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Abstract

Motivation: Read alignment is central to many aspects of modern genomics. Most aligners use heuristics
to accelerate processing, but these heuristics can fail to find the optimal alignments of reads. Alignment
accuracy is typically measured through simulated reads; however, the simulated location may not be the
(only) location with the optimal alignment score.

Results: Vargas implements a heuristic-free algorithm guaranteed to find the highest-scoring alignment
for real sequencing reads to a linear or graph genome. With semiglobal and local alignment modes and
affine gap and quality-scaled mismatch penalties, it can implement the scoring functions of commonly used
aligners to calculate optimal alignments. While this is computationally intensive, Vargas uses multi-core
parallelization and vectorized (SIMD) instructions to make it practical to optimally align large numbers of
reads, achieving a maximum speed of 456 billion cell updates per second. We demonstrate how these
“gold standard” Vargas alignments can be used to improve heuristic alignment accuracy by optimizing
command-line parameters in Bowtie 2, BWA-MEM, and vg to align more reads correcily.

Availability and implementation: Source code implemented in C++ and compiled binary releases are

available at https://github.com/langmead-1lab/vargas under the MIT license.

Contact: langmea@cs.jhu.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biological gold standards such as the Platinum Genomes (Eberle e al.,
2017), synthetic diploid (Li et al., 2018), and Genome in a Bottle
(Zook et al., 2014) catalog the variants present in a genome and are
used to benchmark variant calling algorithms on real sequencing data.
For benchmarking and algorithm development, using gold standard call
sets is more realistic than simulating sequencing reads from a synthetic
genome with known variants. However, read alignment algorithms, which
determine a sequencing read’s point of origin with respect to a reference
genome, are instead often evaluated using simulated sequencing reads due
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to the lack of a biological gold standard that directly answers questions
about where sequencing reads should align.

In a typical read-aligner benchmark, sequencing errors and genetic
variation are added to a substring of the reference genome, which is
mapped back to the reference genome (Smolka et al., 2015). The simulated
coordinate is then compared to the aligned coordinate. If the coordinates
are equal (or within a predetermined range), the alignment is considered
correct. We refer to this definition as “correct-by-location.” Critically, this
procedure assumes that the desired (optimal) alignment is at the same
location where the read was simulated, which may not be the case due
to the simulation process and genomic repetitiveness. Furthermore, the
base-level alignment may be suboptimal even if the read is mapped to
the simulated location; e.g. the alignments may disagree about the exact
placement and number of gaps in the alignment. Additionally, simulated
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reads may not faithfully capture more subtle aspects of the sequencing
processing, especially any sequence-specific error modalities (Aird et al.,
2011).

A central component of all read aligners is defining a scoring function.
The scoring function penalizes differences between the read and reference;
i.e. it is the objective function that the aligner seeks to optimize. When
the optimal alignment score for a read equals the score reported by the
algorithm, we call this alignment “correct-by-score.” Optimal alignments
of real sequencing reads could be considered a computational gold
standard for read alignment algorithms (c.f. Holtgrewe et al. (2011)).
These can be used to evaluate alignment algorithms using real data in
the same way as biological gold standard variant catalogs are used to
assess variant callers. To serve as a computational gold standard, the
optimal alignment should be calculated with respect to the same alignment
mode (local or semiglobal), scoring function, and reference genome of the
algorithm being evaluated.

While most current heuristic and heuristic-free read alignment
algorithms assume that the reference genome is linear, with greater
understanding of genetic diversity has come increasing focus on
alternatives to the linear reference genome. Various solutions have been
proposed that incorporate information about genetic variation in the
population, including graph-shaped reference genomes (Paten et al., 2017),
pan-genomes (Yang et al., 2019), and a genome that contains the most
common (major) allele at each variable site (Pritt et al., 2018; Ballouz et al.,
2019). The most recent human reference genome assembly, GRCh38,
includes alternate assemblies for hypervariable loci (Church et al., 2015).
Alignment algorithms that account for genetic variants have likewise been
proposed (Schneeberger et al., 2009; Vijaya Satya et al.,2012; Huang et al.,
2013; Garrison et al., 2018; Rautiainen et al., 2019; Jain et al., 2019).

