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Abstract—Many communities, such as college campuses,
purchase electricity at a rate that includes a peak demand
charge (averaged over 15-minute intervals). Managing en-
ergy cost and demand response requires actively managing
the peak demand. In this paper, we develop transactive
control mechanisms that enable buildings in an active
distribution system or microgrid to cooperatively manage
peak demand. A decentralized transactive control (DTC)
approach is designed based on a novel decomposition
algorithm that preserves the detailed load profile and
information. By directly solving a mixed integer linear
program, the scalable algorithm determines the optimal
or near-optimal operating point for the system. Selected
buildings on a real-world campus are used to evaluate
the proposed platform. The results show the peak demand
can be dramatically reduced while maintaining the largest
possible building energy revenue.

Index Terms—Privacy preservation, dual-projected sub-
gradient, transactive control, energy management system,
peak management.

I. INTRODUCTION

ITH increased use of renewable energy resources

and distributed energy management technologies,
smart grid technologies offer the potential for significant
efficiency improvements through market-based trans-
active exchanges between energy producers and con-
sumers. Smart sensors and meters, communications and
new methods for control and decision-making have the
potential to transform our traditional, one-way electricity
delivery into two-way bidirectional energy flow en-
abled by “transactive” mechanisms between utilities and
behind-the-meter assets using new economic tools and
processes. Such a “transactive energy” approach requires
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techniques for managing the generation, consumption
and flow of electric power within an electric power
system through the use of economic or market-based
constructs while considering grid reliability constraints.
Transactive energy techniques may be used to manage
end-to-end (generation to consumption) electric power
system activities using transactive control techniques
[1] that facilitate the automatic, electronic transactions
between energy providers and users about whether or not
to sell or buy power [2]. To support the implementation
of transactive energy and transactive control concepts,
PNNL with support from the U.S. Department of En-
ergy (DOE) has developed VOLTTRON [3], [4], [5],
a distributed control and open-source sensing software
platform for building energy management.

The increasing demand on building systems to achieve
energy savings makes the development of smart building
systems and related transactive control strategies more
urgent and important than ever before. In particular, peak
management is essential for any energy management
strategy because the peak load in addition to the elec-
tricity consumption is used to determine the buildings
energy bill. Also, the peak itself can impose threats to
the stability of the grid as the system becomes more
vulnerable when operating under high peak loading.

By managing peak demand, dispatchable building
loads can be controlled to manage the energy budget
for the campus. Various transactive control strategies
and frameworks have been proposed for different as-
pects of electric power system operations [6], such as
voltage management in distribution networks [7], [8],
[9], frequency regulation [10], [11], and a variety of
new electricity market mechanisms [12], [13], [14], [15].
There are a few works that are aimed at reducing peak
load in building systems. Among them, a behind-the-
meter transactive market is proposed in [16] for home
energy management systems to achieve energy reduction
by coordinating home appliances through market bidding
and clearing. A transactive control market structure for
commercial building HVAC systems with Agent bidding
and market clearing strategies is presented in [17].
Though the occurrence of peak power consumption can



be mitigated effectively via these methods, almost all
of the above works neglect privacy concerns of the
participants in the transactive control scheme.

Privacy preservation is another critical issue in de-
veloping the smart grid, and particularly, to the success
of the deployment of transactive control strategies in
smart buildings. The flow of user energy consumption
data in smart grid systems may lead to the violation
of user privacy. Inference on such data can expose
the daily habits and the types of loads of inhabitants.
There are significant ongoing efforts to protect privacy
in smart grid. Common strategies include anonymizing
and aggregating the metering data [18], [19], encryption
of electricity usage [20], limited disclosure of data in
decomposition framework [21], adding perturbing noises
digitally or physically [22], [19]. Few works in the
literature, however, have investigated privacy preserving
in the context of transactive mechanism, especially when
a model includes integer variables. It is interesting to
consider privacy as a crucial part in the design of the
transactive control approaches and frameworks.

The main contributions of this paper are summarized
below.

