (WPPs) and 
demands. Therefore, the spatiotemporal correlation of both 
WPPs and demands should be taken into consideration in the 
FRPs modeling. 

III.  AAP BASED CHANCE-CONSTRAINED MIOPF 

A.  Asymmetrical Affine Policy for Forecast Uncertainty 
In previous CC-OPF research, a SAP was used to determine 

the corrective control of generators for the renewable and 
demand power forecast uncertainty [15]–[17], [20]. The main 
advantages of the SAP are that the generator’s output change 
depends linearly on the forecast errors regardless of the 
uncertainty direction. However, in the SAP, the generators’ 
upward and downward responses are symmetrical which 
restricts the generation resources from providing the corrective 
control when their power output is at their upper or lower limits, 
as illustrated in Fig. 1 (SAP case). In fact, in the SAP case, once 
the output 𝐺𝐺 drops to its minimum 𝐺𝐺𝑚𝑚𝑚𝑚𝑚𝑚, ∆𝐺𝐺𝐷𝐷 (the downward 
response) becomes zero and because of the symmetric nature of 
the SAP approach, ∆𝐺𝐺𝑈𝑈 (the upward response) is forced to zero 
as well. 

 
Fig. 1 Illustration of SAP and AAP 

However, when the generator’s power output is at the upper 
limit, it still can provide the downward response and the 

generators at the lower limit can provide the upward response. 
Consequently, the solutions from the SAP model might be 
suboptimal. In [21], a linear weight and piece-wise affine policy 
for generators’ corrective control was proposed to differentiate 
the small and large system deviations. In this policy, the 
generators’ corrective control was still symmetrical within the 
small deviation range. The generators control action was not 
differentiated based on the system imbalance directions. 

To fully leverage the generation’s flexibility, an AAP for the 
forecast uncertainty is adopted. The flexibility of generators 
will be deployed in an improved manner as shown in Fig. 1 
(AAP cases). 

The SAP based corrective control is represented in Eq. (3). 
𝐺𝐺𝑖𝑖,𝑡𝑡 =  𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 + 𝜷𝜷𝒊𝒊,𝒕𝒕𝑻𝑻 𝒖𝒖𝒕𝒕 (3) 

The proposed AAP based corrective control dissociates 
upward and downward balancing responses as in (4) and (5). 
𝐺𝐺𝑖𝑖,𝑡𝑡 =  𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 + 𝜷𝜷𝑼𝑼,𝒊𝒊,𝒕𝒕

𝑻𝑻 𝒖𝒖𝒕𝒕, if 𝟏𝟏𝑻𝑻𝒖𝒖𝒕𝒕� > 0  (4) 
𝐺𝐺𝑖𝑖,𝑡𝑡 =  𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 + 𝜷𝜷𝑫𝑫,𝒊𝒊,𝒕𝒕

𝑻𝑻 𝒖𝒖𝒕𝒕, if 𝟏𝟏𝑻𝑻𝒖𝒖𝒕𝒕� ≤ 0  (5) 
where 𝒖𝒖𝒕𝒕 represents the uncertainty of demand and wind power 
forecast at time t; 𝜷𝜷𝒊𝒊,𝒕𝒕𝑻𝑻  is the balancing factor in the SAP model; 
𝒖𝒖𝒕𝒕� is the realized system imbalance including the demand and 
wind power forecast errors; 𝜷𝜷𝑼𝑼,𝒊𝒊,𝒕𝒕

𝑻𝑻  and 𝜷𝜷𝑫𝑫,𝒊𝒊,𝒕𝒕
𝑻𝑻  are the balancing 

factor for the up/down response in the proposed AAP model. 

B.  AAP based CC-MIOPF 
When the wind power and demand forecast uncertainties 

(∆𝑃𝑃𝑖𝑖 ,𝑡𝑡 and ∆𝐷𝐷𝑖𝑖,𝑡𝑡) are considered, the generation output is shown 
in Eq. (6), including a corrective response component ∆𝐺𝐺𝑖𝑖,𝑡𝑡. 
𝐺𝐺𝑖𝑖,𝑡𝑡 =  𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 + ∆𝐺𝐺𝑖𝑖,𝑡𝑡 (6) 
𝑃𝑃𝑖𝑖,𝑡𝑡 = 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 + ∆𝑃𝑃𝑖𝑖,𝑡𝑡 (7) 
𝐷𝐷𝑖𝑖,𝑡𝑡 = 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 + ∆𝐷𝐷𝑖𝑖,𝑡𝑡 (8) 
∆𝐺𝐺𝑈𝑈,𝑖𝑖,𝑡𝑡 = 𝛽𝛽𝑈𝑈,𝑖𝑖,𝑡𝑡�−∑ ∆𝑃𝑃𝑖𝑖,𝑡𝑡𝑁𝑁

𝑖𝑖=1 + ∑ ∆𝐷𝐷𝑖𝑖,𝑡𝑡𝑁𝑁
𝑖𝑖=1 � (9) 

∑ 𝛽𝛽𝑈𝑈,𝑖𝑖,𝑡𝑡
𝑁𝑁
𝑖𝑖=1 = 1 (10) 

∆𝐺𝐺𝐷𝐷,𝑖𝑖,𝑡𝑡 = 𝛽𝛽𝐷𝐷,𝑖𝑖,𝑡𝑡�−∑ ∆𝑃𝑃𝑖𝑖,𝑡𝑡𝑁𝑁
𝑖𝑖=1 + ∑ ∆𝐷𝐷𝑖𝑖,𝑡𝑡𝑁𝑁

𝑖𝑖=1 � (11) 
∑ 𝛽𝛽𝐷𝐷,𝑖𝑖,𝑡𝑡
𝑁𝑁
𝑖𝑖=1 = 1 (12) 

Because the formulation of ∆𝐺𝐺𝑈𝑈,𝑖𝑖,𝑡𝑡 and ∆𝐺𝐺𝐷𝐷,𝑖𝑖,𝑡𝑡 are the same 
except using the 𝛽𝛽𝑈𝑈,𝑖𝑖,𝑡𝑡 and 𝛽𝛽𝐷𝐷,𝑖𝑖,𝑡𝑡 respectively, in the following 
text, the U and D subscripts are omitted in several equations to 
make the model description concise. The uncertainty 
components in the following text with U in the subscript means 
that it is calculated with 𝛽𝛽𝑈𝑈,𝑖𝑖,𝑡𝑡 . The uncertainty components 
with D in the subscript means that it is calculated with 𝛽𝛽𝐷𝐷,𝑖𝑖,𝑡𝑡. 

In this paper, the total generation cost at different intervals 
is minimized, as shown in Eq. (13a). We study the system 
dispatch over a one-hour period comprising 𝑇𝑇 = 12  five-
minute intervals. Thus, the CC-MIOPF model is to minimize 
the generation cost of forecasted demand and wind power. 
min 𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 = ∑ �∑ 𝑐𝑐𝑖𝑖,𝑡𝑡𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡

𝑁𝑁
𝑖𝑖=1 �𝑡𝑡∈𝑇𝑇  (13a) 

s.t. ∑ �𝐺𝐺𝑖𝑖,𝑡𝑡 + 𝑃𝑃𝑖𝑖,𝑡𝑡�𝑁𝑁
𝑖𝑖=1 − ∑ 𝐷𝐷𝑖𝑖,𝑡𝑡𝑁𝑁

𝑖𝑖=1 = 0: 𝜆𝜆𝑡𝑡,∀𝑡𝑡 ∈ {1,⋯ ,𝑇𝑇} (13b) 
𝐏𝐏𝐏𝐏�∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙,𝑖𝑖�𝐺𝐺𝑖𝑖,𝑡𝑡 + 𝑃𝑃𝑖𝑖,𝑡𝑡 − 𝐷𝐷𝑖𝑖,𝑡𝑡�𝑁𝑁

𝑖𝑖=1 ≤ 𝐿𝐿𝐿𝐿𝑙𝑙� ≥ 1 − 𝜖𝜖,∀𝑡𝑡 ∈
{1,⋯ ,𝑇𝑇},∀ 𝑙𝑙 ∈ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (13c) 

𝐏𝐏𝐏𝐏�∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙,𝑖𝑖�𝐺𝐺𝑖𝑖,𝑡𝑡 + 𝑃𝑃𝑖𝑖,𝑡𝑡 − 𝐷𝐷𝑖𝑖,𝑡𝑡�𝑁𝑁
𝑖𝑖=1 ≥ −𝐿𝐿𝐿𝐿𝑙𝑙� ≥ 1 − 𝜖𝜖,∀𝑡𝑡 ∈

