
Sequence analysis

Vargas: heuristic-free alignment for assessing

linear and graph read aligners

Charlotte A. Darby,1 Ravi Gaddipati,2 Michael C. Schatz,1,3,4 and Ben

Langmead1,∗

1Department of Computer Science, Johns Hopkins University, Baltimore MD
2Department of Biomedical Engineering, Johns Hopkins University, Baltimore MD
3Department of Biology, Johns Hopkins University, Baltimore MD
4Cold Spring Harbor Laboratory, Cold Spring Harbor NY

∗To whom correspondence should be addressed.

Associate Editor: XXXXXXX

Received on XXXXX; revised on XXXXX; accepted on XXXXX

Abstract

Motivation: Read alignment is central to many aspects of modern genomics. Most aligners use heuristics

to accelerate processing, but these heuristics can fail to find the optimal alignments of reads. Alignment

accuracy is typically measured through simulated reads; however, the simulated location may not be the

(only) location with the optimal alignment score.

Results: Vargas implements a heuristic-free algorithm guaranteed to find the highest-scoring alignment

for real sequencing reads to a linear or graph genome. With semiglobal and local alignment modes and

affine gap and quality-scaled mismatch penalties, it can implement the scoring functions of commonly used

aligners to calculate optimal alignments. While this is computationally intensive, Vargas uses multi-core

parallelization and vectorized (SIMD) instructions to make it practical to optimally align large numbers of

reads, achieving a maximum speed of 456 billion cell updates per second. We demonstrate how these

“gold standard” Vargas alignments can be used to improve heuristic alignment accuracy by optimizing

command-line parameters in Bowtie 2, BWA-MEM, and vg to align more reads correctly.

Availability and implementation: Source code implemented in C++ and compiled binary releases are

available at https://github.com/langmead-lab/vargas under the MIT license.

Contact: langmea@cs.jhu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biological gold standards such as the Platinum Genomes (Eberle et al.,

2017), synthetic diploid (Li et al., 2018), and Genome in a Bottle

(Zook et al., 2014) catalog the variants present in a genome and are

used to benchmark variant calling algorithms on real sequencing data.

For benchmarking and algorithm development, using gold standard call

sets is more realistic than simulating sequencing reads from a synthetic

genome with known variants. However, read alignment algorithms, which

determine a sequencing read’s point of origin with respect to a reference

genome, are instead often evaluated using simulated sequencing reads due

to the lack of a biological gold standard that directly answers questions

about where sequencing reads should align.

In a typical read-aligner benchmark, sequencing errors and genetic

variation are added to a substring of the reference genome, which is

mapped back to the reference genome (Smolka et al., 2015). The simulated

coordinate is then compared to the aligned coordinate. If the coordinates

are equal (or within a predetermined range), the alignment is considered

correct. We refer to this definition as “correct-by-location.” Critically, this

procedure assumes that the desired (optimal) alignment is at the same

location where the read was simulated, which may not be the case due

to the simulation process and genomic repetitiveness. Furthermore, the

base-level alignment may be suboptimal even if the read is mapped to

the simulated location; e.g. the alignments may disagree about the exact

placement and number of gaps in the alignment. Additionally, simulated

1

© The Author(s) 2020. Published by Oxford University Press. 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the 

original work is properly cited. 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa265/5823884 by M

ichael Schatz on 01 June 2020



2 Darby et al.

reads may not faithfully capture more subtle aspects of the sequencing

processing, especially any sequence-specific error modalities (Aird et al.,

2011).

A central component of all read aligners is defining a scoring function.

The scoring function penalizes differences between the read and reference;

i.e. it is the objective function that the aligner seeks to optimize. When

the optimal alignment score for a read equals the score reported by the

algorithm, we call this alignment “correct-by-score.” Optimal alignments

of real sequencing reads could be considered a computational gold

standard for read alignment algorithms (c.f. Holtgrewe et al. (2011)).

These can be used to evaluate alignment algorithms using real data in

the same way as biological gold standard variant catalogs are used to

assess variant callers. To serve as a computational gold standard, the

optimal alignment should be calculated with respect to the same alignment

mode (local or semiglobal), scoring function, and reference genome of the

algorithm being evaluated.

While most current heuristic and heuristic-free read alignment

algorithms assume that the reference genome is linear, with greater

understanding of genetic diversity has come increasing focus on

alternatives to the linear reference genome. Various solutions have been

proposed that incorporate information about genetic variation in the

population, including graph-shaped reference genomes (Paten et al., 2017),

pan-genomes (Yang et al., 2019), and a genome that contains the most

common (major) allele at each variable site (Pritt et al., 2018; Ballouz et al.,

2019). The most recent human reference genome assembly, GRCh38,

includes alternate assemblies for hypervariable loci (Church et al., 2015).

Alignment algorithms that account for genetic variants have likewise been

proposed (Schneeberger et al., 2009; Vijaya Satya et al., 2012; Huang et al.,

2013; Garrison et al., 2018; Rautiainen et al., 2019; Jain et al., 2019).

Whether the genome is linear or a variant graph, calculating the

optimal read alignment using dynamic programming is extremely work-

intensive. Popular algorithms for aligning to linear genomes such as Bowtie

2 (Langmead and Salzberg, 2012) and BWA-MEM (Li, 2013), or to graph

genomes, such as HISAT2 (Kim et al., 2019) and vg (Garrison et al.,

2018), scale to genomic-scale datasets because they use heuristics to find

approximate solutions to the optimization problem defined by the objective

function. A widely used heuristic is “seed-and-extend” in which short

exact sequence matches are used to anchor the search for longer matches.

Relatedly, aligners apply various heuristics to prioritize which candidate

seed matches are most likely to lead to a high quality alignment. These

computational shortcuts limit effort spent on candidate alignments that

appear like they will be suboptimal, but may cause the algorithm to return

a suboptimal alignment or no alignment.