Whether the genome is linear or a variant graph, calculating the
optimal read alignment using dynamic programming is extremely work-
intensive. Popular algorithms for aligning to linear genomes such as Bowtie
2 (Langmead and Salzberg, 2012) and BWA-MEM (Li, 2013), or to graph
genomes, such as HISAT2 (Kim et al., 2019) and vg (Garrison et al.,
2018), scale to genomic-scale datasets because they use heuristics to find
approximate solutions to the optimization problem defined by the objective
function. A widely used heuristic is “seed-and-extend” in which short
exact sequence matches are used to anchor the search for longer matches.
Relatedly, aligners apply various heuristics to prioritize which candidate
seed matches are most likely to lead to a high quality alignment. These
computational shortcuts limit effort spent on candidate alignments that
appear like they will be suboptimal, but may cause the algorithm to return
a suboptimal alignment or no alignment.

Alignment errors due to heuristics can ultimately lead to confounding
of scientific results downstream. At the same time, it is difficult to study
the precise effects of heuristics. This is both because they are varied and
complex, and because it is computationally demanding to disentangle
the effects of heuristics from those of scoring functions and other read-
alignment parameters. A case in point is the Qtip study (Langmead,
2017), where mapping-quality predictions were improved by modifying
the source code of heuristic alignment algorithms to report specific
information about the heuristic search procedure for each read. Because
a computational gold standard can be constructed to match the aligner’s
scoring function and other parameters, it uniquely allows us to isolate the
effects of heuristics.

General-purpose computer processors have recently become capable
of running hundreds of separate threads of execution simultaneously in
parallel. Within each thread, single-instruction multiple data (SIMD)
(“vector”) operations can be employed that operate on a group of values at
once instead of a typical processor instruction that operates on individual
scalar values. Vargas implements a form of the Smith-Waterman (Smith
and Waterman, 1981) algorithm for query-reference sequence alignment

to a linear reference or a directed acyclic graph (DAG). Rognes (2011)
proposed a query-parallel strategy that fills the same element (same row
and column) in several dynamic programming matrices at once. This has
been shown to be efficient and practical in prior studies (Rahn ez al., 2018;
Jain et al., 2019). We adopt this approach in Vargas and provide further
evidence that it is efficient on modern general-purpose architectures for
both linear and graph alignment.

Vargas is the most efficient and flexible tool for establishing
computational gold standards for evaluating read alignment heuristics
and scoring schemes. While the need for such standards was discussed
and partially addressed in the previous Rabema study (Holtgrewe et al.,
2011), Vargas is an advance over those methods owing to its handling
of graph-shaped as well as linear reference genomes, efficient scaling to
many threads, use of modern SIMD instructions, and handling of flexible
affine-gap-penalty scoring schemes such as those used in modern aligners
like vg, Bowtie 2 and BWA-MEM. Using RNA-seq reads aligned to
the transcriptome, we can also assess the accuracy of alignment scores
reported by the pseudoaligner Salmon. We demonstrate the utility of the
method by showing how it can be used to assess alignment correctness
and mapping quality predictions, and to optimize Bowtie 2, BWA-MEM,
and vg alignment parameters for whole-genome sequencing and ChIP-seq
reads. Importantly, in these cases the analyses are guided by real reads.

2 Materials and methods

Fig. 1. The multiple alignment of three sequences (ACGTACGT, ACGTTCGT,
ACGTCGT) can be represented as a four-node graph. Suppose we want to compute the
dynamic programming alignment matrix for three length-3 queries to the graph-shaped
reference. The columns of the matrices correspond to characters in the reference and are
numbered 1 through 9 in the order they will be computed in the dynamic programming
algorithm. Query characters label the rows of each matrix. Matrices are shown stacked
because SIMD instructions operate on the same row and column in multiple matrices
simultaneously (e.g. the cells connected by the blue arrow). The optimal score for query Q1
is in column 7 (shaded cells show the alignment traceback); for Q2 the optimal score is in
column 6; for Q3 two equally good alignments end in columns 4 and 9 (possible traceback

is shown).

Vargas is a heuristic-free read aligner for linear and graph reference
genomes. Among currently available software and libraries, only Vargas
has the features required to calculate optimal alignments for semiglobal and
local alignment to linear and graph genomes, with affine gap penalties and
base-quality-dependent mismatch penalties. These optimal alignments of
real sequencing reads, calculated with respect to the particular optimization
problem each heuristic algorithm seeks to approximate, can be used to
systematically evaluate the behavior of the heuristic tools and improve
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the algorithms. We provide the first thorough evaluation comparing graph
alignment to linear-genome alignment without the confounding factors that
come when comparing tools with differing scoring functions or heuristics
and using real rather than simulated sequencing reads.