{1,⋯ ,𝑇𝑇},∀ 𝑙𝑙 ∈ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 (13d) 
𝐏𝐏𝐏𝐏�𝐺𝐺𝑖𝑖,𝑡𝑡 ≤ 𝐺𝐺𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚� ≥ 1 − 𝜖𝜖,∀𝑡𝑡 ∈ {1,⋯ ,𝑇𝑇},∀ 𝑖𝑖 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺 (13e) 
𝐏𝐏𝐏𝐏�𝐺𝐺𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝐺𝐺𝑖𝑖,𝑡𝑡� ≥ 1 − 𝜖𝜖,∀𝑡𝑡 ∈ {1,⋯ ,𝑇𝑇},∀ 𝑖𝑖 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺 (13f) 
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𝐏𝐏𝐏𝐏�𝐺𝐺𝑖𝑖,𝑡𝑡 − 𝐺𝐺𝑖𝑖,𝑡𝑡−1 ≤ 𝑅𝑅𝑖𝑖𝑈𝑈 ∙ ∆𝑡𝑡� ≥ 1 − 𝜖𝜖,∀𝑡𝑡 ∈ {2,⋯ ,𝑇𝑇},∀ 𝑖𝑖 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺 (13g) 
𝐏𝐏𝐏𝐏�𝐺𝐺𝑖𝑖,𝑡𝑡−1 − 𝐺𝐺𝑖𝑖,𝑡𝑡 ≤ 𝑅𝑅𝑖𝑖𝐷𝐷 ∙ ∆𝑡𝑡� ≥ 1 − 𝜖𝜖,∀𝑡𝑡 ∈ {2,⋯ ,𝑇𝑇},∀ 𝑖𝑖 ∈ 𝐺𝐺𝐺𝐺𝐺𝐺 (13h) 
where (13c)–(13h) represent the chance constraints considering 
the impacts of wind power and demand forecast uncertainties 
on the violation probabilities of power flow limits, generation 
upper/lower limitation, and generation ramping capability. 𝜆𝜆𝑡𝑡 is 
the dual variable associated with the power balance constraint. 

Considering the uncertainties of demand and wind power 
outputs, the power flow uncertainty can be formulated with a 
combination of demand and wind power uncertainties. First, 
assume that the uncertain part of the wind power output ∆𝑷𝑷 has 
0 mean and the covariance matrix as 𝚺𝚺𝒘𝒘,𝒕𝒕 for every time interval 
shown in Eq (17) [13], [18]. The uncertain part of demand ∆𝑫𝑫 
has a 0 mean and the covariance 𝚺𝚺𝒅𝒅,𝒕𝒕 shown in Eq. (18). The 
standard deviation of the random power flow is below. 
𝜎𝜎𝑃𝑃𝑃𝑃,𝑙𝑙,𝑡𝑡 =
�𝒂𝒂𝑙𝑙,𝑤𝑤,𝑡𝑡(𝜷𝜷𝒕𝒕)𝑇𝑇𝚺𝚺𝒘𝒘,𝒕𝒕𝒂𝒂𝑙𝑙,𝑤𝑤,𝑡𝑡(𝜷𝜷𝒕𝒕) + 𝒂𝒂𝑙𝑙,𝑑𝑑,𝑡𝑡(𝜷𝜷𝒕𝒕)𝑇𝑇𝚺𝚺𝒅𝒅,𝒕𝒕𝒂𝒂𝑙𝑙,𝑑𝑑,𝑡𝑡(𝜷𝜷𝒕𝒕) (14) 

where 𝒂𝒂𝑙𝑙,𝑤𝑤,𝑡𝑡(𝜷𝜷𝒕𝒕) and 𝒂𝒂𝑙𝑙,𝑑𝑑,𝑡𝑡(𝜷𝜷𝒕𝒕) are a one-column matrix with the 
i-th element as shown in Eq. (15) and (16): 
𝑎𝑎𝑙𝑙,𝑖𝑖,𝑤𝑤,𝑡𝑡(𝜷𝜷𝒕𝒕) = −∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙,𝑘𝑘𝑁𝑁

𝑘𝑘=1 𝛽𝛽𝑘𝑘,𝑡𝑡 + 𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙,𝑖𝑖 (15) 
𝑎𝑎𝑙𝑙,𝑖𝑖,𝑑𝑑,𝑡𝑡(𝜷𝜷𝒕𝒕) = ∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙,𝑘𝑘𝑁𝑁

𝑘𝑘=1 𝛽𝛽𝑘𝑘,𝑡𝑡 − 𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙,𝑖𝑖 (16) 

𝚺𝚺𝑤𝑤,𝑡𝑡 = �
𝜎𝜎𝑤𝑤,t,1
2 𝜌𝜌𝑤𝑤,1,2σ𝑤𝑤,t,1σ𝑤𝑤,t,2

𝜌𝜌𝑤𝑤,1,2σ𝑤𝑤,t,1σ𝑤𝑤,t,2 𝜎𝜎𝑤𝑤,t,2
2 � (17) 

𝚺𝚺𝑑𝑑,𝑡𝑡 = �
𝜎𝜎𝑑𝑑,t,1
2 𝜌𝜌𝑑𝑑,1,2σ𝑑𝑑,t,1σ𝑑𝑑,t,2

𝜌𝜌𝑑𝑑,1,2σ𝑑𝑑,t,1σ𝑑𝑑,t,2 𝜎𝜎𝑑𝑑,t,2
2 � (18) 

where 𝜌𝜌𝑤𝑤,1,2 and 𝜌𝜌𝑑𝑑,1,2 are the spatial correlation of WPPs, and 
demand illustrated with two demands and two WPPs, 
respectively. 

Therefore, the AAP based chance constraints of (13c) and 
(13d) can be reformulated [22] as:  
∑ �𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙,𝑖𝑖�𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 + 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 − 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡��𝑁𝑁
𝑖𝑖=1 + 𝐾𝐾𝜖𝜖𝜎𝜎𝑃𝑃𝑃𝑃,U,𝑙𝑙,𝑡𝑡 ≤ 𝐿𝐿𝐿𝐿𝑙𝑙

 (19) 
∑ �𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙,𝑖𝑖�𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 + 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 − 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡��𝑁𝑁
𝑖𝑖=1 − 𝐾𝐾𝜖𝜖𝜎𝜎𝑃𝑃𝑃𝑃,U,𝑙𝑙,𝑡𝑡 ≥

−𝐿𝐿𝐿𝐿𝑙𝑙  (20) 
∑ �𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙,𝑖𝑖�𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 + 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 − 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡��𝑁𝑁
𝑖𝑖=1 + 𝐾𝐾𝜖𝜖𝜎𝜎𝑃𝑃𝑃𝑃,D,𝑙𝑙,𝑡𝑡 ≤ 𝐿𝐿𝐿𝐿𝑙𝑙

 (21) 
∑ �𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙,𝑖𝑖�𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 + 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 − 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡��𝑁𝑁
𝑖𝑖=1 − 𝐾𝐾𝜖𝜖𝜎𝜎𝑃𝑃𝑃𝑃,D,𝑙𝑙,𝑡𝑡 ≥

−𝐿𝐿𝐿𝐿𝑙𝑙  (22) 
where 𝜎𝜎𝑃𝑃𝑃𝑃 ,U,𝑙𝑙,𝑡𝑡  and 𝜎𝜎𝑃𝑃𝑃𝑃,D,𝑙𝑙,𝑡𝑡  are calculated using Eq. (14) with 
𝛽𝛽𝑈𝑈,𝑖𝑖,𝑡𝑡 and 𝛽𝛽𝐷𝐷,𝑖𝑖,𝑡𝑡 respectively; 𝐾𝐾𝜖𝜖 is the coefficient to control the 
robustness of the forecast errors in the chance constraints, 
which will be explained in the next subsection. 

The generators’ limits in AAP-based chance constraints are 
illustrated in Fig. 2. In (13e) and (13f), the standard deviation 
of the generation output is below. 
𝜎𝜎𝑔𝑔,𝑖𝑖,𝑡𝑡 = �𝒃𝒃𝑤𝑤,𝑖𝑖,𝑡𝑡(𝜷𝜷𝒕𝒕)𝑇𝑇𝚺𝚺𝒘𝒘,𝒕𝒕𝒃𝒃𝑤𝑤,𝑖𝑖,𝑡𝑡(𝜷𝜷𝒕𝒕) + 𝒃𝒃𝑑𝑑,𝑖𝑖,𝑡𝑡(𝜷𝜷𝒕𝒕)𝑇𝑇𝚺𝚺𝒅𝒅,𝒕𝒕𝒃𝒃𝑑𝑑,𝑖𝑖,𝑡𝑡(𝜷𝜷𝒕𝒕)

 (23) 
where 𝜎𝜎𝑔𝑔,𝑖𝑖  represents the random generation corrective 
response, and 𝒃𝒃𝑖𝑖(𝜷𝜷𝒕𝒕) is a one-column matrix with the elements 
as below. 