Alignment errors due to heuristics can ultimately lead to confounding

of scientific results downstream. At the same time, it is difficult to study

the precise effects of heuristics. This is both because they are varied and

complex, and because it is computationally demanding to disentangle

the effects of heuristics from those of scoring functions and other read-

alignment parameters. A case in point is the Qtip study (Langmead,

2017), where mapping-quality predictions were improved by modifying

the source code of heuristic alignment algorithms to report specific

information about the heuristic search procedure for each read. Because

a computational gold standard can be constructed to match the aligner’s

scoring function and other parameters, it uniquely allows us to isolate the

effects of heuristics.

General-purpose computer processors have recently become capable

of running hundreds of separate threads of execution simultaneously in

parallel. Within each thread, single-instruction multiple data (SIMD)

(“vector”) operations can be employed that operate on a group of values at

once instead of a typical processor instruction that operates on individual

scalar values. Vargas implements a form of the Smith-Waterman (Smith

and Waterman, 1981) algorithm for query-reference sequence alignment

to a linear reference or a directed acyclic graph (DAG). Rognes (2011)

proposed a query-parallel strategy that fills the same element (same row

and column) in several dynamic programming matrices at once. This has

been shown to be efficient and practical in prior studies (Rahn et al., 2018;

Jain et al., 2019). We adopt this approach in Vargas and provide further

evidence that it is efficient on modern general-purpose architectures for

both linear and graph alignment.

Vargas is the most efficient and flexible tool for establishing

computational gold standards for evaluating read alignment heuristics

and scoring schemes. While the need for such standards was discussed

and partially addressed in the previous Rabema study (Holtgrewe et al.,

2011), Vargas is an advance over those methods owing to its handling

of graph-shaped as well as linear reference genomes, efficient scaling to

many threads, use of modern SIMD instructions, and handling of flexible

affine-gap-penalty scoring schemes such as those used in modern aligners

like vg, Bowtie 2 and BWA-MEM. Using RNA-seq reads aligned to

the transcriptome, we can also assess the accuracy of alignment scores

reported by the pseudoaligner Salmon. We demonstrate the utility of the

method by showing how it can be used to assess alignment correctness

and mapping quality predictions, and to optimize Bowtie 2, BWA-MEM,

and vg alignment parameters for whole-genome sequencing and ChIP-seq

reads. Importantly, in these cases the analyses are guided by real reads.

2 Materials and methods

A C G T

1 2 3 4

Reference

Q2

Q1

Q3

G

T

C

C

G

T

G

T

T

T

6

A

5

ACGT

A

T

CGT

Fig. 1. The multiple alignment of three sequences (ACGTACGT, ACGTTCGT,

ACGTCGT) can be represented as a four-node graph. Suppose we want to compute the

dynamic programming alignment matrix for three length-3 queries to the graph-shaped

reference. The columns of the matrices correspond to characters in the reference and are

numbered 1 through 9 in the order they will be computed in the dynamic programming

algorithm. Query characters label the rows of each matrix. Matrices are shown stacked

because SIMD instructions operate on the same row and column in multiple matrices

simultaneously (e.g. the cells connected by the blue arrow). The optimal score for query Q1

is in column 7 (shaded cells show the alignment traceback); for Q2 the optimal score is in

column 6; for Q3 two equally good alignments end in columns 4 and 9 (possible traceback

is shown).

Vargas is a heuristic-free read aligner for linear and graph reference

genomes. Among currently available software and libraries, only Vargas

has the features required to calculate optimal alignments for semiglobal and

local alignment to linear and graph genomes, with affine gap penalties and

base-quality-dependent mismatch penalties. These optimal alignments of

real sequencing reads, calculated with respect to the particular optimization

problem each heuristic algorithm seeks to approximate, can be used to

systematically evaluate the behavior of the heuristic tools and improve

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa265/5823884 by M

ichael Schatz on 01 June 2020



Vargas 3

the algorithms. We provide the first thorough evaluation comparing graph

alignment to linear-genome alignment without the confounding factors that

come when comparing tools with differing scoring functions or heuristics

and using real rather than simulated sequencing reads.

2.1 Graph Alignment

The Smith-Waterman algorithm uses dynamic programming to find the

optimal local alignment of a query sequence to a reference sequence under

a scoring function rewarding matches and penalizing mismatches and

gaps (Smith and Waterman, 1981). Affine gap penalties (Gotoh, 1982)

are often employed, where the penalty to start a gap is greater than the

penalty to extend the gap, encouraging larger consecutive gaps rather than

multiple smaller gaps. The algorithm was further extended to support local

alignment of a linear query to a directed acyclic graph (DAG) reference

(Lee et al., 2002). Genetic variants induce “forks” and “joins” in the DAG

(Figure 1). The classical dynamic programming recurrence is computed

for each column of each vertex in a topological-sort order, taking into

account cases where a column has more than one predecessor in the graph

structure (e.g. column 7 in Figure 1).

Before alignment, Vargas constructs the DAG from a linear reference

sequence and optionally a set of genetic variants in a Variant Call Format

(VCF) file. The graph can be computed once and is stored on disk in

a format that includes the sequence represented by each node and links

between nodes. To reconcile coordinate shifts introduced by insertions

and deletions, alignments are anchored to the reference sequence. Nodes

representing parallel paths with different sequence lengths are right-

aligned to the reference sequence. Vargas produces read alignments in

SAM format. For the best and second-best alignment scores, Vargas

reports the reference position of the rightmost aligned query base and

the count of equally-scoring alignment locations at least one read-length

apart in custom SAM tags. For linear genomes, the alignment traceback

can optionally be computed to populate the CIGAR and POS fields.

2.2 Vectorization Strategies

Vectorized dynamic-programming alignment strategies involve filling

several cells of the dynamic-programming matrix at the same time.

