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Existing classifications of snout shape within Crocodylia are supported by functional studies, but ecological surveys 
often reveal a higher than expected diversity of prey items within putatively specialist groups, and research into 
bite force and predation behaviour does not always reveal significant differences between snout shape groups. The 
addition of more distantly related crocodyliforms complicates the ecomorphological signal, because these groups 
often occupy a larger area of morphospace than the crown group alone. Here, we present an expanded classification of 
snout shapes and diets across Crocodyliformes, bringing together geometric morphometrics, non-hierarchical cluster 
analyses, phylogenetic analyses, ancestral state reconstructions, ecological surveys of diet, and feeding traces from 
the fossil record to build and test predictive models for linking snout shape and function across the clade. When 
applied to living members of the group, these new classifications partition out based on differences in predator body 
mass and maximal prey size. When applied to fossils, these classifications predict potential prey items and identify 
possible examples of scavenging. In a phylogenetic context, these ecomorphs reveal differences in dietary strategies 
and diversity within major crocodyliform clades. Taken together, these patterns suggest that crocodyliform diversity, 
in terms of both morphology and diet, has been underestimated.

ADDITIONAL KEYWORDS:  behaviour – Crocodylia – Crocodyliformes – feeding adaptation – morphometrics – 
palaeoecology – palaeontology – prey capture – vertebrate palaeontology.

INTRODUCTION

The evolution of crocodylian snout shape is often 
presented as an elegant, straightforward case study 
of the interplay of form and function in the fossil 
record. Slender-snouted forms ate fish (Iordansky, 
1973; Langston, 1973; Pooley, 1989; Busbey, 1995), 
boxy-headed forms ate hard prey (Carpenter & 
Lindsey, 1980; Salas-Gismondi et al., 2015), and broad, 
triangular-shaped forms did not specialize and ate 
almost anything, depending on their size and ontogeny 
(Brochu, 2001). The addition of fossil forms, which 
exhibit snout morphologies no longer represented in 
the present (Brochu, 2001; Wilberg, 2017), adds more 
ecomorphs to this story. Ziphodont crocodyliforms were 
more terrestrial, as were their prey items (Brochu, 
2001, 2012). Duck-faced crocodyliforms might have 

had a gular pouch and, possibly, exhibited filter feeding 
(Langston, 1965; Salas-Gismondi et al., 2015; Cidade 
et al., 2017). These interpretations have been bolstered 
by observations that sympatric crocodyliform species 
often separate out into different snout shape classes 
and body sizes, presumably to minimize competition 
for resources (Brochu, 2001; Marioni et al., 2008; Irmis, 
2013; Salas-Gismondi et al., 2015; Adams et al., 2017b). 
These ecomorphs are so widely accepted that they are 
used as analogues for interpreting the diet of distantly 
related groups, including phytosaurs (e.g. Hunt, 1989; 
Murry, 1989; Drumheller et al., 2014), choristoderes 
(e.g. Katsura, 2004) and dinosaurs (e.g. Rayfield et al., 
2007; Cuff & Rayfield, 2013).

The recognition of this pattern has spurred 
increased research into crocodyliform snout shape in 
morphological, functional and phylogenetic contexts 
to gain a better understanding of the major ecological 
trends in the clade (Busbey, 1995; Brochu, 2001; Gignac *Corresponding author. E-mail: sdrumhel@utk.edu
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& Erickson, 2016; Gignac & O’Brien, 2016; Pierce et al., 
2008; Sadleir & Makovicky, 2008). However, some 
unexpected results complicate the direct causal link 
between feeding strategy and snout shape. Surveys 
of modern crocodylian diets have revealed more 
diversity of prey items among members of specialist 
snout ecomorphs than previously thought (e.g. Webb 
& Manolis, 1983; Tucker et al., 1996; Selvaraj, 2012). 
Both snout shape and diet change greatly during 
crocodylian ontogeny, further complicating this 
observed pattern (e.g. McIlhenny, 1935; Erickson et al., 
2014; Gignac & Erickson, 2015; Iijima, 2017). Recent 
morphometric analyses that sample only within the 
crown group do find similar snout shape groupings 
(Pierce et al., 2008; Sadleir, 2009), but expanding 
sampling further into Crocodyliformes reveals a wider 
diversity of rostral morphologies, some of which do 
not fit nicely into existing ecomorphs (Wilberg, 2017). 
Although some aspects of cranial shape do not always 
reflect dietary preferences in other reptilian groups 
(e.g. Foth et al., 2017), finite element analyses find 
real differences between how the snout ecomorphs 
react to forces associated with prey acquisition and 
consumption, suggesting different preferences for prey 
size, if not prey taxon (McHenry et al., 2006; Pierce 
et al., 2008, 2009). However, in vivo bite force data do 
not differentiate between these ecomorphs. Instead of 
partitioning into higher bite forces for durophagous 
and macrocarnivorous taxa and lower bite forces for 
putatively piscivorous taxa, crocodylian bite forces scale 
in a tight, linear nature with body mass, resulting in a 
seeming overperformance within the niches of several 
species (Erickson et al., 2012; Gignac & Erickson, 
2016; Gignac & O’Brien, 2016). Additionally, a survey 
of crocodylian death roll behaviour, long associated 
with large-bodied generalist groups, found that 
nearly all extant members of the group, including all 
slender-snouted and most small-bodied, boxy-headed 
species, perform this behaviour (Drumheller et al., 
2019). These results pose interesting complications 
to previous associations between snout shape and 
function, especially when applied to extinct taxa.