𝒃𝒃𝑤𝑤,𝑖𝑖,𝑡𝑡(𝜷𝜷𝒕𝒕) = [−𝛽𝛽𝑖𝑖,𝑡𝑡 ⋯ −𝛽𝛽𝑖𝑖,𝑡𝑡]𝑇𝑇�������������
𝑁𝑁𝑁𝑁

 (24) 

𝒃𝒃𝑑𝑑,𝑖𝑖,𝑡𝑡(𝜷𝜷𝒕𝒕) = [𝛽𝛽𝑖𝑖,𝑡𝑡 ⋯ 𝛽𝛽𝑖𝑖,𝑡𝑡]𝑇𝑇�����������
𝑁𝑁𝑁𝑁

 (25) 

where NW and ND are the numbers of WPPs and demand. 
Then (13e) and (13f) can be reformulated as: 
𝐺𝐺𝑖𝑖,𝑡𝑡 + 𝐾𝐾𝜖𝜖𝜎𝜎𝑔𝑔,𝑈𝑈,𝑖𝑖,𝑡𝑡 ≤ 𝐺𝐺𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 (26) 
𝐺𝐺𝑖𝑖,𝑡𝑡 − 𝐾𝐾𝜖𝜖𝜎𝜎𝑔𝑔,𝐷𝐷,𝑖𝑖,𝑡𝑡 ≥ 𝐺𝐺𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚  (27) 
where 𝜎𝜎𝑈𝑈,𝑔𝑔,𝑖𝑖,𝑡𝑡  and 𝜎𝜎𝐷𝐷,𝑔𝑔,𝑖𝑖,𝑡𝑡  are calculated using Eq. (23) with 
𝛽𝛽𝑈𝑈,𝑖𝑖,𝑡𝑡 and 𝛽𝛽𝐷𝐷,𝑖𝑖,𝑡𝑡 in Eq. (24) and (25) respectively; the equality 
constraints in (14) and (23) can be reformulated as second order 
cone (SOC) constraints as below by introducing the auxiliary 
variables 𝜂𝜂𝑃𝑃𝑃𝑃,U,𝑙𝑙,𝑡𝑡, 𝜂𝜂𝑃𝑃𝑃𝑃,D,𝑙𝑙,𝑡𝑡, 𝜂𝜂𝑔𝑔,U,𝑖𝑖,𝑡𝑡, and 𝜂𝜂𝑔𝑔,D,𝑖𝑖,𝑡𝑡. 

��
𝚺𝚺𝒘𝒘,𝒕𝒕

𝟏𝟏 𝟐𝟐⁄

𝚺𝚺𝒅𝒅,𝒕𝒕
𝟏𝟏 𝟐𝟐⁄ � �

𝒂𝒂𝑙𝑙,𝑤𝑤,𝑡𝑡�𝜷𝜷𝑼𝑼,𝒕𝒕�
𝒂𝒂𝑙𝑙,𝑑𝑑,𝑡𝑡(𝜷𝜷𝑼𝑼,𝒕𝒕)

��
𝟐𝟐

≤ 𝜂𝜂𝑃𝑃𝑃𝑃,U,𝑙𝑙,𝑡𝑡: ϑ𝑈𝑈,𝑙𝑙,𝑡𝑡 (28) 

��
𝚺𝚺𝒘𝒘,𝒕𝒕

𝟏𝟏 𝟐𝟐⁄

𝚺𝚺𝒅𝒅,𝒕𝒕
𝟏𝟏 𝟐𝟐⁄ � �

𝒂𝒂𝑙𝑙,𝑤𝑤,𝑡𝑡�𝜷𝜷𝑫𝑫,𝒕𝒕�
𝒂𝒂𝑙𝑙,𝑑𝑑 , t(𝜷𝜷𝑫𝑫,𝒕𝒕)

��
𝟐𝟐

≤ 𝜂𝜂𝑃𝑃𝑃𝑃,D,𝑙𝑙,𝑡𝑡:ϑ𝐷𝐷,𝑙𝑙,𝑡𝑡 (29) 

��
𝚺𝚺𝒘𝒘,𝒕𝒕

𝟏𝟏 𝟐𝟐⁄

𝚺𝚺𝒅𝒅,𝒕𝒕
𝟏𝟏 𝟐𝟐⁄ � �

𝒃𝒃𝑤𝑤,𝑖𝑖,𝑡𝑡�𝜷𝜷𝑼𝑼,𝒕𝒕�
𝒃𝒃𝑑𝑑,𝑖𝑖,𝑡𝑡(𝜷𝜷𝑼𝑼,𝒕𝒕)

��
𝟐𝟐

≤ 𝜂𝜂𝑔𝑔,U,𝑖𝑖,𝑡𝑡: θ𝑔𝑔,𝑈𝑈,𝑖𝑖,𝑡𝑡 (30) 

��
𝚺𝚺𝒘𝒘,𝒕𝒕

𝟏𝟏 𝟐𝟐⁄

𝚺𝚺𝒅𝒅,𝒕𝒕
𝟏𝟏 𝟐𝟐⁄ � �

𝒃𝒃𝑤𝑤,𝑖𝑖,𝑡𝑡�𝜷𝜷𝑫𝑫,𝒕𝒕�
𝒃𝒃𝑑𝑑,𝑖𝑖,𝑡𝑡(𝜷𝜷𝑫𝑫,𝒕𝒕)

��
𝟐𝟐

≤ 𝜂𝜂𝑔𝑔,D,𝑖𝑖,𝑡𝑡: θ𝑔𝑔,𝐷𝐷,𝑖𝑖,𝑡𝑡 (31) 

where ϑ𝑈𝑈,𝑙𝑙,𝑡𝑡 , ϑ𝐷𝐷,𝑙𝑙,𝑡𝑡 , θ𝑔𝑔,𝑈𝑈,𝑖𝑖,𝑡𝑡 , and θ𝑔𝑔,𝐷𝐷,𝑖𝑖,𝑡𝑡  are the dual variables 
associated with the constraints on the left side of the colons. 

 

Fig. 2 Generation limitation under AAP 
For the generation ramping constraints in (13g) and (13h), 

the AAP-based ramping up and down chance constraints can be 
formulated as below as shown in Fig. 2.  
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 ,𝑡𝑡𝑈𝑈 = 𝐺𝐺𝑒𝑒𝑒𝑒𝑝𝑝,𝑖𝑖,𝑡𝑡 + ∆𝐺𝐺𝑖𝑖,𝑡𝑡𝑈𝑈 − 𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡−1 − ∆𝐺𝐺𝑖𝑖,𝑡𝑡−1𝐷𝐷  (32) 
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 ,𝑡𝑡𝐷𝐷 = 𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡−1 + ∆𝐺𝐺𝑖𝑖,𝑡𝑡−1𝑈𝑈 − 𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 − ∆𝐺𝐺𝑖𝑖,𝑡𝑡𝐷𝐷  (33) 

��
𝚵𝚵𝒘𝒘,𝒕𝒕

𝟏𝟏 𝟐𝟐⁄

𝚵𝚵𝒅𝒅,𝒕𝒕
𝟏𝟏 𝟐𝟐⁄ � �

𝑩𝑩𝑈𝑈,𝑤𝑤,𝑖𝑖,𝑡𝑡(𝜷𝜷𝒕𝒕)
𝑩𝑩𝑈𝑈,𝑑𝑑,𝑖𝑖,𝑡𝑡(𝜷𝜷𝒕𝒕)

��
𝟐𝟐

≤ 𝑟𝑟𝑔𝑔,U,𝑖𝑖,𝑡𝑡:φ𝑈𝑈,𝑖𝑖,𝑡𝑡 (34) 

𝑩𝑩𝑈𝑈,𝑤𝑤,𝑖𝑖,𝑡𝑡(𝜷𝜷𝒕𝒕) = [−𝒃𝒃𝑤𝑤,𝑖𝑖,𝑡𝑡−1(𝜷𝜷𝑫𝑫,𝒕𝒕) 𝒃𝒃𝑤𝑤,𝑖𝑖,𝑡𝑡(𝜷𝜷𝑼𝑼,𝒕𝒕)]𝑻𝑻 (35) 
𝑩𝑩𝑈𝑈,𝑑𝑑,𝑖𝑖,𝑡𝑡(𝜷𝜷𝒕𝒕) = [−𝒃𝒃𝑑𝑑,𝑖𝑖,𝑡𝑡−1(𝜷𝜷𝑫𝑫,𝒕𝒕) 𝒃𝒃𝑑𝑑,𝑖𝑖,𝑡𝑡(𝜷𝜷𝑼𝑼,𝒕𝒕)]𝑻𝑻 (36) 

��
𝚵𝚵𝒘𝒘,𝒕𝒕

𝟏𝟏 𝟐𝟐⁄

𝚵𝚵𝒅𝒅,𝒕𝒕
𝟏𝟏 𝟐𝟐⁄ � �

𝑩𝑩𝐷𝐷,𝑤𝑤,𝑖𝑖,𝑡𝑡(𝜷𝜷𝒕𝒕)
𝑩𝑩𝐷𝐷,𝑑𝑑,𝑖𝑖,𝑡𝑡(𝜷𝜷𝒕𝒕)

��
𝟐𝟐

≤ 𝑟𝑟𝑔𝑔,D,𝑖𝑖,𝑡𝑡:φ𝐷𝐷,𝑖𝑖,𝑡𝑡 (37) 