An early approach computed chunks of cells along the minor diagonal

(Wozniak, 1997), a later approach achieved a more predictable memory-

access pattern by filling vertical chunks (Rognes and Seeberg, 2000), and a

“striped” variation on this idea achieved better performance by simplifying

the loops (Farrar, 2007). In these later algorithms, elements in a chunk are

inter-dependent because the final value of an element depends on the final

values of neighbors above. Thus, the initial filling step must be followed by

a “repair” step to resolve dependencies. As architectures evolve to allow

more elements to be computed at once, the amount of work required for

repair increases. These methods are therefore not well positioned to benefit

from increases in vector width, such as those afforded by AVX512BW

(byte and word) extensions that allow for simultaneous calculation of 64

8-bit matrix elements (Intel Corporation, 2015). Instead, Vargas uses the

query-parallel strategy of Rognes (2011). In this paradigm, the value of

each vector element is independent so no repair step is required. For a

particular row and column position in the matrix, SIMD instructions are

used to compute the value for 8–64 queries simultaneously, depending on

the vector capacity. The query-parallel strategy has been used for alignment

to linear references in SeqAn (Rahn et al., 2018) and to directed acyclic

graphs in PaSGAL (Jain et al., 2019).

2.3 Implementation

Vargas is implemented in C++ using SIMD instructions and supports the

SSE4.1, AVX2, and AVX512BW instruction sets, which can be compiled

for many architectures including Intel Xeon Phi (Knights Landing/KNL)

and Xeon Platinum (Skylake/SKX). The KNL architecture supports 256–

288 threads across 64–72 cores (Sodani, 2015; Jeffers et al., 2016)

and SKX can be configured with up to 28 cores, each with two AVX

(advanced vector extensions) processors (Tam et al., 2018). In Vargas,

to maximize throughput, each SIMD word (vector) is split into 8-bit

operands allowing for the simultaneous alignment of 16, 32, and 64

sequences with 128-bit, 256-bit, and 512-bit vectors for SSE4.1, AVX2,

and AVX512BW respectively. If the difference between the maximum and

minimum possible alignment scores exceeds 255 based on the read length

and scoring function, 16-bit operands are selected at runtime.

3 Results

First we used Vargas to study the performance and accuracy of heuristic

read aligners on real sequencing data. While most benchmarks use

simulated reads, using a heuristic-free aligner allows us to determine

whether the alignment for a real read is correct-by-score, as others

have observed (Holtgrewe et al., 2011). We explored how alignment

settings can affect which reads are incorrect-by-location, incorrect-by-

score, or completely fail to align due to heuristics. We evaluated the

time-accuracy tradeoff of the Bowtie 2 and HISAT2 effort presets and

propose a comparable set of parameters for BWA-MEM and BWA aln.

Based on the correct-by-location definition, we compare BWA-MEM and

Bowtie 2 mapping quality to the mathematical ideal before and after

adjustment with Qtip (Langmead, 2017). Finally, we show how a small

set of reads annotated with optimal alignment score using Vargas can be

used to optimize Bowtie 2 alignment parameters and suggest a possible

algorithmic improvement. Data and scripts to reproduce the experiments

in this section and the next are available at https://github.com/

cdarby/vargas-experiments.

3.1 Computational performance

(a)

0

100

200

300

400

1 16 32 48 64 80 95

Threads (SKX)

G
C

U
P

S

Linear

MAF>10% 1KGP

All 1KGP

(b)

0

100

200

300

400

1 16 32 48 64 80 95

Threads (SKX)

G
C

U
P

S

AVX512−BW (64)

AVX2 (32)

SSE4.1 (16)

(c)

0

50

100

150

200

1 68 136 204 271

Threads (KNL)

G
C

U
P

S

Linear

MAF>10% 1KGP

All 1KGP

(d)

0

50

100

150

200

1 68 136 204 271

Threads (KNL)

G
C

U
P

S

AVX2 (32)

SSE4.1 (16)

(a)

0

100

200

300

400

1 16 32 48 64 80 95

Threads (SKX)

G
C

U
P

S

Linear

MAF>10% 1KGP

All 1KGP

(b)

0

100

200

300

400

1 16 32 48 64 80 95

Threads (SKX)

G
C

U
P

S

AVX512−BW (64)

AVX2 (32)

SSE4.1 (16)

(c)

0

50

100

150

200

1 68 136 204 271

Threads (KNL)

G
C

U
P

S

Linear

MAF>10% 1KGP

All 1KGP

(d)

0

50

100

150

200

1 68 136 204 271

Threads (KNL)

G
C

U
P

S

AVX2 (32)

SSE4.1 (16)

Fig. 2. Scaling results for Skylake (SKX; a and b) and Knight’s Landing (KNL; c and d)

architectures and the instruction sets available for each. The input number of reads is scaled

in proportion to the number of threads, so that each thread aligns a full vector of 100bp

reads against the reference 8 times. (a) and (c). Reads were aligned to chromosome 19

with no variants (Linear, 1 node), 1000 Genomes Project Phase 3 variants with minor allele

frequency > 10% (MAF >10% 1KGP, 436K nodes), or all 2504 individuals’ variants from

1000 Genomes Project Phase 3 (All 1KGP, 5.1M nodes). (b) and (d). Reads were aligned to

chromosome 19 with no variants. Vector size is shown in parentheses after the instruction

set name on the right panels. Note, KNL does not support the AVX512BW instruction set.

GCUPS = giga cell updates per second.

We measured performance using GCUPS (giga cell updates per

second), which is the number of cells in the dynamic programming

matrix computed per second. This standard metric used extensively in

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa265/5823884 by M

ichael Schatz on 01 June 2020



4 Darby et al.

the literature normalizes performance to enable comparisons between

experiments conducted using reads and references of different lengths

(Rahn et al., 2018; Daily, 2016; Jain et al., 2019; Liu and Schmidt, 2014;

Liu et al., 2013). Evaluation was performed on an Intel Xeon Phi 7250

(Knights Landing / KNL) computer with 68 cores and four threads per core,

and an Intel Xeon Platinum 8160 (Skylake / SKX) computer with two 24-

core processors and two threads per core. GCUPS results for semiglobal

alignment are shown in Figure 2; GCUPS results for local alignment and

wall time results are in Figures S1-S4. Ideal scaling would be linear. Instead

we see less-than-ideal (sublinear) scaling owing to hyperthreading and,

more generally, to contention for shared resources. SKX employs two-

way hyperthreading on 48 physical cores, and speedup is observed up to

64 threads with AVX512BW instructions (Figure 2a-b). KNL employs

four-way hyperthreading on each of its 68 physical cores, allowing a

maximum of 272 simultaneous threads. With AVX2 instructions, the

GCUPS performance doubles from 68 threads (one per core) to 136 threads

(two per core) but does not continue to double when there are three or four

threads per core (Figure 2c-d). See Supplementary Figures S1 and S2 for

scaling results with local alignment.

