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Global Guarantees for Enforcing Deep
Generative Priors by Empirical Risk

Paul Hand and Vladislav Voroninski

Abstract—We examine the theoretical properties of en-
forcing priors provided by generative deep neural networks
via empirical risk minimization. In particular we consider
two models, one in which the task is to invert a generative
neural network given access to its last layer and another
in which the task is to invert a generative neural network
given only compressive linear observations of its last layer.
We establish that in both cases, in suitable regimes of
network layer sizes and a randomness assumption on the
network weights, that the non-convex objective function
given by empirical risk minimization does not have any spu-
rious stationary points. That is, we establish that with high
probability, at any point away from small neighborhoods
around two scalar multiples of the desired solution, there
is a descent direction. Hence, there are no local minima,
saddle points, or other stationary points outside these
neighborhoods. These results constitute the first theoretical
guarantees which establish the favorable global geometry of
these non-convex optimization problems, and they bridge
the gap between the empirical success of enforcing deep
generative priors and a rigorous understanding of non-
linear inverse problems.

Index Terms—Information theory, Learning, Optimiza-
tion, Probability, Generative Models.

I. INTRODUCTION

EXPLOITING the structure of images and natural
signals has proven to be a fruitful endeavor across

many domains of science. For instance, the wavelet
transform, discovered by Daubechies and others [1], led
to the observation that natural images are sparse in the
wavelet basis, enabling compression algorithms such as
JPEG 2000 to tame the storage and transfer of the mod-
ern deluge of image and video data. Principles of wavelet
based image compression, combined with surprising
advances in convex relaxation, have also opened the door
to greatly improved signal acquisition strategies, which
unlocked critical applications throughout the imaging
sciences. In particular, breaking with the dogma of the
Nyquist sampling theorem, which stems from worst-case
analysis, Candes and Tao, and Donoho [2], [3], [4],
provided a theory and practice of compressed sensing
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(CS), which exploits the sparsity of natural signals in
the wavelet basis to design acquisition strategies with
drastically lower sample complexity — that on par with
the sparsity level of the signal at hand. In particular,
using the standard basis in lieu of the wavelet basis
without loss of generality, they established that to recover
a vector x P Rn with k ă n non-zero entries from
m “ Opk log nq observations xx, aiy, i “ 1, 2 . . . ,m,
where ai are i.i.d Gaussian, it suffices to minimize
}x}1 subject to the observations with high probability.
On a practical level, compressed sensing has lead to
significant reduction in the sample complexity of signal
acquisition of natural images, for instance speeding up
MRI imaging by an order of magnitude [5]. Beyond
MRI, compressed sensing has impacted many if not all
imaging sciences, by providing a general tool to exploit
the parsimony of natural signals to improve acquisition
speed, increase SNR and reduce sample complexity.
More broadly, the principled use of sparsity as a prior has
led to the development of the field of matrix completion
[6], breakthroughs in phase retrieval [7], [8] and blind
deconvolution [9]; and is at this point routinely utilized
across applied mathematics and machine learning.

Meanwhile, the advent of practical deep learning
[10] has significantly improved machine understanding
of image and audio data. For instance, deep learning
techniques are now the state of the art across most of
computer vision and have taken the field far beyond
where it stood just a few years prior. The success
of deep learning ostensibly stems from its ability to
exploit the hierarchical nature of images and other
natural signals without explicit hand-engineering. There
are many techniques and add-on architectural choices
associated with deep learning, but many of them are
non-essential from a theoretical and, to a large extent,
practical perspective, with simple convolutional deep
nets with Rectified Linear Units (ReLUs) achieving
close to the state of the art performance on many
tasks [11]. The class of functions represented by such
deep networks is readily interpretable as hierarchical
compression schemes with exponentially many linear
filters, each being a linear combination of filters in
earlier layers. Constructing such compression schemes
by hand would be quite tedious, if not impossible, and
the biggest surprise and advantage of deep learning is
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that simple stochastic gradient descent (SGD) allows one
to efficiently traverse this class of functions subject to
potentially highly non-convex learning objectives. While
this latter property has been empirically established in an
impressive number of applications, it has so far eluded
a completely satisfactory theoretical explanation.

In essence, compressive sensing, and its numerous
extensions, consist of enforcing a sparsity prior to reg-
ularize the solution of an inverse problem. Thus, im-
provements in the state of the art of compressed sensing
can come from better reconstruction algorithms, better
design of signal measurements, or more sophisticated
priors. Virtually all of the tens of thousands of research
articles in the umbrella field of compressive sensing have
focused on the first two directions, taking the linear
sparsity model as the de-facto prior for regularization.
Those two directions are fundamentally limited in that no
approach at recovering a k-sparse signal with respect to
a basis could succeed with fewer than k measurements.

Meanwhile, there have been great strides in generative
modeling of images in modern machine learning that go
well beyond linear sparsity models. Such improvements
in priors on natural images beyond wavelet based ap-
proaches, when properly enforced, should enable more
aggressive regularization of inverse problems, leading
to lower sample complexity and higher SNR than tra-
ditional compressed sensing approaches. In order to
understand the potential for improving upon traditional
compressive sensing, broadly speaking, as a function of
advances in generative modeling, it is useful to reinter-
pret compressive sensing from the perspective of the field
of generative modeling, a popular framework in machine
learning which strives to sample from the probability
distribution of natural images and other signals. Note
that there is a duality between generative modeling
and compression. Any compression scheme implicitly
defines a generative model, by its inverse, and vice
versa. In particular, wavelet based compression schemes
implicitly define a generative model which attempts to
sample from natural images via random sparse linear
combinations of wavelet basis images. This wavelet-
based generative model is clearly too loose to capture
the rich hierarchical structure of natural images, making
it a sufficiently expressive yet very naive prior.

Generative modeling has a rich history in machine
learning, but only recent deep neural network based
approaches to generative modeling have enabled the
generation of realistic synthetic images in a variety of
domains, for example by training generative adversarial
networks (GANs) to find a Nash equilibrium of a non-
convex game [12], [13]; by training variational auto-
encoders (VAEs) [14], [15]; and by training autoregres-
sive models like PixelCNN [16], which generate pixels
one-at-a-time by sampling from appropriate conditional

probability distributions. GANs and VAEs map a low
dimensional latent code space to a higher dimensional
embedding space of images or other natural signals. For
instance, if we equip the latent code space with a Gaus-
sian distribution, the goal of generative adversarial train-
ing is to produce a deep neural network generator whose
push-forward distribution is the distribution of natural
images or another class of natural signals. Impressively,
in-between the original posting of this paper and the
current version of the manuscript, deep generative mod-
eling has advanced to the point of producing high-
resolution synthetic, yet extremely photorealistic, images
of celebrity faces [17]. Further, continuous motion in
the latent code space of the associated deep generative
models has allowed for interpolation and continuous
deformation of the resulting faces, even exhibiting equiv-
ariant properties with arithmetic operations in the latent
code space corresponding to semantically meaningful
image variations [18].

The scope of application of deep generative modeling
to regularizing inverse problems is vast. These more
sophisticated priors are recently emerging in empirical
applications of many fields of imaging, such as medical
imaging [19], [20], [21], [22], [23], [24], [25], [26], [27],
[28], [29], [30], [31], [32], microscopy [33], inpainting
[34], [35], superresolution [36], [37], [38], compressed
sensing [39], [40], [41], [42], image manipulation [43],
and many more. See [44] for a review of deep learning
for inverse problems in imaging. Importantly, approaches
that regularize inverse problems using deep generative
models, have empirically been shown to improve over
sparsity-based approaches, advancing the state of the art
in several fields. For instance, in Magnetic Resonance
Imaging, deep generative networks have enabled image
reconstruction that is qualitatively of higher diagnostic
quality and higher SNR than traditional compressive
sensing allows, and is additionally two orders of mag-
nitude faster than sparsity-based approaches due to the
utilization of GPUs in applying convolutional neural
networks [45], [46]. This development is significant
because of the tremendous potential clinical applications
of diagnostic-quality real-time MRI visualization. Deep
generative models have also empirically been used di-
rectly for compression [47]. In the case of compressed
sensing, optimization of an empirical risk objective over
the latent code space has been empirically shown to
recover images from 10x fewer linear compressive mea-
surements than sparsity-based approaches [48].

As the quality and reach of deep generative modeling
continues to increase, signal recovery in many scenarios
will benefit analogously.