1) A transactive control model is proposed to reduce
the peak load and maximize the effective use of
energy on the campus. By optimizing the combi-
nation of power profile bids generated by building
participants, the model could effectively flatten
the load curve and maintain the largest building
energy revenue, while still meeting the operational
requirements of the building. Generally, it is appli-
cable in other smart buildings or microgrids.

2) We propose a novel decomposition algorithm
and develop a decentralized platform, which pre-
serves the detailed load profiles. By leveraging
the Karush-Kuhn-Tucker (KKT) stationarity con-
dition, the new subgradient-based algorithm con-
verges efficiently. For the model in this study, we
propose an analytical solution to subproblems. A
method, no greater than linear time complexity,
is developed to find the projected multiplier. The
proposed approach is scalable and directly attain
the optimal point or near-optimal point to a Mixed
Integer Linear Programming (MILP) model. Pri-
vacy, such as electricity habits and behaviors, is
effectively protected. The proposed algorithm can
be applied to other optimization problems with
similar structures.

3) We deploy and evaluate the transactive platform
in selected buildings on a real-world campus grid,
i.e., the Case Western Reserve University (CWRU)
campus grid, by developing multiple Agents in
VOLTTRON, an open source software, for campus
level real-time transactive energy applications.

This paper is organized as follows. Section II intro-
duces the transactive model and a centralized approach.
The novel decentralized platform is proposed in Section
III. Section IV presents the real-world campus deploy-
ment with VOLTTRON. Section V discusses results of
case studies and Section VI concludes the paper.

II. TRANSACTIVE CONTROL MODEL

The decentralized transactive control (DTC) approach
is different from centralized transactive control (CTC)
approach, in the way that the Campus Agent is directly
involved in control decisions. In the CTC approach,
campus facilities (e.g. buildings and labs) will transact
with the Campus Agent to enable optimization of the
overall campus utility (the effective and efficient use of
energy resources to accomplish building/lab operations),
and the outcome is that each building has an agreed-
upon schedule of average peak-power consumption over
a given time interval. The DTC approach allow only
buildings to participate in the transactions, without in-
terference from the Campus Agent. Before introducing
the strategies, several assumptions are made below.

1) Some building/lab loads are dispatchable and time-
shiftable;

2) Buildings can calculate the utility of a load power
profile given a number of time-varying inputs, such
as inhabitants, availability of resources, internal
deadlines, weather, and etc.;

3) Building Agents are able to negotiate with the
users/activities in the facility as needed;

4) Distributed generation/storage are not explicitly
considered but are expected to fit into the same
mechanisms;

5) A supervisory mechanism will be added to monitor
the performance of Building Agents and ensure
they follow the rules of the transactive framework.

There are basically two phases in the CTC and DTC
process: Phase 1 - bidding for peak power to support
activities that require power over multiple periods, and
Phase 2 - an auction to acquire any remaining available
peak power at each period, which can be regarded as
imbalance settlement.

A. Centralized Model

In general, several tasks are included in Phase 1:

1) Each building submits multiple bids for each ac-
tivity that requires power over multiple periods. The bid
includes a power-time profile and the utility that will be
generated by performing that activity. For instance, Fig-
ure 1 illustrates three bids of consecutive power blocks
(piecewise constant curves) required by the building to
support an activity during the time period;
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Fig. 1. Bidding example.

2) The overall Campus Agent reviews all bids and
selects a combination that has the following properties:
maximizes campus utility less peak energy cost; only
one bid is awarded per building activity;

3) Winning bids are notified.

For an activity, Building Agent will produce bids,
which include the power profile and utility value. The
associated utility value, expressed in dollars, is a mea-
sure of the value the intended power consuming ser-
vice/activity has for the campus. Agents construct as
many bids as they desire for each activity. The motivation
behind the activities concept is that an activity will
stretch across multiple time periods and the power that
is necessary for the activity in each period must be
allocated for the activity to be accomplished successfully.
Note that the planning periods do not necessarily need
to be continuous, unless required by the specific activity.