𝑩𝑩𝐷𝐷,𝑤𝑤,𝑖𝑖,𝑡𝑡(𝜷𝜷𝒕𝒕) = [𝒃𝒃𝑤𝑤,𝑖𝑖,𝑡𝑡−1(𝜷𝜷𝑼𝑼,𝒕𝒕) −𝒃𝒃𝑤𝑤,𝑖𝑖,𝑡𝑡(𝜷𝜷𝑫𝑫,𝒕𝒕)]𝑻𝑻 (38) 
𝑩𝑩𝐷𝐷,𝑑𝑑,𝑖𝑖,𝑡𝑡(𝜷𝜷𝒕𝒕) = [𝒃𝒃𝑑𝑑,𝑖𝑖,𝑡𝑡−1(𝜷𝜷𝑼𝑼,𝒕𝒕) −𝒃𝒃𝑑𝑑,𝑖𝑖,𝑡𝑡(𝜷𝜷𝑫𝑫,𝒕𝒕)]𝑻𝑻 (39) 

𝚵𝚵𝒘𝒘,𝒕𝒕 = �
𝚺𝚺𝒘𝒘,𝒕𝒕−𝟏𝟏 𝚺𝚺𝒘𝒘,𝒕𝒕−𝟏𝟏,𝒕𝒕
𝚺𝚺𝒘𝒘,𝒕𝒕,𝒕𝒕−𝟏𝟏 𝚺𝚺𝒘𝒘,𝒕𝒕

� (40) 

𝚵𝚵𝒅𝒅,𝒕𝒕 = �
𝚺𝚺𝒅𝒅,𝒕𝒕−𝟏𝟏 𝚺𝚺𝒅𝒅,𝒕𝒕−𝟏𝟏,𝒕𝒕
𝚺𝚺𝒅𝒅,𝒕𝒕,𝒕𝒕−𝟏𝟏 𝚺𝚺𝒅𝒅,𝒕𝒕

� (41) 

Note that in (35) and (36), the balancing factor for the 
interval t-1 is 𝜷𝜷𝑫𝑫,𝒕𝒕 and for the interval t is 𝜷𝜷𝑼𝑼,𝒕𝒕 for the up ramp. 
In contrast, the balancing factor for t-1 is 𝜷𝜷𝑼𝑼,𝒕𝒕 and for t is 𝜷𝜷𝑫𝑫,𝒕𝒕 
for the down ramp in (38) and (39). This is illustrated in Fig. 2. 

In (40) and (41), the covariance matrix components are listed 
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below. 

𝚺𝚺𝑤𝑤,𝑡𝑡−1,𝑡𝑡 = �
𝛾𝛾𝑤𝑤1,𝑡𝑡−1,𝑡𝑡σ𝑤𝑤1,𝑡𝑡−1σ𝑤𝑤1,𝑡𝑡 0

0 𝛾𝛾𝑤𝑤2,𝑡𝑡−1,𝑡𝑡σ𝑤𝑤2,𝑡𝑡−1σ𝑤𝑤2,𝑡𝑡
� (42) 

𝚺𝚺𝑤𝑤,𝑡𝑡,𝑡𝑡−1 = �
𝛾𝛾𝑤𝑤1,𝑡𝑡,𝑡𝑡−1σ𝑤𝑤1,𝑡𝑡σ𝑤𝑤1,𝑡𝑡−1 0

0 𝛾𝛾𝑤𝑤2,𝑡𝑡,𝑡𝑡−1σ𝑤𝑤2,𝑡𝑡σ𝑤𝑤2,𝑡𝑡−1
� (43) 

𝚺𝚺𝑑𝑑,𝑡𝑡−1,𝑡𝑡 = �
𝛾𝛾𝑑𝑑1,𝑡𝑡−1,𝑡𝑡σ𝑑𝑑1,𝑡𝑡−1σ𝑑𝑑1,𝑡𝑡 0

0 𝛾𝛾𝑑𝑑2,𝑡𝑡−1,𝑡𝑡σ𝑑𝑑2,𝑡𝑡−1σ𝑑𝑑2,𝑡𝑡
� (44) 

𝚺𝚺𝑑𝑑,𝑡𝑡,𝑡𝑡−1 = �
𝛾𝛾𝑑𝑑1,𝑡𝑡,𝑡𝑡−1σ𝑑𝑑1,𝑡𝑡σ𝑑𝑑1,𝑡𝑡−1 0

0 𝛾𝛾𝑑𝑑2,𝑡𝑡,𝑡𝑡−1σ𝑑𝑑2,𝑡𝑡σ𝑑𝑑2,𝑡𝑡−1
� (45) 

where 𝛾𝛾𝑤𝑤,𝑡𝑡−1,𝑡𝑡  and 𝛾𝛾𝑑𝑑,𝑡𝑡−1,𝑡𝑡  are temporal correlation of WPPs 
and demands; 𝚺𝚺𝒘𝒘,𝒕𝒕,𝒕𝒕−𝟏𝟏 and 𝚺𝚺𝒘𝒘,𝒕𝒕−𝟏𝟏,𝒕𝒕 are the covariance matrixes 
of the WPPs forecast errors between intervals t-1 and t 
including the temporal correlation; 𝚺𝚺𝒘𝒘,𝒕𝒕−𝟏𝟏 and 𝚺𝚺𝒘𝒘,𝒕𝒕 in Eq. (40) 
are from Eq. (17).  

Then, the AAP-based CC-MIOPF model is formulated as: 
min  𝑓𝑓𝑒𝑒𝑒𝑒𝑒𝑒 (46a) 
s.t. Constraints (10), (12), (15)-(18), (24), (25), (28)-(31), 

(34)-(45) (46b) 
∑ �𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 + 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡�𝑁𝑁
𝑖𝑖=1 − ∑ 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡

𝑁𝑁
𝑖𝑖=1 = 0: 𝜆𝜆𝑡𝑡 (46c) 

∑ �𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙,𝑖𝑖�𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 + 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 − 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡��𝑁𝑁
𝑖𝑖=1 + 𝐾𝐾𝜖𝜖𝜂𝜂𝑃𝑃𝑃𝑃,𝑈𝑈,𝑙𝑙,𝑡𝑡 ≤

𝐿𝐿𝐿𝐿𝑙𝑙: 𝜇𝜇𝑙𝑙,𝑈𝑈,𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚  (46d) 

∑ �𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙,𝑖𝑖�𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 + 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 − 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡��𝑁𝑁
𝑖𝑖=1 − 𝐾𝐾𝜖𝜖𝜂𝜂𝑃𝑃𝑃𝑃,𝑈𝑈,𝑙𝑙,𝑡𝑡 ≥

−𝐿𝐿𝐿𝐿𝑙𝑙: 𝜇𝜇𝑙𝑙,𝑈𝑈,𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚  (46e) 

∑ �𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙,𝑖𝑖�𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 + 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 − 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡��𝑁𝑁
𝑖𝑖=1 + 𝐾𝐾𝜖𝜖𝜂𝜂𝑃𝑃𝑃𝑃,𝐷𝐷,𝑙𝑙,𝑡𝑡 ≤

𝐿𝐿𝐿𝐿𝑙𝑙: 𝜇𝜇𝑙𝑙,𝐷𝐷,𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚  (46f) 

∑ �𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙,𝑖𝑖�𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 + 𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 − 𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡��𝑁𝑁
𝑖𝑖=1 − 𝐾𝐾𝜖𝜖𝜂𝜂𝑃𝑃𝑃𝑃,𝐷𝐷,𝑙𝑙,𝑡𝑡 ≥

−𝐿𝐿𝐿𝐿𝑙𝑙: 𝜇𝜇𝑙𝑙,𝐷𝐷,𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚  (46g) 

𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 + 𝐾𝐾𝜖𝜖𝜂𝜂𝑔𝑔,𝑈𝑈,𝑖𝑖,𝑡𝑡 ≤ 𝐺𝐺𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 :𝜔𝜔𝑖𝑖,𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚 (46h) 

𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 − 𝐾𝐾𝜖𝜖𝜂𝜂𝑔𝑔,𝐷𝐷,𝑖𝑖,𝑡𝑡 ≥ 𝐺𝐺𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚:𝜔𝜔𝑖𝑖,𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚  (46i) 

𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 − 𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡−1 + 𝐾𝐾𝜖𝜖𝑟𝑟𝑔𝑔,𝑈𝑈,𝑖𝑖,𝑡𝑡 ≤ 𝑅𝑅𝑖𝑖𝑈𝑈 ∙ ∆𝑡𝑡: 𝜏𝜏𝑖𝑖,𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 (46j) 
𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡 − 𝐺𝐺𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡−1 − 𝐾𝐾𝜖𝜖𝑟𝑟𝑔𝑔,𝐷𝐷,𝑖𝑖,𝑡𝑡 ≥ −𝑅𝑅𝑖𝑖𝐷𝐷 ∙ ∆𝑡𝑡: 𝜏𝜏𝑖𝑖,𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 (46k) 
where the variables on the right side of the colons are the dual 
variables of the constraints on the left side of the colons. 