The best speed we observed using Vargas is 456 GCUPS, which was

observed for semiglobal alignment to the linear reference of chromosome

19 using AVX512BW instructions with 64-way vectorization on 48 threads

of the SKX computer. When the chromosome 19 graph contained all

1000 Genomes Phase 3 SNPs and indels (5.1 million nodes and 3.66%

increase in linearized genome size) we observed 237 GCUPS with the

same configuration. When aligning 150bp reads to chromosome 10, SeqAn

(Rahn et al., 2018) reported 420 GCUPS using 40 threads on SKX with

AVX512BW; on the same dataset, Parasail (Daily, 2016) recorded 74

GCUPS, but used AVX2 instructions that offer only half the throughput

per instruction. PaSGAL (Jain et al., 2019), reported 317 GCUPS with 48

threads on SKX with AVX512 instructions when aligning 100bp reads to a

graph genome of the 1Mbp Leukocyte Receptor Complex locus including

all variants from 1000 Genomes Project Phase 3, not including traceback.

Vargas semiglobal alignment to the linear genome on Xeon Phi (KNL)

with AVX2 instructions and 271 threads achieved a maximum speed of

194 GCUPS. Alignment to the all-variant graph described above achieved

110 GCUPS with the same configuration. This compares favorably to

previous Xeon Phi-based efforts such as SWAPHI (58.8 GCUPS) (Liu and

Schmidt, 2014), as well as to GPU based aligners such as CUDASW++3.0

(119 GCUPS, GTX680) (Liu et al., 2013). While several exact dynamic

programming pairwise alignment algorithms are available in the literature

(summarized in Supplementary Table S3), Vargas offers the most flexibility

in terms of scoring function and options for local, semiglobal, linear, and

DAG alignment with comparable speed and scaling to the state of the art.

3.2 Alignment Accuracy

We use 100,000 unpaired 100bp reads from the 1000 Genomes Project

sample NA18505, SRA accession ERR239486, and 100,000 unpaired

250bp reads from the 1000 Genomes Project sample NA19017, SRA

accession SRR1295544. All aligners were evaluated with respect to the

human reference genome GRCh38 primary assembly. Since HISAT2 and

vg have graph alignment capabilities, we also built graph-genome indexes

for both using the 6.2 million SNPs and indels from the 1000 Genomes

Phase 3 call set with allele frequency at least 10% (Lowy-Gallego et al.,

2019). Vargas alignments to the linear genome took about 40 hours and

alignments to the graph genome took about 57 hours, using 96 threads on

a SKX computer with AVX512BW instructions and 64-way vectorization.

Figure 3 shows the performance of Bowtie 2 (Langmead and Salzberg,

2012), BWA-MEM (Li, 2013), HISAT2 with graph genome (Kim et al.,

2019) and vg with graph genome (Garrison et al., 2018) on the 100bp

read set with respect to the correct-by-score definition. Bowtie 2 and

HISAT2 were run multiple times using their “preset” parameters that trade

between runtime and alignment accuracy. We also determined a sequence

of settings that create a similar tradeoff for BWA-MEM. Additional results

for BWA aln (Li and Durbin, 2010), Bowtie 2 with local alignment (default

is semiglobal), vg with linear genome, and HISAT2 with linear genome

are in Supplementary Figure S3; plots evaluating alignments based on the

correct-by-location definition are in Supplementary Figure S4.

Bowtie 2. Bowtie 2’s default semiglobal alignment mode offers four

“presets” providing four sets of values for the -D (extension effort) -R (re-

seeding)-L (seed length) and-i (seed spacing) parameters. We found that

these presets effectively trade between time and accuracy when evaluated

using correct-by-score. For the settings that are faster but less accurate,

the number of reads failing to align increases and the number of reads

aligned correctly decreases. Correctness decreases approximately linearly

with optimal alignment score (Figure 3a). Interestingly, when the optimal

alignment score is below -40, approximately 50% of the reads are incorrect-

by-score, meaning no alignment was reported or the heuristics have lead

to an erroneous suboptimal alignment for the majority of these reads.

HISAT2. The latest version of HISAT2 (version 2.2.0-beta https://

github.com/DaehwanKimLab/hisat2/tree/hisat2_v2.2.

0_beta) provides two modes that change the --score-min

(minimum score for reporting alignments) and --bowtie2-dp

parameters to align more reads. very-sensitive uses “unconditional

dynamic programming” and sensitive uses “conditional dynamic

programming.” Compared to the default ‘fast’ mode, more reads are

correct-by-score using the very-sensitive and sensitive modes, but more

reads are incorrect-by-score. This is possible because more reads are

aligned. In contrast, the slowest Bowtie 2 and BWA-MEM presets have the

least incorrect reads (Supplementary Table S1). More incorrect alignments

are likely reported because the HISAT2 presets also alter the minimum

score of alignments reported, which is an independent parameter in Bowtie

2/BWA-MEM.

