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ABSTRACT
Fine-grained non-intrusive monitoring of activities of daily liv-
ing (ADL) enables various smart building applications, including
ADL pattern assessments for older adults at risk for loss of safety
or independence. Prior work in this area has focused on coarse-
grained ADL recognition at the activity level (e.g., cooking, clean-
ing, sleeping), and/or course-grained (hourly or minutely) activity
duration segmentation. It also typically relies on a high-density
deployment of a variety of sensors. Finer-grained (sub-second-level
and event-based) ADL recognition, could provide more detailed
ADL information, which is crucial for enabling the assessment of
patients’ activity patterns and potential changes in behavior. To
achieve this fine-grained ADL monitoring, we present a system
that combines two emerging non-intrusive sparse sensing mecha-
nisms: 1) vibration sensors to capture the action-induced structural
vibration and 2) electrical sensor to capture appliance usage. To
evaluate our system, we conducted real-world experiments with
multiple human subjects to demonstrate the complementary infor-
mation from these two sensing modalities. Results show that our
system achieved an average 90% accuracy in recognizing activities,
which is up to 2.6× higher than baseline systems considering each
state-of-the-art sensing modality separately.

CCS CONCEPTS
• Information systems→ Sensor networks; •Human-centered
computing→Ubiquitous andmobile computing design and
evaluation methods.

KEYWORDS
Fine-grained ADL; Structural vibration sensing; Electrical load sens-
ing; Non-intrusive; Ensemble; Complementary
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1 INTRODUCTION
The Internet of Things (IoT) and its rapid development enables
various smart home applications that have the potential to support
independent living for older adults [2, 20]. Engagement in activ-
ities of daily living (ADL) is an important metric for these smart
home applications to monitor, as engagement in ADL is associated
with the risk of disability and all cause mortality for older adults
[33]. One way that variation in an ADL can be detected is by the
length of time or missed steps within an ADL. For example, an
older adult with cognitive impairments may insidiously decline in
engagement of ADL (e.g., take longer to perform an ADL or miss
steps within an ADL) as their cognitive impairments progress [31].
Non-intrusive, fine-grained and in-home ADL monitoring provides
a critical platform to detect variation in ADL and ensure safety and
independence in the home.

Prior work in ADL monitoring mainly focus on duration seg-
mentation and type recognition to describe ADL patterns. ADL
duration segmentation relies on dense deployment of sensors that
capture a sequence of human interaction with ambient objects (e.g.,
drawers, doors) to determine the duration of an activity [18, 19].
Activity type recognition methods leverage learning algorithms to
improve the accuracy and robustness for classifying given sens-
ing signals [4, 6]. Combined, these efforts focus on activity-level
information with the time-resolution of minute or hour, which
is coarse-grained. It is indeed challenging to achieve fine-grained,
which we define as sub-second-level and event/action-level, ADL
recognition non-intrusively and sparsely because each ADL consists
of several events or actions. Nonetheless, fine-grained ADL mon-
itoring provides detailed ADL action information, which enables
a nuanced understanding of ADL patterns and, most importantly,
provides knowledge of when changes in ADL patterns occur. A
potential change in ADL patterns may be an indication of changes
in disease status or safety for living independently. Prior attempts
for fine-grained ADL monitoring combine electrical sensors and
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passive RFID sensors, where the on-wrist RFID provides locations
and electrical sensor provides appliance usage information. These
methods (e.g., [8]) require high-density sensor deployment and
people carrying devices or tags during their activities. Older adults,
especially those with cognitive impairments, may find it difficult to
remember to wear or uncomfortable to wear such devices.

Two lines of research suggest that structural vibration and electri-
cal load monitoring provide distinct and unique information about
ADL patterns. On the one hand, researchers have noted that when
people interact with their ambient environments their actions in-
duce the structures to vibrate, and have used this vibration to infer
various types of information [23, 27] including the action (or mo-
tion) of the person [7]. Additionally, non-intrusive load monitoring
methods have been shown to detect appliance usage duration[3]
from aggregate measurements at the main electrical meter. Thus,
we combine these two complementary non-intrusive and passive
sensing modalities to cover two important aspects of ADL patterns
– occupant action and appliance usage – with fine granularity.

Our system conducts event detection and event-basedADL recog-
nition on these two sensing modalities. The system integrates these
estimates over high-resolution time windows using an ensemble
algorithm. The contributions of this work are as follows.

• We introduce a fine-grained (sub-second-level, event/action-
level) ADL detection and recognition system using structural
vibration and electrical sensing.

• We present an event-based ADL detection and recognition
framework, and an ensemble algorithm to fuse ADL predic-
tions from structural vibration and electrical sensing.