C.  Distributionally-Robust Model 
Although the Gaussian distribution is used to illustrate the 

spatiotemporal correlation in Section II, in the chance 
constrained formulation, the distribution is not predetermined 
for the forecast uncertainties of demand and wind power. Using 
only the mean 𝜇̂𝜇 and covariance Ξ obtained from the historical 
forecast errors data, for 𝜖𝜖 ∈ (0,1), the distributionally-robust 
chance constrained (DRCC) model is determined with the value 
of 𝐾𝐾𝜖𝜖 decided by Eq. (47). 

   𝐾𝐾𝜖𝜖 = �(1 − 𝜖𝜖) 𝜖𝜖⁄  (47) 
If the forecast error distribution is assumed to be 

symmetrical, the model is formulated [22] with the value of 𝐾𝐾𝜖𝜖: 
𝐾𝐾𝜖𝜖 = �1 2𝜖𝜖⁄  (48) 

The proof for Eq. (47) and (48) is in [22]. The values of 𝐾𝐾𝜖𝜖 
in the symmetrically distributionally-robust case (Sym. Dist. 
R.), the distributionally-robust case (Dist. R.), and Gaussian 
distribution case are 3.1623, 4.3589, and 1.645, when 𝜖𝜖 is 5% 
[23]. 

IV.  PRICING MODEL OF FLEXIBLE RAMPING PRODUCTS 
After obtaining the multi-interval generation scheduling 

solution considering the flexible ramping requirements, it is 
important to obtain the financial settlement, i.e. who should pay 
how much for the FRPs and how to compensate the controllable 
resources providing the FRPs.  

In the current FRPs design, the energy, FRPs and other 
ancillary services are co-optimized and an explicit FRPs 
requirements constraint is modeled [1], [2]. Therefore, the 
shadow prices of the FRPs requirement constraints are 
employed to derive the FRPs prices, which reflect the coupled 
effects of the generation schedule and FRPs and other ancillary 
services schedules. However, in the proposed model in this 
paper, there is no explicit FRPs requirement constraints. The 
FRPs are procurement endogenously considering the 
uncertainty of demand and variable generation at different time 
intervals. Although it has the aforementioned deliverability 
advantages over the traditional FRPs procurement, it also 
brings new challenges for FRPs price derivation. Current 
ancillary services pricing approaches [24], [25] cannot be used 
due to the lack of explicit FRPs requirement constraints. 

In this paper, an uncertainty contained LMP (U_LMP) 
model is proposed to settle the FRPs. To obtain the U_LMP for 
the uncertain demand and wind power, the Lagrangian function 
of the model (46) is first formulated. Please refer to APPENDIX 
Eq. (A1) for details. Then the U_LMP for the demand at Bus i 
considering its uncertainty is derived from the Lagrangian 
function in (A1) as shown in APPENDIX Eq. (A2). After that, 
the U_LMP can be decomposed into several components 
similar to the current LMP formulation in Eq (49), where (52)-
(54) are the uncertainty components.  

If ϑ𝑈𝑈,𝑙𝑙,𝑡𝑡 is larger than 0, Constraint (28) is binding, and the 
following equality in Eq. (52) holds: 

𝜂𝜂𝑃𝑃𝑃𝑃,U,𝑙𝑙,𝑡𝑡 = ��
𝚺𝚺𝒘𝒘,𝒕𝒕

𝟏𝟏 𝟐𝟐⁄

𝚺𝚺𝒅𝒅,𝒕𝒕
𝟏𝟏 𝟐𝟐⁄ � �

𝒂𝒂𝑙𝑙,𝑤𝑤,𝑡𝑡�𝜷𝜷𝑼𝑼,𝒕𝒕�
𝒂𝒂𝑙𝑙,𝑑𝑑,𝑡𝑡(𝜷𝜷𝑼𝑼,𝒕𝒕)

��
𝟐𝟐

 (50) 

And when ϑ𝑈𝑈,𝑙𝑙,𝑡𝑡 = 0 , Constraint (28) is an inequality 
constraint as in Eq. (53). 

𝜂𝜂𝑃𝑃𝑃𝑃,U,𝑙𝑙,𝑡𝑡 > ��
𝚺𝚺𝒘𝒘,𝒕𝒕

𝟏𝟏 𝟐𝟐⁄

𝚺𝚺𝒅𝒅,𝒕𝒕
𝟏𝟏 𝟐𝟐⁄ � �

𝒂𝒂𝑙𝑙,𝑤𝑤,𝑡𝑡�𝜷𝜷𝑼𝑼,𝒕𝒕�
𝒂𝒂𝑙𝑙,𝑑𝑑,𝑡𝑡(𝜷𝜷𝑼𝑼,𝒕𝒕)

��
𝟐𝟐

 (51) 

Similar relationships can be applied to other SOC constraints 
and their dual variables in Eq. (29)-(31) and Eq. (34), (37). 
Consequently, the uncertainty components of U_LMP are 
formulated as Eq. (52) to (54). 

 

𝑈𝑈_𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖,𝑡𝑡 = 𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡

= 𝜆𝜆𝑡𝑡 + ∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙,𝑖𝑖�𝜇𝜇𝑙𝑙,𝑈𝑈,𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜇𝜇𝑙𝑙,𝑈𝑈,𝑡𝑡

𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜇𝜇𝑙𝑙,𝐷𝐷,𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜇𝜇𝑙𝑙,𝐷𝐷,𝑡𝑡

𝑚𝑚𝑚𝑚𝑚𝑚�𝑀𝑀
𝑙𝑙=1 + 𝑈𝑈_𝐿𝐿𝐿𝐿𝐿𝐿_𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖,𝑡𝑡 + 𝑈𝑈_𝐿𝐿𝐿𝐿𝐿𝐿_𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖,𝑡𝑡 +

𝑈𝑈_𝐿𝐿𝐿𝐿𝐿𝐿_𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖,𝑡𝑡 (49) 

𝑈𝑈_𝐿𝐿𝐿𝐿𝐿𝐿_𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖,𝑡𝑡 = ∑ ϑ𝑈𝑈,𝑙𝑙,𝑡𝑡
𝑎𝑎𝑙𝑙−𝑖𝑖,𝑑𝑑,𝑡𝑡�𝜷𝜷𝑼𝑼,𝒕𝒕�𝜉𝜉𝑑𝑑,𝑖𝑖,𝑡𝑡 ∑ 𝜌𝜌𝑑𝑑,𝑖𝑖,𝑗𝑗𝑎𝑎𝑙𝑙−𝑗𝑗,𝑑𝑑,𝑡𝑡�𝜷𝜷𝑼𝑼,𝒕𝒕�𝜉𝜉𝑑𝑑,𝑗𝑗,𝑡𝑡𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗,𝑡𝑡

𝑁𝑁𝑁𝑁
𝑗𝑗=1

𝜂𝜂𝑃𝑃𝑃𝑃,U,𝑙𝑙,𝑡𝑡

𝑀𝑀
𝑙𝑙=1 + ∑ ϑ𝐷𝐷,𝑙𝑙,𝑡𝑡

𝑎𝑎𝑙𝑙−𝑖𝑖,𝑑𝑑,𝑡𝑡�𝜷𝜷𝑫𝑫,𝒕𝒕�𝜉𝜉𝑑𝑑,𝑖𝑖,𝑡𝑡 ∑ 𝜌𝜌𝑑𝑑,𝑖𝑖,𝑗𝑗𝑎𝑎𝑙𝑙−𝑗𝑗,𝑑𝑑,𝑡𝑡�𝜷𝜷𝑫𝑫,𝒕𝒕�𝜉𝜉𝑑𝑑,𝑗𝑗,𝑡𝑡𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑗𝑗,𝑡𝑡
𝑁𝑁𝑁𝑁
𝑗𝑗=1

𝜂𝜂𝑃𝑃𝑃𝑃,D,𝑙𝑙,𝑡𝑡

𝑀𝑀
𝑙𝑙=1  (52) 
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𝑈𝑈_𝐿𝐿𝐿𝐿𝑃𝑃_𝐺𝐺𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖,𝑡𝑡 = ∑ θ𝑔𝑔,𝑈𝑈,𝑗𝑗,𝑡𝑡
𝛽𝛽𝑈𝑈𝑈𝑈,𝑡𝑡𝜉𝜉𝑑𝑑,𝑖𝑖,𝑡𝑡 ∑ 𝜌𝜌𝑑𝑑,𝑖𝑖,𝑘𝑘𝛽𝛽𝑈𝑈,𝑗𝑗,𝑡𝑡𝜉𝜉𝑑𝑑,𝑘𝑘,𝑡𝑡𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑘𝑘,𝑡𝑡