Here, we revisit patterns of crocodyliform snout 
shape and inferred diet throughout the history of the 
clade (Brochu, 2001), building upon the most recent 
phylogenies (Brochu, 2012; Brochu et al., 2012; Pol 
et al., 2014; Wilberg, 2017; Adams et al., 2017b), and 
applying new morphometric analyses and a meta-
analysis of published surveys of modern crocodylian 
body sizes and diets (e.g. Webb & Manolis, 1983; 
Tucker et al., 1996; Selvaraj, 2012), supplemented with 
direct and indirect evidence of trophic interactions 
in the fossil record (e.g. Drumheller & Brochu, 2014, 
2016 and references therein), in order to constrain 
the relationship between form and function of 

crocodyliform cranial shape during the evolution of 
this group more realistically.

MATERIAL AND METHODS

Morphometric analysis

Taxa were sampled across the temporal range of 
Crocodyliformes. Included taxa were represented 
by at least one skull possessing at least a complete 
right or left half (N = 99). To increase sample size, 
additional specimens showing obvious postmortem 
deformation impacting their shape in dorsal view 
or those represented by less complete material were 
represented by reconstructions (N = 31). This yielded 
a total sample size of 130 (for specimen information 
and references used, see Supporting Information, 
Table S1). Specimens were digitized from photographs 
in dorsal view using tpsDIG2 v.2.18 (Rohlf, 2010). 
Landmarks and semilandmarks were placed on the 
right side only (when only the left side was preserved, 
the photographs were mirrored). Six landmarks 
were chosen to characterize important aspects of 
cranial shape, and 24 sliding semilandmarks were 
used to capture the shape of the snout (18 sliding 
semilandmarks) and supratemporal fossa (six sliding 
semilandmarks; for landmark scheme, see Fig. 1). 
Digitization of all specimens was performed by E.W.W. 
All further analyses were performed in R (R Core 
Team, 2017).

To analyse shape variation of the cranium and avoid 
potential error introduced by the superimposition 
of unilateral landmarks on bilaterally symmetrical 
organisms, we followed the suggestion of Cardini (2016, 
2017) and mirrored the right-side landmarks onto the 
left side to generate fully symmetrical ‘total skulls’. 
Mirroring was performed using the mirrorfill function 
in the R package paleomorph (Lucas & Goswami, 
2017). Given that this package was designed for three-
dimensional data, some additional manipulation of 
our data was required before mirroring. First, 28 
additional landmarks were added to correspond to the 
unsampled left-side landmarks and semilandmarks. 
These were given initial values of ‘NA’ to be replaced 
by the mirrored coordinates. An artificial third 
dimension (Z-coordinate) was then added to the 
two-dimensional data. To identify accurately the 
midline plane across which to mirror, we added an 
additional five evenly spaced points to the midline 
between landmarks 1 and 2. Z-Coordinate values for 
the midline landmarks were randomly sampled from 
a normal distribution (mean = 0; σ = 50) based on 
recommendations from the package author (T. Lucas, 
pers. comm.). The Z-coordinates of the remaining left-
side landmarks were assigned a value of zero. After 
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mirroring, each landmark configuration was inspected 
visually to ensure that mirroring worked properly. 
The Z-coordinates and extra five midline landmarks 
were removed from the data file, yielding symmetrical 
two-dimensional landmark configurations of the ‘total 

skulls’, with ten landmarks and 48 semilandmarks 
(Fig. 1).

Landmark configurations were superimposed by 
generalized Procrustes superimposition (Gower, 1975; 
Rohlf & Slice, 1990) in the R package geomorph (Adams 
& Otárola-Castillo, 2013; Adams et al., 2017a) to 
remove variation attributable to position, orientation 
and scale. Semilandmarks were allowed to slide along 
lines tangent to the curve during superimposition 
to minimize bending energy (Bookstein, 1997). 
The aligned Procrustes shape configurations were 
subjected to a principal components analysis (PCA) of 
the covariance matrix to explore shape variation in the 
dataset.