• We conduct real-world experiments to evaluate our systems
and demonstrate its effectiveness and complementary nature
of the selected sensing modalities.

The rest of the paper is organized as follows. Section 2 discusses
the related work and contrast it to our approach. Then, Section 3
presents the design of our system in detail. Next, Section 4 demon-
strates the results and analysis of real-world experiments and eval-
uations. Finally, we discuss limitations as well as future directions
of this work in Section 5 and conclude in Section 6.

2 RELATED WORK
With the growth of the Internet of Things (IoT), devices or systems
with sensing abilities have become ubiquitous in daily life. As a
results, many systems and learning algorithms are explored to
investigate the problem of activity of daily living (ADL) recognition.
We summarize them into the following categories.

2.1 Smart Home ADL Monitoring Systems
Various sensing systems have been developed to monitor smart
home ADL. Kokku et al. proposed the concept of activity signatures
in the smart home environment with a variety of sensors [18–20].
They proposed to utilize temporal cut, sensor cut, and frequency
cut to finally determine the activity segments at a relatively coarse
grained task-level, e.g., sleep, bath, eat. Fortin-Simard et al. fused
electrical load and the passive RFID sensors to achieve home activ-
ity recognition, where the on-wrist RFID provides locations and
electrical load sensor provides appliance usage information [8].

Moriya et al. explored this direction with Echonet Lite [24]. Com-
pared to these, our approach can detect more types of movements
without requiring human subjects to wear any device nor dense
deployment on each monitored appliance.

2.2 Vibration Sensing for Human Monitoring
In recent years, vibration based human sensing has been developed,
providing us with a non-intrusive passive sensing modality for in-
door occupant monitoring. It has been explored to obtain occupant
information [30] including identity [27], location [23], heart rate
[17], hand washing activities [7], etc. When the occupant interacts
with ambient objects, such as floor, table, walls, bed, sink, etc., the
interactions induce the structure to vibrate in a unique way such
that their frequency components reflect the mode excited by differ-
ent excitation sources [7]. Compared to other sensing modalities,
it does not require that the user wear a device and, as a result, it
allows ubiquitous indoor occupant activity monitoring. Since it
detects action induced surface vibration, it allows fine-grained ADL
monitoring, which is the goal of this work.

2.3 Electrical Sensing for Appliance Usage
Monitoring

Non-Intrusive Load Monitoring (NILM) has been explored as an
efficient way to monitor in-home appliance usage and related activi-
ties by disaggregating the total electrical usage of a building into its
constituent components (i.e, appliances)[14, 22]. Though the field
has largely focused on inferring appliance usage using a variety
of different approaches (e.g., voltage noise [9, 12, 29], harmonic
power [3, 11], etc.) new research has started to look into derivative
objectives such as fault detection and diagnosis of appliance pat-
terns and, relevant to this work, monitoring ADLs (e.g., [1]). Though
our envisioned solution would make use of NILM algorithms, the
work presented here is intended to serve as a proof-of-concept and,
as such, we only analyze the appliance-level power consumption. In
light of this, existing NILM work on appliance-level identification
(e.g., [10]) is most relevant.

Accurate detection and recognition of different appliance usage
is an important aspect of ADL monitoring, and these prior works
have shown the feasibility and robustness of the recognition. As
a result, we believe the combination of structural vibration and
electrical load covers two important aspects of human activity in
home scenario – with or without using appliance. We focus on the
combination of these two non-intrusive sensing modalities.

3 SYSTEM DESIGN
To achieve non-intrusive fine-grained ADL detection and recogni-
tion for long-term monitoring, we measure two essential aspects of
in-home activity – human actions (via structural vibration sensor)
and appliances usage (via electrical sensor). As shown in Figure 1,
our system first obtains signals from both structural vibration and
electrical sensors (Section 3.2). Then, it conducts event detection on
signals from each sensor (Section 3.3). Next, the system classifies
the activities at the event-level (Section 3.4). Finally, our system
conducts an event-based prediction ensemble to provide accurate
recognition for sub-second time windows (Section 3.5).
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Figure 1: System overview.

Figure 2: Sensing system conceptual diagram.

3.1 Complementary Sensing Modalities

To achieve non-intrusive monitoring for smart home applications,

we selected structural vibration and electrical sensor as the primary

sensing modalities. These two sensing modalities are selected be-

cause they are both non-intrusive – indirectly inferring activities

instead of directly measuring – and complementary with each other.

The structural vibration sensing captures the human interaction

with the ambient environment, which is mostly the impulsive ex-

citation [7, 13, 23, 27, 30]. The structural vibration sensing also

captures the appliance machinery vibration, such as a motor or

a compressor, as well as appliance usage induced vibration, such

as water or food boiling. On the other hand, the electrical sensor

precisely detects the appliance usage time and duration, which

the structural vibration sensing may not [11, 14, 28, 32]. Since the

appliance usage, as well as human motion or interaction with the

appliance, are the two significant aspects of human activities [8, 24],

these two sensing modalities are complementary for our purpose.