The Campus Agent will receive a large number of bids
from all Building Agent, and is responsible for selecting
the combination of bids that maximizes the weighted
campus utility. The net campus utility is comprised of
the total utility for all selected activities minus the cost
of maximal peak power over the planning period.

Denote b,¢,j as the index of building, activity, and
bid. Let B, 7,J;, and 7 be the set of buildings,
activities in building b, bids for activity ¢, and planning
periods, respectively. Z = {Z,}ycp denotes the set of
all activities. For simplicity, an optimization problem
without building index is modeled as
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where x;; is binary variable and £ {zijtie jeg,-
2;; = 1 means that the 4" bid of activity 7 is selected
in the planning period. If ¢ € 7, then activity ¢ is within
building b and Agent of building b produces J; bids for
activity 7, where the bid consists of a power profile,
Pij+,t € T, and a campus utility value, u;;. From

optimization perspective, the campus agent can drop
building index as shown in problem (P). The objective
function is total campus utility less dollar cost associate
with peak load ¢ among planning periods. In general, the
dollar cost is a function in ¢. In this paper, we assume a
proportional relationship c¢ - ¢. Constraint (3) means no
more than one bid is selected for one activity.

It is observed problem (P) is an MILP problem.
Following completion of the optimization, the Campus
Agent will inform each of the Building Agents as to
which bids are selected over that planning period.

B. Imbalance Settlement

Several tasks are involved in Phase 2, which is a
period-by-period bidding process to address imbalance
settlement after the transactive process in Phase 2:

1) Each building submits a bid (willing-to-pay price
and kWh);

2) Market is cleared by Campus Agent based on cost
per kW and power allocated in Phase 1;

3) Market clearing price is communicated back to
Building Agents.

After all of the multi-interval activities have been
scheduled, additional power at each interval is then made
available to buildings for internal purpose or task not
associated with short-term revenue generation. In order
to allocate this power, the Campus Agent will host a
traditional single, sealed bid auction for each interval.
Once the auction from the first interval has closed, the
second interval will be auctioned and so on, until all
intervals have been closed.

The bids in this process consist of a desired power uti-
lization curve and the associated price Building Agents
are willing to pay at each breakpoint in the curve. Once
the Campus Agent receives all bids, it aggregates bids
into a single demand curve (price versus power), which
is then compared against a supply curve generated by
Campus Agent.

To generate the Campus Agent supply curve, the
Agent calculates the marginal cost of each unit of energy
over the interval. The marginal cost has two components
1) the cost of energy consumed and 2) a higher demand
charge. Given these factors, the supply curve can be
constructed. This curve can then be compared to the
aggregated bid curve in order to compute the clearing
price, the point of intersection of the two curves, as
indicated in Figure 2. This is the point at which the
buildings have agreed to purchase power from the cam-
pus at the same power-purchase-price required for the
campus. This clearing price is communicated to each
of the Building Agents, and then the next interval is
auctioned off.
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Fig. 2. Aggregated demand, supply and market clearing price illus-
tration.

III. PRIVACY PRESERVING DECENTRALIZED
PLATFORM

A. Challenge Description

While it is attractive to maximize the utility of the
power profile or lower the peak demand on campus, there
are privacy concerns that need to be considered. With
detailed load profiles for each building revealed, one
could easily find out what activities are being conducted
in the buildings. In order to obtain the awarded activities,
the campus microgrid operator must have the load profile
information for each building and each activity according
to problem (P). One way to preserve privacy is to utilize
decomposition methods.