2.1 Graph Alignment

The Smith-Waterman algorithm uses dynamic programming to find the
optimal local alignment of a query sequence to a reference sequence under
a scoring function rewarding matches and penalizing mismatches and
gaps (Smith and Waterman, 1981). Affine gap penalties (Gotoh, 1982)
are often employed, where the penalty to start a gap is greater than the
penalty to extend the gap, encouraging larger consecutive gaps rather than
multiple smaller gaps. The algorithm was further extended to support local
alignment of a linear query to a directed acyclic graph (DAG) reference
(Lee et al., 2002). Genetic variants induce “forks” and “joins” in the DAG
(Figure 1). The classical dynamic programming recurrence is computed
for each column of each vertex in a topological-sort order, taking into
account cases where a column has more than one predecessor in the graph
structure (e.g. column 7 in Figure 1).

Before alignment, Vargas constructs the DAG from a linear reference
sequence and optionally a set of genetic variants in a Variant Call Format
(VCF) file. The graph can be computed once and is stored on disk in
a format that includes the sequence represented by each node and links
between nodes. To reconcile coordinate shifts introduced by insertions
and deletions, alignments are anchored to the reference sequence. Nodes
representing parallel paths with different sequence lengths are right-
aligned to the reference sequence. Vargas produces read alignments in
SAM format. For the best and second-best alignment scores, Vargas
reports the reference position of the rightmost aligned query base and
the count of equally-scoring alignment locations at least one read-length
apart in custom SAM tags. For linear genomes, the alignment traceback
can optionally be computed to populate the CIGAR and POS fields.

2.2 Vectorization Strategies

Vectorized dynamic-programming alignment strategies involve filling
several cells of the dynamic-programming matrix at the same time.
An early approach computed chunks of cells along the minor diagonal
(Wozniak, 1997), a later approach achieved a more predictable memory-
access pattern by filling vertical chunks (Rognes and Seeberg, 2000), and a
“striped” variation on this idea achieved better performance by simplifying
the loops (Farrar, 2007). In these later algorithms, elements in a chunk are
inter-dependent because the final value of an element depends on the final
values of neighbors above. Thus, the initial filling step must be followed by
a “repair” step to resolve dependencies. As architectures evolve to allow
more elements to be computed at once, the amount of work required for
repair increases. These methods are therefore not well positioned to benefit
from increases in vector width, such as those afforded by AVX512BW
(byte and word) extensions that allow for simultaneous calculation of 64
8-bit matrix elements (Intel Corporation, 2015). Instead, Vargas uses the
query-parallel strategy of Rognes (2011). In this paradigm, the value of
each vector element is independent so no repair step is required. For a
particular row and column position in the matrix, SIMD instructions are
used to compute the value for 8—64 queries simultaneously, depending on
the vector capacity. The query-parallel strategy has been used for alignment
to linear references in SeqAn (Rahn et al., 2018) and to directed acyclic
graphs in PaSGAL (Jain et al., 2019).

2.3 Implementation

Vargas is implemented in C++ using SIMD instructions and supports the
SSE4.1, AVX2, and AVX512BW instruction sets, which can be compiled

for many architectures including Intel Xeon Phi (Knights Landing/KNL)
and Xeon Platinum (Skylake/SKX). The KNL architecture supports 256—
288 threads across 64-72 cores (Sodani, 2015; Jeffers et al., 2016)
and SKX can be configured with up to 28 cores, each with two AVX
(advanced vector extensions) processors (Tam et al., 2018). In Vargas,
to maximize throughput, each SIMD word (vector) is split into 8-bit
operands allowing for the simultaneous alignment of 16, 32, and 64
sequences with 128-bit, 256-bit, and 512-bit vectors for SSE4.1, AVX2,
and AVX512BW respectively. If the difference between the maximum and
minimum possible alignment scores exceeds 255 based on the read length
and scoring function, 16-bit operands are selected at runtime.