As with the rest of machine learning, in the field of
deep generative modeling for regularizing inverse prob-
lems, or as we refer to it the field of deep compressive
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sensing, empirics is far ahead of the state of theoretical
justification. In this paper we initiate the rigorous study
of enforcing deep generative models as priors on the
solutions to inverse problems, by providing a theory of
compressive sensing that goes beyond linear sparsity
and into the realm of applying deep neural network
based generative priors. In particular we show that under
suitable randomness assumptions on the weights of a
neural network and successively expansive hidden layer
sizes, the empirical risk objective for recovering a latent
code in Rk from m linear observations of the last
layer of a generative network, where m is proportional
to k up to log factors, has no spurious local minima
or saddle points, in that there is a descent direction
everywhere except possibly small neighborhoods around
two scalar multiples of the desired solution. Our descent
direction analysis is constructive; based on determinis-
tic conditions on the neural network weights and the
measurements; and relies on novel concentration bounds
of certain random matrices, uncovering some interesting
geometric properties of the landscapes of empirical risk
objective functions for random generative multilayer
networks with ReLU activations. For a generative net-
work that achieves a greater degree of compression, the
proposed scheme would enable lower sample complexity
and higher SNR. If a generative model can compress a
signal to a latent code dimensionality k much less then
the signal’s sparsity level, then compressed sensing with
the generative prior may significantly outperform com-
pressed sensing with sparsity prior in terms of sample
complexity.

A. Related theoretical work

Latent code space optimizations after neural network
training, and the optimization over the weights of a
neural network during training, may both be interpreted
as inverse problems [49]. The tools developed in this
paper, such as the novel nonasymptotic concentration
results for high dimensional Gaussians followed by a
ReLU, may be of independent interest, in particular
being amenable for establishing global non-asymptotic
analysis regarding convergence of SGD for training deep
neural networks. Our work also relates to recent trends
in optimization. Traditionally, rigorous understanding of
inverse problems has been limited to the simpler setting
in which the optimization objective is convex. More
recently, there has been progress in understanding non-
convex optimization objectives for inverse problems, in
albeit analytically simpler situations than those involving
multilayer neural networks. For instance, the authors
of [50], [51] provide a global analysis of non-convex
objectives for phase retrieval and community detection,
respectively, ruling out adversarial geometries in these
scenarios for the purposes of optimization. Additionally,

rigorous guarantees of nonconvex recovery include other
results in phase retrieval [52], [53], blind deconvolution
[54], [55], [56], robust subspace recovery [57], discrete
joint alignment [58], and more.

In related work, the authors of [48] also study in-
verting compressive linear observations under generative
priors, by proving a restricted eigenvalue condition on
the range of the generative neural network. However,
they only provide a guarantee that is local in nature,
in showing the global optimum of empirical risk is
close to the desired solution. The work provides no
guarantees about why the global minimum of the non-
convex problem can be reached. In addition, [59] studied
inverting neural networks given access to the last layer
using an analytical formula that approximates the inverse
mapping of a neural network. The results of [59] are
in a setting where the neural net is not generative, and
their procedure is at only approximate, and, since it
requires observation of the last layer, it is not readily
extendable to the compressive linear observation setting.
Meanwhile, the optimization problem we study can
yield exact recovery, which we observe empirically via
gradient descent. Most importantly, in contrast to [48],
[59], we provide a global analysis of the non-convex em-
pirical risk objective function and constructively exhibit
a descent direction at every point outside a neighborhood
of the desired solution and a negative scalar multiple of
it. Our guarantees are non-asymptotic, and to the best of
our knowledge the first of their kind.

B. Notation

Before we present the main result, we now introduce
notation that will be used throughout this paper. Let
rns “ t1, . . . , nu. Let ei is the ith standard basis element
for i P rns. Let relupxq “ maxpx, 0q apply entrywise for
x P Rn. Let diagpWx ą 0q be the diagonal matrix that
is 1 in the pi, iqth entry if pWxqi ą 0, and 0 otherwise.
Let Bpx, rq be the Euclidean ball of radius r centered
at x. Let Π1

i“dWi “ WdWd´1 ¨ ¨ ¨W1. Let In be the
n ˆ n identity matrix. Let A ĺ B mean that B ´ A
is a positive semidefinite matrix. For matrices A, let
}A} be the spectral norm of A. Let Sk´1 be the unit
sphere in Rk. For any nonzero x P Rn, let x̂ “ x{}x}2.
For a set S, let |S| denote its cardinality. We will write
γ “ Opδq to mean that there exists a positive constant C
such that γ ď Cδ, when γ is understood to be positive.
Similarly we will write c “ Ωpδq to mean that there
exists a positive constant C such that c ě Cδ. When we
say that a constant depends polynomially on ε´1, that
means that it is at most Cε´k for some positive C and
positive integer k. Let θ0 “ =px, x0q and θ1 “ gpθ0q

where g is given by (3). For notational convenience,
we will write a “ b ` O1pεq if }a ´ b} ď ε, where
the norm is understood to be absolute value for scalars,
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the `2 norm for vectors, and the spectral norm for
matrices. Write g˝d to denote the composition of g with
itself d times. Let 1S “ 1 if S and 0 otherwise. For
nonzero v, let Dvfpxq be the (normalized) one-sided
directional derivative of f at x in the direction of v:
Dvfpxq “ limtÑ0`

fpx`tvq´fpxq
t}v}2

.

C. Main Results

We consider the inverse problem of recovering a
vector y0 P Rn from m ! n linear measurements. To
resolve the inherent ambiguity from undersampling, we
assume, as a prior, that the vector belongs to the range
of a d-layer generative neural network G : Rk Ñ Rn,
with k ă n. To recover the vector y0 “ Gpx0q, we
attempt to find the latent code x0 P Rk corresponding
to it. We consider a generative network modeled by
Gpxq “ relupWd . . . relupW2 relupW1x0qq . . .q, where
relupxq “ maxpx, 0q applies entrywise, Wi P Rniˆni´1 ,
ni is the number of neurons in the ith layer, and
k “ n0 ă n1 ă ¨ ¨ ¨ ă nd “ n. We consider linear
measurements of Gpx0q given by the sampling matrix
A P Rmˆn and consider k ă m ! n. The problem at
hand is:

Let: x0 P Rk, A P Rmˆn,Wi P Rniˆni´1 for i P rds,
Gpxq “ relupWd . . . relupW2 relupW1x0qq . . .q,

y0 “ Gpx0q,

Given: W1 . . .Wd, A, and observations Ay0,

Find: x0.

This problem can be viewed in two ways: (1) as above,
given compressive measurements of a vector with the
prior information that it belongs to the output of a
generative neural network, find that vector; or (2), given
compressive observations of the output of a generative
neural network, find the latent code corresponding to the
network’s output by inverting the neural network and
compression simultaneously.

As a way to solve the above problem, we consider
minimizing the empirical risk objective

fpxq :“
1

2

›

›

›
AGpxq ´Ay0

›

›

›

2

2
. (1)

As this objective is nonconvex, there is no a priori
guarantee of efficiently finding the global minimum [60].
Approaches such as gradient descent could in principle
get stuck in local minima, instead of finding the desired
global minimizer x0.

In this paper, we consider a fully-connected generative
network G : Rk Ñ Rn with Gaussian weights and
no bias term, along with a Gaussian sampling matrix
A P Rmˆn. We show that under appropriate condi-
tions and with high probability, f has a strict descent
direction everywhere outside two small neighborhoods

of x0 and a negative multiple of x0. We assume that
the network is sufficiently expansive at each layer,
ni “ Ωpni´1 log ni´1q, and that there are a sufficient
number of measurements, m “ Ωpkd logpn1 ¨ ¨ ¨ndqq.
Let Dvfpxq be the (normalized) one-sided directional
derivative of f at x in the direction of v: Dvfpxq “

limtÑ0`
fpx`tvq´fpxq

t}v}2
. Let Bpx, rq be the Euclidean ball

of radius r centered at x. Our main result is as follows:

Theorem 1. Fix ε ą 0 such that K1d
8ε1{4 ď 1,

and let d ě 2. Assume ni ě cni´1 log ni´1 for all
i “ 1 . . . d and m ą cdk log Πd

i“1ni. Assume that for
each i, the entries of Wi are i.i.d. N p0, 1{niq, and
the entries of A are i.i.d. N p0, 1{mq and independent
from tWiu. Then, on an event of probability at least
1 ´

řd
i“1 c̃nie

´γni´1 ´ c̃e´γm, we have the following.
For all nonzero x and x0, there exists vx,x0

P Rk such
that the one-sided directional derivatives of f satisfy

D´vx,x0
fpxq ă 0, @x R t0u Y Bpx0,K2d

3ε1{4}x0}2q

Y Bp´ρdx0,K2d
13ε1{4}x0}2q,

Dvfp0q ă 0, @v ‰ 0,

where ρd is a positive number that converges to 1 as
d Ñ 8. Here, c and γ´1 are constants that depend
polynomially on ε´1, and c̃, K1,K2 are universal con-
stants.