By dropping the integer constraint (4), we relax Prob-
lem (P) into a new Linear Programming (LP) problem
as given below.
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The standard Lagrangian relaxation method clearly does
not apply in this problem, as the Lagrangian function
above will be unbounded in the iteration process. In
the literature, augmented Lagrangian relaxation is often
introduced to overcome these kinds of issues. By adding
quadratic terms, we then have
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it then has a bounded solution and good convergence
performance.
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Unfortunately, the augmented Lagrangian has two
main drawbacks: Firstly, the quadratic terms introduced
above are not separable. There are effective methods
to address this, such as Alternating Direction Methods
of Multiplier (ADMM), recently well reviewed in [23].
However, this requires local copies of information from
other buildings (privacy concern) and it also has a
large communication overhead and computational bur-
den. Secondly, the quadratic terms result in fractional
elements in . We will show that the LP problem (P1)
has an optimal integer vector  with mild conditions.
However, the benefit of this is lost in the augmented
Lagrangian relaxation approach even though it has the
same objective value.

B. Dual-projected Subgradient Method

In this section, we will develop an information pre-
serving platform based on a novel decomposition algo-
rithm. The key idea is to find the subgradient direction
based on the KKT stationarity condition. It addresses
the challenge of the unbounded Lagrangian function.
A beauty of the proposed method is that we could
effectively get an integer solution. As stationarity condi-
tion results in constraints on dual variables, we call the
proposed approach Dual-projected Subgradient (DPS)
method. Furthermore, we discover the analytical solution
to the subproblems and propose an efficient approach to
directly calculate the projected subgradient direction.

Let {\}}ic7 be the optimal multiplier. According

to stationarity condition % = 0, equality equation
>+ A = c holds. Then equation
cop—Y No=0 ®)
t

follows. Therefore, we could eliminate the term ¢ - ¢ —
> ¢ A\e¢ in the Lagrangian function by adding the con-
straint (8). A major benefit is that the objective becomes
bounded. By introducing the optimality condition, we
have a new Lagrangian function for each activity @
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where x; = {;;}jc7 . Problem (P1) can be recast as
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This means that the dual problem (9) is separated into
subproblems that could be solved independently by each
Agent or building. Lagrangian multipliers are updated
via

AFL=TIAF 0% Y "N "l py)), (10)
(]

where o is the step size, and II(-) denotes projection
on the set A. We will show how to efficiently solve
subproblems and attain the projection in Section III-D.
The proposed algorithm is summarized below.

Algorithm 1 Dual-projected Subgradient Method (DPS)

1: Set k = 0, initialize )\O,:co, and tolerance §
2: while [|AF — X*712 > 5 do

3 for i < 1to I do

4: € arg ming, ¢y, Li(Ti, AF)
5: end for

6 Update AR+ according to (10)

7 k+—k+1

8: end while

One could choose different stopping criteria or step
size. Broadly speaking, DPS method is a variant of
the subgradient method based on the KKT stationarity
condition. There is rich literature on the convergence of
subgradient method [24]. Those convergence analyses
apply to the DPS method as well.

C. Information Preserving

In the proposed platform, information broadcast can
be in any aggregation level. The detailed activity load
profiles, i.e. P;;; and u; ;, are concealed so that privacy
is protected.

According to Algorithm 1, one only needs the value of
total load in Step 6. Activities thus can be clustered into
different groups for the aggregation purpose. For exam-
ple, in a community with multiple buildings, Building b

submits
k & k p. .
Dy, = E sz'jpmt
1€y

at iteration k, where 7 is the set of activities in build-
ing b. Only Dl’ft, the intermediate aggregated load for
Building b, is disclosed or broadcast. When the algorithm
converges, it reaches globally optimal even the detailed
load profiles, i.e., P;;; and u;, are not disclosed.

Furthermore, two or more agents can reach an agree-
ment to manipulate the aggregated data for more pro-
tection. For example, Building b and b’ can respectively
submit

k k k k
Dy — &y and - Dy + &y,

-
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Fig. 3. Framework of decentralized platform. Building Agent submits
value of aggregated load D;jt = Zielb mij,‘jyt anonymously. The
multiplier is updated with aggregated campus-wide load by third party
or Building Agent depending on settings.

where §{fb, is a random perturbing noise. The algorithm
DPS still converges as

(D;ft - fl’fb’) + (D;f’t + fl]fb’) = D{bct + Dl]f’tv

which does not affect the second term in equation (10).
In other words, the algorithm works as long as perturbing
noises are zero-sum. It is noted that DY, is only used
for calculating the campus-wide aggregated load, hence
we do not need the identity information and it can be
submitted anonymously.

