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Existing classifications of snout shape within Crocodylia are supported by functional studies, but ecological surveys
often reveal a higher than expected diversity of prey items within putatively specialist groups, and research into
bite force and predation behaviour does not always reveal significant differences between snout shape groups. The
addition of more distantly related crocodyliforms complicates the ecomorphological signal, because these groups
often occupy a larger area of morphospace than the crown group alone. Here, we present an expanded classification of
snout shapes and diets across Crocodyliformes, bringing together geometric morphometrics, non-hierarchical cluster
analyses, phylogenetic analyses, ancestral state reconstructions, ecological surveys of diet, and feeding traces from
the fossil record to build and test predictive models for linking snout shape and function across the clade. When
applied to living members of the group, these new classifications partition out based on differences in predator body
mass and maximal prey size. When applied to fossils, these classifications predict potential prey items and identify
possible examples of scavenging. In a phylogenetic context, these ecomorphs reveal differences in dietary strategies
and diversity within major crocodyliform clades. Taken together, these patterns suggest that crocodyliform diversity,
in terms of both morphology and diet, has been underestimated.

ADDITIONAL KEYWORDS: behaviour — Crocodylia — Crocodyliformes — feeding adaptation — morphometrics —
palaeoecology — palaeontology — prey capture — vertebrate palaeontology.

INTRODUCTION had a gular pouch and, possibly, exhibited filter feeding
(Langston, 1965; Salas-Gismondi et al., 2015; Cidade
et al.,2017). These interpretations have been bolstered
by observations that sympatric crocodyliform species
often separate out into different snout shape classes
and body sizes, presumably to minimize competition
for resources (Brochu, 2001; Marioni et al., 2008; Irmis,
2013; Salas-Gismondi et al., 2015; Adams et al., 2017Db).
These ecomorphs are so widely accepted that they are
used as analogues for interpreting the diet of distantly
related groups, including phytosaurs (e.g. Hunt, 1989;
Murry, 1989; Drumheller et al., 2014), choristoderes
(e.g. Katsura, 2004) and dinosaurs (e.g. Rayfield et al.,
2007; Cuff & Rayfield, 2013).

The recognition of this pattern has spurred

The evolution of crocodylian snout shape is often
presented as an elegant, straightforward case study
of the interplay of form and function in the fossil
record. Slender-snouted forms ate fish (Iordansky,
1973; Langston, 1973; Pooley, 1989; Busbey, 1995),
boxy-headed forms ate hard prey (Carpenter &
Lindsey, 1980; Salas-Gismondi et al., 2015), and broad,
triangular-shaped forms did not specialize and ate
almost anything, depending on their size and ontogeny
(Brochu, 2001). The addition of fossil forms, which
exhibit snout morphologies no longer represented in
the present (Brochu, 2001; Wilberg, 2017), adds more
ecomorphs to this story. Ziphodont crocodyliforms were
more terrestrial, as were their prey items (Brochu,

2001, 2012). Duck-faced crocodyliforms might have increased research into crocodyliform snout shape in
’ ' morphological, functional and phylogenetic contexts

to gain a better understanding of the major ecological
*Corresponding author. E-mail: sdrumhel@utk.edu trends in the clade (Busbey, 1995; Brochu, 2001; Gignac
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& Erickson, 2016; Gignac & O’Brien, 2016; Pierce et al.,
2008; Sadleir & Makovicky, 2008). However, some
unexpected results complicate the direct causal link
between feeding strategy and snout shape. Surveys
of modern crocodylian diets have revealed more
diversity of prey items among members of specialist
snout ecomorphs than previously thought (e.g. Webb
& Manolis, 1983; Tucker et al., 1996; Selvaraj, 2012).
Both snout shape and diet change greatly during
crocodylian ontogeny, further complicating this
observed pattern (e.g. McIlhenny, 1935; Erickson et al.,
2014; Gignac & Erickson, 2015; Iijima, 2017). Recent
morphometric analyses that sample only within the
crown group do find similar snout shape groupings
(Pierce et al., 2008; Sadleir, 2009), but expanding
sampling further into Crocodyliformes reveals a wider
diversity of rostral morphologies, some of which do
not fit nicely into existing ecomorphs (Wilberg, 2017).
Although some aspects of cranial shape do not always
reflect dietary preferences in other reptilian groups
(e.g. Foth et al., 2017), finite element analyses find
real differences between how the snout ecomorphs
react to forces associated with prey acquisition and
consumption, suggesting different preferences for prey
size, if not prey taxon (McHenry et al., 2006; Pierce
et al., 2008, 2009). However, in vivo bite force data do
not differentiate between these ecomorphs. Instead of
partitioning into higher bite forces for durophagous
and macrocarnivorous taxa and lower bite forces for
putatively piscivorous taxa, crocodylian bite forces scale
in a tight, linear nature with body mass, resulting in a
seeming overperformance within the niches of several
species (Erickson et al., 2012; Gignac & Erickson,
2016; Gignac & O’Brien, 2016). Additionally, a survey
of crocodylian death roll behaviour, long associated
with large-bodied generalist groups, found that
nearly all extant members of the group, including all
slender-snouted and most small-bodied, boxy-headed
species, perform this behaviour (Drumheller et al.,
2019). These results pose interesting complications
to previous associations between snout shape and
function, especially when applied to extinct taxa.
Here, we revisit patterns of crocodyliform snout
shape and inferred diet throughout the history of the
clade (Brochu, 2001), building upon the most recent
phylogenies (Brochu, 2012; Brochu et al., 2012; Pol
et al., 2014; Wilberg, 2017; Adams et al., 2017b), and
applying new morphometric analyses and a meta-
analysis of published surveys of modern crocodylian
body sizes and diets (e.g. Webb & Manolis, 1983;
Tucker et al., 1996; Selvaraj, 2012), supplemented with
direct and indirect evidence of trophic interactions
in the fossil record (e.g. Drumheller & Brochu, 2014,
2016 and references therein), in order to constrain
the relationship between form and function of