This theorem states that for a network of fixed depth
d, with high probability there is always a descent
direction outside of two specified, sufficiently small
neighborhoods, provided that the network is Gaussian
and sufficiently expansive. Further, for such networks,
zero is a local maximizer. We note that the linear
dependence of sample complexity with respect to k,
for fixed d, is optimal. The fixed d regime is realistic
to applications because many deep learning networks
in the wild have d on the order of only 10. We also
note that the theorem’s scalings with respect to ε, d, and
ni are all polynomial, and not exponential, though the
dependence on each of these variables could likely be
improved. While the sample complexity scaling appears
to get worse for larger d, we note that larger d allows for
the possibility of generative models with lower values of
k. This is because the number of piecewise linear pieces
in G grows exponentially in d. Also, note that while
the weights of any layer of the network are assumed
to be i.i.d. Gaussian, there is no assumption on the
independence between Wi and Wj for i ‰ j.

The descent direction vx,x0 is given by the gradient
of f :

vx,x0 “

#

∇fpxq G is differentiable at x,
limδÓ0 ∇fpx` δwq otherwise,

where w can be arbitrarily chosen such that G is differ-
entiable at x`δw for sufficiently small δ. Such a w exists
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by the piecewise linearity of G, and could be generated
randomly with probability 1. An explicit formula for
∇fpxq, where it exists, is given by (4) in Section II. This
expression for vx,x0 is in a form that can be computed
for any x, even for points of nondifferentiability, as part
of a gradient based algorithm.

This theorem will be proven by showing the suffi-
ciency of two deterministic conditions on G and A, and
then by showing that Gaussian G and A of appropriate
sizes satisfy these conditions with the appropriate prob-
ability. The first deterministic condition is on the spatial
arrangement of the network weights within each layer.

Definition 2. We say that the matrix W P Rnˆk satisfies
the Weight Distribution Condition with constant ε if for
all nonzero x, y P Rk,

›

›

›

n
ÿ

i“1

1wi¨xą01wi¨yą0 ¨ wiw
t
i ´Qx,y

›

›

›
ď ε, with (2)

Qx,y “
π ´ θ0

2π
Ik `

sin θ0

2π
Mx̂Øŷ,

where wi P Rk is the ith row of W ; Mx̂Øŷ P Rkˆk is
the matrix1 such that x̂ ÞÑ ŷ, ŷ ÞÑ x̂, and z ÞÑ 0 for
all z P spanptx, yuqK; x̂ “ x{}x}2 and ŷ “ y{}y}2;
θ0 “ =px, yq; and 1S is the indicator function on S.

The norm on the left hand side of (2) is the spec-
tral norm. Note that an elementary calculation2 gives
that Qx,y “ Er

řn
i“1 1wi¨xą01wi¨yą0 ¨ wiw

t
is for wi „

N p0, Ik{nq. As the rows wi correspond to the neural
network weights of the ith neuron in a layer given by
W , the WDC provides a deterministic property under
which the set of neuron weights within the layer given
by W are distributed approximately like a Gaussian.
The WDC could also be interpreted as a deterministic
property under which the neuron weights are distributed
approximately like a uniform random variable on a
sphere of a particular radius. Note that if x “ y, Qx,y
is an isometry up to a factor of 1{2.

The second deterministic condition is that the com-
pression matrix acts like an isometry on pairs of differ-
ences of vectors in the range of G : Rk Ñ Rn.

Definition 3. We say that the compression matrix A P
Rmˆn satisfies the Range Restricted Isometry Condition

1A formula for Mx̂Øŷ is as follows. If θ0 “ =px̂, ŷq P

p0, πq and R is a rotation matrix such that x̂ and ŷ map to
e1 and cos θ0 ¨ e1 ` sin θ0 ¨ e2 respectively, then Mx̂Øŷ “

Rt

¨

˝

cos θ0 sin θ0 0
sin θ0 ´ cos θ0 0
0 0 0k´2

˛

‚R, where 0k´2 is a k´ 2ˆ k´ 2

matrix of zeros. If θ0 “ 0 or π, then Mx̂Øŷ “ x̂x̂t or ´x̂x̂t,
respectively.

2To do this calculation, take x “ e1 and y “ cos θ0 ¨ e1 ` sin θ0 ¨
e2 without loss of generality. Then each entry of the matrix can be
determined analytically by an integral that factors in polar coordinates.

(RRIC) with respect to G with constant ε if for all
x1, x2, x3, x4 P Rk,

ˇ

ˇ

ˇ

A

A
`

Gpx1q ´Gpx2q
˘

, A
`

Gpx3q ´Gpx4q
˘

E

´

A

Gpx1q ´Gpx2q, Gpx3q ´Gpx4q

E
ˇ

ˇ

ˇ

ď ε}Gpx1q ´Gpx2q}2}Gpx3q ´Gpx4q}2.

We can now state our main deterministic result.

Theorem 4. Fix ε ą 0 such that K1d
8ε1{4 ď 1, and let

d ě 2. Suppose that G is such that Wi has the WDC
with constant ε for all i “ 1 . . . d. Suppose A satisfies
the RRIC with respect to G with constant ε. Then, for
all nonzero x and x0, there exists vx,x0 P Rk such that
the one-sided directional derivatives of f satisfy

D´vx,x0
fpxq ă ´K3

?
εd3

2d
maxp}x}2, }x0}2q,

Dyfp0q ă ´
1

8π2d
}x0}2,

@y ‰ 0, x R t0u Y Bpx0,K2d
3ε1{4}x0}2q

Y Bp´ρdx0,K2d
13ε1{4}x0}2q,

where ρd is a positive number that converges to 1 as
dÑ8, and K1, K2, and K3 are universal constants.

Note that the 2d scaling in the bounds is an artifact
of the scaling of the problem and does not indicate
a vanishingly small derivative. Roughly speaking, the
relu activation functions zero out roughly half of its
arguments. Hence, while Wi has spectral norm approx-
imately 1, the rows of Wi that are retained by the relu
will have spectral norm approximately 1{2. Thus, fpxq
itself is on the order of 2´d under the RRIC and WDC
for appropriately small ε.

In the case that A “ In, the RRIC is trivially satis-
fied, and we get the following corollary about inverting
multilayer neural networks.

Corollary 5 (Approximate Invertibility of Multilayer
Neural Networks). If G is a d-layer neural network
such that Wi satisfies the WDC with constant ε for all
i “ 1 . . . d, then the function fpxq “ }Gpxq ´ Gpx0q}2

has no stationary points outside of a neighborhood
around x0 and ´ρdx0.

In the case of a Gaussian network with Gaussian
measurements, the WDC and RRIC are satisfied with
high probability if the network is sufficiently expansive
and there are a sufficient number of measurements.

Proposition 6. Fix 0 ă ε ă 1. Assume ni ě

cni´1 log ni´1 for all i “ 1 . . . d and m ą

cdk log Πd
i“1ni. Assume the entires of Wi are i.i.d.

N p0, 1{niq, and the entries of A are i.i.d. N p0, 1{mq.
Then, Wi satisfies the WDC with constant ε for all i and
A satisfies the RRIC with respect to G with constant ε
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with probability at least 1´
řd
i“1 c̃nie

´γni´1 ´ c̃e´γm.
Here, c and γ´1 are constants that depend polynomially
on ε´1, and c̃ is a universal constant.

As stated after Theorem 1, no assumption is made
on the independence between Wi and Wj for i ‰ j.
While Proposition 6 is stated for A P Rmˆn with
i.i.d. Gaussian entries, it also applies in the case of any
random matrix that satisfies the following concentration
of measure condition:

P
`

|}Ax}22 ´ }x}
2
2| ě ε}x}22

˘

ď 2e´mc0pεq,

for any fixed x P Rn, where c0pεq is a positive constant
depending only on ε. In particular, Proposition 6 and
hence Theorem 1 extends to the case of where the entries
of A are independent Bernoulli random variables (and
the entries of Wi are Gaussian). See [61] for more.