3.2 Sensing System

Our sensing system consists of the structural vibration sensing and

the electrical sensing. Figure 2 demonstrate a conceptual scenario

(a) Vibration sensor (b) Electrical sensor

Figure 3: Sensing hardware.

of our system deployed in a kitchen as an example. The load sensor

measures the appliances . The primary structural surfaces (e.g., the

countertop and the floor) are equipped with vibration sensors to

capture human action caused vibration.

3.2.1 Structural Vibration Sensing. The structural vibration can be

used to infer the occupant actions causing the vibration. When peo-

ple interact with objects or structure around them, the interaction

causes the surface of the object or structure to deform [23, 27, 30].

The surface deformation causes mechanical waves dominated by

the Rayleigh-Lamb wave. These waves propagate through the struc-

tural and are captured by the sensor. Since different activities or

interactions excite different modes of the structure [7], they induce

vibration with different frequency domain characteristics, which

can be used as features to recognize them. We place vibration sen-

sors on the surfaces, including floor and countertops, where the

human and appliance interact directly. A vibration sensor consists

mainly of three modules – a geophone that obtains the surface

vibration, an amplifier module that amplifies the surface waves,

and an ADC module that converts the analog signal to digital. Fig-

ure 3(a) shows an example of the structural vibration sensor on a

countertop. The Geophone in the figure is SM-24 [16]. The opamp

board has a modified gain for the monitored surface.

3.2.2 Electrical Sensing. All electrical measurementswere collected

using a 16-bit National Instruments (NI-9215) data acquisition in-

terface. Current was measured with a Fluke i200 AC current clamp

with a cut-off frequency of 10 kHz, and voltage was measured with

a Pico-TA041 Oscilloscope probe. Both measurements were done on

a power strip to which all appliances in the testbed were connected

to, as shown in Figure 3(b). The setup we used is similar to the one

used in [10].

3.3 Event Detection

For each type of sensors, an event is defined as a segment of signal

that has distinguishing characteristics compared to the signal seg-

ment when no human activities occur. Our system conducts event

detection on raw sensor signals. The intuition is that when there

are no activities – neither human interacting with the ambient

environment nor appliance usage – the signals obtained by the two

sensing modalities are considered as the ambient noise. We analyze

the signal with a sliding window. The sliding window that covers

the ambient noise signals has different signal energy distribution

compared to that of an event [25]. We model the sliding windows
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(b) Countertop vibration measurements

Figure 4: Examples of event detection. Solid blue lines are

the detected signals. Green lines mark the beginning of

events, and red lines mark the end of events.

that cover the segments of signals known as ambient noise with

Gaussian distribution, and we consider the tested sliding window

that has significantly higher signal energy as part of an event. One

event contains consecutive sliding windows that are detected as

part of an event. Figure 4 shows an example of the ambient noise

for both current sensing and vibration sensing between x-axis 0 and

1 second. The solid green and red lines indicate the start and the

end of an event for these sensing signals, which have a significant

signal energy difference compared to the ambient noise signal. As

a result, we use anomaly detection algorithms [27] to detect and

extracts the signal segments that are not ambient noise as events.

3.4 Event-based Activity Recognition

Our system enables non-intrusive passive sensing for action- or

event-level ADL recognition. The system first conducts feature

extraction on the detected event signal segments (Section 3.4.1).

Then the features of the labeled data are used to train a classifier

using support vector machine (SVM) (Section 3.4.2).

3.4.1 Feature Extraction and Normalization. For a detected event

signal segment, our system extracts its frequency domain charac-

teristics – the power spectral density – as features.

Electrical sensing. The load sensor signals have an energy con-

centration approximately at 60 Hz in the frequency domain. It is

because the local alternating current is of 60 Hz. On the other hand,

the non-linear loads in the circuit often induce the current har-

monics, which is unique for the particular circuit of the appliance.

As a result, the current harmonics induce frequency character-

istics that are distinguishable for different appliances. Therefore,

for events extracted from electrical sensing signals Event_Loadi ,
where i = 1...Nload , Nload is the number of events detected by the

electrical load sensor, we first normalize the signal by its energy to

reduce the variation caused by different appliance usage duration.