crocodyliform cranial shape during the evolution of
this group more realistically.

MATERIAL AND METHODS
MORPHOMETRIC ANALYSIS

Taxa were sampled across the temporal range of
Crocodyliformes. Included taxa were represented
by at least one skull possessing at least a complete
right or left half (V = 99). To increase sample size,
additional specimens showing obvious postmortem
deformation impacting their shape in dorsal view
or those represented by less complete material were
represented by reconstructions (N = 31). This yielded
a total sample size of 130 (for specimen information
and references used, see Supporting Information,
Table S1). Specimens were digitized from photographs
in dorsal view using tpsDIG2 v.2.18 (Rohlf, 2010).
Landmarks and semilandmarks were placed on the
right side only (when only the left side was preserved,
the photographs were mirrored). Six landmarks
were chosen to characterize important aspects of
cranial shape, and 24 sliding semilandmarks were
used to capture the shape of the snout (18 sliding
semilandmarks) and supratemporal fossa (six sliding
semilandmarks; for landmark scheme, see Fig. 1).
Digitization of all specimens was performed by E.W.W.
All further analyses were performed in R (R Core
Team, 2017).

To analyse shape variation of the cranium and avoid
potential error introduced by the superimposition
of unilateral landmarks on bilaterally symmetrical
organisms, we followed the suggestion of Cardini (2016,
2017) and mirrored the right-side landmarks onto the
left side to generate fully symmetrical ‘total skulls’.
Mirroring was performed using the mirrorfill function
in the R package paleomorph (Lucas & Goswami,
2017). Given that this package was designed for three-
dimensional data, some additional manipulation of
our data was required before mirroring. First, 28
additional landmarks were added to correspond to the
unsampled left-side landmarks and semilandmarks.
These were given initial values of ‘NA’ to be replaced
by the mirrored coordinates. An artificial third
dimension (Z-coordinate) was then added to the
two-dimensional data. To identify accurately the
midline plane across which to mirror, we added an
additional five evenly spaced points to the midline
between landmarks 1 and 2. Z-Coordinate values for
the midline landmarks were randomly sampled from
a normal distribution (mean = 0; 0 = 50) based on
recommendations from the package author (T. Lucas,
pers. comm.). The Z-coordinates of the remaining left-
side landmarks were assigned a value of zero. After
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Figure 1. Landmark scheme for the morphometric
analysis. Black circles represent landmarks; blue circles
represent sliding semilandmarks. Numbered landmarks
are as follows: 1, posterior midline of skull table; 2, anterior
midline; 3, anterior-most point of orbit; 4, posterior-most
point of quadrate—quadratojugal suture in dorsal view;
5, point on cranial margin where snout begins (directly
lateral to landmark 3); 6, anterior-most point of parietal—
squamosal suture on the margin of the supratemporal
fenestra. All landmarks and semilandmarks on the left side
are reflections of landmarks on the right side.

mirroring, each landmark configuration was inspected
visually to ensure that mirroring worked properly.
The Z-coordinates and extra five midline landmarks
were removed from the data file, yielding symmetrical
two-dimensional landmark configurations of the ‘total

skulls’, with ten landmarks and 48 semilandmarks
(Fig. 1).