D. Discussion

In this paper, we provide the first rigorous global
analysis of the efficacy of enforcing generative neural
network priors. We show that if a generative neural
network has Gaussian weights and is sufficiently ex-
pansive at each layer, then, with high probability, the
empirical risk objective applied to the network output
has no spurious local minima or saddle points outside
two small neighborhoods around the global optimum
and a negative reflection of it. Further, if the output of
the network is subject to random Gaussian compressive
measurements, then the same conclusion holds with in-
formation theoretically optimal sample complexity with
respect to the latent code dimensionality. That is, a
convergent gradient descent scheme will approximately
invert the generative network, even in the presence of a
sufficient number of compressive measurements.

As this theoretical work is the first of its kind, it
leaves open many important questions deserving further
research. Because any particular generative network is
unlikely to contain an observed image exactly, it is
important to establish a similar guarantee to Theorem
1 in the case that the observed image is not in the
range of the generative network. This line of work in-
cludes establishing noise tolerance and robustness to out-
liers, both of which have been established for sparsity-
based compressed sensing. Such results would provide
even further theoretical support for several empirical
observations about enforcing generative priors via an
optimization over latent code space [48], [43], includ-
ing empirical robustness of inverting generative models
[62]. In particular, it could help explain the significant
observation that generative priors can mitigate against
adversarial examples [63], [64], which are minor and
sometimes imperceptible modifications to images that
lead to catastrophic misclassification by neural networks

[65]. Robustness against adversarial examples is impor-
tant for the security of machine learning systems [66],
[67], in particular those that will be part of self-driving
cars.

In this work, we establish our rigorous global anal-
ysis under the assumption that network weights are
approximately distributed like Gaussians. There is both
empirical and theoretical motivation for this assump-
tion. Empirical analysis reveals that in some trained
networks, such as AlexNet, the weight parameters have
statistics that are consistent with being approximately
Gaussian [59]. Regarding theoretical motivation, recent
papers have show that gradient methods for sufficiently
overparameterized neural networks provably converge
to a point of small or zero loss under various con-
ditions on the training data [68], [69], [70], [71]. A
central property unifying these results is that they work
in a regime where initially random weights are only
slightly perturbed during the training process. Thus, the
deterministic condition of our analysis (the WDC) is
consistent both with empirical observations and with
the neural networks for which current theory is able to
establish convergence during the training process.

Additionally, we establish our global analysis under
the architectural assumptions that the network is ex-
pansive and fully connected. Expansiveness is a natural
condition given that generators map low-dimensional,
highly-compressed representations to high-dimensional
signals with substantial redundancy. In terms of network
architecture, fully connected nets are used in a variety
of applications, though nets with convolutional structure
are much more common in networks that manipulate
images. The results of this paper, while directly stated
for fully connected nets have already been extended to
the case of convolutional generative nets, as proven in
[72]. We anticipate further extensions to other realistic
architectures are also possible.

We provide in this paper a theoretical framework for
studying the enforcement of deep generative priors via
empirical risk as a means of regularization on inverse
problems. Besides compressive sensing with linear mea-
surements, there are a myriad of inverse problems that
may benefit from such an approach. One particularly
exciting example is the field of phase retrieval, which
is critical in the biological sciences for X-ray crystallog-
raphy and modern techniques like XFEL-imaging, which
is a promising approach that may lead to breakthroughs
in understanding of proteins and other molecular struc-
tures. Phase retrieval involves recovering vectors from
quadratic observations, and enforcing linear sparsity pri-
ors subject to such quadratic measurements has been met
with potentially fundamental limitations of polynomial
time algorithms. In particular, while the theoretically
optimal sample complexity of sparse phase retrieval is
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Ops log nq, where s is the sparsity of the signal, it is
potentially unobtainable via polynomial time algorithms
[73], which have so far only produced Ops2 log nq
efficient reconstruction schemes [74]. This bottleneck in
sample complexity makes improvements in signal priors
critical for the field of phase retrieval to advance. The
present work indicates that it may be possible to use
generative priors for problems such as phase retrieval.
In fact, the work has already been extended to phase
retrieval, where recovery is possible with Opkq measure-
ments, where k is the latent code dimensionality [75].
This could beat sparsity based approaches both because
the scaling is linear in the signal’s latent dimensionality
of the representation, and because k can be smaller than
s for the very same signal.

More significantly, the regime of using generative
modeling as a means of regularization opens new doors
for improving the workflow of biological scientists. In
modern phase retrieval, modeling assumptions which aid
in lowering sample complexity and increasing SNR are
all hand-coded, making the process extremely tedious.
In contrast, deep generative modeling simply requires
obtaining a dataset of previously reconstructed molec-
ular structures, which are easily available in extensive
databases amassed over the years of practice of crys-
tallography [76]. One may envision training generative
models on such datasets and using the resulting neural
network priors to regularize the inverse problem of phase
retrieval, tabula rasa, and potentially more effectively
than hand-modeling ever could, as has been witnessed
in the field of computer vision. This makes possible
recovering the structure of biological molecules without
explicit modeling, freeing up scientists to focus on inno-
vating on new imaging modalities instead of grappling
with the tedium of hand-coding their prior knowledge
to solve the resulting inverse problems. More broadly,
combining the power of deep generative modeling with
modern methods of optimization and signal recovery,
allows potentially paradigm shifting improvements to
the empirical sciences, by taking a data-driven artificial
intelligence approach to signal recovery.

II. PROOFS

The theorems are proven by a concentration argument.
We show that vx,x0 P Rk concentrates around a particu-
lar hx,x0

P Rk that is a continuous function of nonzero
x, x0 and is zero only at x “ x0 and x “ ´ρdx0. Before
we sketch the proof below, we introduce some useful
quantities.

In order to analyze which rows of a matrix W are
active when computing relupWxq, we let

W`,x “ diagpWx ą 0qW.

For a fixed W , the matrix W`,x zeros out the rows
of W that do not have a positive dot product with x.

Alternatively put, W`,x contains weights from only the
neurons that are active for the input x. We also define
W1,`,x “ pW1q`,x “ diagpW1x ą 0qW1 and

Wi,`,x “ diagpWiWi´1,`,x ¨ ¨ ¨W2,`,xW1,`,xx ą 0qWi.

The matrix Wi,`,x consists only of the neurons in the
ith layer that are active if the input to the first layer is x.
Additionally, it will be useful to control how the operator
x ÞÑ W`,xx distorts angles. In order to study this, we
define

gpθq :“ cos´1
´

pπ ´ θq cos θ ` sin θ

π

¯

. (3)

We now specify the choice of vx,x0
as follows. At any

x P Rk such that G is differentiable at x,

∇fpxq “ pΠ1
i“dWi,`,xq

tAtApΠ1
i“dWi,`,xqx

´ pΠ1
i“dWi,`,xq

tAtApΠ1
i“dWi,`,x0

qx0. (4)

Let w P Rk be such that G is differentiable at x ` δw
for sufficiently small δ. Such a w exists by the piecewise
linearity of G. Let

vx,x0 “

#

∇fpxq G is differentiable at x,
limδÑ0` ∇fpx` δwq otherwise.

(5)

Note that the first part of the definition of vx,x0
can

be viewed as the special case of the second part of the
definition with w “ 0. When G is not differentiable
at x, multiple values of vx,x0

are consistent with the
above definition. These values correspond to the multiple
choices of w. The concentration analysis applies simul-
taneously for all appropriate w because of uniformity in
the concentration results below.

A sketch of the proof is as follows:
‚ The WDC and RRIC imply that

vx,x0
«pΠ1

i“dWi,`,xq
tpΠ1

i“dWi,`,xqx

´ pΠ1
i“dWi,`,xq

tpΠ1
i“dWi,`,x0qx0 “: vx,x0

,

uniformly over nonzero x and x0. See the proof of
Theorem 4 in Section II-C.

‚ The WDC implies that

vx,x0 « ´
1

2d

´

d´1
ź

i“0

π ´ θi
π

¯

x0

`
1

2d

«

x´
d´1
ÿ

i“0

sin θi
π

´

d´1
ź

j“i`1

π ´ θj
π

¯

}x0}2

}x}2
x

ff

“: hx,x0
,

uniformly over nonzero x and x0, where θi “
gpθi´1q, θ0 “ =px, x0q, and hx,x0

is continuous
for nonzero x, x0. See Sections II-A and II-B.

‚ Direct analysis shows that hx,x0
« 0 only within a

neighborhood of x0 and ´ρdx0. See Section II-D.
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‚ Arguments from probabilistic concentration the-
ory establish that the WDC and RRIC with high
probability for Gaussian matrices of appropriate
dimensions. See Sections II-E and II-F, respectively.
These together establish Proposition 6.