For appliances that are mainly linear load, i.e., their frequency

components do not show current harmonics, which may make the

accurate classification difficult with only features from the electrical

load sensor. Therefore, our system extracts the signal of the same

time duration of Event_Loadi from vibration sensors where the

monitored surface has multiple appliances on it. We refer to this

signal segment as Event_Load_Vibi, j , where j = 1...Smulti , Smulti

is the number of surfaces that has multiple appliances on them. Note

that for signals collected from vibration sensors, the signal segment

of the same time duration may not be detected as an event or a part

of an event. The system takes the frequency domain characteristics

of Event_Loadi and Event_Load_Vibi, j and concatenate them as

the feature for the ith event detected by the electrical load sensor.

Structural vibration sensing. Various human actions cause differ-

ent parts of the structural surface to vibrate. Most of the human

interaction with an ambient surface are impulsive, meaning the

interaction excites the surface and induces vibrations dominated by

the Rayleigh-Lambwaves [26]. For varying excitations occurring on

the same surface, they will generate different responses in the natu-

ral frequencies of the surface structure [7]. For the events detected

by vibration sensor on surface k during ti , we refer to this signal
segment as Event_Vibk,i , where i = 1...Nvib , k ∈ [1...Nsur f ace ].

Nvib is the number of events detected by the vibration sensor on

the kth surface. Nsur f ace is the number of monitored surfaces.

To take into account the spatial characteristics of the signal, we

further extract the signal segment of the same time duration ti of
Event_Vibk,i from vibration sensors on another surface l , which
we refer to as Event_Vib_Vibk,l,i , where l = 1...Nsur f ace , l � k .
Our system extracts the frequency components of Event_Vibk,i
and Event_Vib_Vibk,l,i after normalizing the signal by energy, and

concatenates the frequency components as the features for the ith

event on surface k .

3.4.2 Classification with Support Vector Machine. Our system uti-

lizes support vector machine (SVM) [5] to conduct the classification

for the events detected by each sensor. SVM is a widely used clas-

sifier, and it aims to find the maximum-margin hyperplane w by

minimizing the following loss function (for binary classification):

min
w ,b

1

2
| |w | |2 +C

l∑

i=1

max(1 − yi (w
Tϕ(x i ) + b), 0), (1)

where (y1,x1), . . . (yl ,x l ) is training data, x i ∈ Rn ,∀i are training
samples, yi = ±1,∀i are training labels, and C is the penalty pa-

rameter that controls the generalization of the model. Based on

our feature analysis, which will be introduced in details later in

Section 4.4, features of events detected by vibration sensors are not

linearly separable. As a result, our system trains the nonlinear SVM

model using the kernel function ϕ(·) (RBF kernel) to ensure high
class separability. Since we have more than two types of activities

to classify, we decompose the multi-class classification problem to

two-class classification problems to solve [5, 15].

3.5 Ensemble Events for ADL Recognition

Once the system obtains the event-based classification predictions

from each sensor, it further conducts prediction ensemble on the

sliding window at a sub-second level, and then outputs the activity

recognition at the event-level as shown in Figure 5. Since the type

and duration of events detected by different sensors vary, the en-

semble occur at a sub-seconds sliding window level instead of the

event-level. We selected the sliding window that is smaller than a

single impulsive structural vibration signal segment empirically.

Our system first applies a sliding window through the target

sensing time duration. For each sliding window on the signal from

each sensor, our system assigns it as an event if the majority of
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Figure 5: Ensemble algorithm.

the samples are part of a detected event. Since we use the SVM

to predict the event categories, a confidence score between 0 and

1 can be calculated based on the distance between the data point

and the margin [5]. Therefore, for a sliding window of a particular

event, we also assign the prediction score to it.

For the target sliding window, the system collects the prediction

and the prediction score from all sensors. The system first conducts

a weighted majority vote if there are more than two sensors detects

the sliding window as part of an event. The weight are assigned

equally over vibration sensors monitoring each surface and the

electrical load sensor. For example, if there are multiple sensors

on the same surface, e.g., floor, the information from the multiple

sensors will be combined. This means that each sensor type is

weighted equally. In addition, since different sensors may detect

different event durations and types, there may be no more than

two sensors detecting an event within a sliding window. When that

happens, the system outputs the single sensor decision with the

highest prediction score as the final decision of the system instead

of conducting a majority vote.

4 EVALUATION

To evaluate our system, we facilitated engagement in ADL through

real-world experiments with multiple appliances in a kitchen sce-

nario. In this section, we first define the ADL, at the event-level,

that were conducted in the kitchen in the scenario in Section 4.1.

Then, we introduce the experiments we conducted and the metrics

and ground truth used for evaluation in Section 4.2. We also explain

the dataset characteristics and justify our evaluation metrics and its

presentation. The results for event detection module, classification

module, and the overall system performance are analyzed in Section

4.3, 4.4, and 4.5 respectively.