Landmark configurations were superimposed by
generalized Procrustes superimposition (Gower, 1975;
Rohlf & Slice, 1990) in the R package geomorph (Adams
& Otarola-Castillo, 2013; Adams et al., 2017a) to
remove variation attributable to position, orientation
and scale. Semilandmarks were allowed to slide along
lines tangent to the curve during superimposition
to minimize bending energy (Bookstein, 1997).
The aligned Procrustes shape configurations were
subjected to a principal components analysis (PCA) of
the covariance matrix to explore shape variation in the
dataset.

DEFINING GROUPS

To determine the number of cranial shape groups
present in the data, we used the non-hierarchical
clustering algorithm partitioning around medoids
(PAM; Kaufman & Rousseeuw, 1990). Given that
these groups are meant to reflect feeding strategies,
we included data on the major morphological variance
within the skull and information related to dentition.
Scores from the first two principal component (PC) axes
were used as an approximation of overall skull shape.
These axes were selected as significant based on the
broken stick method (Frontier, 1976; Jackson, 1993) as
implemented in the R package PCDimension (Coombes
& Wang, 2018) and account for the overwhelming
majority of cranial variation (88%). The dentition of
most crocodyliforms consists of widely spaced, conical,
monocuspid teeth. However, a number of lineages or
taxa developed dentition that deviates from this trend
and is likely to indicate feeding strategies functionally
different from those of modern crocodylians (Osi,
2014), including mediolaterally compressed, serrated
teeth (ziphodont dentition) and complex, multicusped
and/or heterodont dentition. To incorporate dental
characteristics into our groupings, we scored each taxon
for three binary dental characters: (1) heterodonty; (2)
ziphodonty; and (3) numerous small, peg-like teeth
of uniform size, referred to afterwards as isodonty.
Heterodonty was scored based on characterizations by
Osi (2014 for taxa exhibiting functional heterodonty-
with or without occlusion). We chose to exclude taxa he
deemed heterodont owing to the presence of bulbous
posterior teeth (globidonty), because this tooth shape
shows continuous variation among living and extinct
crocodylians, and determining the cut-off between
blunt and anvil-like is highly subjective (Brochu,
1999; D’Amore et al., 2019). Isodonty is known in a few
extinct taxa that deviate from living crocodylians in
a number of ways. Possession of isodont dentition is
associated with broad, elongate, flat skulls and gracile,
U-shaped mandibles, which has led researchers to
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propose a method of bulk feeding followed by straining
or filtering prey from the water (e.g. Nopcsa, 1926;
Langston, 1965; Riff et al., 2010; Cidade et al., 2017).

Given that our data included both continuous and
discrete variables, we transformed our data into a Gower
dissimilarity matrix (Gower, 1971) using the daisy
function of the R package cluster (Maechler et al., 2017).
This dissimilarity matrix was then subjected to PAM
clustering using the pamk function of the R package fpc
(Hennig, 2018), using the Calinski—-Harabasz (CH) index
(Calinski & Harabasz, 1974) simultaneously to determine
the optimal number of clusters. Although the use of an
optimality criterion to determine the number of clusters
is often treated as an ‘objective’ method for finding groups
within data, different optimality criteria identify different
numbers of clusters and/or differing cluster membership.
Consequently, the choice of optimality criterion, in a
way, implicitly defines the number of clusters found
(Hennig & Liao, 2010). We therefore explored different
treatments of our data (e.g. PAM clustering of PC scores
only) and an alternative optimality criterion [average
silhouette width (ASW); Kaufman & Rousseeuw, 1990],
with the ultimate aim of defining groups with reasonable
morphological differentiation.

To test the effects of allometry on our shape
groups, we performed an additional regression of the
Procrustes shape scores on the logarithm of centroid
size in the R package geomorph. We then performed a
PCA on the residuals of this regression. We reran the
PAM cluster analysis on the first two PC axes from the
non-allometric residuals plus the dentition characters.

ANCESTRAL STATE RECONSTRUCTION

To evaluate the evolution of crocodyliform cranial
shape in a phylogenetic context, we first reconstructed
ancestral states. We assembled an informal supertree
based on several recently published topologies (Brochu,
2001, 2012; Brochu et al., 2012; Pol et al., 2014; Adams
et al., 2017b; Wilberg, 2017). To provide a time scale
for the tree, we compiled stratigraphic ranges of all
taxa (Supporting Information, Table S1) from the
Paleobiology Database (http://paleobiodb.org) accessed
via FossilWorks (http://fossilworks.org) on 26 November
2018. Trees were scaled using methods described by
Wilberg et al. (2019). The time-calibrated tree file is
available as Supporting Information (Nexus tree file).
Ancestral states for internal nodes were reconstructed
in MESQUITE v.3.51 (Maddison & Maddison, 2015)
using maximum likelihood under a Markov k model.