Defining groups

To determine the number of cranial shape groups 
present in the data, we used the non-hierarchical 
clustering algorithm partitioning around medoids 
(PAM; Kaufman & Rousseeuw, 1990). Given that 
these groups are meant to reflect feeding strategies, 
we included data on the major morphological variance 
within the skull and information related to dentition. 
Scores from the first two principal component (PC) axes 
were used as an approximation of overall skull shape. 
These axes were selected as significant based on the 
broken stick method (Frontier, 1976; Jackson, 1993) as 
implemented in the R package PCDimension (Coombes 
& Wang, 2018) and account for the overwhelming 
majority of cranial variation (88%). The dentition of 
most crocodyliforms consists of widely spaced, conical, 
monocuspid teeth. However, a number of lineages or 
taxa developed dentition that deviates from this trend 
and is likely to indicate feeding strategies functionally 
different from those of modern crocodylians (Ősi, 
2014), including mediolaterally compressed, serrated 
teeth (ziphodont dentition) and complex, multicusped 
and/or heterodont dentition. To incorporate dental 
characteristics into our groupings, we scored each taxon 
for three binary dental characters: (1) heterodonty; (2) 
ziphodonty; and (3) numerous small, peg-like teeth 
of uniform size, referred to afterwards as isodonty. 
Heterodonty was scored based on characterizations by 
Ősi (2014 for taxa exhibiting functional heterodonty-
with or without occlusion). We chose to exclude taxa he 
deemed heterodont owing to the presence of bulbous 
posterior teeth (globidonty), because this tooth shape 
shows continuous variation among living and extinct 
crocodylians, and determining the cut-off between 
blunt and anvil-like is highly subjective (Brochu, 
1999; D’Amore et al., 2019). Isodonty is known in a few 
extinct taxa that deviate from living crocodylians in 
a number of ways. Possession of isodont dentition is 
associated with broad, elongate, flat skulls and gracile, 
U-shaped mandibles, which has led researchers to 
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Figure 1.  Landmark scheme for the morphometric 
analysis. Black circles represent landmarks; blue circles 
represent sliding semilandmarks. Numbered landmarks 
are as follows: 1, posterior midline of skull table; 2, anterior 
midline; 3, anterior-most point of orbit; 4, posterior-most 
point of quadrate–quadratojugal suture in dorsal view; 
5, point on cranial margin where snout begins (directly 
lateral to landmark 3); 6, anterior-most point of parietal–
squamosal suture on the margin of the supratemporal 
fenestra. All landmarks and semilandmarks on the left side 
are reflections of landmarks on the right side.
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propose a method of bulk feeding followed by straining 
or filtering prey from the water (e.g. Nopcsa, 1926; 
Langston, 1965; Riff et al., 2010; Cidade et al., 2017).

Given that our data included both continuous and 
discrete variables, we transformed our data into a Gower 
dissimilarity matrix (Gower, 1971) using the daisy 
function of the R package cluster (Maechler et al., 2017). 
This dissimilarity matrix was then subjected to PAM 
clustering using the pamk function of the R package fpc 
(Hennig, 2018), using the Calinski–Harabasz (CH) index 
(Calinski & Harabasz, 1974) simultaneously to determine 
the optimal number of clusters. Although the use of an 
optimality criterion to determine the number of clusters 
is often treated as an ‘objective’ method for finding groups 
within data, different optimality criteria identify different 
numbers of clusters and/or differing cluster membership. 
Consequently, the choice of optimality criterion, in a 
way, implicitly defines the number of clusters found 
(Hennig & Liao, 2010). We therefore explored different 
treatments of our data (e.g. PAM clustering of PC scores 
only) and an alternative optimality criterion [average 
silhouette width (ASW); Kaufman & Rousseeuw, 1990], 
with the ultimate aim of defining groups with reasonable 
morphological differentiation.

To test the effects of allometry on our shape 
groups, we performed an additional regression of the 
Procrustes shape scores on the logarithm of centroid 
size in the R package geomorph. We then performed a 
PCA on the residuals of this regression. We reran the 
PAM cluster analysis on the first two PC axes from the 
non-allometric residuals plus the dentition characters.

Ancestral state reconstruction

To evaluate the evolution of crocodyliform cranial 
shape in a phylogenetic context, we first reconstructed 
ancestral states. We assembled an informal supertree 
based on several recently published topologies (Brochu, 
2001, 2012; Brochu et al., 2012; Pol et al., 2014; Adams 
et al., 2017b; Wilberg, 2017). To provide a time scale 
for the tree, we compiled stratigraphic ranges of all 
taxa (Supporting Information, Table S1) from the 
Paleobiology Database (http://paleobiodb.org) accessed 
via FossilWorks (http://fossilworks.org) on 26 November 
2018. Trees were scaled using methods described by 
Wilberg et al. (2019). The time-calibrated tree file is 
available as Supporting Information (Nexus tree file). 
Ancestral states for internal nodes were reconstructed 
in Mesquite v.3.51 (Maddison & Maddison, 2015) 
using maximum likelihood under a Markov k model.