𝑁𝑁𝑁𝑁
𝑘𝑘=1

𝜂𝜂𝑔𝑔,U,𝑗𝑗,𝑡𝑡

𝑁𝑁
𝑗𝑗=1 + ∑ θ𝑔𝑔,𝐷𝐷,𝑗𝑗,𝑡𝑡

𝛽𝛽𝐷𝐷,𝑗𝑗,𝑡𝑡𝜉𝜉𝑑𝑑,𝑖𝑖,𝑡𝑡 ∑ 𝜌𝜌𝑑𝑑,𝑖𝑖,𝑘𝑘𝛽𝛽𝐷𝐷,𝑗𝑗,𝑡𝑡𝜉𝜉𝑑𝑑,𝑘𝑘,𝑡𝑡𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑘𝑘,𝑡𝑡
𝑁𝑁𝑁𝑁
𝑘𝑘=1

𝜂𝜂𝑔𝑔,D,𝑗𝑗,𝑡𝑡

𝑁𝑁
𝑗𝑗=1  (53) 

𝑈𝑈_𝐿𝐿𝐿𝐿𝐿𝐿_𝐹𝐹𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿,𝑖𝑖,𝑡𝑡 = ∑ φ𝑈𝑈,𝑗𝑗,𝑡𝑡
𝛾𝛾𝑑𝑑,𝑖𝑖,𝑡𝑡,𝑡𝑡−1𝛽𝛽𝑈𝑈,𝑗𝑗,𝑡𝑡𝜉𝜉𝑑𝑑,𝑖𝑖,𝑡𝑡𝛽𝛽𝐷𝐷,𝑗𝑗,𝑡𝑡−1𝜉𝜉𝑑𝑑,𝑖𝑖,𝑡𝑡−1𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡−1+𝛽𝛽𝑈𝑈,𝑗𝑗,𝑡𝑡𝜉𝜉𝑑𝑑,𝑖𝑖,𝑡𝑡 ∑ 𝜌𝜌𝑑𝑑,𝑖𝑖,𝑘𝑘𝛽𝛽𝑈𝑈,𝑗𝑗,𝑡𝑡𝜉𝜉𝑑𝑑,𝑘𝑘,𝑡𝑡𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑘𝑘,𝑡𝑡

𝑁𝑁𝑁𝑁
𝑘𝑘=1

𝑟𝑟𝑔𝑔,U,𝑗𝑗,𝑡𝑡

𝑁𝑁
𝑗𝑗=1 +

∑ φ𝐷𝐷,𝑗𝑗,𝑡𝑡
𝛾𝛾𝑑𝑑,𝑖𝑖,𝑡𝑡,𝑡𝑡−1𝛽𝛽𝐷𝐷,𝑗𝑗,𝑡𝑡𝜉𝜉𝑑𝑑,𝑖𝑖,𝑡𝑡𝛽𝛽𝑈𝑈,𝑗𝑗,𝑡𝑡−1𝜉𝜉𝑑𝑑,𝑖𝑖,𝑡𝑡−1𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡−1+𝛽𝛽𝐷𝐷,𝑗𝑗,𝑡𝑡𝜉𝜉𝑑𝑑,𝑖𝑖,𝑡𝑡 ∑ 𝜌𝜌𝑑𝑑,𝑖𝑖,𝑘𝑘𝛽𝛽𝐷𝐷,𝑗𝑗,𝑡𝑡𝜉𝜉𝑑𝑑,𝑘𝑘,𝑡𝑡𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑘𝑘,𝑡𝑡

𝑁𝑁𝑁𝑁
𝑘𝑘=1

𝑟𝑟𝑔𝑔,D,𝑗𝑗,𝑡𝑡

𝑁𝑁
𝑗𝑗=1 +

∑ φ𝑈𝑈,𝑗𝑗,𝑡𝑡+1
𝛾𝛾𝑑𝑑,𝑖𝑖,𝑡𝑡,𝑡𝑡+1𝛽𝛽𝑈𝑈,𝑗𝑗,𝑡𝑡+1𝜉𝜉𝑑𝑑,𝑖𝑖,𝑡𝑡+1𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡+1𝛽𝛽𝐷𝐷,𝑗𝑗,𝑡𝑡𝜉𝜉𝑑𝑑,𝑖𝑖,𝑡𝑡+𝛽𝛽𝐷𝐷,𝑗𝑗,𝑡𝑡𝜉𝜉𝑑𝑑,𝑖𝑖,𝑡𝑡 ∑ 𝜌𝜌𝑑𝑑,𝑖𝑖,𝑘𝑘𝛽𝛽𝐷𝐷,𝑗𝑗,𝑡𝑡𝜉𝜉𝑑𝑑,𝑘𝑘,𝑡𝑡𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑘𝑘,𝑡𝑡

𝑁𝑁𝑁𝑁
𝑘𝑘=1

𝑟𝑟𝑔𝑔,U,𝑗𝑗,𝑡𝑡+1

𝑁𝑁
𝑗𝑗=1 +

∑ φ𝐷𝐷,𝑗𝑗,𝑡𝑡+1
𝛾𝛾𝑑𝑑,𝑖𝑖,𝑡𝑡,𝑡𝑡+1𝛽𝛽𝐷𝐷,𝑗𝑗,𝑡𝑡+1𝜉𝜉𝑑𝑑,𝑖𝑖,𝑡𝑡+1𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡+1𝛽𝛽𝑈𝑈,𝑖𝑖,𝑡𝑡𝜉𝜉𝑑𝑑,𝑖𝑖,𝑡𝑡+𝛽𝛽𝑈𝑈,𝑗𝑗,𝑡𝑡𝜉𝜉𝑑𝑑,𝑖𝑖,𝑡𝑡 ∑ 𝜌𝜌𝑑𝑑,𝑖𝑖,𝑘𝑘𝛽𝛽𝑈𝑈,𝑗𝑗,𝑡𝑡𝜉𝜉𝑑𝑑,𝑘𝑘,𝑡𝑡𝐷𝐷𝑒𝑒𝑒𝑒𝑒𝑒,𝑘𝑘,𝑡𝑡

𝑁𝑁𝑁𝑁
𝑘𝑘=1

𝑟𝑟𝑔𝑔,D,𝑗𝑗,𝑡𝑡+1

𝑁𝑁
𝑗𝑗=1  (54) 

𝑈𝑈_𝐿𝐿𝐿𝐿𝐿𝐿_𝑃𝑃𝑃𝑃 , 𝑈𝑈_𝐿𝐿𝐿𝐿𝐿𝐿_𝐺𝐺 , and 𝑈𝑈_𝐿𝐿𝐿𝐿𝐿𝐿_𝐹𝐹𝐹𝐹𝐹𝐹  are the 
components representing the uncertainty prices associated with 
the transmission power flow violation, generation limits 
violations, and generation ramping capability violations. 
𝑈𝑈_𝐿𝐿𝐿𝐿𝐿𝐿_𝐹𝐹𝐹𝐹𝐹𝐹 is the price that the uncertain demand should pay 
for the FRPs in the system. Note that when the demand has no 
uncertainty (𝜉𝜉𝑑𝑑,𝑗𝑗,𝑡𝑡 = 0), it will not pay these uncertainty prices. 
Note that in the U_LMP formulation the value of the forecast 
uncertainty (standard deviation) is expressed as a percentage 
value of the forecast mean value. If the value of the standard 
deviation is represented by a constant instead, which is not 
associated with the value of its forecast mean, the U_LMP still 
can be formulated using a similar approach. 𝜉𝜉𝑑𝑑,𝑗𝑗,𝑡𝑡  and 𝜉𝜉𝑤𝑤,𝑗𝑗,𝑡𝑡 
represent the percentage of the standard deviation of demand 
and wind power to their forecast mean values, respectively. 

The U_LMP for the uncertain wind power can be derived in 
a similar manner, as shown in Eq. (55). Thus, in the proposed 
model, the uncertain demand and wind power will pay the 
controllable resources for the flexibility services to mitigate 
their uncertainty.  

𝑈𝑈_𝐿𝐿𝐿𝐿𝐿𝐿𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝑖𝑖,𝑡𝑡 = − 𝜕𝜕𝜕𝜕(𝑥𝑥)
𝜕𝜕𝑃𝑃𝑒𝑒𝑒𝑒𝑒𝑒,𝑖𝑖,𝑡𝑡

= 𝜆𝜆𝑡𝑡 + ∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝑙𝑙−𝑖𝑖�𝜇𝜇𝑙𝑙,𝑈𝑈,𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚 −𝑀𝑀

𝑙𝑙=1

𝜇𝜇𝑙𝑙,𝑈𝑈,𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚 + 𝜇𝜇𝑙𝑙,𝐷𝐷,𝑡𝑡

𝑚𝑚𝑚𝑚𝑚𝑚 − 𝜇𝜇𝑙𝑙,𝐷𝐷,𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚� −

𝑈𝑈_𝐿𝐿𝐿𝐿𝐿𝐿_𝑃𝑃𝑃𝑃𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝑖𝑖,𝑡𝑡 −
𝑈𝑈_𝐿𝐿𝐿𝐿𝐿𝐿_𝐺𝐺𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝑖𝑖,𝑡𝑡 −
𝑈𝑈_𝐿𝐿𝐿𝐿𝐿𝐿_𝐹𝐹𝐹𝐹𝐹𝐹𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊,𝑖𝑖,𝑡𝑡 (55) 

V.  CASE STUDIES 
In this section, we carry out numerical simulations and 

studies for the proposed AAP-DRCC-MIOPF. First, a modified 
PJM 5-bus system is studied to illustrate the concept. Then, the 
IEEE 39-bus and IEEE 118-bus systems are tested. All of the 
simulations are performed in GAMS [26], which is widely 
utilized to solve large-scale complex optimization problems.  