3 Results

First we used Vargas to study the performance and accuracy of heuristic
read aligners on real sequencing data. While most benchmarks use
simulated reads, using a heuristic-free aligner allows us to determine
whether the alignment for a real read is correct-by-score, as others
have observed (Holtgrewe et al., 2011). We explored how alignment
settings can affect which reads are incorrect-by-location, incorrect-by-
score, or completely fail to align due to heuristics. We evaluated the
time-accuracy tradeoff of the Bowtie 2 and HISAT2 effort presets and
propose a comparable set of parameters for BWA-MEM and BWA aln.
Based on the correct-by-location definition, we compare BWA-MEM and
Bowtie 2 mapping quality to the mathematical ideal before and after
adjustment with Qtip (Langmead, 2017). Finally, we show how a small
set of reads annotated with optimal alignment score using Vargas can be
used to optimize Bowtie 2 alignment parameters and suggest a possible
algorithmic improvement. Data and scripts to reproduce the experiments
in this section and the next are available at https://github.com/
cdarby/vargas-experiments.

3.1 Computational performance
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Fig. 2. Scaling results for Skylake (SKX; a and b) and Knight’s Landing (KNL; ¢ and d)
architectures and the instruction sets available for each. The input number of reads is scaled
in proportion to the number of threads, so that each thread aligns a full vector of 100bp
reads against the reference 8 times. (a) and (c). Reads were aligned to chromosome 19
with no variants (Linear, 1 node), 1000 Genomes Project Phase 3 variants with minor allele
frequency > 10% (MAF >10% 1KGP, 436K nodes), or all 2504 individuals’ variants from
1000 Genomes Project Phase 3 (All IKGP, 5.1M nodes). (b) and (d). Reads were aligned to
chromosome 19 with no variants. Vector size is shown in parentheses after the instruction
set name on the right panels. Note, KNL does not support the AVX512BW instruction set.
GCUPS = giga cell updates per second.

We measured performance using GCUPS (giga cell updates per
second), which is the number of cells in the dynamic programming
matrix computed per second. This standard metric used extensively in
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the literature normalizes performance to enable comparisons between
experiments conducted using reads and references of different lengths
(Rahn et al., 2018; Daily, 2016; Jain et al., 2019; Liu and Schmidt, 2014;
Liu et al., 2013). Evaluation was performed on an Intel Xeon Phi 7250
(Knights Landing / KNL) computer with 68 cores and four threads per core,
and an Intel Xeon Platinum 8160 (Skylake / SKX) computer with two 24-
core processors and two threads per core. GCUPS results for semiglobal
alignment are shown in Figure 2; GCUPS results for local alignment and
wall time results are in Figures S1-S4. Ideal scaling would be linear. Instead
we see less-than-ideal (sublinear) scaling owing to hyperthreading and,
more generally, to contention for shared resources. SKX employs two-
way hyperthreading on 48 physical cores, and speedup is observed up to
64 threads with AVX512BW instructions (Figure 2a-b). KNL employs
four-way hyperthreading on each of its 68 physical cores, allowing a
maximum of 272 simultaneous threads. With AVX2 instructions, the
GCUPS performance doubles from 68 threads (one per core) to 136 threads
(two per core) but does not continue to double when there are three or four
threads per core (Figure 2c-d). See Supplementary Figures S1 and S2 for
scaling results with local alignment.

The best speed we observed using Vargas is 456 GCUPS, which was
observed for semiglobal alignment to the linear reference of chromosome
19 using AVXS512BW instructions with 64-way vectorization on 48 threads
of the SKX computer. When the chromosome 19 graph contained all
1000 Genomes Phase 3 SNPs and indels (5.1 million nodes and 3.66%
increase in linearized genome size) we observed 237 GCUPS with the
same configuration. When aligning 150bp reads to chromosome 10, SeqAn
(Rahn et al., 2018) reported 420 GCUPS using 40 threads on SKX with
AVXS512BW; on the same dataset, Parasail (Daily, 2016) recorded 74
GCUPS, but used AVX2 instructions that offer only half the throughput
per instruction. PASGAL (Jain et al., 2019), reported 317 GCUPS with 48
threads on SKX with AVX512 instructions when aligning 100bp reads to a
graph genome of the 1Mbp Leukocyte Receptor Complex locus including
all variants from 1000 Genomes Project Phase 3, not including traceback.