FEEDING ECOLOGY/PALAEOECOLOGY

The assignation of dietary classifications to extant
and extinct species within this dataset required
common ground to be found between ecological and

palaeoecological studies. Surveys of diet among the
living members of Crocodylia are heavily biased
towards large-bodied groups that interact regularly
with humans, related either to conflict (attacks on
humans) or to economics (the skin and meat trade).
This has resulted in Alligator mississippiensis
[Daudin, 1801 (1802); Rowe et al., 1999], Crocodylus
niloticus (Laurenti, 1768) and Crocodylus porosus
(Schneider, 1801; Tzika & Milinkovitch, 2008) often
being treated as the de facto model organisms for
the clade as a whole. This tends to mask dietary and
behavioural diversity within the clade, because in
addition to being large-bodied species, all three also
exhibit snout shapes and behaviours associated with
a generalist lifestyle. Other species have not enjoyed
the same intensity of research, but efforts are being
made to remedy this, especially given that several
members of other snout ecomorphs are threatened or
endangered, and understanding the ecology of these
groups is crucial for conservation efforts (e.g. Webb &
Manolis, 1983; Tucker et al., 1996; Thorbjarnarson &
Wang, 2010; Selvaraj, 2012).

When possible, we assessed the diet of modern groups
based on large-scale surveys of diet across different ages
and geographical ranges (e.g. Santos et al., 1996; Antelo
et al., 2008; Borteiro et al., 2009; Thorbjarnarson &
Wang, 2010; Platt et al., 2013; Sam et al., 2015). Those
studies drew from direct observations of gut contents,
trophic interactions and droppings, and ranged in scope
from new data collected from 22 animals (Pauwels et al.,
2007) to a meta-analysis of studies covering a total of
1369 animals (Nifong & Silliman, 2013). Large-scale
dietary surveys were available for 15 of the 23 extant
species of crocodylian included in this analysis, and the
remaining eight represent some of the most critically
endangered species and/or species only recognized
recently as distinct species rather than subspecies (e.g.
Ross & Magnusson, 1989; Thorbjarnarson & Wang, 2010;
De Silva et al.,2011). To capture the full spectrum of diet,
especially within more poorly studied groups, smaller-
scale case studies and observations recorded in the
grey literature were also included (e.g. MclIlhenny, 1935;
CrocBITE, 2013). Finally, only studies documenting
predation rather than scavenging were included, because
scavenged remains do not necessarily reflect the animals
a predator could take (e.g. gharials scavenging humans,
described by Pooley et al., 1989). Details and citations
for all referenced analyses have been gathered into the
Supporting Information (Table S2).

In the fossil record, dietary preferences almost always
have to be observed indirectly, through functional studies
of anatomy (e.g. Gignac & Erickson, 2016; Gignac &
O’Brien, 2016) and inferences drawn from bite marks,
gut contents and coprolites (e.g. Drumheller & Brochu,
2014, 2016). Among crocodyliforms, gut contents and
coprolites are usually uninformative, owing to the highly
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destructive nature of the digestive process within this
clade (Fisher, 1981), leaving bite marks as the primary
type of usable trace fossil evidence, with a few notable
exceptions (e.g. Langston & Rose, 1978; Alexander
& Burger, 2001). Although initially thought to be
uncommon (Carpenter, 1998; Jacobsen, 2001), vertebrate
bite marks are becoming more well documented,
stemming from the availability of modern surveys to aid
in initial identification and interpretation (e.g. Njau &
Blumenschine, 2006; Milan et al., 2010; Westaway et al.,
2011; Baquedano et al., 2012; Drumheller & Brochu,
2014, 2016) and increasing numbers of case studies
documenting patterns of bite mark preservation in the
fossil record (e.g. Noto et al., 2012; Boyd et al., 2013;
Botfalvai et al., 2014, 2015; Hastings et al., 2015; Scheyer
et al., 2018; Gonet et al., 2019).

Data on diet in the fossil record have obvious
limitations in comparison to modern surveys. The
crocodyliform feeding process itself is a strong
taphonomic filter, and only larger, more durable or
discarded portions of prey skeletons would be expected
to survive (e.g. Davidson & Solomon, 1990; Njau &
Blumenschine, 2006; Noto et al.,2012). When available,
we include other indirect sources of trophic information
(Alexander & Burger, 2001), but the palaeontological
dataset remains heavily biased. Nevertheless, these
feeding traces provide key insights into the feeding
behaviours of crocodyliforms with morphotypes no
longer represented among extant groups.