Feeding ecology/palaeoecology

The assignation of dietary classifications to extant 
and extinct species within this dataset required 
common ground to be found between ecological and 

palaeoecological studies. Surveys of diet among the 
living members of Crocodylia are heavily biased 
towards large-bodied groups that interact regularly 
with humans, related either to conflict (attacks on 
humans) or to economics (the skin and meat trade). 
This has resulted in Alligator  mississippiensis 
[Daudin, 1801 (1802); Rowe et al., 1999], Crocodylus 
niloticus (Laurenti, 1768) and Crocodylus porosus 
(Schneider, 1801; Tzika & Milinkovitch, 2008) often 
being treated as the de facto model organisms for 
the clade as a whole. This tends to mask dietary and 
behavioural diversity within the clade, because in 
addition to being large-bodied species, all three also 
exhibit snout shapes and behaviours associated with 
a generalist lifestyle. Other species have not enjoyed 
the same intensity of research, but efforts are being 
made to remedy this, especially given that several 
members of other snout ecomorphs are threatened or 
endangered, and understanding the ecology of these 
groups is crucial for conservation efforts (e.g. Webb & 
Manolis, 1983; Tucker et al., 1996; Thorbjarnarson & 
Wang, 2010; Selvaraj, 2012).

When possible, we assessed the diet of modern groups 
based on large-scale surveys of diet across different ages 
and geographical ranges (e.g. Santos et al., 1996; Antelo 
et al., 2008; Borteiro et al., 2009; Thorbjarnarson & 
Wang, 2010; Platt et al., 2013; Sam et al., 2015). Those 
studies drew from direct observations of gut contents, 
trophic interactions and droppings, and ranged in scope 
from new data collected from 22 animals (Pauwels et al., 
2007) to a meta-analysis of studies covering a total of 
1369 animals (Nifong & Silliman, 2013). Large-scale 
dietary surveys were available for 15 of the 23 extant 
species of crocodylian included in this analysis, and the 
remaining eight represent some of the most critically 
endangered species and/or species only recognized 
recently as distinct species rather than subspecies (e.g. 
Ross & Magnusson, 1989; Thorbjarnarson & Wang, 2010; 
De Silva et al., 2011). To capture the full spectrum of diet, 
especially within more poorly studied groups, smaller-
scale case studies and observations recorded in the 
grey literature were also included (e.g. McIlhenny, 1935; 
CrocBITE, 2013). Finally, only studies documenting 
predation rather than scavenging were included, because 
scavenged remains do not necessarily reflect the animals 
a predator could take (e.g. gharials scavenging humans, 
described by Pooley et al., 1989). Details and citations 
for all referenced analyses have been gathered into the 
Supporting Information (Table S2).

In the fossil record, dietary preferences almost always 
have to be observed indirectly, through functional studies 
of anatomy (e.g. Gignac & Erickson, 2016; Gignac & 
O’Brien, 2016) and inferences drawn from bite marks, 
gut contents and coprolites (e.g. Drumheller & Brochu, 
2014, 2016). Among crocodyliforms, gut contents and 
coprolites are usually uninformative, owing to the highly 
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destructive nature of the digestive process within this 
clade (Fisher, 1981), leaving bite marks as the primary 
type of usable trace fossil evidence, with a few notable 
exceptions (e.g. Langston & Rose, 1978; Alexander 
& Burger, 2001). Although initially thought to be 
uncommon (Carpenter, 1998; Jacobsen, 2001), vertebrate 
bite marks are becoming more well documented, 
stemming from the availability of modern surveys to aid 
in initial identification and interpretation (e.g. Njau & 
Blumenschine, 2006; Milàn et al., 2010; Westaway et al., 
2011; Baquedano et al., 2012; Drumheller & Brochu, 
2014, 2016) and increasing numbers of case studies 
documenting patterns of bite mark preservation in the 
fossil record (e.g. Noto et al., 2012; Boyd et al., 2013; 
Botfalvai et al., 2014, 2015; Hastings et al., 2015; Scheyer 
et al., 2018; Gônet et al., 2019).

Data on diet in the fossil record have obvious 
limitations in comparison to modern surveys. The 
crocodyliform feeding process itself is a strong 
taphonomic filter, and only larger, more durable or 
discarded portions of prey skeletons would be expected 
to survive (e.g. Davidson & Solomon, 1990; Njau & 
Blumenschine, 2006; Noto et al., 2012). When available, 
we include other indirect sources of trophic information 
(Alexander & Burger, 2001), but the palaeontological 
dataset remains heavily biased. Nevertheless, these 
feeding traces provide key insights into the feeding 
behaviours of crocodyliforms with morphotypes no 
longer represented among extant groups.