Theorem 1 is the combination of Theorem 4 and Propo-
sition 6.

The proof capitalizes on the structure of the relu
nonlinearities because it considers points in the range
of the generator G to lie in the union of finitely many
subspaces, each given by the range of all possible
matrices Wi,`,x. Probabilistic concentration of these
matrices requires a bound on the maximum number
of such subspaces. These bounds would be worse or
possibly infinite for nonlinearities other than relu. While
the nondeterministic result is stated for Gaussian weight
matrices Wi, the same analysis would extend to weight
matrices whose rows are given by a uniform distribution
over a sphere of appropriate radius, as the proof capital-
izes on rotational invariance of the neuronal weights.

A. Approximate angle contraction property W`,x

In the concentration result of the next section, we will
make use of the fact that the angle between W`,xx
and W`,yy is approximately g

`

=px, yq
˘

if the WDC
holds. As Figure II-A shows, g is monotonic and less
than the identity. Thus, the mapping x ÞÑW`,xx has an
approximate angle contraction property in the sense of
the following lemma.

θ

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

Plot of g(θ )

θ

g(θ)

Fig. 1. A plot of gpθq from equation (3).

Lemma 7. Fix 0 ă ε ă 0.1. Let W P Rnˆk satisfy the
WDC with constant ε. We have θ1 :“ =pW`,xx,W`,yyq
is well-defined for all x ‰ 0, y ‰ 0, and

|θ1 ´ gpθ0q| ď 4
?
ε,

where θ0 “ =px, yq and g is defined by (3).

Proof. It suffices to establish that for all x ‰ 0, y ‰ 0,
ˇ

ˇ

ˇ

ˇ

ˇ

cos θ1 ´
pπ ´ θ0q cos θ0 ` sin θ0

π

ˇ

ˇ

ˇ

ˇ

ˇ

ď 5ε.

Without loss of generality, consider only x, y P Sk´1. By
the WDC, }W t

`,xW`,y ´Qx,y} ď ε for all x, y P Sk´1.
Let

δ1 “ xx, pW
t
`,xW`,y ´Qx,yqyy

δ2 “ xx, pW
t
`,xW`,x ´ Ik{2qxy

δ3 “ xy, pW
t
`,yW`,y ´ Ik{2qyy.

We have maxp|δ1|, |δ2|, |δ3|q ď ε for all x, y P Sk´1.
As |δ2| ď ε, |δ3| ď ε, and ε ă 1{2, W`,xx ‰ 0 and
W`,yy ‰ 0. Thus, θ1 is well-defined. We have

cos θ1 “
xW`,xx,W`,yyy

}W`,xx}2}W`,yy}2

“
xx,W t

`,xW`,yyy
b

xx,W t
`,xW`,xxyxy,W t

`,xW`,xyy

“
xx,Qx,yyy ` δ1

1
2

a

p1` 2δ2qp1` 2δ3q

Thus,

| cos θ1 ´ 2xx,Qx,yyy|

ď 2|xx,Qx,yyy|

ˇ

ˇ

ˇ

ˇ

ˇ

1´
1

a

p1` 2δ2qp1` 2δ3q

ˇ

ˇ

ˇ

ˇ

ˇ

` 2δ1
1

a

p1` 2δ2qp1` 2δ3q

ď

ˇ

ˇ

ˇ

ˇ

1´
1

p1´ 2εq

ˇ

ˇ

ˇ

ˇ

` 2ε
1

p1´ 2εq

ď 5ε

where the second line follows as 2|xx,Qx,yyy| ď
2}Qx,y} ď 1 and maxp|δ1|, |δ2|, |δ3|q ď ε, and the last
line follows because ε ă 0.1. The proof is concluded by
noting that 2xx,Qx,yyy “

1
π

“

pπ ´ θ0q cos θ0 ` sin θ0

‰

.

B. Concentration of terms without compression

At points of differentiability x, we have

vx,x0
“pΠ1

i“dWi,`,xq
tAtApΠ1

i“dWi,`,xqx

´ pΠ1
i“dWi,`,xq

tAtApΠ1
i“dWi,`,x0

qx0.

In this section, we prove that the WDC establishes
concentration for the terms in vx,x0

uniformly in x and
x0 in the compressionless case of A “ In. The case with
compression will use the concentration of these terms
too.

Lemma 8. Fix 0 ă ε ă d´4{p16πq2 and d ě 2. Suppose
that Wi P Rniˆni´1 satisfies the WDC with constant ε
for i “ 1 . . . d. Define h̃x,y as

1

2d

«

´

d´1
ź

i“0

π ´ θi
π

¯

y `
d´1
ÿ

i“0

sin θi
π

´

d´1
ź

j“i`1

π ´ θj
π

¯

}y}2
}x}2

x

ff

,
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where θ̄i “ gpθi´1q for g given by (3) and θ0 “ =px, yq.
For all x ‰ 0 and y ‰ 0,

}pΠ1
i“dWi,`,xq

tpΠ1
i“dWi,`,yqy ´ h̃x,y}2 ď 24

d3
?
ε

2d
}y}2,

(6)
@

pΠ1
i“dWi,`,xqx, pΠ

1
i“dWi,`,yqy

D

ě
1

4π

1

2d
}x}2}y}2.

(7)

Proof.
Part I: Assembling some useful bounds.
Define x0 “ x, y0 “ y,

xd :“
`

Π1
i“dWi,`,x

˘

x

“ pWd,`,xWd´1,`,x . . .W1,`,xqx

“Wd,`,xxd´1 “ pWdq`,xd´1
xd´1,

and analogously yd “
`

Π1
i“dWi,`,y

˘

y, where
pWiq`,x “ diagpWix ą 0qWi.

By the WDC, we have for all i “ 1 . . . d, for all x ‰
0, y ‰ 0,

}pWiq
t
`,xpWiq`,y ´Qx,y} ď ε, (8)

In particular, }W t
i,`,xWi,`,y´Qxi´1,yi´1

} ď ε. We now
detail several bounds that follow from the WDC. Most
immediately, we have that for all x ‰ 0 and for all
i “ 1 . . . d,

›

›

›
W t
i,`,xWi,`,x ´

1

2
Ini´1

›

›

›
ď ε, (9)

and consequently,

1

2
´ ε ď }Wi,`,x}

2 ď
1

2
` ε.

Hence,

}Π1
i“dWi,`,x}}Π

1
i“dWi,`,y}

ď
1

2d
p1` 2εqd “

1

2d
ed logp1`2εq

ď
1` 4εd

2d
, (10)

where we used that logp1 ` zq ď z, ez ď 1 ` 2z for
z ă 1, and 2dε ă 1. We also have for all x ‰ 0 that

c

1

2
´ ε}xi´1}2 ď }xi}2 ď

c

1

2
` ε}xi´1}2. (11)

Thus, we have that for all x, y ‰ 0,
ˆ

1´ 2ε

1` 2ε

˙d{2
}y}2
}x}2

ď
}yd}2
}xd}2

ď

ˆ

1` 2ε

1´ 2ε

˙d{2
}y}2
}x}2

.

Note that if 4εd ă 1,
´1` 2ε

1´ 2ε

¯d{2

ď p1` 8εqd{2 “ e
d
2 logp1`8εq

ď e4dε ď 1` 8dε

where we used that 1`z
1´z ď 1` 4z for 0 ď z ď 1

2 , ez ď
1`2z for 0 ď z ď 1, and 4dε ă 1. As 1´z ď p1`zq´1

for z ą 0, we also have
´1´ 2ε

1` 2ε

¯d{2

ě 1´ 8dε,

and thus, if 4εd ă 1,

p1´ 8dεq
}y}2
}x}2

ď
}yd}2
}xd}2

ď p1` 8dεq
}y}2
}x}2

. (12)

By Lemma 7, the WDC implies that θV`,xx,V`,yy is
well-defined for all nonzero x and y, and for V “

W1, . . . ,Wd, and for all x ‰ 0, y ‰ 0, V “W1, . . . ,Wd,

|θV`,xx,V`,yy ´ gpθx,yq| ď δ, (13)

where gpθq is given by (3), and δ :“ 4
?
ε. Define

θi :“ =pxi, yiq P r0, πs. Note that by (13), we have3

θd “ gpθd´1q ` O1pδq for all d, and thus θd “

gpgp¨ ¨ ¨ gpgpθ0q`O1pδqq`O1pδq ¨ ¨ ¨ q`O1pδqq`O1pδq.
Because |g1pθq| ď 1 for all θ and because θd “

gpgp¨ ¨ ¨ gpθ0q ¨ ¨ ¨ qq “ g˝dpθ0q, we have

|θd ´ θd| ď dδ “ 4d
?
ε. (14)