Vargas semiglobal alignment to the linear genome on Xeon Phi (KNL)
with AVX2 instructions and 271 threads achieved a maximum speed of
194 GCUPS. Alignment to the all-variant graph described above achieved
110 GCUPS with the same configuration. This compares favorably to
previous Xeon Phi-based efforts such as SWAPHI (58.8 GCUPS) (Liu and
Schmidt, 2014), as well as to GPU based aligners such as CUDASW++3.0
(119 GCUPS, GTX680) (Liu et al., 2013). While several exact dynamic
programming pairwise alignment algorithms are available in the literature
(summarized in Supplementary Table S3), Vargas offers the most flexibility
in terms of scoring function and options for local, semiglobal, linear, and
DAG alignment with comparable speed and scaling to the state of the art.

3.2 Alignment Accuracy

We use 100,000 unpaired 100bp reads from the 1000 Genomes Project
sample NA18505, SRA accession ERR239486, and 100,000 unpaired
250bp reads from the 1000 Genomes Project sample NA19017, SRA
accession SRR1295544. All aligners were evaluated with respect to the
human reference genome GRCh38 primary assembly. Since HISAT2 and
vg have graph alignment capabilities, we also built graph-genome indexes
for both using the 6.2 million SNPs and indels from the 1000 Genomes
Phase 3 call set with allele frequency at least 10% (Lowy-Gallego et al.,
2019). Vargas alignments to the linear genome took about 40 hours and
alignments to the graph genome took about 57 hours, using 96 threads on
a SKX computer with AVX512BW instructions and 64-way vectorization.

Figure 3 shows the performance of Bowtie 2 (Langmead and Salzberg,
2012), BWA-MEM (Li, 2013), HISAT2 with graph genome (Kim ef al.,
2019) and vg with graph genome (Garrison et al., 2018) on the 100bp
read set with respect to the correct-by-score definition. Bowtie 2 and

HISAT?2 were run multiple times using their “preset” parameters that trade
between runtime and alignment accuracy. We also determined a sequence
of settings that create a similar tradeoff for BWA-MEM. Additional results
for BWA aln (Li and Durbin, 2010), Bowtie 2 with local alignment (default
is semiglobal), vg with linear genome, and HISAT2 with linear genome
are in Supplementary Figure S3; plots evaluating alignments based on the
correct-by-location definition are in Supplementary Figure S4.

Bowtie 2. Bowtie 2’s default semiglobal alignment mode offers four
“presets” providing four sets of values for the —D (extension effort) —R (re-
seeding) —L (seed length) and -1 (seed spacing) parameters. We found that
these presets effectively trade between time and accuracy when evaluated
using correct-by-score. For the settings that are faster but less accurate,
the number of reads failing to align increases and the number of reads
aligned correctly decreases. Correctness decreases approximately linearly
with optimal alignment score (Figure 3a). Interestingly, when the optimal
alignment score is below -40, approximately 50% of the reads are incorrect-
by-score, meaning no alignment was reported or the heuristics have lead
to an erroneous suboptimal alignment for the majority of these reads.

HISAT?2. The latest version of HISAT?2 (version 2.2.0-betahttps://
github.com/DaehwanKimLab/hisat2/tree/hisat2_v2.2.
0_beta) provides two modes that change the --score-min
(minimum score for reporting alignments) and --bowtie2-dp
parameters to align more reads. very-sensitive uses “unconditional
dynamic programming” and sensitive uses “conditional dynamic
programming.” Compared to the default ‘fast’ mode, more reads are
correct-by-score using the very-sensitive and sensitive modes, but more
reads are incorrect-by-score. This is possible because more reads are
aligned. In contrast, the slowest Bowtie 2 and BWA-MEM presets have the
least incorrect reads (Supplementary Table S1). More incorrect alignments
are likely reported because the HISAT?2 presets also alter the minimum
score of alignments reported, which is an independent parameter in Bowtie
2/BWA-MEM.