Across both extant and extinct clades, ontogeny is 
another complicating factor when characterizing diet 
within species. Changes in snout morphology and diet 
during growth and development are well documented 
among modern crocodylians (e.g. McIlhenny, 1935; 
Erickson et al., 2014; Foth et al., 2015; Gignac & 
Erickson, 2015). In order to limit the effects of ontogeny 
in the present study, we characterized crocodyliform 
dietary preferences by exploring patterns of maximal 
predator and prey body mass within and across snout 
ecomorphs in order to assess prey size specialization 
among adult animals only. Crocodyliform and prey 
maximal body masses were taken from the literature 
(e.g. Trutnau & Sommerlad, 2006; Jones et al., 2009) 
or, if they were not available, were predicted using 
a regression of body length to body mass based on 
measurements reported by Drumheller & Brochu 
(2016). These values and their sources are presented 
in the Supporting Information (Table S2). To address 
the biased nature of the fossil dataset, initial analyses 
were performed using the extant species only. Ensuing 
patterns and their statistical significance were 
explored using ordinary least squares regressions 
and an analysis of covariance (ANCOVA) in the 
software package PAST v.3.20 (Hammer et al., 2001). 
The resulting predictive models provided a basis of 
comparison for the fossil dataset.

RESULTS

Morphometric analysis

The first five PC axes collectively summarized > 95% 
of the variance (Supporting Information, Table S3), 
although only the first two were deemed significant 
based on the broken stick method. These two axes 
defined a lower-dimensional subspace used to describe 
the cranial morphospace qualitatively (Fig. 2). The first 
PC axis primarily involved relative snout length, with a 
component of snout width and supratemporal fossa size 
and shape. The second PC axis included aspects of snout 
width, supratemporal fossa size, mediolateral position 
of the orbits, and festooning of the snout margin.

The PAM cluster analysis yielded seven cranial 
shape categories: macro-generalist, generalist, 
slender longirostrine, stenorostrine with large 
supratemporal fenestrae (STF), ziphodont, duck-faced 
and brevirostrine heterodont (Fig. 2). See Table 1 for 
qualitative descriptions of each category. Justifications 
for these names are discussed below, in the ‘Feeding 
ecology/palaeoecology’ section. See the Supporting 
Information (Table S1) for an exhaustive list of group 
assignment. Cluster analysis of PC scores from the first 
two PC axes (without dentition characters) resulted 
in only two groups (essentially long, slender-snouted 
taxa vs. all others). The PAM cluster analysis of the 
PC scores plus dental characters, but using the ASW 
optimality criterion, likewise divided the data into only 
two groups based primarily on snout length. Both these 
grouping schemes placed taxa from disparate ends of 
the morphospace into the same group [e.g. the tiny 
herbivorous notosuchian Simosuchus (Buckley et al., 
2000) grouped with the giant, duck-faced, potentially 
bulk-feeding caiman Mourasuchus (Price, 1964)] and 
thus seemed unhelpful for parsing diet.

Results of the allometrically corrected analyses were 
highly congruent with those of the primary analysis. 
The effect of allometry was significant (r2 = 0.2649; 
P = 0.001), but the primary aspects of morphology 
described by the first two PC axes were very similar 
(accounting for 84.7% of the variance). The PAM cluster 
analysis of these allometrically corrected data resulted 
in eight cranial shape categories. Most matched exactly 
with those defined in the primary analysis. However, the 
allometry-corrected analysis subdivided the generalist 
and macro-generalist categories into three groups: 
long-snouted generalists; a group of moderate snout-
length generalists and narrower/longer-snouted macro-
generalists; and broad-snouted macro-generalists. 
These results suggest that our PAM categories are not 
strongly affected by allometry (for an exhaustive list of 
group assignments from the allometrically corrected 
analyses, see the Supporting Information, Table S4).

For the remainder of this work, we focus on the 
non-allometrically corrected cranial ecomorph groups. 
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We prefer this grouping scheme for two primary 
reasons: (1) given the large phylogenetic scope of 
our data, it is very likely that different allometric 
scaling relationships apply to different clades, and a 
single size–shape correction might be affecting some 
groups excessively (e.g. Notosuchia; some particularly 
small taxa possessing short, triangular snouts 
shift dramatically across the morphospace to areas 
representing highly elongate, slender snouts); and (2) 
size-related changes in shape are likely to be relevant 
to feeding.