Across both extant and extinct clades, ontogeny is
another complicating factor when characterizing diet
within species. Changes in snout morphology and diet
during growth and development are well documented
among modern crocodylians (e.g. McIlhenny, 1935;
Erickson et al., 2014; Foth et al., 2015; Gignac &
Erickson, 2015). In order to limit the effects of ontogeny
in the present study, we characterized crocodyliform
dietary preferences by exploring patterns of maximal
predator and prey body mass within and across snout
ecomorphs in order to assess prey size specialization
among adult animals only. Crocodyliform and prey
maximal body masses were taken from the literature
(e.g. Trutnau & Sommerlad, 2006; Jones et al., 2009)
or, if they were not available, were predicted using
a regression of body length to body mass based on
measurements reported by Drumheller & Brochu
(2016). These values and their sources are presented
in the Supporting Information (Table S2). To address
the biased nature of the fossil dataset, initial analyses
were performed using the extant species only. Ensuing
patterns and their statistical significance were
explored using ordinary least squares regressions
and an analysis of covariance (ANCOVA) in the
software package PAST v.3.20 (Hammer et al., 2001).
The resulting predictive models provided a basis of
comparison for the fossil dataset.

RESULTS
MORPHOMETRIC ANALYSIS

The first five PC axes collectively summarized > 95%
of the variance (Supporting Information, Table S3),
although only the first two were deemed significant
based on the broken stick method. These two axes
defined a lower-dimensional subspace used to describe
the cranial morphospace qualitatively (Fig. 2). The first
PC axis primarily involved relative snout length, with a
component of snout width and supratemporal fossa size
and shape. The second PC axis included aspects of snout
width, supratemporal fossa size, mediolateral position
of the orbits, and festooning of the snout margin.

The PAM cluster analysis yielded seven cranial
shape categories: macro-generalist, generalist,
slender longirostrine, stenorostrine with large
supratemporal fenestrae (STF), ziphodont, duck-faced
and brevirostrine heterodont (Fig. 2). See Table 1 for
qualitative descriptions of each category. Justifications
for these names are discussed below, in the ‘Feeding
ecology/palaeoecology’ section. See the Supporting
Information (Table S1) for an exhaustive list of group
assignment. Cluster analysis of PC scores from the first
two PC axes (without dentition characters) resulted
in only two groups (essentially long, slender-snouted
taxa vs. all others). The PAM cluster analysis of the
PC scores plus dental characters, but using the ASW
optimality criterion, likewise divided the data into only
two groups based primarily on snout length. Both these
grouping schemes placed taxa from disparate ends of
the morphospace into the same group [e.g. the tiny
herbivorous notosuchian Simosuchus (Buckley et al.,
2000) grouped with the giant, duck-faced, potentially
bulk-feeding caiman Mourasuchus (Price, 1964)] and
thus seemed unhelpful for parsing diet.

Results of the allometrically corrected analyses were
highly congruent with those of the primary analysis.
The effect of allometry was significant (r? = 0.2649;
P =0.001), but the primary aspects of morphology
described by the first two PC axes were very similar
(accounting for 84.7% of the variance). The PAM cluster
analysis of these allometrically corrected data resulted
in eight cranial shape categories. Most matched exactly
with those defined in the primary analysis. However, the
allometry-corrected analysis subdivided the generalist
and macro-generalist categories into three groups:
long-snouted generalists; a group of moderate snout-
length generalists and narrower/longer-snouted macro-
generalists; and broad-snouted macro-generalists.
These results suggest that our PAM categories are not
strongly affected by allometry (for an exhaustive list of
group assignments from the allometrically corrected
analyses, see the Supporting Information, Table S4).

For the remainder of this work, we focus on the
non-allometrically corrected cranial ecomorph groups.
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Figure 2. Comparative cranial morphospace on principal components (PC) 1 (69.8% of variance) and 2 (18.2% of
variance). Polygons enclose groups as defined by partitioning around medoids (PAM) cluster analysis of morphometric and
dental morphology data. Exemplar skulls are shown for each group, as follows: brevirostrine heterodont, Mariliasuchus
amarali (Carvalho and Bertini, 1999); macro-generalist, Alligator mississippiensis; generalist, Crocodylus niloticus; duck-
faced, Mourasuchus atopus (Langston, 1965); slender longirostrine, Gavialis gangeticus (Gmelin, 1789); stenorostrine large
supratemporal fenestrae (STF), Metriorhynchus superciliosus (de Blainville, 1853); ziphodont, Sebecus icaeorhinus (Simpson,

1937).

We prefer this grouping scheme for two primary
reasons: (1) given the large phylogenetic scope of
our data, it is very likely that different allometric
scaling relationships apply to different clades, and a
single size—shape correction might be affecting some
groups excessively (e.g. Notosuchia; some particularly
small taxa possessing short, triangular snouts
shift dramatically across the morphospace to areas
representing highly elongate, slender snouts); and (2)
size-related changes in shape are likely to be relevant
to feeding.