BWA-MEM. While BWA-MEM does not offer presets like Bowtie 2
and HISAT2, we selected four settings for —k (seed length) and —r (re-
seeding) that trade between speed and accuracy. With the default parameter
settings (blue line) and our proposed presets, correctness decreases with
optimal score for reads with score greater than 50, but then increases
with optimal score for reads with optimal score between 50 and 30, the
minimum alignment score reported (Figure 3b). This appears to be because
most of the aligned reads with optimal score below 50 have an exact or near-
exact alignment that does not include all the bases in the read, sometimes
referred to as “soft clipping.” The BWA-MEM heuristic algorithm for
local alignment is often able to correctly identify optimal alignments
of this sort, even though they have low alignment score. In contrast,
illustrating a fundamental difference between the local and semiglobal
alignment problems, the Bowtie 2 and HISAT?2 strategies for semiglobal
alignment seldom identify the optimal low-scoring alignments which have
many mismatches and gaps because every base of the read must be included
in the alignment.

vg. Like BWA-MEM, vg performs local alignment. Correctness
decreases with optimal score for reads with score greater than 50 but
increases with optimal score for reads with optimal score between 50
and 20, which again appears to be due to low-scoring local alignments
frequently being soft-clipped to involve a short region of high similarity
and underscores the differences between local and semiglobal alignment.

Salmon. The Salmon pseudoaligner (Patro et al., 2017) version
1.1.0 will optionally perform semiglobal dynamic programming
alignment and produce a SAM file with alignment scores based
on an edit distance scoring function with the command-line flags
--writeMappings —--validateMappings. Whilethe alignments
themselves are not designed to be used in downstream analysis (e.g. the
CIGAR string does not correspond to the reported alignment score),

020z 8unr 1o Uo zjeyos [9eydl Aq 488€Z8G/G9ZEEIq/SOIELIOJUIOIG/EE0 "0 |/I0P/AOISTE-8]0ILE-90UBAPE/SOEWLIOJUIONG/ W00 dNO"oILSPEsE//:Sd)Y WOy POPEOIUMO



Vargas

the alignment scores are used in this mode to select which alignments
will be used in expression quantification. Using an RNA-seq dataset
and Vargas alignments to the reference transcriptome, described fully
in the Supplementary Information, we evaluated the alignment scores
reported by Salmon with the default algorithm which performs alignment
only between and beyond the maximal exact matches (MEMs), and
with the ——fullLengthAlignment flag, which performs alignment
along the whole read. The default algorithm had more correct-by-score
alignments compared to the full-length algorithm (Supplementary Table
S5, Supplementary Figure S6).

Supplementary Figure S4 compares the correct-by-score and correct-
by-location definitions for the genomic alignments of 100bp real
sequencing reads with unique and repetitive optimal alignments. When
we consider only the reads that align uniquely, there is little difference
between the definitions of correctness. When we consider reads that
align repetitively, noticeably more reads are correct-by-score than are
correct-by-location, as expected. We also performed Vargas alignments
of 100,000 250bp reads for the same aligners (Supplementary Table S2,
Supplementary Figure S5) and the results closely match those obtained
with 100bp reads.

To compare the simulation-based definition of correct-by-location,
which is calculated by comparing the genomic coordinate where the read
is simulated from to the coordinate where it is aligned, and the correct-by-
score definition, which is calculated using Vargas matched to the scoring
function of the alignment algorithm, we generated simulated reads from
human chromosome 19. For alignments with Bowtie 2 to the chromosome
19 reference, we saw that 7.79%, 2.80%, and 1.31% of reads of length 50,
100, and 150 respectively, were correct-by-score but incorrect-by-location.
BWA-MEM produces similar results. Details of this experiment are in the
Supplementary Information and Supplementary Table S4.
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Fig. 3. The 100,000 100bp read set is binned by the optimal alignment score calculated
by Vargas, shown on the horizontal axis, which is truncated at the point after which no
alignments are reported by the heuristic. A line is fitted to the scatterplot of fraction of
reads that are correct-by-score. Only primary alignments were evaluated for HISAT2 and
BWA-MEM. Default parameter settings denoted by star (*).

3.3 Mapping Quality

The mapping quality (MAPQ) of a read alignment is defined (Li et al.,
2008) as:

MAPQ = —10 - log;, Prfread is incorrectly mapped)]

An accurate prediction for MAPQ requires an accurate prediction for
the probability the alignment is incorrect. Heuristics make this difficult
by effectively “censoring” the space of alignments the aligner can find.
Because of this, heuristic aligners work with only partial information when

making a MAPQ prediction. This leads to errors, such as predicting a high
MAPQ for an incorrect alignment or for an alignment that truly deserves a
low one. Since downstream tools such as variant callers depend on MAPQs
to make decisions about how to weigh and filter evidence, it is important
to predict accurately.