To solve the optimization problem in Step 4 of Algo-
rithm 1, each agent will need information of {\f},cr.
Figure 3 illustrates a way of information broadcasting,
where multiplier update only needs information of the
last multiplier and the aggregated campus-wide load at
iteration k.

D. Subproblem Minimization and Multiplier Update
L;(x;, A¥) minimization problem has an analytical
solution according to lemma below.

Lemma 1. Given multiplier A*, we have objective value

min L;(x;, A") = grél‘rjl{—u” + ;/\t P} (1)

x; €EX;

If j* € argminjej{fuij +> )\fPijyt}, then a mini-
Jj=17"

mum is
,fL'kJrl = 17
Y 0, jeJ\j"

The proof is straightforward. To minimize £;, we only
need to find an index j of minimal value in the {—u;; +
S A Pijaties-

An important benefit is that we always have an integer
minimum that is a feasible solution to original problem
(P). A concern is the optimality gap and to address this
we propose the lemma below.

12)

Lemma 2. Let A™ be the optimal multiplier for (P1).
Let f* and ¢* be the objective value of (P) and (P1),
respectively. If

J € argmin{—u;; + Z Ay Piji}
j€T: t

13)
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Fig. 4. Illustrative 3, max{A\¢ — y, 0} with Ao > A1 > As.

is unique for all ¢ € Z, then f* = ¢*.

It can be proved based on the uniqueness of La-
grangian function. In practice, the uniqueness for most
1 holds generally.

A remaining question in the proposed algorithm is
how to efficiently find the projection of the subgradient
on A. Fortunately, it is readily determined as shown
below.

Lemma 3. Given set A and a direction A = M+ aF
Do Zj xfflet}teT, projection II(A) on A is

)\k+1 S\t - y*
0

and y* is an unique solution to

Zmax{:\t —-y,0} =c.
¢

if y* < A

~ 14

Readers are referred to Appendix for the proof of
Lemma 3. An illustrative example of attaining y*
shown in Figure 4. It is observed that 3°, max{\; —y, 0}
is a piecewise function of y with breakpoints at At
The projection is thus readily determined with simple
calculation.

IV. TRANSACTIVE CONTROL WITH VOLTTRON

VOLTTRON provides an environment for Agent-
based control and serves as a single point of contact for
interfacing with devices (rooftop units, building systems,
meters, etc.), external resources, and platform services
such as data archiving and retrieving [25]. Among all
the components, the Information Exchange Bus (IEB),
or message bus is central to the system. All VOLTTRON
Agents and services communicate through the message
bus using the publish/subscribe (pub/sub) paradigm over
a variety of topics. This provides a single interface
that abstracts the details of devices and Agents from
each other. Agents can use their own approaches and
criteria in developing and executing various plans, and
interacting with control devices by using the Actuator
Agent to schedule and send commands. This allows
VOLTTRON Agents to send control requests to vari-
ous control devices connected to the message bus, e.g.
using a Building Automation System (BAS) to manage
building energy loads.
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Based on the above features, the Campus and Building
Agents are developed for the DTC and CTC approaches
in Phase 1 (Figure 5) and Phase 2 (Figure 6) respectively.
With the customized Agent configuration file, the Build-
ing Agents may easily locate or link to specific building
resources.

In each period, Building Agents generate their bids
based on forecasted demand. In the DTC framework
shown in Figure 5, the Building Agents are the only
participants who solicit bids, optimizing and deciding
which activities are selected. In Phase 2, the Campus
Agent is the control center who is responsible for
clearing the energy markets and informing participating
Building Agents of the outcome.