4.1 Kitchen Scenario Definition

ADL are critical for older adults. Performance of ADL is critical

to ensure safety and independence in the home. Changes in ADL

are associated with disability and institutionalization. The Lawton

Instrumental Activities of Daily Living Scale is a commonly used

Table 1: Target kitchen activities and their acronyms.

Activity Electrical Vibration

use stove stove (S) put on stove (PS)

use kettle kettle (K) use kettle (K)

use microwave
door (MD) open/close door (OM)

heating (M) put down food (OM)

vacuum floor vacuum (V) use vacuum (V)

walking NA footsteps (Step)

Figure 6: Experimental setup.

tool to assess ability to live independently [21]. Critical components

of the Lawton tool include food preparation and housekeeping. We

focused on tasks related to meal preparation and housekeeping and

they are in Table 1 below. We assessed these ADL in adults with

no identified physical or cognitive impairments, as the intent of

this study was detection of normal ADL. The table depicts how

the structural vibration sensors and electrical load sensors detect

different events within the same ADL.

4.2 Experiments

We conducted real-world experiments in our laboratory setting to

evaluate our system following the guideline of the IRB protocol.

The experiments are conducted on a wooden floor structure with

an area of 10×7 ft with one electrical load sensor and two structural

vibration sensors. We put a countertop on the wooden floor struc-

ture, and placed an electrical stove, a kettle, and a microwave on the

countertop as shown in Figure 6. We also placed a vacuum cleaner

on the side of the floor. Two vibration sensors are used, one placed

on the countertop (Figure 3(a)) and one on the floor, as circled out

in Figure 6. The target appliances – stove, kettle, microwave, and

vacuum – are connected to the outlets of the power strip (Figure

3(b)). We also provide a pot to boil water on the stove, and a mug

to heat water using the microwave.

In total, five human subjects are invited to conduct the experi-

ments.We refer to one trial of data collection of a subject conducting

a sequence of different types of activities as a routine. Two of the

five conducted all the listed types of activities in Table 1 in their

routine. The rest conducted a subset of the types that reflect their

ADL for preparing meal or cooking, e.g., in some trials if they select

to use the stove for cooking, they will not use the microwave, and

vice verse. Each person conducted five routines. As a result, we

first conduct the classification on the two people’s data with 80%

data for training and 20% data for testing through cross validation
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Figure 7: Experiment data stats.

(Section 4.5.1). Then we train the system with these two people’s
data and test on the data from the rest three to demonstrate the
system robustness with individual variations (Setion 4.5.1).

4.2.1 Metric and Ground Truth. The designed experiments target
three different types of accuracy, 1) the event detection accuracy,
2) the event recognition accuracy, and 3) the sub-second sliding
window level ensemble activity recognition accuracy, to evaluate
our system. In general, we consider four types of baselines including
each sensor by themselves and combining two vibration sensors
data by fuse them with our ensemble algorithm.

We use a camera to record experiments as the ground truth. The
video records from the angle below the waist so that the identity
of the human subjects is not recorded. Figure 6 shows an example
view of the ground truth recording. The listed events (Table 1) are
labeled on a frame by frame basis manually.

4.2.2 Dataset Statistics. We further analyze the collected and la-
beled data in terms of event duration and number. Figure 7 demon-
strates the corresponding stats from the data collected from the two
people conducted all activities. Figure 7(a) shows the overall event
duration and (b) shows the count of each type of events conducted.
We can observe a clear bias in both event duration and number.
Furthermore, this bias is also not consistent over the type of events.
For example, kettle usage (K) has the highest over all duration, but
the number of events are relatively low. On the other hand, the
number of footsteps are high, while its duration is low due to the
short period of events for each footsteps. Therefore, if we compare
all the events’ activity recognition accuracy in either event duration
or number, it will be a biased.

To fairly compare our system’s performance to aforementioned
baselines, we calculate the activity recognition accuracy for each
type of activities (eight types in total) respectively. For the final
system performance, we report the average accuracy across all
types of activities (average of the eight accuracy values).

4.3 Event Detection Analysis
Our system combines multiple sensors that detect different aspects
or duration of an event to increase the accuracy. We use the detec-
tion with signals from only one sensor as the baseline and compare
to our ensemble event detection. To avoid the bias over different
event duration and number, we first compare the detection rate

K OM M MD PS S V Step
0

0.2

0.4

0.6

0.8

1

D
e
te

c
ti
o
n
 R

a
te

Countertop Vib

Floor Vib

Electrical

Ensemble (ours)

Figure 8: Detection results at event level.
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Figure 9: Detection results at sample level (duration).

of each type of activities at the event level. This detection rate
is calculated as follows. For each labeled event, we extract their
indexes of [E1...EL], where L is the sample number in the event.
For the evaluated signal, we extract the detection event indexes
[DA1...DAM ], whereM is the sample number of the detected event.
If the majority elements of the segment are part of an event, i.e.,
the number of samples in [DA1...DAM ] ∩ [E1...EL] is larger than
L/2, we consider this event detected.