Feeding ecology/palaeoecology

Of the cranial shape classifications defined in our 
geometric morphometric and cluster analyses, 

extant species occupied only three of the seven 
ecomorphs: macro-generalists, generalists and 
slender longirostrine. Ordinary least squares 
regressions revealed that significant overlap between 
groups occurred in smaller-bodied taxa, but that the 
ecomorphs did separate out as body size increased 
(ANCOVA, P = 0.003319). These linear regressions 
and their corresponding 95% confidence intervals 
and r2 values are reported in Figure 3. We name the 
first group macro-generalists, because these species 
exhibit the ‘generalist’ morphotype (sensu Brochu, 
2001) and are capable of taking prey species with a 
higher body mass than themselves. Species within 
the generalist morphotype can take prey items of 
roughly equal mass to themselves, whereas slender 
longirostrine taxa are small-prey specialists, which 
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Figure 2.  Comparative cranial morphospace on principal components (PC) 1 (69.8% of variance) and 2 (18.2% of 
variance). Polygons enclose groups as defined by partitioning around medoids (PAM) cluster analysis of morphometric and 
dental morphology data. Exemplar skulls are shown for each group, as follows: brevirostrine heterodont, Mariliasuchus 
amarali (Carvalho and Bertini, 1999); macro-generalist, Alligator mississippiensis; generalist, Crocodylus niloticus; duck-
faced, Mourasuchus atopus (Langston, 1965); slender longirostrine, Gavialis gangeticus (Gmelin, 1789); stenorostrine large 
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1937).
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only eat prey items that are substantially smaller 
than themselves.

Ancestral state reconstruction

Results of the ancestral state reconstruction 
illuminated some general trends in the evolution 
of crocodyliform cranial morphotypes over time (for 
complete results, see Supporting Information, Fig. 
S1). Our analysis reconstructed slender longirostrine 
as the ancestral state for the basal node. However, we 
interpreted this result with some scepticism because 
this is almost certainly attributable to the lack of 
additional outgroup taxa (none of which possesses 
an elongate slender snout). The ancestral state for 
Neosuchia was reconstructed as generalist, and this 
remained the ancestral state for the nested clades 
Eusuchia and Crocodylia. Within Crocodylia, both 
Alligatoroidea and Crocodyloidea were ancestrally 
generalist. However, the evolution of cranial ecomorphs 
within these groups was markedly different (Fig. 4). 
There was a strong tendency within Alligatoroidea 
towards macro-generalist cranial shapes (with a 
shift to duck-faced in Mourasuchus, and numerous 
reversions to generalist morphotypes), whereas 
crocodyloids were predominantly generalists (with 
some excursions into slender longirostrine and macro-
generalist morphotypes). The ziphodont morphotype, 
with the exception of Dakosaurus (von Quenstedt, 
1856), occurred only in taxa inferred to be terrestrial. 
The stenorostrine large STF morphotype was 
restricted taxa inhabiting marine ecosystems (Wilberg 
et al., 2019 and references therein).

DISCUSSION

Palaeodiet and feeding behaviour

Although several of the snout shape groupings 
recognized in the present study echo previous, 
qualitatively described groups (Brochu, 2001), the 
division of broad- and slender-snouted taxa into 
four separate groups suggests that we have been 
masking morphological diversity by lumping these 
groups together. The significant difference in prey size 
selection among the two generalist ecomorphs also 
suggests that these snout shapes reflect diverging 
feeding and prey selection strategies.

Within the fossil dataset, sample numbers of bite-
marked bones are often extremely small, making it 
doubtful that the palaeoecological data accurately 
reflect maximal potential prey size. However, the 
predictions based on modern groups do provide a 
framework to gain a better understanding of these 
case studies in a broader context. When plotted against 
the extant dataset, the majority of fossil examples fall 
either within or below the 95% confidence interval of 
the mass vs. prey mass regression for each ecomorph 
(Fig. 3). This is the expected pattern for predatory 
behaviour and essentially reflects species eating 
within their expected weight class of prey items.

However, a few fossil case studies fall well above 
the maximal potential prey mass predicted by the 
corresponding regressions and 95% confidence 
intervals for their ecomorph (Fig. 3). Predation and 
scavenging can be difficult to differentiate in the 
fossil record (e.g. Bell & Currie, 2010; Longrich et al., 
2010; Mclain et al., 2018). However, we argue that the 
predictive models based on extant crocodylian prey 

Table 1.  Qualitative descriptions of each cranial shape ecomorph group derived from the PAM cluster analysis

Group name Medoid taxon Description

Brevirostrine 
heterodont

Libycosuchus brevirostris 
(Stromer, 1914)

Brevirostrine; relatively large STF; heterodont dentition

Macro-generalist Caiman crocodilus fuscus 
(Linnaeus, 1758)

Brevirostrine to mesorostrine; generally, a more U-shaped snout

Generalist Brachyuranochampsa eversoli 
(Zangerl, 1944)

Generally, mesorostrine, with a somewhat triangular snout

Stenorostrine,  
large STF

Teleidosaurus calvadosii 
(Eudes-Deslongchamps, 
1866)

Mesorostrine to moderate longirostrine; enlarged supratemporal 
fenestrae; somewhat laterally positioned orbits