BWA-MEM. While BWA-MEM does not offer presets like Bowtie 2

and HISAT2, we selected four settings for -k (seed length) and -r (re-

seeding) that trade between speed and accuracy. With the default parameter

settings (blue line) and our proposed presets, correctness decreases with

optimal score for reads with score greater than 50, but then increases

with optimal score for reads with optimal score between 50 and 30, the

minimum alignment score reported (Figure 3b). This appears to be because

most of the aligned reads with optimal score below 50 have an exact or near-

exact alignment that does not include all the bases in the read, sometimes

referred to as “soft clipping.” The BWA-MEM heuristic algorithm for

local alignment is often able to correctly identify optimal alignments

of this sort, even though they have low alignment score. In contrast,

illustrating a fundamental difference between the local and semiglobal

alignment problems, the Bowtie 2 and HISAT2 strategies for semiglobal

alignment seldom identify the optimal low-scoring alignments which have

many mismatches and gaps because every base of the read must be included

in the alignment.

vg. Like BWA-MEM, vg performs local alignment. Correctness

decreases with optimal score for reads with score greater than 50 but

increases with optimal score for reads with optimal score between 50

and 20, which again appears to be due to low-scoring local alignments

frequently being soft-clipped to involve a short region of high similarity

and underscores the differences between local and semiglobal alignment.

Salmon. The Salmon pseudoaligner (Patro et al., 2017) version

1.1.0 will optionally perform semiglobal dynamic programming

alignment and produce a SAM file with alignment scores based

on an edit distance scoring function with the command-line flags

--writeMappings --validateMappings. While the alignments

themselves are not designed to be used in downstream analysis (e.g. the

CIGAR string does not correspond to the reported alignment score),

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa265/5823884 by M

ichael Schatz on 01 June 2020



Vargas 5

the alignment scores are used in this mode to select which alignments

will be used in expression quantification. Using an RNA-seq dataset

and Vargas alignments to the reference transcriptome, described fully

in the Supplementary Information, we evaluated the alignment scores

reported by Salmon with the default algorithm which performs alignment

only between and beyond the maximal exact matches (MEMs), and

with the --fullLengthAlignment flag, which performs alignment

along the whole read. The default algorithm had more correct-by-score

alignments compared to the full-length algorithm (Supplementary Table

S5, Supplementary Figure S6).

Supplementary Figure S4 compares the correct-by-score and correct-

by-location definitions for the genomic alignments of 100bp real

sequencing reads with unique and repetitive optimal alignments. When

we consider only the reads that align uniquely, there is little difference

between the definitions of correctness. When we consider reads that

align repetitively, noticeably more reads are correct-by-score than are

correct-by-location, as expected. We also performed Vargas alignments

of 100,000 250bp reads for the same aligners (Supplementary Table S2,

Supplementary Figure S5) and the results closely match those obtained

with 100bp reads.

To compare the simulation-based definition of correct-by-location,

which is calculated by comparing the genomic coordinate where the read

is simulated from to the coordinate where it is aligned, and the correct-by-

score definition, which is calculated using Vargas matched to the scoring

function of the alignment algorithm, we generated simulated reads from

human chromosome 19. For alignments with Bowtie 2 to the chromosome

19 reference, we saw that 7.79%, 2.80%, and 1.31% of reads of length 50,

100, and 150 respectively, were correct-by-score but incorrect-by-location.

BWA-MEM produces similar results. Details of this experiment are in the

Supplementary Information and Supplementary Table S4.

(a) Bowtie 2

0.00

0.25

0.50

0.75

1.00

−60 −40 −20 0

Optimal alignment score

F
ra

c
ti
o
n
 c

o
rr

e
c
t−

b
y
−

s
c
o
re

vs

s*

f 

vf

(b) BWA−MEM

0.5

0.6

0.7

0.8

0.9

1.0

40 60 80 100

Optimal alignment score

F
ra

c
ti
o
n
 c

o
rr

e
c
t−

b
y
−

s
c
o
re

k16,r1.2

k19,r1.5*

k22,r3

k25,r4

(c) HISAT2

0.00

0.25

0.50

0.75

1.00

−75 −50 −25 0

Optimal alignment score

F
ra

c
ti
o
n
 c

o
rr

e
c
t−

b
y
−

s
c
o
re

vs

s

f*

(d) vg

0.5

0.6

0.7

0.8

0.9

1.0

20 40 60 80 100

Optimal alignment score

F
ra

c
ti
o
n
 c

o
rr

e
c
t−

b
y
−

s
c
o
re

(a) Bowtie 2

0.00

0.25

0.50

0.75

1.00

−60 −40 −20 0

Optimal alignment score

F
ra

c
ti
o
n
 c

o
rr

e
c
t−

b
y
−

s
c
o
re

vs

s*

f 

vf

(b) BWA−MEM

0.5

0.6

0.7

0.8

0.9

1.0

40 60 80 100

Optimal alignment score

F
ra

c
ti
o
n
 c

o
rr

e
c
t−

b
y
−

s
c
o
re

k16,r1.2

k19,r1.5*

k22,r3

k25,r4

(c) HISAT2

0.00

0.25

0.50

0.75

1.00

−75 −50 −25 0

Optimal alignment score

F
ra

c
ti
o
n
 c

o
rr

e
c
t−

b
y
−

s
c
o
re

vs

s

f*

(d) vg

0.5

0.6

0.7

0.8

0.9

1.0

20 40 60 80 100

Optimal alignment score

F
ra

c
ti
o
n
 c

o
rr

e
c
t−

b
y
−

s
c
o
re

Fig. 3. The 100,000 100bp read set is binned by the optimal alignment score calculated

by Vargas, shown on the horizontal axis, which is truncated at the point after which no

alignments are reported by the heuristic. A line is fitted to the scatterplot of fraction of

reads that are correct-by-score. Only primary alignments were evaluated for HISAT2 and

BWA-MEM. Default parameter settings denoted by star (*).

3.3 Mapping Quality

The mapping quality (MAPQ) of a read alignment is defined (Li et al.,

2008) as:

MAPQ = −10 · log
10

Pr[read is incorrectly mapped]

An accurate prediction for MAPQ requires an accurate prediction for

the probability the alignment is incorrect. Heuristics make this difficult

by effectively “censoring” the space of alignments the aligner can find.

Because of this, heuristic aligners work with only partial information when

making a MAPQ prediction. This leads to errors, such as predicting a high

MAPQ for an incorrect alignment or for an alignment that truly deserves a

low one. Since downstream tools such as variant callers depend on MAPQs

to make decisions about how to weigh and filter evidence, it is important

to predict accurately.