Part II: Establishing (7)
We have that cos θd ě 3{p4πq by combining (14), θd ď
cos´1p 1

π q for d ě 2, and 4πd4
?
ε ď 1. Additionally,

by (11), we have }xd}2}yd}2 ě }x}2}y}2
`

1
2 ´ ε

˘d
ě

}x}2}y}2
1´2dε

2d , where the last inequality holds as ε ď
1{2. If 2dε ď 2{3, we have
@

pΠ1
i“dWi,`,xqx, pΠ

1
i“dWi,`,yqy

D

“ cospθdq}xd}2}yd}2

ě
1

4π

1

2d
}x}2}y}2,

which establishes (7).
Part III: Establishing (6)

This proof will proceed by setting up and solving a
recurrence relation. We will use that

Γd “ sdΓd´1 ` rd, Γ0 “ y

ñ Γd “
´

d
ź

i“1

si

¯

y `
d
ÿ

i“1

´

ri

d
ź

j“i`1

sj

¯

. (15)

First, we derive a recurrence relation and solve for
pΠ1

i“dWi,`,xq
tpΠ1

i“dWi,`,xq. We have

Md :“ pΠ1
i“dWi,`,xq

tpΠ1
i“dWi,`,xq

“ pΠ1
i“d´1Wi,`,xq

t
´1

2
Ind´1

`O1pεq
¯

pΠ1
i“d´1Wi,`,xq

“
1

2
pΠ1

i“d´1Wi,`,xq
tpΠ1

i“d´1Wi,`,xq

`O1pεΠ
d´1
i“1 }Wi,`,x}

2q

“
1

2
Md´1 `O1

´

ε
1` 4εpd´ 1q

2d´1

¯

,

3See Section I-B for the meaning of O1.
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where the first equality follows by (9), and the third
equality follows from (10), as 2εd ď 1. Solving this
recurrence relation with M0 “ In0 by (15), we get that
if 4dε ď 1, then

pΠ1
i“dWi,`,xq

tpΠ1
i“dWi,`,xq

“
1

2d
In0 `

d
ÿ

i“1

O1

´

ε
1` 4εpi´ 1q

2i´1

¯ 1

2d´i

“
1

2d
In0

`
4εd

2d
O1p1q. (16)

Thus,

pΠ1
i“dWi,`,xq

tpΠ1
i“dWi,`,xqx “

1

2d
x`O1

´4εd

2d

¯

}x}2

(17)

Next, we derive a recurrence relation for Γd :“
pΠ1

i“dWi,`,xq
tpΠ1

i“dWi,`,yqy.

Γd “ pΠ
1
i“d´1Wi,`,xq

tpW t
d,`,xWd,`,yqpΠ

1
i“d´1Wi,`,yqy

“ pΠ1
i“d´1Wi,`,xq

t
´π ´ θd´1

2π
Ind´1

`
sin θd´1

2π
Mx̂d´1Øŷd´1

`O1pεq
¯

`

Π1
i“d´1Wi,`,y

˘

pyq

“
π ´ θd´1

2π
Γd´1

`
sin θd´1

2π

}yd´1}2

}xd´1}2
pΠ1

i“d´1Wi,`,xq
tpΠ1

i“d´1Wi,`,xqx

` ε
´1` 4εd

2d´1

¯

}y}2O1p1q

“
π ´ θd´1

2π
Γd´1 `

sin θd´1

2π

}yd´1}2

}xd´1}2

x

2d´1

`
1

2π

}yd´1}2

}xd´1}2

4dε

2d´1
}x}2O1p1q ` ε

´1` 4εd

2d´1

¯

}y}2O1p1q

“
π ´ θd´1

2π
Γd´1 `

sin θd´1

π

}yd´1}2

}xd´1}2

x

2d

`
1` 8dε

2π

4dε

2d´1
}y}2O1p1q ` ε

´ 2

2d´1

¯

}y}2O1p1q

“
π ´ θd´1

2π
Γd´1 `

sin θd´1

π

}yd´1}2

}xd´1}2

x

2d

` ε
´ 3

2π

2 ¨ 4d

2d
`

4

2d

¯

}y}2O1p1q

“
π ´ θd´1

2π
Γd´1 `

sin θd´1

π

}yd´1}2

}xd´1}2

x

2d

`
8

2d
dε}y}2O1p1q

“
π ´ θd´1

2π
Γd´1 `

sin θd´1

π

}y}2
}x}2

x

2d

`
1

2d
8dε

π
}y}2O1p1q `

8

2d
dε}y}2O1p1q

“
π ´ θd´1

2π
Γd´1 `

sin θd´1

π

}y}2
}x}2

x

2d
` 11dε

}y}2
2d

O1p1q

“

´π ´ θd´1

2π
`O1

` dδ

2π

˘

¯

Γd´1 `
sin θd´1

π

}y}2
}x}2

x

2d

` 2dδ
}y}2
2d

O1p1q (18)

where the second line follows from (8), the definition
Wd,`,y “ pWdq`,yd´1

, and the definition of Qxd,yd

in (2); the third line follows by the definition of
Mx̂d´1Øŷd´1

in (2), the bound (10), and the definition
of xd´1; the fourth line uses (16); the fifth line follows
from 4εd ď 1 and (12); the eighth line follows from
(12); and the last line follows from (14), δ “ 4

?
ε, and

11
?
ε ď 4.

Solving the recurrence relation (18) using (15), we get
that

Γd “
d
ź

i“1

”π ´ θi´1

2π
`O1

` iδ

2π

˘

ı

y

`

d
ÿ

i“1

´ sin θi´1

π

}y}2
}x}2

x

2i
`

2iδ

2i
}y}2O1p1q

¯

ˆ

d
ź

j“i`1

´π ´ θj´1

2π
`O1

` jδ

2π

˘

¯

(19)

First, we control the first term of Γd in (19). We have

ˇ

ˇ

ˇ

ˇ

ˇ

d
ź

i“1

”π ´ θi´1

2π
`O1

` iδ

2π

˘

ı

y ´
d
ź

i“1

”π ´ θi´1

2π

ı

y

ˇ

ˇ

ˇ

ˇ

ˇ

ď

´

d
ź

i“1

”1

2
`
iδ

2π

ı

´
1

2d

¯

}y}2

ď
1

2d

”´

1`
dδ

π

¯d

´ 1
ı

}y}2

ď
1

2d

”

ed logp1`dδ{πq ´ 1
ı

}y}2

ď
1

2d

”

ed
2δ{π ´ 1

ı

}y}2

ď
2

2d
d2δ

π
}y}2 ď

d2δ

2d
}y}2, (20)

where the first inequality follows by Lemma 9 and as
π´θi

2π P r0, 1{2s; and fifth inequality follows because
ed

2δ{π ď 1` 2d
2δ
π if d2δ{π ď 1.

Next, we control the second term of Γd in (19). Similar
to the calculation above, we have

ˇ

ˇ

ˇ

ˇ

ˇ

d
ź

j“i`1

”π ´ θj´1

2π
`O1p

jδ

2π
q

ı

´

d
ź

j“i`1

π ´ θj´1

2π

ˇ

ˇ

ˇ

ˇ

ˇ

ď
d2δ

2d´i

(21)
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if d2δ{π ď 1. We now get that the second term of (19)
is

d
ÿ

i“1

” sin θi´1

π

}y}2
}x}2

x

2i
`

2iδ

2i
}y}2O1p1q

ı

ˆ

d
ź

j“i`1

˜

π ´ θj´1

2π
`O1

´ jδ

2π

¯

¸

“

d
ÿ

i“1

” sin θi´1

π

}y}2
}x}2

x

2i
`

2iδ

2i
}y}2O1p1q

ı

ˆ

”´

d
ź

j“i`1

π ´ θj´1

2π

¯

`O1

´ d2δ

2d´i

¯ı

“

«

d
ÿ

i“1

sin θi´1

π

}y}2
}x}2

x

2d

d
ź

j“i`1

π ´ θj´1

π

ff

`O1

´5d3δ

2d

¯

}y}2 (22)

where the first equality follows by (21) and d2δ{π ď 1,
and the second equality follows by expanding the terms
and using d2δ ď 1.

Combining (20) and (22), we get

Γd “
1

2d

«

d
ź

i“1

π ´ θi´1

π

ff

y

`
1

2d

«

d
ÿ

i“1

sin θi´1

π

´

d
ź

j“i`1

π ´ θj´1

π

¯

}y}2
}x}2

x

ff

`O1

´6d3δ

2d

¯

}y}2.