Slender 
longirostrine

Tomistoma schlegelii  
(Müller, 1838)

Moderate to extreme longirostrine slender snout

Ziphodont Hamadasuchus rebouli 
(Buffetaut, 1994)

Mesorostrine, somewhat narrow snout; orbits more laterally  
positioned; ziphodont dentition

Duck-faced Mourasuchus pattersoni 
(Cidade et al., 2017)

Elongate, broad, flattened snout; tiny STF; isodont dentition

The medoid taxon is the specimen representing the centre of each cluster (ecomorph group).
Abbreviations: PAM, partitioning around medoids; STF, supratemporal fenestrae.
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selection provide strong justification for interpreting 
these specific case studies as incidences of scavenging 
rather than predation, because the crocodyliforms were 
feeding on prey far above their maximal predicted prey 
mass. Deinosuchus (Holland, 1909) and Deltasuchus 
(Adams et al., 2017b)  fall within the generalist 
ecomorph, and based on the regression for that group, 
we predict that neither would be expected to take adult 
hadrosauromorph prey successfully (e.g. Schwimmer, 
2002, 2010; Rivera-Sylva et al., 2009; Noto et al., 
2012; Adams et al., 2017b). Crocodylus acutus (Cuvier, 
1807) is another generalist, with modern maximal 
prey mass peaking at 613 kg (Supporting Information, 
Table S2), but fossil bite marks attributable to this 
species have been identified on a proboscidean 
(estimated mass ~3629 kg; Supporting Information, 
Table S2), another example of probable scavenging 
(Cisneros, 2005). Tomistoma lusitanica (Vianna and 
Moraes, 1945) falls within the slender longirostrine 
ecomorph, suggesting small-prey specialization, 
and yet its bite marks are recorded on gomphothere 
remains. The interpretation of this feeding trace as 
scavenging rather than predation was first proposed 
in the initial study of these traces (Antunes, 2017) and 
is supported by our analysis.

Evolution of cranial shape across 
Crocodyliformes

The variation in crocodyliform cranial shape across 
their evolutionary history has been noted in previous 
qualitative and quantitative studies (e.g. Brochu, 2001; 
Wilberg, 2017). Our ancestral state reconstructions 
show a complex pattern of convergent evolution 
towards particular cranial shape ecomorphs. Few 
clades maintain a single cranial shape throughout 
their evolutionary history. The generalist ecomorph is 
reconstructed as the ancestral shape for Neosuchia. 
Members of this group span from the Late Jurassic 
to the Recent, and this long persistence of similar 
cranial shapes doubtlessly contributes to the fallacy 
that crocodylians are ‘living fossils’. The pattern of 
cranial shape evolution within Alligatoroidea and 
Crocodyloidea suggests somewhat different responses 
to selective pressures during their evolution (Fig. 4). 
Although both groups contain numerous members 
of the two generalist shape categories, alligatoroids 
repeatedly evolved into the macro-generalist 
morphotype, allowing them to take prey larger than 
their own body mass. Crocodyloids, in contrast, 
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Figure 3.  Top panel shows ordinary least squares 
regressions for modern macro-generalists (black), 
generalists (orange) and slender longirostrine (blue) 
crocodylians, shown with 95% confidence intervals (CI). 
Macro-generalist regression: r2 = 0.832, slope = 1.9507 
(95% CI  =  0.56087; 3.877), y-intercept  =  −74.567 
(95% CI  =  −161.48; 28.475). Generalist regression: 
r2 = 0.8557, slope = 0.94327 (95% CI = 0.53439; 1.5444), 
y-intercept = −48.149 (95% CI = −121.18; 55.875). Slender 
longirostrine regression: r2 = 0.83924, slope = 0.081023 
(95% CI = 0.034489; 0.15188), y-intercept = −6.4329 (95% 
CI = −31.2; 4.4102). ANCOVA, P = 0.003319. Bottom panel 
shows macro-generalist (black), generalist (orange) and 
slender longirostrine (blue) regression lines charted with 
fossil bite mark case studies in corresponding colours 
[additional ziphodont examples in green; stenorostrine, 

large supratemporal fenestrae (STF) in purple]. Probable 
examples of scavenging are labelled with the species that 
made the trace (Schwimmer, 2002, 2010; Cisneros, 2005; 
Rivera-Sylva et al., 2009; Noto et al., 2012; Antunes, 2017).
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generally retain the ancestral generalist morphotype, 
with numerous independent transitions to slender 
longirostrine morphologies. They also show a number 
of isolated transitions into the macro-generalist region 
of morphospace. Alligatoroids cover a much narrower 
range of morphospace along PC1 than crocodyloids 
(Supporting Information, Fig. S2). Throughout their 
evolutionary history, no alligatoroid ever evolved 
a truly slender elongate snout so common among 
crocodyloids (Brochu, 2001). In instances where 
they did develop elongate snouts, these remained 
very broad, resulting in the duck-faced ecomorphs. 
This raises the interesting idea that alligatoroids 
might be developmentally constrained to broader 
snout morphotypes. Recent studies investigating 
the ontogenetic trajectories of extant crocodylians 
(Watanabe & Slice, 2014; Foth et al., 2018; Morris 
et al., 2019) describe a greater range of developmental 
trajectories in crocodyloids (including a large number 

of heterochronic shifts) than alligatoroids. Perhaps 
this variation in developmental patterns has allowed 
for greater flexibility in the evolution of different snout 
shapes within this group.