Aligners predict MAPQ based on features such as the alignment score

of the best and second-best alignments found or how repetitive the seed

hits are. It may also depend on the number of hits with the same score as

the reported alignment (Li et al., 2008). To condense such features into

a single score, BWA-MEM and vg use a formula, whereas Bowtie 2 and

HISAT2 use a decision tree-like approach. Some aligners do not attempt

to estimate mapping quality at all.

Qtip (Langmead, 2017) adjusts mapping quality using tandem

simulation and extra output from the heuristic during the alignment

algorithm. Using Vargas, we can assess how well mapping quality reflects

alignment correctness by grouping reads by their aligner-assigned or Qtip-

adjusted mapping quality and calculating average correctness. In this case,

it is important to use the correct-by-location definition (within a 5 bp

buffer), to match the definition of MAPQ. Figure 4 shows results for

Bowtie 2 with semiglobal or local alignment and BWA-MEM (red lines),

and Qtip-adjusted (blue line) along with a black line indicating where the

points would lie if they conformed perfectly to the mathematical definition

of MAPQ, for the 100bp and 250bp read sets. Consistent with past

experiments, Qtip-adjusted mapping qualities fall into a smaller numerical

range than aligner-calculated MAPQ and are generally more monotonic

and closer to the ideal.

(a) Bowtie 2 semiglobal0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

MAPQ

F
ra

c
. 

c
o

rr
e

c
t−

b
y
−

lo
c
a

ti
o

n
 +

/−
 5

sensitive (default)

sensitive + Qtip

(b) Bowtie 2 local0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

MAPQ

F
ra

c
. 

c
o

rr
e

c
t−

b
y
−

lo
c
a

ti
o

n
 +

/−
 5

sensitive (default)

sensitive + Qtip

(c) BWA−MEM0.00

0.25

0.50

0.75

1.00

0 20 40 60

MAPQ

F
ra

c
. 

c
o

rr
e

c
t−

b
y
−

lo
c
a

ti
o

n
 +

/−
 5

k19 (default)

k19 + Qtip

(a) Bowtie 2 semiglobal0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

MAPQ

F
ra

c
. 

c
o

rr
e

c
t−

b
y
−

lo
c
a

ti
o

n
 +

/−
 5

sensitive (default)

sensitive + Qtip

(b) Bowtie 2 local0.00

0.25

0.50

0.75

1.00

0 10 20 30 40

MAPQ

F
ra

c
. 

c
o

rr
e

c
t−

b
y
−

lo
c
a

ti
o

n
 +

/−
 5

sensitive (default)

sensitive + Qtip

(c) BWA−MEM0.00

0.25

0.50

0.75

1.00

0 20 40 60

MAPQ

F
ra

c
. 

c
o

rr
e

c
t−

b
y
−

lo
c
a

ti
o

n
 +

/−
 5

k19 (default)

k19 + Qtip

Fig. 4. The 100bp read set (a-c) and 250bp read set (d-f) are binned by mapping quality,

shown on the horizontal axis, and correctness is measured using the correct-by-location

definition within 5bp. The black line reflects the mathematical definition of mapping quality.

4 Optimizing read alignment

As an example of how Vargas alignments can be used to improve the

heuristic alignment workflow by a user who is not necessarily a tool

developer, we further examined the 100bp reads described in Section 3.2,

specifically the 8,365 reads that were unaligned by Bowtie 2 or had an

alignment with >1 mismatch or at least 1 gap, with default parameters.

All further analysis was performed on this subset of the original dataset,

which we refer to as ‘difficult reads’.

We wanted to determine whether more accurate alignments of difficult

reads could be obtained by tuning command-line parameters without much

increase in runtime, so we varied the seed length parameter of each

aligner from 10 to 32 (Supplementary Excel File 1). In Table 4 we report

results for the default seed length and the seed length that minimized the

average difference between the optimal alignment score (first column for

each aligner) and the heuristic alignment score, for aligned reads (second

column). Notably, the optimal seed length for Bowtie 2 in both semiglobal

(SG) and local (L) alignment modes was faster than the default seed length.

The optimal seed length for BWA-MEM and vg was slower than the

optimal seed length, so we also included results for the optimal parameter

that had runtime less than 1.5 times slower than the default parameters.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa265/5823884 by M

ichael Schatz on 01 June 2020



6 Darby et al.

Bowtie2 SG Bowtie2 L BWA-MEM vg

Seed length 28 32 14 17 10 12

% aligned 1.00 0.95 1.00 1.00 1.02 1.02

% correct score 1.01 1.02 1.00 1.00 1.01 1.01

Mean AS difference (all aligned reads) 0.82 0.90 0.93 0.98 0.61 0.66

Mean AS difference (incorrect-by-score aligned reads) 0.89 1.02 0.97 1.00 0.81 0.85

Alignment time 0.76 0.56 1.97 1.20 1.99 1.41

Table 1. Bowtie 2 semiglobal alignment (SG), Bowtie 2 local alignment (L), BWA-MEM, and vg using MAF > 10% graph genome, were run on 8,365 difficult

reads from the 100bp dataset with seed length varying from 10 to 35. The value in the table equals the ratio between the measurement (row) when using the stated

parameter setting (column) versus when using default parameters. For BWA-MEM and vg, the second parameter setting is the one that gave the lowest mean AS

difference without taking more than 1.5 times as long as the default.

This case study demonstrates how a set of real reads annotated with the

optimal alignment score can be used to tune heuristic alignment parameters

that are exposed to the user on the command line. While a 1-2% increase

in correctly-scored alignments may seem marginal, this would have a

significant impact on a dataset with millions or billions of reads and on use

cases with a low signal-to-noise ratio such as cell-free DNA analysis or

somatic variant calling. The parameters enabling this increase in accuracy

can be identified with Vargas alignments of just a few thousand reads.