We complete the proof of (6) by combining this equality
with (17), and δ “ 4

?
ε.

In the proof of the previous lemma, we used the
following technical result.

Lemma 9. Let d P N and let 0 ď ri ď rmax for i “
1 . . . d. We have

ˇ

ˇ

ˇ

ˇ

ˇ

d
ź

i“1

pri ` tiq ´
d
ź

i“1

ri

ˇ

ˇ

ˇ

ˇ

ˇ

ď

d
ź

i“1

prmax ` |ti|q ´ r
d
max.

Proof. First, we establish that

ˇ

ˇ

ˇ

d
ź

i“1

pri ` tiq ´
d
ź

i“1

ri

ˇ

ˇ

ˇ
ď

d
ź

i“1

pri ` |ti|q ´
d
ź

i“1

ri.

This follows by noting that for δ P r0, 1s,
ˇ

ˇ

ˇ

ˇ

ˇ

d

dδ

”

d
ź

i“1

pri ` δtiq
ı

ˇ

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

ˇ

d
ÿ

i“1

ti
ź

j‰i

prj ` δtjq

ˇ

ˇ

ˇ

ˇ

ˇ

ď

d
ÿ

i“1

|ti|
ź

j‰i

prj ` δ|tj |q

“
d

dδ

´

d
ź

i“1

pri ` δ|ti|q
¯

,

and integrating over δ P r0, 1s. Next, we establish that

d
ź

i“1

pri ` |ti|q ´
d
ź

i“1

ri ď
d
ź

i“1

prmax ` |ti|q ´ r
d
max.

This follows by noting that for all k “ 1 . . . d,

B

Brk

”

d
ź

i“1

pri ` |ti|q ´
d
ź

i“1

ri

ı

“
ź

j‰k

prj ` |tj |q ´
ź

j‰k

rj ě 0.

C. Proof of Deterministic Theorem

The proof of Theorem 4 follows the outline provided
in Section II.

Proof of Theorem 4. Recall that

vx,x0 “

#

∇fpxq G is differentiable at x,
limδÑ0` ∇fpx` δwq otherwise,

where G is differentiable at x`δw for sufficiently small
δ. Such a w exists by the piecewise linearity of G, and
any such w can be selected arbitrarily. Also, recall that

∇fpxq “ pΠ1
i“dWi,`,xq

tAtApΠ1
i“dWi,`,xqx

´ pΠ1
i“dWi,`,xq

tAtApΠ1
i“dWi,`,x0

qx0.

Let

vx,x0 “ pΠ
1
i“dWi,`,xq

tpΠ1
i“dWi,`,xqx

´ pΠ1
i“dWi,`,xq

tpΠ1
i“dWi,`,x0

qx0,

hx,x0 “ ´
1

2d

´

d´1
ź

i“0

π ´ θi
π

¯

x0

`
1

2d

«

x´
d´1
ÿ

i“0

sin θi
π

´

d´1
ź

j“i`1

π ´ θj
π

¯

}x0}2

}x}2
x

ff

,

Sε,x0
“

!

x P Rk | }hx,x0
}2 ď

1

2d
εmaxp}x}2, }x0}2q

)

,

where θi “ gpθi´1q and θ0 “ =px, x0q. For brevity of
notation, write vx “ vx,x0

, vx “ vx,x0 , and hx “ hx,x0 .
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The WDC implies that for all x ‰ 0 and for all i “
1 . . . d,

}Wi,`,x}
2 ď

1

2
` ε. (23)

Now, we establish that for all differentiable points x P
Rk,

}∇fpxq ´ vx} ď 2ε
´1

2
` ε

¯d

maxp}x}2, }x0}2q. (24)

At x P Rk such that G is differentiable at x, the local lin-
earity of G gives that Gpx`zq´Gpxq “ pΠ1

i“dWi,`,xqz
for any sufficiently small z P Rk. By the RRIC, we have

|xAΠ1
i“dWi,`,xz,AΠ1

i“dWi,`,y z̃y

´ xΠ1
i“dWi,`,xz,Π

1
i“dWi,`,y z̃y|

ď εΠd
i“1}Wi,`,x}}Wi,`,y}}z}2}z̃}2. (25)

for all z, z̃, which, together with (23), implies (24).
Similarly, the WDC implies by Lemma 8 and ε ă

1{p16πd2q2 that for all nonzero x, x0, y P Rk,

}vx ´ hx}2 ď K
d3
?
ε

2d
maxp}x}2, }x0}2q, and (26)

@

pΠ1
i“dWi,`,xqx, pΠ

1
i“dWi,`,yqy

D

ě
1

4π

1

2d
}x}2}y}2.

(27)

Thus, we have, for all x ‰ 0, x0 ‰ 0,

}vx ´ hx}2a “ lim
δÑ0`

}∇fpx` δwq ´ hx`δw}2

ď lim
δÑ0`

`

}∇fpx` δwq ´ vx`δw}2 ` }vx`δw ´ hx`δw}2
˘

ď
?
ε
´

2
p1` 2εqd

2d
`K

d3

2d

¯

maxp}x}2, }x0}2q

ď
?
εK̃

d3

2d
maxp}x}2, }x0}2q, (28)

for some universal constant K̃, where the first inequality
follows by the definition of vx and the continuity of
hx for nonzero x; the second inequality follows by
combining (23), (24), (26), and as 2dε ď 1 ñ p1 `
2εqd ď e2εd ď 1` 4εd.

Note that the one-sided directional derivative of f
in the direction of y ‰ 0 at x is Dyfpxq “

limtÑ0`
fpx`tyq´fpxq

t . Due to the continuity and piece-
wise linearity of the function

Gpxq “ relupWd . . . relupW2 relupW1xqqq,

we have that for any x, y ‰ 0 that there exists a sequence
txnu Ñ x such that f is differentiable at each xn and
Dyfpxq “ limnÑ8∇fpxnq¨y. Thus, as ∇fpxnq “ vxn

,

D´vxfpxq “ ´ lim
nÑ8

vxn
¨
vx
}vx}

.

Now, we write

vxn
¨ vx “ hxn

¨ hx ` pvxn
´ hxn

q ¨ hx

` hxn
¨ pvx ´ hxq ` pvxn

´ hxn
q ¨ pvx ´ hxq

ě hxn
¨ hx ´ }vxn

´ hxn
}2}hx}2

´ }hxn
}2}vx ´ hx}2 ´ }vxn

´ hxn
}2}vx ´ hx}2

ě hxn
¨ hx ´

?
εK̃

d3

2d
maxp}xn}2, }x0}2q}hx}2

´
?
εK̃

d3

2d
maxp}x}2, }x0}2q}hxn

}2

´ ε
´

K̃
d3

2d

¯2

maxp}xn}2, }x0}2qmaxp}x}2, }x0}2q,

where the first inequality follows from the triangle
inequality, and the second inequality follows by (28).
As hx is continuous in x for all nonzero x, we have for
any x P Sc

8
?
εK̃d3

,

lim
nÑ8

vxn
¨ vx ě }hx}

2
2 ´ 2

?
εK̃

d3

2d
}hx}2 maxp}x}2, }x0}2q

´ ε
”

K̃
d3

2d

ı2

maxp}x}2, }x0}2q
2

“
}hx}2

2

”

}hx}2 ´ 4
?
ε
´

K̃
d3

2d

¯

maxp}x}2, }x0}2q

ı

`
1

2

”

}hx}
2 ´ 2 ¨ ε

´

K̃
d3

2d

¯2

maxp}x}2, }x0}2q
2
ı

ě
}hx}2

2
4
?
ε
´

K̃
d3

2d

¯

maxp}x}2, }x0}2q

ě
7{8}vx}2

2
4
?
ε
´

K̃
d3

2d

¯

maxp}x}2, }x0}2q,

where the last inequality uses (28) and the definition of
S8
?
εK̃d3 . We conclude D´vxfpxq ă 0 for all nonzero

x P Sc
8
?
εK̃d3

.