V. CASE STUDIES

We implement the proposed CTC and DTC strategies
using facilities on the CWRU campus grid with a mix
of measured and simulated energy data to illustrate their
performance. CWRU buys its electricity from the Med-
ical Center Company (MCCo), a district energy service
provider. In this example, three campus buildings, i.e.,
MSASS, Olin and White, are participating in a 24-hour
transactive control process. The electricity consumption
of buildings are measured every 15-min by the building
smart meters, and those of White building are simulated
due to a lack of measurements. The Campus Agent is
linked to MCCo and the Building Agents are linked to
MSASS, Olin and White respectively. By packaging,
installing and starting these Agents with customized
configuration files, they are simultaneously running on
the VOLTTRON platform.
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White and awarded power for (d) MSASS (e) Olin and (f) White

Each Building has 500 different activities that span
time periods from 15-min to one-hour all during the day.
Three bids are generated for each activity including a
forecasted power-time curve with a 15-minute time step,
along with the utility value associated with this power
profile. In this example, for simplicity, the utility is
calculated as the energy consumed over the time period.
The coefficient c is set to 0.1, and both the CTC and
DTC approaches provide very close results. Hence, we
present the results from the DTC approach when ¢ = 0.1
unless specified otherwise.

Figure 7 demonstrates the density of 500 bidding
activites generated by each building respectively, as well
as the final awarded power curve after optimization in
the 24-hour planning period. A larger density of the
bidding activities around the middle of the day can
be observed, which implies that at that period more
activities want to take place resulting in higher peak
demand. The awarded power curves are the accumu-
lation of the winning activities. By summing up these
curves for all three buildings we have the total optimal
awarded power curve given in Figure 8, whose peak
can be reduced by as much as 48.92%, compared to
a typical solution without optimization. The total utility,
however, increases 20.73% indicating increased benefits
to the campus while the peak power has been efficiently
managed.

With different coefficient ¢, various results are de-
picted in Figure 9. An interesting observation is that
when c increases, the load curve changes to be more
flattened at the peak. When higher weight is imposed to
peak load term in the objective function, the proposed
approach staggers load activities to avoid load spikes at
any period as much as possible.

Figure 10 shows the convergence performance when
c = 10. After around 25 iterations, the primal objective
is attained based on the decentralized approach and
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is 0.3%.

Convergence performance. When ¢ = 10, the optimality gap
When ¢ = 0.1, the optimality gap is 0%.

the optimality gap is about 0.3%. The optimality gap
decreases to 0 when c is changed to 0.1, validating
Lemma 2. Compared to solving the MILP using Gurobi
in the CTC approach, the proposed DPS method in the
DTC approach is more efficient as shown in Column
“c = 10” of Table I. While the MILP solver requires 100
seconds to get a solution with optimality gap 0.072%
using Branch-and-cut method, the proposed algorithm
attains a similar solution in less than one second. It is
noted that the computational burden is linear with the
number of activities or buildings, so the DTC approach is
scalable and can be applied to large-scale systems. Table
II demonstrates the percentage of the optimal solution
difference between MILP and DPS methods. The binary
optimal solutions x are same when ¢ = 0.1 and slightly
different when ¢ = 1 and ¢ = 10.

With the energy to support activities over the planning
period, the buildings participate in auctions to acquire
any remaining peak power in Phase 2 according to their



TABLE I
SOLUTION TIME COMPARISON

Approach c=01] c=1 c=10
Centralized (MILP) 0.049s 0.077s | 100.028s
Decentralized (DPS) 0.021s 0.022s 0.022s

TABLE I1

PERCENTAGE OF DIFFERENCE IN OPTIMAL SOLUTION &

Scenarios c=0.1 c=1 c=10
Percentage of Difference in @ 0% 0.22% 1.64%
300 ®)
====Bidding Price ====Bid
Market Clearing Price 250 — Awarded
= <200
Z Z
3 5 150
s
) H 2.100
L
20 5

8 10 12 14 16 18 8 10 12 14 16 18
time (hour) time (hour)

Fig. 11. Phase 2 (a) bidding price and market clearing price; (b) bid
and awarded power for MSASS building.

real demand at 15-minute intervals throughout the day.
Figure 11 shows the bidding prices versus market clear-
ing prices, and the bidding power versus awarded power
respectively for the MSASS building. Blank sections
indicate periods when additional power is not needed.
It is observed that at the peak of campus grid (between
around Hours 10 and 15) less energy is awarded as a
result of higher marginal cost; for other periods with
lower total power demand, the opposite is true.