FEEDING ECOLOGY/PALAEOECOLOGY

Of the cranial shape classifications defined in our
geometric morphometric and cluster analyses,

extant species occupied only three of the seven
ecomorphs: macro-generalists, generalists and
slender longirostrine. Ordinary least squares
regressions revealed that significant overlap between
groups occurred in smaller-bodied taxa, but that the
ecomorphs did separate out as body size increased
(ANCOVA, P = 0.003319). These linear regressions
and their corresponding 95% confidence intervals
and r? values are reported in Figure 3. We name the
first group macro-generalists, because these species
exhibit the ‘generalist’ morphotype (sensu Brochu,
2001) and are capable of taking prey species with a
higher body mass than themselves. Species within
the generalist morphotype can take prey items of
roughly equal mass to themselves, whereas slender
longirostrine taxa are small-prey specialists, which
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Table 1. Qualitative descriptions of each cranial shape ecomorph group derived from the PAM cluster analysis

Group name Medoid taxon

Description

Libycosuchus brevirostris
(Stromer, 1914)

Caiman crocodilus fuscus
(Linnaeus, 1758)

Brevirostrine
heterodont
Macro-generalist

Generalist
(Zangerl, 1944)
Stenorostrine, Teleidosaurus calvadosii
large STF (Eudes-Deslongchamps,
1866)
Slender Tomistoma schlegelii
longirostrine (Miiller, 1838)
Ziphodont Hamadasuchus rebouli
(Buffetaut, 1994)
Duck-faced Mourasuchus pattersoni

(Cidade et al., 2017)

Brevirostrine; relatively large STF; heterodont dentition
Brevirostrine to mesorostrine; generally, a more U-shaped snout
Brachyuranochampsa eversoli  Generally, mesorostrine, with a somewhat triangular snout

Mesorostrine to moderate longirostrine; enlarged supratemporal
fenestrae; somewhat laterally positioned orbits

Moderate to extreme longirostrine slender snout
Mesorostrine, somewhat narrow snout; orbits more laterally

positioned; ziphodont dentition
Elongate, broad, flattened snout; tiny STF; isodont dentition

The medoid taxon is the specimen representing the centre of each cluster (ecomorph group).
Abbreviations: PAM, partitioning around medoids; STF, supratemporal fenestrae.

only eat prey items that are substantially smaller
than themselves.

ANCESTRAL STATE RECONSTRUCTION

Results of the ancestral state reconstruction
illuminated some general trends in the evolution
of crocodyliform cranial morphotypes over time (for
complete results, see Supporting Information, Fig.
S1). Our analysis reconstructed slender longirostrine
as the ancestral state for the basal node. However, we
interpreted this result with some scepticism because
this is almost certainly attributable to the lack of
additional outgroup taxa (none of which possesses
an elongate slender snout). The ancestral state for
Neosuchia was reconstructed as generalist, and this
remained the ancestral state for the nested clades
Eusuchia and Crocodylia. Within Crocodylia, both
Alligatoroidea and Crocodyloidea were ancestrally
generalist. However, the evolution of cranial ecomorphs
within these groups was markedly different (Fig. 4).
There was a strong tendency within Alligatoroidea
towards macro-generalist cranial shapes (with a
shift to duck-faced in Mourasuchus, and numerous
reversions to generalist morphotypes), whereas
crocodyloids were predominantly generalists (with
some excursions into slender longirostrine and macro-
generalist morphotypes). The ziphodont morphotype,
with the exception of Dakosaurus (von Quenstedt,
1856), occurred only in taxa inferred to be terrestrial.
The stenorostrine large STF morphotype was
restricted taxa inhabiting marine ecosystems (Wilberg
et al., 2019 and references therein).

DISCUSSION

PALAEODIET AND FEEDING BEHAVIOUR

Although several of the snout shape groupings
recognized in the present study echo previous,
qualitatively described groups (Brochu, 2001), the
division of broad- and slender-snouted taxa into
four separate groups suggests that we have been
masking morphological diversity by lumping these
groups together. The significant difference in prey size
selection among the two generalist ecomorphs also
suggests that these snout shapes reflect diverging
feeding and prey selection strategies.

Within the fossil dataset, sample numbers of bite-
marked bones are often extremely small, making it
doubtful that the palaeoecological data accurately
reflect maximal potential prey size. However, the
predictions based on modern groups do provide a
framework to gain a better understanding of these
case studies in a broader context. When plotted against
the extant dataset, the majority of fossil examples fall
either within or below the 95% confidence interval of
the mass vs. prey mass regression for each ecomorph
(Fig. 3). This is the expected pattern for predatory
behaviour and essentially reflects species eating
within their expected weight class of prey items.