We present the detection rate in Figure 8. Note that this detection
rate is a binary concept, it does not reflect types of (overlapping)
events being detected by different sensors. We further evaluate
the types of event recognition in Section 4.4. We observe that for
events that occur on the floor, i.e., vacuum and walking, the vibra-
tion sensor on the floor demonstrates higher detection rates (90%
and 87%). For the activity occur on the countertop, i.e., operating
kettle, microwave, and stove, the vibration sensor on the counter-
top achieves a higher accuracy (90%, 93%, and 100%). On the other
hand, the electrical load sensor achieves the highest accuracy for
the event that only involves activating appliances, e.g., microwave
heating, microwave door open, stove heating, and vacuum (100%,
97%, 100%, and 100%). The average detection rate over eight types
of events are 62%, 44%, 65%, and 97% in respectively for the three
baselines and our approach, which is a 1.5× to 2.2× improvement
compared to the baselines.

Since for the event detection rate at the event-level only reflects
the true positive rate, we further analyze the sample-level (duration)
detection precision and recall rate in Figure 9. We plot the three
baselines and our ensemble approach with bars from light blue
to dark blue. We observe that the current sensor achieves high
precision with a mean value of 99%. However, because not all the
activities can be measured by the electrical sensor, the recall for
current value is fairly lowwith a mean of 52%. The vibration sensors
at two locations showed similar of precision and recall rate – the
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(a) Countertop vibration sensor

(b) Electrical load sensor

Figure 10: Feature analysis with PCA.

mean precision values are 78% and 83% and the mean recall values
are 60% and 59%. Because they are complementary in detecting
events occur on different surfaces, the ensemble detection achieved
a mean recall of 86%, which is a 1.4× improvement compared to
that of only using one sensor for detection. Our approach achieves
the highest F-1 score of 0.83.

4.4 Event-based Activity Recognition Analysis
For event-level ADL recognition, different sensors perform differ-
ently due to their spatio-temporal variation even using the same
classification algorithm. In this section, we first conducted anal-
ysis on the extracted features, then we discuss the classification
accuracy for each sensor.

4.4.1 Feature Analysis. Wevisualized the features of different types
of activities to verify that the selected features are effective repre-
sentatives for distinguishing these events. We applied the principal
component analysis (PCA) on features and plotted the data points
(features) by their projections onto the first three components. We
plotted the events using the same ground truth labels in the same
marker and color. Figure 10(b) shows the features of five types of

events detected by the electrical sensor, which are linearly separa-
ble. Figure 10(a) shows the features of the eight types of event-level
activities detected by the vibration sensor on the countertop. It
indicates that nonlinear SVM is sufficient for this feature set.

4.4.2 Event-level Recognition Analysis. We further demonstrate
event-level classification confusion matrices in Figure 11 (a), (b),
and (c) for each sensor respectively. The electrical sensor achieved
an overall (biased number of events) recognition accuracy of 92.5%
when only considering types of activities that contain electrical ac-
tivities. The average classification accuracy for these five detectable
activities is 97%. However, we take all eight types of activities into
account, this average drops to 61%.

The vibration sensor on the countertop captures all types of
activities. Most of the actions (OM,PS,V,Step) induce impulsive
structural vibrations, which achieved over 90% prediction accuracy.
Appliances that induce signature machinery vibration (M) achieved
100% prediction accuracy. Unlike themicrowave, stove (S) and kettle
(K) do not cause the machinery vibration via drive motor, however,
the boiling may or may not cause the vibration that can be detected
by the sensor on the countertop. The misclassification mostly occur
between the operation of the microwave (OM) and the open status
of the microwave door (MD). This could be caused by the similar
spatial characteristics of these events, i.e., both on the microwave,
and the similar impulsive signals induced by open/close door and
putting down the mug when the microwave door is open. Since
the microwave door open induce a signature current change, the
ensemble prediction achieves a higher accuracy when taking both
sensing modalities into account. The average of the classification
accuracy values for eight types of activities with the vibration
sensor on the countertop is 81%.

For the vibration sensor on the floor, we observe that most of
the stove activities are misclassified as the footsteps (75%). This
could be caused by the ambient impulsive floor vibration that is
not induced by stove activities being captured by the sensor, i.e.,
people’s micromotion or other building activities. The kettle usage,
i.e., turning on/off the kettle, and the footsteps are misclassified
with each other at a rate up to 13%, which could be caused by the
similarity between these two types of impulses. The average of the
classification accuracy value for eight types of activities with the
floor vibration sensor is 72%.