In order to test the scalability of the proposed ap-
proach, we add pseudo data and expand the system
to 100 buildings. In the MILP approach, we set the
MIPGap to 0.1%. Table III presents the solution time and
optimality gap for MILP and DPS approaches. The DPS
method generally converges around 20 iterations. As
shown in column “Time”, the computational advantage
of DPS approach becomes even larger when the system
size increases. For example, when there are 10 buildings,
DPS approach converges in 0.046 seconds. In contrast,
the solution time of MILP approach is 11.78 seconds
being three orders of magnitude more time than DPS
one. When the system has 100 buildings, DPS approach
could find a solution within 0.4 seconds, but MILP
approach requires more than 1456.4 seconds being four
orders of magnitude more time than DPS one. On
the other side, column “Opt. Gap” shows that solution
quality of MILP approach is slightly better than that
of DPS approach. The numerical testing shows that
the optimality gap difference becomes smaller with the
increase of building numbers. In practical applications,
these difference is acceptable given the overwhelming
computation and privacy advantage. It is noted that data

TABLE III
COMPARISON OF COMPUTATION PERFORMANCE WITH DIFFERENT
S1ZE SYSTEMS

MILP DPS
# of Buildings  Opt. Gap  Time (s) Opt. Gap  Time (s)
3 0.099% 2.24 0.3% 0.022
10 0.03% 11.78 0.18% 0.046
30 0.075% 110.2 0.094% 0.12
50 0.039% 334 0.081% 0.21
100 0.024% 1456.4 0.062% 0.4

in Table III is based on the step size of 1.0 for DPS
approach. By tuning the step size, we could get even
better solution quality for DPS approach. For example, in
the system with 100 buildings, by changing the step size
to 0.1, DPS approach finds the solution with optimality
gap 0.02% in one seconds.

VI. CONCLUSION

This paper presents a transactive model together with
a decentralized approach, to enable buildings in an
active distribution system or campus to cooperatively
manage the peak demand and maximize the utility of
energy in supporting building operations. The decen-
tralized approach allows buildings to handle the trans-
active process and decisions through bidding activities.
The decentralized platform is based on a novel decom-
position algorithm that preserves detailed load profile
information. Selected buildings on a real-world campus
grid are used to evaluate the proposed approaches with
the Agents developed in the open-source VOLTTRON
software platform. The results show that the peak power
of the campus can be actively and effectively managed,
and we observe that the decentralized approach often has
significant performance in terms of solution time than
the centralized approach and also has a clear advantage
in preserving privacy. Future work will include the
implementation of the proposed Agent-based platforms
on other distribution systems or microgrids.

APPENDIX A
PROOF OF LEMMA 3

Proof. Finding the projection is equivalent to solve the
optimization problem below

min  1/2][A = A|”.
AeA
According to KKT condition, we have
DA =c¢ AL 20, 87 =0, BN =0,
t

()\I—S\tﬂ-y*—ﬁfzo

We eliminate (3}

D A=c A =0, (A = M +y)A =0,
t

(Af — ) +y* > 0.



If * < A, then Af > 0 according to the third equation.
We have A\ — A, + y* = 0 following complementary
slackness condition. Hence, A} = e — oyt if gt < Ab.
If y* > A;, then we have A\; = 0 according to the
complementary slackness condition. Hence,

"0 if y* >\

As Y, A\ =c,wehave ), max{j\t— y*,0} = ¢, which
has an unique solution as ), max{\; —y,0} € [0, 4+00)
is a monotonously decreasing function of y. O
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