A.  PJM 5-Bus System 
The PJM 5-bus system is depicted in Fig. 3, and the system 

parameters can be found in [27]–[30]. In this study, the system 
peak demand is 1,500 MW, and the total demand is distributed 
among buses B, C, and D equally. Two WPPs are located at bus 
B and bus C. The demand curve and two WPPs’ forecast mean 
power curves are from CAISO at 6 a.m. on 02/01/2018 [31], 
shown in Fig. 4. The time interval is 5-minutes long, i.e. 12 
intervals in one-hour simulation. 

A B

C

DE Limit=240MW

Park City

Brighton

Sundance

Solitude

G5:$10/MWh
600MW

G1:$14/MWh
110MW

G3:$30/MWh
520MW

G4:$35/MWh
200MW

G2:$15/MWh
100MW

 
Fig. 3. PJM 5-bus system and generation parameters 

 
Fig. 4. Demand and wind power curves 

B.  Comparison between SAP and AAP 
This subsection performs the comparison between the 

traditional SAP and the proposed AAP based DRCC-MIOPF 
models. The standard deviations of wind power and demand are 
assumed to be 10% and 3% of their forecasted expected values. 
Assuming that the forecasting errors of demand and wind 
power are following a Gaussian distribution, the confidence 
level of chance constraints are 95% (𝜖𝜖 = 0.05). Then the value 
of 𝐾𝐾𝜖𝜖  is 1.645 [22]. The distributional robustness of the 
forecasting errors will be investigated in subsection V.E.  

The temporal correlation coefficients of demand and wind 
power are 0.6 and 0.9. The spatial correlation coefficients of 
demand and wind power are 0.5 and 0.6. The sensitivity of 
spatiotemporal correlation will be investigated in the subsection 
V.D. The generation schedules and their balancing factors are 
depicted in Fig. 5 and 6. Gen 5’s actual generation output under 
different system imbalance conditions at various time intervals 
from the SAP and AAP models are shown in Fig. 7. 



U.S. Government work not protected by U.S. copyright.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2019.2958531, IEEE
Transactions on Power Systems

 7 

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10 11 12G
en

er
at

io
n 

ou
tp

ut
 (

M
W

)

Time interval

(b) AAP

G5
G4
G3
G2
G1

0

200

400

600

800

1000

1 2 3 4 5 6 7 8 9 10 11 12G
en

er
at

io
n 

ou
tp

ut
 (

M
W

)

Time interval

(a) SAP

G5
G4
G3
G2
G1

 
Fig. 5. Generation schedules with SAP and AAP CC-OPF 

0%
20%
40%
60%
80%

100%

1 2 3 4 5 6 7 8 9 10 11 12

Ba
lan

ce
 f

ac
to

r

Time interval

(c) AAP_D

G5
G4
G3
G2
G1

0%
20%
40%
60%
80%

100%

1 2 3 4 5 6 7 8 9 10 11 12

Ba
lan

ce
 f

ac
to

r

Time interval

(b) AAP_U

G5
G4
G3
G2
G1

0%
20%
40%
60%
80%

100%

1 2 3 4 5 6 7 8 9 10 11 12

Ba
lan

ce
 f

ac
to

r

Time interval

(a) SAP

G5
G4
G3
G2
G1

 
Fig. 6. Balance factors with SAP and AAP CC-OPF 

The system operating cost from SAP and AAP based 
DRCC-MIOPF models are $155,567.9 and $154,920.4. The 

cost is thus reduced by 0.42% with the proposed AAP model. 
Therefore, by allowing the generation response to follow 
different uncertainty directions, the system operating costs can 
be reduced. Note that this cost saving will change with actual 
system conditions, especially the degree of the system ramping 
shortage. Additional studies about the generation costs from 
SAP and AAP models under different distribution assumptions 
will be investigated in subsection V.E. 

(a)

(b)

 
Fig. 7. Gen5 power response with SAP and AAP 

As shown in Fig. 5 and 6, the balancing factors change 
significantly, even though the difference in generation 
schedules is not very large. In the SAP model, G3 cannot 
provide the reserve from the 1st to the 6th intervals because its 
power output is at its lower limit during these intervals. In the 
AAP model, although G3’s power output is still at the lower 
limit from the 1st and 9th intervals, it can provide the upward 
reserve as shown in Fig. 6(b). In addition, G1 provides the 
downward reserve with its power at the upper limit. Therefore, 
the proposed AAP-DRCC-MIOPF model provides more 
flexibility in the generation scheduling to mitigate the system 
uncertainty and reduce the operating cost. 

Fig. 7 demonstrates Gen 5’s power output under different 
system imbalance levels at different time intervals for the SAP 
and AAP models. It is obvious that in the SAP model the 
generation responses under the positive and the negative system 
imbalance are symmetrical (the slope does not change under the 
positive and the negative system imbalance) as shown in Fig. 
7(a). While in Fig. 7(b), the slopes for the positive and negative 
response are different. Therefore, the generator can have 
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additional flexibility to mitigate the system imbalance due to 
the forecast errors based on the imbalance directions.  

C.  Deliverability of FRPs 
This subsection studies the FRPs deliverability with the 

current FRPs model and the proposed model. To investigate the 
deliverability, the transmission power flow realization under 
the demand and wind power uncertainty is evaluated. The 
current FRPs model will be represented without the FRPs in the 
transmission power flow chance constrained limits. 10,000 
samples of the demand and wind power at each interval are 
obtained using the Gaussian distribution to evaluate the actual 
power flow realization. Fig. 8 depicts the actual power flow on 
Line 6 with demand and wind power uncertainty realization at 
different time intervals. 
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Fig. 8. Transmission power flow realization without/with considering FRPs in 

transmission constraints 
The black dashed line shows the line capacity limit. The 

percentage numbers shown in Fig. 8 are the power flow limit 
violation probability at each interval. Fig. 8(a). presents the 
simulation results for 10,000 samples with the existing FRP 
model. It can be observed that the current FRPs model leads to 
significantly higher transmission overloading probabilities, 
compared with the proposed model. It shows that the chance of 
transmission overloading is as high as 87.24% and 11 out of 12 
intervals have overloading in more than 30% of samples. In 

contrast, Fig. 8 (b) shows no more than 4.58% of 10,000 
samples have transmission overloading for all intervals, when 
the risk level is set to 5%. Therefore, the delivery of FRPs in 
the proposed model can be guaranteed within the predetermined 
risk level. 

D.  Impacts of Spatiotemporal Correlation 
The proposed model considers the spatiotemporal 

correlation of demand and wind power uncertainties. This 
subsection investigates the impacts of spatiotemporal 
correlation. The spatiotemporal correlations of demand and 
wind power uncertainties are simulated separately. The 
spatiotemporal correlation varies from -1 to 1 with 0.5 as the 
step change. The system operating costs under different 
spatiotemporal correlations are shown in Fig. 9.  

(a) Wind spatiotemporal correlation

(b) Load spatiotemporal correlation

 
Fig. 9. System cost under various wind and demand spatiotemporal 

correlations 
Fig. 9 illustrates that the system operating cost increases 

with the increment of spatial correlation of wind power 
uncertainties as well as that of demand uncertainties. In 
contrast, it reduces with the temporal correlation of wind power 
and demand. It can also be observed that the impact of the 
spatial correlation is higher than that of the temporal correlation 
for both the wind power and demand. For instance, when the 
temporal correlation coefficient of WPPs is 0, the costs increase 
4.1% when the spatial correlation coefficient of wind increases 
from -1 to 1. When the spatial correlation coefficient of WPPs 
is 0, the cost decreases 1.77% when the temporal correlation 
coefficient of wind increases from -1 to 1. 

From the FRPs formulation, the ramping requirement 
decreases with the temporal correlation monotonically. 
Therefore, the system operating cost reduces with temporal 
correlation. The variation of demands and WPPs power output 
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at each interval increase with the spatial correlation shown in 
Section II. Therefore, the cost increases with the spatial 
correlation. The temporal correlation affects the ramping 
constraints. The spatial correlation impacts all the constraints; 
thus, it has a higher impact on the system operating cost.  