The event-based activity recognitionmodule showed 70% activity
recognition accuracy for all the sensing modalities and each sensor
demonstrated their highest recognition rate for different types of
activities. As a result, when these results are fused, the ensemble
activity recognition accuracy is higher than that of single sensors.

4.5 System Performance Evaluation
We first compare our ensemble approach to the state-of-the-art
baselines (Section 4.5.1). Then we explore the robustness of the
system to the variation across human subjects (Section 4.5.2).

4.5.1 Ensemble Activity Recognition. Since the ensemble activity
recognition is conducted on each sliding window (Section 3.5),
we evaluate the prediction accuracy for sliding windows. Figure
12 shows an example of the prediction values using different ap-
proaches. The x-axis is time and the y-axis is approaches. Different
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Electrical Sensing Accuracy: 96.25%
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(a) Electrical sensor

Countertop Vibration Sensing Accuracy: 88.04%
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(b) Vibration sensor (countertop)

Floor Vibration Sensing Accuracy: 83.43%

83.6%

56

1.5%

1

0.0%

0

1.5%

1

0.0%

0

0.0%

0

13.4%

9

0.0%

0

1.5%

1

85.1%

57

0.0%

0

1.5%

1

0.0%

0

0.0%

0

4.5%

3

7.5%

5

14.3%

1

0.0%

0

85.7%

6

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

4.5%

1

0.0%

0

0.0%

0

86.4%

19

0.0%

0

0.0%

0

9.1%

2

0.0%

0

12.5%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

75.0%

6

12.5%

1

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

91.2%

31

8.8%

3

0.0%

0

4.4%

5

1.8%

2

0.0%

0

0.9%

1

0.0%

0

0.9%

1

91.2%

103

0.9%

1

5.0%

1

35.0%

7

0.0%

0

0.0%

0

0.0%

0

0.0%

0

10.0%

2

50.0%

10

K OM M PS S V Step MD

Target Class

K

OM

M

PS

S

V

Step

MD

O
u

tp
u

t 
C

la
s
s

(c) Vibration sensor (floor)

Figure 11: Event-based classification confusion matrix.
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Figure 12: Example of sub-second window-level activity
recognition. x-axis is time and y-axis is methods, colors in-
dicate class ID. Our method demonstrates the highest con-
sistency compared to the ground truth.

colors are the prediction output (class IDs corresponding to types
of activities). We observe that the ensemble demonstrates a higher
similarity to the ground truth compared to the single sensor predic-
tions, indicating a higher recognition accuracy. We further quantify
the recognition accuracy over each type of activities.

Figure 13 demonstrates the classification accuracy for each type
of activities with bars from light to dark shades representing results
using 1) countertop vibration sensor, 2) floor vibration sensor, 3)
electrical sensor, and 4) countertop and floor vibration combined.
Our ensemble approach is presented by green bars. The observa-
tion for the three single sensor baselines are consistent with the
confusion matrices discussed in Section 4.4 – each sensor achieves
high accuracy for different events. For example, the vacuum is de-
tected mostly by the floor vibration sensor and the electrical sensor
and achieved the highest (93%) recognition accuracy among all
the methods. The placing item on stove (PS) and the stove heating
(S) are detected respectively by the vibration sensor (91%) and the
electrical sensor (100%), which results in an average stove usage
recognition accuracy of 45% and 50% for these two sensing modali-
ties, and an average accuracy of 92% for our ensemble approach.

The countertop and floor vibration combined approach achieves
an average of 64% accuracy over eight types of activities, which is
higher than that of the single sensor approach. It is because that
the vibration sensors on two surfaces are complementary in special
characteristics, which allows high confidence and accuracy for the
events occurring on each surface. Our ensemble approach achieved
the highest classification accuracy for half of the events, and the
average accuracy over eight events is 90%, which is a 1.5× to 2.6×
improvement compared to the baselines (56%, 35%, and 61%). The
average values for the baselines here are calculated at the sliding
window level, which is different from the average values in Section
4.4 calculated at the event level. In summary, the complementary
spatial characteristics of the vibration sensors improved the event-
level ADL recognition accuracy and the complementary temporal
characteristics of the two sensing modalities further increased the
accuracy further more.