We also performed a similar optimization experiment for Bowtie 2,

BWA-MEM and vg with graph genome using ChIP-seq reads, described

in the Supplementary Information. By varying command-line parameters

on a small test set of 10,000 reads, we observed increased alignment rate

and correctness-by-score on 570,000 difficult reads from the dataset, at the

cost of increased runtime (Supplementary Table S6 and Supplementary

Excel File 2).

5 Discussion

We presented Vargas, a heuristic-free read alignment tool achieving

extremely high multi-threaded throughput. Vargas works with flexible

alignment scoring functions (e.g. affine gap penalty) and parameters

(e.g. local and semi-global alignment), and with both linear and

graph references. Read alignments produced by Vargas can be used

as a computational gold standard for evaluating short-read alignment

algorithms, including with real sequencing datasets, and in much the

same way as biological gold standards are used to assess variant calling

algorithms. Vargas opens the door to comprehensive study of the effects

of alignment heuristics and, distinct from that, the effects of alignment

scoring functions. Though the default scoring functions of tools like BWA-

MEM and Bowtie 2 are widely used, they are not very well studied, and

this is in large part because it is difficult to separate the effect of the

scoring function from the closely related effects of the heuristics. Vargas

alignments could also be used to evaluate the effects of different reference

genomes on alignment accuracy, such as comparing graph genomes

containing different variant sets to each other and to linear references,

as investigated using simulation in the FORGe study (Pritt et al., 2018).

The Rabema study of Holtgrewe et al. (2011) highlighted the

disadvantages of evaluating aligners using only simulated reads and the

correct-by-location definition. They developed the concept of the “trace

tree” to enumerate mapping locations and a tool, Rabema, for computing

all mappings of real or simulated sequencing reads less than a certain

Hamming or edit distance. Aligners were evaluated on their ability

to return all matches within the distance threshold, all best matches,

or any best match. However, using a single truth set of the optimal

locations of all matches leaves alignment heuristics and scoring functions

as confounding factors. Also, fixing a maximum distance k disregards

reads where the optimal match is further than k from the reference, which

we show are the most error-prone in semiglobal alignment algorithms.

Future benchmarking efforts comparing alignment algorithms, parameter

settings, and graph versus linear reference genome paradigms can now be

based on aligner-specific, real data computational gold standards generated

using Vargas.

Alignment methods developers can use Vargas alignments to identify

particular reads where the heuristic fails to find the optimal solution to

the optimization problem posed, and can revise the heuristic strategies

accordingly. Knowing optimal alignments for a subset of the input reads

can serve as training data for identifying optimal alignment parameters, as

tools like Teaser (Smolka et al., 2015) do using simulated reads. Such

customization of parameters should be particularly effective for short

(e.g. ChIP-seq) and/or error-prone (e.g. ancient DNA) reads.

Many short-read datasets use paired-end reads, where a DNA fragment

is sequenced from both ends, typically with a few hundred bases between

the read pairs. Heuristic aligners account for the fact that pairs should align

concordantly to the reference, i.e. in a particular expected configuration

based on the library preparation. Since concordance is not defined by the

scoring function per se, and since checking for concordance of paired-end

alignments can be implemented as a post-pass after each end has been

aligned individually, we left paired-end alignment to future work. We

evaluated Salmon’s RNA-seq alignments to the transcriptome, but Vargas’

optimization functions do not extend to spliced short-read alignment, such

as aligning a RNA-seq read to a genome. Possible optimization functions

for penalizing splicing events could depend on intron length, genomic

nucleotides at the donor and acceptor sites, and a transcriptome annotation.

Extending the dynamic programming model to find optimal solutions

would require that every position in the read could be spliced to any pair

of coordinates in the genome with a corresponding alignment penalty,

exponentially increasing the possibilities to be explored. Vargas does

not currently support the minimum-of-two-affine-functions gap scoring

function used by Minimap2 (Li, 2018) or variation graphs that are not

DAGs, which would limit its evaluation of an aligner that worked with

variation graphs containing cycles, for example.

Because Vargas calculates all possible alignments of read to reference

in the course of filling the dynamic programming matrix, every match

above a certain minimum score could be reported. This could be useful

in CRISPR guide RNA off-target analysis: current approaches are limited

to a few mismatches; using Vargas would allow for a full edit distance

scoring function and enumeration of distant alignments, including in the

presence of genetic variation. Fully profiling all possible alignments of a

read, or a substring extracted from the genome, could also be applied to

the problem of characterizing mappability as explored in Lee and Schatz

(2012) and Wilson et al. (2019).

Funding

This work was supported by the National Institutes of Health/National

Institute of General Medical Sciences [R01-GM118568 to BL], National

Institutes of Health/National Cancer Institute [R21-CA220411 to MCS]

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa265/5823884 by M

ichael Schatz on 01 June 2020



Vargas 7

and the National Science Foundation [DBI-1350041 to MCS, IIS-1349906

to BL].

Acknowledgements

This work used the Extreme Science and Engineering Discovery

Environment (XSEDE), which is supported by National Science

Foundation grant number ACI-1548562. This research project was

conducted using computational resources at the Maryland Advanced

Research Computing Center (MARCC), and Texas Advanced Computing

Center (TACC) at The University of Texas at Austin through allocation

TG-DEB180021. We thank Daniel Baker for assistance in software

development and Daehwan Kim for helpful comments on the manuscript.

References

Aird, D. et al. (2011). Analyzing and minimizing PCR amplification bias

in Illumina sequencing libraries. Genome Biology, 12(2), R18.

Ballouz, S. et al. (2019). Is it time to change the reference genome?

Genome Biology, 20(1), 159.

Church, D. M. et al. (2015). Extending reference assembly models.

Genome Biology, 16(1), 13.

Daily, J. (2016). Parasail: SIMD C library for global, semi-global, and

local pairwise sequence alignments. BMC Bioinformatics, 17(1), 81.

Eberle, M. A. et al. (2017). A reference data set of 5.4 million phased

human variants validated by genetic inheritance from sequencing a three-

generation 17-member pedigree. Genome Research, 27(1), 157–164.