E.  Distributional Robustness 
This subsection analyzes the influence of the distributional 

robustness. The system generation costs and the FRPs costs of 
demands and WPPs are listed in Table I. The Bus C LMPs for 
the traditional generators, demand, and WPPs are depicted in 
Fig. 10. The generation costs of the SAP and AAP models under 
different distribution assumptions are listed in Table II. 

Table I demonstrates that the system generation costs, and 
the FRPs costs of demands and WPPs increase with the chance 
constraints robustness to the forecast errors. With a higher 
robustness level, the system procures a higher reserve capacity 
to mitigate the uncertainty, therefore the operating cost and the 
FRPs costs increase with the robustness level.  

Table I. 5-bus System Results Under Different Distributions 
 Gaussian Sym. Dist. R. Dist. R 

Gen Cost ($) 154,920.4 159,728.1 165,458.3 
Demand FRPs cost ($) 7.726 1,674.8 4,416.7 
Wind FRPs cost ($)) 29.266 5,274.7 12,626.4 

 
Fig. 10. Bus C LMPs under different distribution assumptions 

Fig. 10 demonstrates the LMPs on Bus C for traditional 
generator, the uncertain demand and WPP. Regardless of the 
distribution assumptions, the demand LMP is the highest, the 
second highest is the traditional generation LMP, and the wind 
LMP is the lowest. Uncertain demands and WPPs pay a price 
for uncertainties because the system needs to procure additional 
resources to mitigate their uncertainties.  

Table II. Generation Costs Results Under Different Distributions from SAP 
and AAP 

 Gaussian Sym. Dist. R. Dist. R 
SAP 155,567.9 161,367.8 167,010.9 
AAP 154,920.4 159,728.1 165,458.3 

Table II shows that the proposed AAP leads to a lower 
operation cost compared to the SAP model no matter what 
distribution assumption is used for the forecasting errors. In 
addition, with the increase of the robustness level, the cost 
saving increases. For instance, the cost reduces 0.42% from 
SAP to AAP in the Gaussian case. In the distributionally robust 
case, the cost reduces 0.94% from $167,010.9 to $165,458.3. 
This is because the system flexibility requirements increase 
with the distributional robustness. The proposed AAP model 

gives additional flexibility to the generators compared to the 
SAP model to mitigate the uncertainty, which leads to lower 
costs. This implies that in a more flexibility constrained system 
the proposed AAP model will lead to a higher cost saving. 

F.  IEEE 39-Bus System 
The IEEE 39-bus system integrated with 3 WPPs is shown 

in Fig. 11. This system has ten generators with total capacity of 
7,367 MW and a total demand of 6,254 MW. The detailed 
system parameters are in [32]. Three wind farms are integrated 
at buses 11, 24 and 26. The generation parameters are in [33]. 
Four thermal limits are applied to the following transmission 
lines: 800 MW for lines 1–39, 500 MW for lines 2–3, 500 MW 
for lines 3–18, and 600 MW for lines 16–17. 
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Fig. 11. IEEE 39-bus system with three WPPs 

The demand curve is the same as in Fig. 4. The wind power 
curves are the same as in Fig. 4, with WPP1 at Bus 26 and WPP 
2 at Bus 11. WPP3 at Bus 24 has the same output as WPP1. The 
confidence level of chance constraints is 95% [23]. The 
standard deviations of wind power and demand are assumed to 
be 3% and 1% of their forecasted expected values, respectively. 
The temporal correlation coefficients of demand and wind 
power are 0.4 and 0.3. The spatial correlation coefficient of 
wind power is 0.5. The spatial correlation of demand is ignored 
in this study. 

Table II. IEEE 39-bus System Results Under Different Distributions 
 Gaussian Sym. Dist. R. Dist. R 

Gen Cost ($) 1,057,289 1,060,661 1,063,726 
Demand FRPs cost ($) 0.669 2.583 18.512 
Wind FRPs cost ($)) 200.229 624.873 2072.599 

The system generation cost, FRPs costs of demand and wind 
power are listed in Table II. The LMPs on Bus 24 for the 
traditional generator, demand, and wind power are shown in 
Fig. 12. Similar to the study in the previous subsection, it is 
obvious that the system generation cost, the FRPs costs of 
demand and wind power increase with the distributional 
robustness. From Fig. 12, it shows that the LMPs for the 
traditional generator, demand, and wind power change with the 
distributional robustness level. In all distribution cases, the 
demand has the highest LMP, and wind power has the lowest. 
In this figure, it also shows that the price volatility increases 
with the robustness level for the forecast errors. Because the 
system is more constrained and tighter of flexibility under a 
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high robustness case, then the shadow price for the flexibility 
increases. 

 
Fig. 12. Bus 24 LMPs under different distribution assumptions 

G.  IEEE 118-Bus System 
To test the proposed model in a large system, the IEEE 118-

bus system is used. The system data can be found in [29]. Four 
WPPs are connected at Bus 46, Bus 80, Bus 87, and Bus 111. 
The demand curve is the same as in Fig. 4. The wind power 
curves are the same as in Fig. 4, with WPP1 at Bus 46 and WPP 
2 at Bus 80. WPP3 at Bus 87 has the same output as WPP1, and 
WPP4 at Bus 111 has the same output as WPP2. The standard 
deviations of wind power and demand are assumed to be 4% 
and 2% of their forecasted expected values, respectively. The 
system simulation results under different distribution 
assumptions for the forecasting errors are listed in Table III. 

Table III. IEEE 118-bus System Results Under Different Distributions 
 Gaussian Sym. Dist. R. Dist. R 

Gen Cost ($) 113675.1 114961.8 116331.5 
Demand FRPs cost ($) 12.8 28.6 30.1 
Wind FRPs cost ($)) 103.4 517.9 1490.5 

Table III demonstrated that the system generation cost 
increases monotonically with the conservativeness of the 
forecasting errors. High conservativeness leads to high reserve 
capacity procurement. For the FRPs cost of demand and wind 
power, they are also increasing with the conservativeness of the 
forecasting errors. 

H.  Computational Performance 
All the case studies are performed in GAMS with MOSEK 

as the quadratically constrained programming (QCP) solver 
[26], [34]. A Dell laptop with computer processing unit Intel 
Core i5 is used for all the case studies. The average 
computational times for different systems are listed in Table III. 
The computational time of all the cases of the 5-bus system are 
less than 1 second. For the 39-bus system, the optimal solutions 
can be obtained within 2 seconds for all cases. The solutions of 
118-bus system can be obtained in around 5 seconds as shown 
in Table IV. To accelerate the proposed model for large 
systems, there are two approaches. First, reduce the number of 
intervals in the model. There are 12 look-ahead time intervals 

in the proposed RTED model. While in the actual RTED model 
of ISOs, the number of the look-ahead intervals is smaller and 
can be adjusted based on the system conditions. We 
investigated that the computation time was reduced to less than 
1 second when the number of intervals was reduced from 12 to 
6 in the 39-bus system. Because the forecasting for the later 6 
intervals is not as accurate as the previous 6 intervals, to 
schedule more reserve for the longer time horizon can be very 
costly. Second, with the 12 intervals unchanged, but only 
considering the uncertainty in the first 6 intervals can lead to a 
similar computational time reduction. In addition, the iterative 
solution procedure introduced in [13] and the decentralized 
optimization in [30] can be used to accelerate the proposed 
model. This is left to the future work. 

Table IV. Average computational time of different cases 
 PJM 5-bus IEEE 39-bus IEEE 118-bus 

Comp. Time (s) 0.4 1.3 5.1 
 

VI.  CONCLUSIONS 
This paper proposes a deliverable flexible ramping products 

model considering the spatiotemporal correlation of uncertain 
wind power and demand. Because all of the system security 
constraints are modeled, the proposed FRPs are deliverable in 
the real time operation. An asymmetrical affine policy (AAP) 
is proposed for the generators to mitigate the demand and wind 
power forecasting errors based on the imbalance directions. It 
shows that the proposed AAP-DRCC-MIOPF model leverages 
the generation flexibility to mitigate the uncertainty of different 
directions and reduces the system cost. The uncertainty 
contained LMP (U_LMP) is derived including the price signals 
for the FRPs. The uncertain demand and wind power can pay 
this price based on their locations, and uncertainty level to the 
system operators to procure the FRPs.  

How to procure adequate flexible resources in the system 
operation and price the system uncertainty efficiently are two 
significant issues under a high penetration level of renewable 
integration such as wind power. The model proposed in this 
paper can obtain the deliverable FRPs in the forward market to 
mitigate the uncertainty of both demand and wind power. The 
spatiotemporal correlation is endogenously considered, which 
can help to evaluate the system ramping requirement 
accurately. The derived U_LMP can be used to price the 
uncertainties of wind power and demand and compensate the 
flexible resources in the system. 

APPENDIX 
The Lagrange function of the model in (46) is expanded in 

Eq. (A1). The partial derivative of the Lagrange function to the 
demand at bus i is shown in Eq. (A2). Note that here the 
uncertainty component of demands (its standard deviation) is 
expressed as a percentage value of its forecast mean value.  
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