Aligners predict MAPQ based on features such as the alignment score
of the best and second-best alignments found or how repetitive the seed
hits are. It may also depend on the number of hits with the same score as
the reported alignment (Li et al., 2008). To condense such features into
a single score, BWA-MEM and vg use a formula, whereas Bowtie 2 and
HISAT?2 use a decision tree-like approach. Some aligners do not attempt
to estimate mapping quality at all.

Qtip (Langmead, 2017) adjusts mapping quality using tandem
simulation and extra output from the heuristic during the alignment
algorithm. Using Vargas, we can assess how well mapping quality reflects
alignment correctness by grouping reads by their aligner-assigned or Qtip-
adjusted mapping quality and calculating average correctness. In this case,
it is important to use the correct-by-location definition (within a 5 bp
buffer), to match the definition of MAPQ. Figure 4 shows results for
Bowtie 2 with semiglobal or local alignment and BWA-MEM (red lines),
and Qtip-adjusted (blue line) along with a black line indicating where the
points would lie if they conformed perfectly to the mathematical definition
of MAPQ, for the 100bp and 250bp read sets. Consistent with past
experiments, Qtip-adjusted mapping qualities fall into a smaller numerical
range than aligner-calculated MAPQ and are generally more monotonic
and closer to the ideal.
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Fig. 4. The 100bp read set (a-c) and 250bp read set (d-f) are binned by mapping quality,
shown on the horizontal axis, and correctness is measured using the correct-by-location
definition within 5bp. The black line reflects the mathematical definition of mapping quality.

4 Optimizing read alignment

As an example of how Vargas alignments can be used to improve the
heuristic alignment workflow by a user who is not necessarily a tool
developer, we further examined the 100bp reads described in Section 3.2,
specifically the 8,365 reads that were unaligned by Bowtie 2 or had an
alignment with >1 mismatch or at least 1 gap, with default parameters.
All further analysis was performed on this subset of the original dataset,
which we refer to as ‘difficult reads’.

We wanted to determine whether more accurate alignments of difficult
reads could be obtained by tuning command-line parameters without much
increase in runtime, so we varied the seed length parameter of each
aligner from 10 to 32 (Supplementary Excel File 1). In Table 4 we report
results for the default seed length and the seed length that minimized the
average difference between the optimal alignment score (first column for
each aligner) and the heuristic alignment score, for aligned reads (second
column). Notably, the optimal seed length for Bowtie 2 in both semiglobal
(SG) and local (L) alignment modes was faster than the default seed length.
The optimal seed length for BWA-MEM and vg was slower than the
optimal seed length, so we also included results for the optimal parameter
that had runtime less than 1.5 times slower than the default parameters.
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Bowtie2 SG | Bowtie2 L | BWA-MEM vg
Seed length 28 32 14 17 10 | 12
% aligned 1.00 0.95|1.00| 1.00[1.02|1.02
% correct score 1.01 1.02 | 1.00 1.00 | 1.01 | 1.01
Mean AS difference (all aligned reads) 0.82 0.90 093 | 0.98]0.61|0.66
Mean AS difference (incorrect-by-score aligned reads) 0.89 1.0210.97 1.00 ] 0.81 | 0.85
Alignment time 0.76 056|197 1.20]1.99|1.41

Table 1. Bowtie 2 semiglobal alignment (SG), Bowtie 2 local alignment (L), BWA-MEM, and vg using MAF > 10% graph genome, were run on 8,365 difficult
reads from the 100bp dataset with seed length varying from 10 to 35. The value in the table equals the ratio between the measurement (row) when using the stated
parameter setting (column) versus when using default parameters. For BWA-MEM and vg, the second parameter setting is the one that gave the lowest mean AS

difference without taking more than 1.5 times as long as the default.

This case study demonstrates how a set of real reads annotated with the
optimal alignment score can be used to tune heuristic alighment parameters
that are exposed to the user on the command line. While a 1-2% increase
in correctly-scored alignments may seem marginal, this would have a
significant impact on a dataset with millions or billions of reads and on use
cases with a low signal-to-noise ratio such as cell-free DNA analysis or
somatic variant calling. The parameters enabling this increase in accuracy
can be identified with Vargas alignments of just a few thousand reads.

We also performed a similar optimization experiment for Bowtie 2,
BWA-MEM and vg with graph genome using ChIP-seq reads, described
in the Supplementary Information. By varying command-line parameters
on a small test set of 10,000 reads, we observed increased alignment rate
and correctness-by-score on 570,000 difficult reads from the dataset, at the
cost of increased runtime (Supplementary Table S6 and Supplementary
Excel File 2).