However, a few fossil case studies fall well above
the maximal potential prey mass predicted by the
corresponding regressions and 95% confidence
intervals for their ecomorph (Fig. 3). Predation and
scavenging can be difficult to differentiate in the
fossil record (e.g. Bell & Currie, 2010; Longrich et al.,
2010; Mclain et al., 2018). However, we argue that the
predictive models based on extant crocodylian prey
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Figure 3. Top panel shows ordinary least squares
regressions for modern macro-generalists (black),
generalists (orange) and slender longirostrine (blue)
crocodylians, shown with 95% confidence intervals (CI).
Macro-generalist regression: r? = 0.832, slope = 1.9507
(95% CI = 0.56087; 3.877), y-intercept = —-74.567
(95% CI = -161.48; 28.475). Generalist regression:
r? = 0.8557, slope = 0.94327 (95% CI = 0.53439; 1.5444),
y-intercept = —48.149 (95% CI = -121.18; 55.875). Slender
longirostrine regression: r? = 0.83924, slope = 0.081023
(95% CI = 0.034489; 0.15188), y-intercept = —-6.4329 (95%
CI =-31.2;4.4102). ANCOVA, P = 0.003319. Bottom panel
shows macro-generalist (black), generalist (orange) and
slender longirostrine (blue) regression lines charted with
fossil bite mark case studies in corresponding colours
[additional ziphodont examples in green; stenorostrine,

= OLS Regression Line

@ Ziphodont
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selection provide strong justification for interpreting
these specific case studies as incidences of scavenging
rather than predation, because the crocodyliforms were
feeding on prey far above their maximal predicted prey
mass. Deinosuchus (Holland, 1909) and Deltasuchus
(Adams et al., 2017b) fall within the generalist
ecomorph, and based on the regression for that group,
we predict that neither would be expected to take adult
hadrosauromorph prey successfully (e.g. Schwimmer,
2002, 2010; Rivera-Sylva et al., 2009; Noto et al.,
2012; Adams et al., 2017b). Crocodylus acutus (Cuvier,
1807) is another generalist, with modern maximal
prey mass peaking at 613 kg (Supporting Information,
Table S2), but fossil bite marks attributable to this
species have been identified on a proboscidean
(estimated mass ~3629 kg; Supporting Information,
Table S2), another example of probable scavenging
(Cisneros, 2005). Tomistoma lusitanica (Vianna and
Moraes, 1945) falls within the slender longirostrine
ecomorph, suggesting small-prey specialization,
and yet its bite marks are recorded on gomphothere
remains. The interpretation of this feeding trace as
scavenging rather than predation was first proposed
in the initial study of these traces (Antunes, 2017) and
is supported by our analysis.

EVOLUTION OF CRANIAL SHAPE ACROSS
CROCODYLIFORMES

The variation in crocodyliform cranial shape across
their evolutionary history has been noted in previous
qualitative and quantitative studies (e.g. Brochu, 2001;
Wilberg, 2017). Our ancestral state reconstructions
show a complex pattern of convergent evolution
towards particular cranial shape ecomorphs. Few
clades maintain a single cranial shape throughout
their evolutionary history. The generalist ecomorph is
reconstructed as the ancestral shape for Neosuchia.
Members of this group span from the Late Jurassic
to the Recent, and this long persistence of similar
cranial shapes doubtlessly contributes to the fallacy
that crocodylians are ‘living fossils’. The pattern of
cranial shape evolution within Alligatoroidea and
Crocodyloidea suggests somewhat different responses
to selective pressures during their evolution (Fig. 4).
Although both groups contain numerous members
of the two generalist shape categories, alligatoroids
repeatedly evolved into the macro-generalist
morphotype, allowing them to take prey larger than
their own body mass. Crocodyloids, in contrast,

large supratemporal fenestrae (STF) in purple]. Probable
examples of scavenging are labelled with the species that
made the trace (Schwimmer, 2002, 2010; Cisneros, 2005;
Rivera-Sylva et al., 2009; Noto et al., 2012; Antunes, 2017).
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Figure4. Resultsofcranial ecomorph ancestral state reconstruction among alligatoroids and crocodyloids (for comprehensive

results, see Supporting Information, Fig. S1). Pie charts at
ecomorph shape category.

generally retain the ancestral generalist morphotype,
with numerous independent transitions to slender
longirostrine morphologies. They also show a number
of isolated transitions into the macro-generalist region
of morphospace. Alligatoroids cover a much narrower
range of morphospace along PC1 than crocodyloids
(Supporting Information, Fig. S2). Throughout their
evolutionary history, no alligatoroid ever evolved
a truly slender elongate snout so common among
crocodyloids (Brochu, 2001). In instances where
they did develop elongate snouts, these remained
very broad, resulting in the duck-faced ecomorphs.
This raises the interesting idea that alligatoroids
might be developmentally constrained to broader
snout morphotypes. Recent studies investigating
the ontogenetic trajectories of extant crocodylians
(Watanabe & Slice, 2014; Foth et al., 2018; Morris
et al., 2019) describe a greater range of developmental
trajectories in crocodyloids (including a large number

internal nodes indicate the proportional likelihood for each

of heterochronic shifts) than alligatoroids. Perhaps
this variation in developmental patterns has allowed
for greater flexibility in the evolution of different snout
shapes within this group.