Farrar, M. (2007). Striped Smith-Waterman speeds database searches

six times over other SIMD implementations. Bioinformatics, 23(2),

156–161.

Garrison, E. et al. (2018). Variation graph toolkit improves read mapping

by representing genetic variation in the reference. Nature Biotechnology,

36(9), 875–879.

Gotoh, O. (1982). An improved algorithm for matching biological

sequences. Journal of Molecular Biology, 162(3), 705–708.

Holtgrewe, M. et al. (2011). A novel and well-defined benchmarking

method for second generation read mapping. BMC Bioinformatics,

12(1), 210.

Huang, L. et al. (2013). Short read alignment with populations of genomes.

Bioinformatics, 29(13), i361–i370.

Intel Corporation (2015). Intel architecture instruction set extensions

programming reference. .

Jain, C. et al. (2019). Accelerating Sequence Alignment to Graphs. In 2019

IEEE International Parallel and Distributed Processing Symposium

(IPDPS), pages 451–461. IEEE.

Jeffers, J. et al. (2016). Intel Xeon Phi Processor High Performance

Programming: Knights Landing Edition. Morgan Kaufmann.

Kim, D. et al. (2019). Graph-based genome alignment and genotyping with

HISAT2 and HISAT-genotype. Nature Biotechnology, 37(8), 907–915.

Langmead, B. (2017). A tandem simulation framework for predicting

mapping quality. Genome Biology, 18(1), 152.

Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read alignment

with Bowtie 2. Nature Methods, 9(4), 357–359.

Lee, C. et al. (2002). Multiple sequence alignment using partial order

graphs. Bioinformatics, 18(3), 452–464.

Lee, H. and Schatz, M. C. (2012). Genomic dark matter: the reliability

of short read mapping illustrated by the genome mappability score.

Bioinformatics, 28(16), 2097–2105.

Li, H. (2013). Aligning sequence reads, clone sequences and assembly

contigs with BWA-MEM.

Li, H. (2018). Minimap2 : pairwise alignment for nucleotide sequences.

34(May), 3094–3100.

Li, H. and Durbin, R. (2010). Fast and accurate long-read alignment with

Burrows-Wheeler transform. Bioinformatics (Oxford, England), 26(5),

589–95.

Li, H. et al. (2008). Mapping short DNA sequencing reads and calling

variants using mapping quality scores. Genome research, 18(11), 1851–

8.

Li, H. et al. (2018). A synthetic-diploid benchmark for accurate variant-

calling evaluation. Nature Methods, 15(8), 595–597.

Liu, Y. and Schmidt, B. (2014). SWAPHI: Smith-waterman protein

database search on Xeon Phi coprocessors. In 2014 IEEE 25th

International Conference on Application-Specific Systems, Architectures

and Processors, pages 184–185. IEEE.

Liu, Y. et al. (2013). CUDASW++ 3.0: accelerating Smith-Waterman

protein database search by coupling CPU and GPU SIMD instructions.

BMC Bioinformatics, 14(1), 117.

Lowy-Gallego, E. et al. (2019). Variant calling on the GRCh38 assembly

with the data from phase three of the 1000 Genomes Project. Wellcome

Open Research, 4, 50.

Paten, B. et al. (2017). Genome graphs and the evolution of genome

inference. Genome Research, 27(5), 665–676.

Patro, R. et al. (2017). Salmon provides fast and bias-aware quantification

of transcript expression. Nature Methods, 14(4), 417–419.

Pritt, J. et al. (2018). FORGe: prioritizing variants for graph genomes.

Genome Biology, 19(1), 220.

Rahn, R. et al. (2018). Generic accelerated sequence alignment in SeqAn

using vectorization and multi-threading. Bioinformatics, 34(20), 3437–

3445.

Rautiainen, M. et al. (2019). Bit-parallel sequence-to-graph alignment.

Bioinformatics.

Rognes, T. (2011). Faster Smith-Waterman database searches with inter-

sequence SIMD parallelisation. BMC bioinformatics, 12, 221.

Rognes, T. and Seeberg, E. (2000). Six-fold speed-up of Smith-

Waterman sequence database searches using parallel processing on

common microprocessors. Bioinformatics (Oxford, England), 16(8),

699–706.

Schneeberger, K. et al. (2009). Simultaneous alignment of short reads

against multiple genomes. Genome Biology, 10(9), R98.

Smith, T. and Waterman, M. (1981). Identification of common molecular

subsequences. Journal of Molecular Biology, 147(1), 195–197.

Smolka, M. et al. (2015). Teaser: Individualized benchmarking and

optimization of read mapping results for NGS data. Genome Biology,

16(1).

Sodani, A. (2015). Knights landing (KNL): 2nd Generation Intel® Xeon

Phi processor. In 2015 IEEE Hot Chips 27 Symposium (HCS), pages

1–24. IEEE.

Tam, S. M. et al. (2018). SkyLake-SP: A 14nm 28-Core xeon® processor.

In 2018 IEEE International Solid - State Circuits Conference - (ISSCC),

pages 34–36. IEEE.

Vijaya Satya, R. et al. (2012). A new strategy to reduce allelic bias in

RNA-Seq readmapping. Nucleic Acids Research, 40(16), 1–9.

Wilson, L. O. W. et al. (2019). VARSCOT: variant-aware detection

and scoring enables sensitive and personalized off-target detection for

CRISPR-Cas9. BMC Biotechnol., 19(1), 40.

Wozniak, A. (1997). Using video-oriented instructions to speed up

sequence comparison. Computer applications in the biosciences :

CABIOS, 13(2), 145–50.

Yang, X. et al. (2019). One reference genome is not enough. Genome

Biology, 20(1), 104.

Zook, J. M. et al. (2014). Integrating human sequence data sets provides

a resource of benchmark SNP and indel genotype calls. Nature

Biotechnology, 32(3), 246–251.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa265/5823884 by M

ichael Schatz on 01 June 2020