5 Discussion

We presented Vargas, a heuristic-free read alignment tool achieving
extremely high multi-threaded throughput. Vargas works with flexible
alignment scoring functions (e.g. affine gap penalty) and parameters
(e.g. local and semi-global alignment), and with both linear and
graph references. Read alignments produced by Vargas can be used
as a computational gold standard for evaluating short-read alignment
algorithms, including with real sequencing datasets, and in much the
same way as biological gold standards are used to assess variant calling
algorithms. Vargas opens the door to comprehensive study of the effects
of alignment heuristics and, distinct from that, the effects of alignment
scoring functions. Though the default scoring functions of tools like BWA-
MEM and Bowtie 2 are widely used, they are not very well studied, and
this is in large part because it is difficult to separate the effect of the
scoring function from the closely related effects of the heuristics. Vargas
alignments could also be used to evaluate the effects of different reference
genomes on alignment accuracy, such as comparing graph genomes
containing different variant sets to each other and to linear references,
as investigated using simulation in the FORGe study (Pritt ez al., 2018).
The Rabema study of Holtgrewe er al. (2011) highlighted the
disadvantages of evaluating aligners using only simulated reads and the
correct-by-location definition. They developed the concept of the “trace
tree” to enumerate mapping locations and a tool, Rabema, for computing
all mappings of real or simulated sequencing reads less than a certain
Hamming or edit distance. Aligners were evaluated on their ability
to return all matches within the distance threshold, all best matches,
or any best match. However, using a single truth set of the optimal
locations of all matches leaves alignment heuristics and scoring functions
as confounding factors. Also, fixing a maximum distance k£ disregards
reads where the optimal match is further than & from the reference, which
we show are the most error-prone in semiglobal alignment algorithms.

Future benchmarking efforts comparing alignment algorithms, parameter
settings, and graph versus linear reference genome paradigms can now be
based on aligner-specific, real data computational gold standards generated
using Vargas.

Alignment methods developers can use Vargas alignments to identify
particular reads where the heuristic fails to find the optimal solution to
the optimization problem posed, and can revise the heuristic strategies
accordingly. Knowing optimal alignments for a subset of the input reads
can serve as training data for identifying optimal alignment parameters, as
tools like Teaser (Smolka et al., 2015) do using simulated reads. Such
customization of parameters should be particularly effective for short
(e.g. ChIP-seq) and/or error-prone (e.g. ancient DNA) reads.

Many short-read datasets use paired-end reads, where a DNA fragment
is sequenced from both ends, typically with a few hundred bases between
the read pairs. Heuristic aligners account for the fact that pairs should align
concordantly to the reference, i.e. in a particular expected configuration
based on the library preparation. Since concordance is not defined by the
scoring function per se, and since checking for concordance of paired-end
alignments can be implemented as a post-pass after each end has been
aligned individually, we left paired-end alignment to future work. We
evaluated Salmon’s RNA-seq alignments to the transcriptome, but Vargas’
optimization functions do not extend to spliced short-read alignment, such
as aligning a RNA-seq read to a genome. Possible optimization functions
for penalizing splicing events could depend on intron length, genomic
nucleotides at the donor and acceptor sites, and a transcriptome annotation.
Extending the dynamic programming model to find optimal solutions
would require that every position in the read could be spliced to any pair
of coordinates in the genome with a corresponding alignment penalty,
exponentially increasing the possibilities to be explored. Vargas does
not currently support the minimum-of-two-affine-functions gap scoring
function used by Minimap2 (Li, 2018) or variation graphs that are not
DAGs, which would limit its evaluation of an aligner that worked with
variation graphs containing cycles, for example.

Because Vargas calculates all possible alignments of read to reference
in the course of filling the dynamic programming matrix, every match
above a certain minimum score could be reported. This could be useful
in CRISPR guide RNA off-target analysis: current approaches are limited
to a few mismatches; using Vargas would allow for a full edit distance
scoring function and enumeration of distant alignments, including in the
presence of genetic variation. Fully profiling all possible alignments of a
read, or a substring extracted from the genome, could also be applied to
the problem of characterizing mappability as explored in Lee and Schatz
(2012) and Wilson et al. (2019).
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