Two of the seven cranial ecomorphs are absent

from the crown group. Although some members of

the crown group (some alligatoroids, in particular)
possessed blunt snouts, none ever developed
truly heterodont dentition, like members of the
brevirostrine heterodont group. It should be
reiterated here that some members of Alligatoroidea
did develop globidont, anvil-like posterior dentition
[e.g. Allognathosuchus (Mook, 1921)]. We were
unable to include this dental character in our
analysis because it shows continuous variation
among extant and extinct taxa and would require an
arbitrary cut-off (but for a more detailed discussion
of crocodylian dental morphotypes, see D’Amore
et al., 2019). However, this type of dentition is not
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associated with the complex chewing behaviours
inferred for other heterodont crocodyliforms (Osi,
2014), and thus these taxa are likely not to be
similar functionally to members of the brevirostrine
heterodont group. The other cranial ecomorph absent
from the crown group is the stenorostrine large STF
group. No members of Crocodylia possess particularly
large STF in comparison to some non-crown clades
(e.g. Thalattosuchia, Dyrosauridae). Perhaps some
developmental repatterning occurred along the lineage
leading to Crocodylia that precludes the reacquisition
of enlarged STF (e.g. shift in emphasis to a different
group of jaw adductor muscles). This region of the tree
corresponds to the inferred evolution of modern bite
forces in the lineage (Gignac & O’Brien, 2016).

CONCLUSIONS

The relationship between form and function in an
evolutionary context is rarely as straightforward
or simple as we would like it to be. In the present
study, we provide a more holistic approach to
studying the interrelationship of cranial shape
and dietary preference within Crocodyliformes
by bringing together geometric morphometrics,
ecological surveys, phylogenetics and ichnological/
taphonomic case studies. This synthetic approach
reveals more diversity in snout shape and feeding
strategy than previously recognized. Furthermore,
the pattern of evolution of cranial shape is complex.
Some groups show little disparity, remaining within
one or two cranial ecomorph categories, whereas
others explore nearly all regions of morphospace.
Crocodylia is reconstructed as ancestrally generalist,
with crocodyloids exploring both macro-generalist
and slender longirostrine morphotypes, but
Alligatoroidea is restricted to the broad-snouted
regions of morphospace (i.e. generalist, macro-
generalist and duck-faced). This pattern is possibly
related to differing developmental constraints within
these groups.
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SUPPORTING INFORMATION
Additional Supporting Information may be found in the online version of this article at the publisher's web-site:

Figure S1. Time-calibrated phylogeny of Crocodyliformes, showing cranial ecomorph ancestral state
reconstructions. The time scale on the right of the plot is in millions of years before the present. The pie charts at
internal nodes represent the proportional likelihood of the ancestral state.

Figure S2. Comparative cranial morphospace on principal component (PC) 1 (69.8% of variance) and 2 (18.2% of
variance). Polygons enclose the clades Alligatoroidea and Crocodyloidea for comparison of morphospace occupation.
Table S1. Information on specimens used in the morphometric analyses and stratigraphic midpoint values used
for the time scale tree. See main text for information on how time scaling was performed. *These taxa were
represented by reconstructions.

Table S2. Dietary surveys and case studies across extant and extinct members of Crocodyliformes. Species
column; extinct taxa indicated with an asterisk. Maximal length is reported in centimetres. Maximal mass
is reported in kilograms. Mass estimates are based on a polynomial regression based on length and mass
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data presented by Drumheller & Brochu (2016) and performed in Microsoft Excel. The formula is as follows:
y = 0.0022x% — 0.2259x + 3.3506, with an r? of 0.95627. Under published prey types, bold indicates the group
used to estimate maximal prey mass, italics indicate fossil case studies, and parentheses indicate examples of
scavenging. Maximal prey mass is reported in kilograms.

Table S3. Percentage of variance accounted for by each axis resulting from the principal components analysis.
Table S4. Results of the partitioning around medoids (PAM) cluster analysis of allometrically corrected
morphometric data in comparison to results of non-allometrically corrected cluster analysis. Taxa recovered in
different groups between analyses (except those resulting from the splitting of the generalist and macro-generalist
categories into three) are highlighted in bold.
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