4.5.2 Personal Variation. The subject performs ADL differently in
various aspects, e.g., speed, strength, interaction. As a result, their
ADL may cause different signal characteristics (data distribution)
[13]. To understand the system robustness to the individual action
variation, we further evaluate the model trained on the two persons’
data and test it with the three other participants.We plot the average
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Figure 13: Sliding window level ADL recognition accuracy for eight investigated ADLs.
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Figure 14: ADL recognition accuracy when training on two
persons’ data (P1 & P2) and testing on different people.

accuracy over eight types of activities in Figure 14, where bars from
light to dark shades represent the accuracy for countertop vibration
sensor, floor vibration sensor, electrical sensor, and countertop
and floor vibration combined approach. Our ensemble approach
is plotted as green bars. We can see that for different people, the
accuracy for different methods varies. For example, for Person 5, the
electrical sensor achieves higher accuracy compared to Person 3 and
4. While for Person 4, the floor vibration sensor achieves the highest
accuracy among baselines. Despite the variation, three baselines
for Person 3,4,5 showed comparable accuracy (between 30% to
60%) compared to that of Person 1 and 2. Our ensemble approach
achieves the highest accuracy compared to the baselines, which are
81%, 73%, and 87% respectively for Person 3,4,5. Compared to the
case where the training and testing data are from the same person
different trials, the average accuracy of the three participants drops
to 80%, but it is still 20% higher than baselines when the training
and testing samples are from the same person.

5 DISCUSSION
This work highlights the potential for non-intrusive fine-grained
ADL monitoring to detect patterns of ADL for older adults seeking
safety while living in the community.We further discuss the current
limitations and future directions of this work in this section. The
key directions we plan to further explore beyond this work include:
1) the recognition and segmentation of activities when the same
person conducts different activities simultaneously (Section 5.1),
and 2) based on the detection and recognition, how can we con-
duct behavior level monitoring for long term in-home monitoring
(Section 5.2). Once these directions have been explored, it would
also be important to explore the sensitivity of our solution to errors
introduced by NILM algorithms when relying on their estimates
for appliance-level measurements.

5.1 Overlapping activities: multiple people,
multiple activities

When one or more persons conduct multiple activities within the
same sensing area, these activities signal – in both sensing modali-
ties – may overlap. When signal overlapping occurs, it alters the
signal characteristics, (i.e., features) used for classification. Prior
work on disaggregating information for electrical load monitoring
would allow the simultaneous appliance usage monitoring, which
can be used to assist the separation or segmentation of the structural
vibration sensing events. The direct separation of the structural
vibration signal when multiple excitation sources’ signal mix, how-
ever, is a challenge. Prior work on blind source separation cannot
be directly applied here due to the structural dependency of the
signal, which makes the assumption of signal independence invalid.
However, with the historical data where one activity with one ap-
pliance, as well as the disaggregation of the electrical sensing, the
prior knowledge on the mixed signals can be inferred for accurate
overlapping activity detection and classification.

5.2 Behavior level monitoring: metrics and
parameters

Our aging society has a desire to independently live in home. Non-
intrusive in-home monitoring of ADL has the potential to support
safety and independence for these older adults. Information pat-
terns in engagement in ADL is critical, as engagement is known to
be associated with disability, institutionalization, and all-cause mor-
tality. With non-intrusive in-home monitoring, changes in patterns
can be immediately identified and appropriate supports or care can
be deployed to ensure safety and independence in the home for
the older adult. This study is a step in showing that non-intrusive
in-home monitoring detect ADL in adults with no known physical
or cognitive limitations. These findings may be able to extend to
older adults who begin to experience changes in their capacity for
performance of ADL. For example, when an older adult is taking
longer to engage in a cooking task or forgets the leave the stove
on, non-intrusive in-home monitoring could detect a change in
behavior that notifies family or health-care providers that can visit
the older adult to ensure health and safety in the home. On the
other hand, changes in patterns of ADL may cause the interaction
between human and the structural changes, which may lead to
data distribution change causing learning or classification error. To
combat this potential limitation, continuous learning approaches
may be needed to adapt to such data distribution changes. Another
challenge is the metric to measure the behavior changes, especially
for multilevel activity monitoring. The abnormal behavior detected
at different granularity may indicate different aspects of the disease
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progression. A third challenge is the variation between subjects,
i.e., the definition and measurement of the anomaly may vary.

6 CONCLUSION
We presented a non-intrusive fine-grained ADL monitoring system
through ambient structural vibration and the electrical sensing in
this paper. We highlighted the complementary information acqui-
sition for these two sensing modalities and how to acquire high
time- and type-resolution monitoring in this work. Both pieces of
information may be used for the development of smart home appli-
cations seeking to monitor engagement in ADL. Our system first
conducts event-level detection and recognition, and then applies
an ensemble algorithm on the recognition results from each sensor
over the target time period to achieve accurate event-level ADL
monitoring. In the real-world experiments we conducted using
common kitchen activities, our system achieved an average of 90%
ADL recognition accuracy the real-world ADL experiments, which
is an up to 2.6× improvement compared to the baselines.
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