Two of the seven cranial ecomorphs are absent 
from the crown group. Although some members of 
the crown group (some alligatoroids, in particular) 
possessed blunt snouts, none ever developed 
truly heterodont dentition, like members of the 
brevirostrine heterodont group. It should be 
reiterated here that some members of Alligatoroidea 
did develop globidont, anvil-like posterior dentition 
[e.g. Allognathosuchus  (Mook, 1921)]. We were 
unable to include this dental character in our 
analysis because it shows continuous variation 
among extant and extinct taxa and would require an 
arbitrary cut-off (but for a more detailed discussion 
of crocodylian dental morphotypes, see D’Amore 
et al., 2019). However, this type of dentition is not 
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associated with the complex chewing behaviours 
inferred for other heterodont crocodyliforms (Ősi, 
2014), and thus these taxa are likely not to be 
similar functionally to members of the brevirostrine 
heterodont group. The other cranial ecomorph absent 
from the crown group is the stenorostrine large STF 
group. No members of Crocodylia possess particularly 
large STF in comparison to some non-crown clades 
(e.g. Thalattosuchia, Dyrosauridae). Perhaps some 
developmental repatterning occurred along the lineage 
leading to Crocodylia that precludes the reacquisition 
of enlarged STF (e.g. shift in emphasis to a different 
group of jaw adductor muscles). This region of the tree 
corresponds to the inferred evolution of modern bite 
forces in the lineage (Gignac & O’Brien, 2016).

Conclusions

The relationship between form and function in an 
evolutionary context is rarely as straightforward 
or simple as we would like it to be. In the present 
study, we provide a more holistic approach to 
studying the interrelationship of cranial shape 
and dietary preference within Crocodyliformes 
by bringing together geometric morphometrics, 
ecological surveys, phylogenetics and ichnological/
taphonomic case studies. This synthetic approach 
reveals more diversity in snout shape and feeding 
strategy than previously recognized. Furthermore, 
the pattern of evolution of cranial shape is complex. 
Some groups show little disparity, remaining within 
one or two cranial ecomorph categories, whereas 
others explore nearly all regions of morphospace. 
Crocodylia is reconstructed as ancestrally generalist, 
with crocodyloids exploring both macro-generalist 
and slender longirostrine morphotypes, but 
Alligatoroidea is restricted to the broad-snouted 
regions of morphospace (i.e. generalist, macro-
generalist and duck-faced). This pattern is possibly 
related to differing developmental constraints within 
these groups.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher's web-site:

Figure S1. Time-calibrated phylogeny of Crocodyliformes, showing cranial ecomorph ancestral state 
reconstructions. The time scale on the right of the plot is in millions of years before the present. The pie charts at 
internal nodes represent the proportional likelihood of the ancestral state.
Figure S2. Comparative cranial morphospace on principal component (PC) 1 (69.8% of variance) and 2 (18.2% of 
variance). Polygons enclose the clades Alligatoroidea and Crocodyloidea for comparison of morphospace occupation.
Table S1. Information on specimens used in the morphometric analyses and stratigraphic midpoint values used 
for the time scale tree. See main text for information on how time scaling was performed. *These taxa were 
represented by reconstructions.
Table S2. Dietary surveys and case studies across extant and extinct members of Crocodyliformes. Species 
column; extinct taxa indicated with an asterisk. Maximal length is reported in centimetres. Maximal mass 
is reported in kilograms. Mass estimates are based on a polynomial regression based on length and mass 
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data presented by Drumheller & Brochu (2016) and performed in Microsoft Excel. The formula is as follows: 
y = 0.0022x2 − 0.2259x + 3.3506, with an r2 of 0.95627. Under published prey types, bold indicates the group 
used to estimate maximal prey mass, italics indicate fossil case studies, and parentheses indicate examples of 
scavenging. Maximal prey mass is reported in kilograms.
Table S3. Percentage of variance accounted for by each axis resulting from the principal components analysis.
Table S4. Results of the partitioning around medoids (PAM) cluster analysis of allometrically corrected 
morphometric data in comparison to results of non-allometrically corrected cluster analysis. Taxa recovered in 
different groups between analyses (except those resulting from the splitting of the generalist and macro-generalist 
categories into three) are highlighted in bold.
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