It remains to prove that @x ‰ 0, Dxfp0q ă 0. We
compute that

Dxfp0q ¨ }x}2 “ ´xApΠ
1
i“dWi,`,xqx,ApΠ

1
i“dWi,`,x0

qx0y

“ ´xx, pΠ1
i“dWi,`,xq

tAtApΠ1
i“dWi,`,x0qx0y

“ ´xx, pΠ1
i“dWi,`,xq

tpAtA´ In2qpΠ
1
i“dWi,`,x0qx0y

´ xpΠ1
i“dWi,`,xqx, pΠ

1
i“dWi,`,x0

qx0y

ď ε
p1` 2εqd

2d
}x}2}x0}2 ´

1{p4πq

2d
}x}2}x0}2

ď
2ε

2d
}x}2}x0}2 ´

1{p4πq

2d
}x}2}x0}2

where the first inequality holds by (25), (23), and (27);
and the second inequality follows from 4εd ď 1. Thus,
for ε ă 1

16π , Dxfp0q ă ´
1

8π2d }x0}2.
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The proof is finished by applying Lemma 10 and

8πd6

b

8
?
εK̃d3 ď 1 to get

S8
?
εK̃d3 Ă Bpx0, 56d

b

8
?
εK̃d3}x0}2q

Y Bp´ρdx0, 500d11

b

8
?
εK̃d3}x0}2q.

D. Control of the zeros of hx,x0

We now show that hx,x0
is away from zero outside of

a neighborhood of x0 and ´ρdx0.

Lemma 10. Suppose 8πd6
?
ε ď 1. Let Sε,x0 be

"

x ‰ 0 P Rk | }hx,x0}2 ď
1

2d
εmax p}x}2, }x0}2q

*

,

where d is an integer greater than 1 and let hx,x0 be
defined by

hx,x0

}x0}2
“ ´

1

2d

´

d´1
ź

i“0

π ´ θi
π

¯

x̂0 (29)

`
1

2d

”

}x}2
}x0}2

´

d´1
ÿ

i“0

sin θi
π

d´1
ź

j“i`1

π ´ θj
π

ı

x̂,

where θ0 “ =px, x0q and θi “ gpθi´1q for g given by
(3). Define

ρd :“
d´1
ÿ

i“0

sin qθi
π

˜

d´1
ź

j“i`1

π ´ qθj
π

¸

,

where qθ0 “ π and qθi “ gpqθi´1q. If x P Sε,x0
, then we

have that either

|θ0| ď 2
?
ε and |}x}2 ´ }x0}2| ď 18d

?
ε}x0}2

or

|θ0 ´ π| ď 8πd4
?
ε

and |}x}2 ´ }x0}2ρd| ď 200d7
?
ε}x0}2.

In particular, we have

Sε,x0 Ă Bpx0, 56d
?
ε}x0}2q

Y Bp´ρdx0, 500d11
?
ε}x0}2q. (30)

Additionally, ρd Ñ 1 as dÑ8.

Proof. Without loss of generality, let }x0}2 “ 1, x0 “ e1

and x “ r cos θ0 ¨ e1 ` r sin θ0 ¨ e2 for θ0 P r0, πs. Let
x P Sε,x0

.
First we introduce some notation for convenience. Let

ξ “
d´1
ź

i“0

π ´ θi
π

, ζ “
d´1
ÿ

i“0

sin θi
π

d´1
ź

j“i`1

π ´ θj
π

,

r “ }x}2, M “ maxpr, 1q.

Thus, hx,x0
“ ´ 1

2d ξx̂0 `
1
2d pr´ ζqx̂. By inspecting the

components of hx,x0
, we have that x P Sε,x0

implies

| ´ ξ ` cos θ0pr ´ ζq| ď εM (31)

| sin θ0pr ´ ζq| ď εM (32)

Now, we record several properties. We have:

θi P r0, π{2s for i ě 1

θi ď θi´1 for i ě 1

|ξ| ď 1 (33)

|ζ| ď min
´ d

π
,
d

π
θ0

¯

(34)

qθi ď
3π

i` 3
for i ě 0 (35)

qθi ě
π

i` 1
for i ě 0 (36)

ξ “
d´1
ź

i“0

π ´ θi
π

ě
π ´ θ0

π
d´3 (37)

θ0 “ π `O1pδq ñ θi “ qθi `O1piδq (38)

θ0 “ π `O1pδq ñ |ξ| ď
δ

π
(39)

θ0 “ π `O1pδq ñ ζ “ ρd `O1p3d
3δq if

d2δ

π
ď 1

(40)

We now establish (35). Observe 0 ă gpθq ď
`

1
3π `

1
θ

˘´1
“: g̃pθq for θ P p0, πs. As g and g̃ are monotonic

increasing, we have qθi “ g˝ipqθ0q “ g˝ipπq ď g̃˝ipπq “
`

i
3π`

1
π

˘´1
“ 3π

i`3 . Similarly, gpθq ě p 1
π`

1
θ q
´1 implies

that qθi ě π
i`1 , establishing (36).

We now establish (37). Using (35) and θi ď qθi, we
have

d´1
ź

i“1

´

1´
θi
π

¯

ě

d´1
ź

i“1

´

1´
3

i` 3

¯

ě d´3,

where the last inequality can be established by showing
that the ratio of consecutive terms with respect to d is
greater for the product in the middle expression than for
d´3.

We establish (38) by using the fact that |g1pθq| ď 1
for all θ P r0, πs and using the same logic as for (14).

We now establish (40). As θ0 “ π `O1pδq, we have
θi “ qθi `O1piδq. Thus, if d2δ

π ď 1,

d´1
ź

j“i`1

π ´ θj
π

“

d´1
ź

j“i`1

´π ´ qθj
π

`O1p
iδ

2π
q

¯

“

´

d´1
ź

j“i`1

π ´ qθj
π

¯

`O1pd
2δq
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So

ζ “
d´1
ÿ

i“0

´ sin qθi
π

`O1p
iδ

π
q

¯”´

d´1
ź

j“i`1

π ´ qθj
π

¯

`O1pd
2δq

ı

(41)

“ ρd `O1

´

d2δ{π ` d3δ{π ` d4δ2{π
¯

(42)

“ ρd `O1p3d
3δq. (43)

Thus (40) holds.
Next, we establish that x P Sε,x0 ñ r ď 4d, and

thus M ď 4d. Suppose r ą 1. At least one of the
following holds: | sin θ0| ě 1{

?
2 or | cos θ0| ě 1{

?
2.

If | sin θ0| ě 1{
?

2 then (32) implies that |r ´ ζ| ď
?

2εr. Using (34), we get r ď
d{π

1´
?

2ε
ď d{2 if

ε ă 1{4. If | cos θ0| ě 1{
?

2, then (31) implies that
|r ´ ζ| ď

?
2pεr ` |ξ|q. Using (33), (34), and ε ă 1{4,

we get r ď
?

2|ξ|`ζ

1´
?

2ε
ď

?
2`d

1´
?

2ε
ď 4d. Thus, we have

x P Sε ñ r ď 4dñM ď 4d.
Next, we establish that we only need to consider the

small angle case (θ0 « 0) and the large angle case (θ0 «

π). Exactly one of the following holds: |r ´ ζ| ě
?
εM

or |r ´ ζ| ă
?
εM . If |r ´ ζ| ě

?
εM , then by (32),

we have | sin θ0| ď
?
ε. Hence θ0 “ O1p2

?
εq or θ0 “

π ` O1p2
?
εq, as ε ă 1. If |r ´ ζ| ď

?
εM , then by

(31) we have |ξ| ď 2
?
εM . Using (37), we get θ0 “

π`O1p2πd
3
?
εMq. Thus, we only need to consider the

small angle case, θ0 “ O1p2
?
εq and the large angle case

θ0 “ π `O1p8πd
4
?
εq, where we have used M ď 4d.

Small Angle Case. Assume θ0 “ O1p2
?
εq. As θi ď

θ0 ď 2
?
ε for all i, we have ξ ě p1 ´ 2

?
ε

π q
d “ 1 `

O1p
4d
?
ε

π q provided 2d
?
ε ď 1{2. By (34), we also have

ζ “ O1p
d
π2
?
εq “ O1pd

?
εq. By (31), we have

| ´ ξ ` cos θ0pr ´ ζq| ď εM.

Thus, as cos θ0 “ 1`O1pθ
2

0{2q “ 1`O1p2εq,

´

´

1`O1p4d
?
εq
¯

` p1`O1p2εqqpr `O1pd
?
εqq

“ O1p4dεq,

and thus,

r ´ 1 “ O1p4d
?
ε` 2ε4d` d

?
ε` 2dε3{2 ` 4εdq

(44)
“ O1p18d

?
εq. (45)

Large Angle Case. Assume θ0 “ π ` O1pδq where
δ “ 8πd4

?
ε. By (39) and (40), we have ξ “ O1pδ{πq,

and we have ζ “ ρd`O1p3d
3δq if 8d6

?
ε ď 1. By (31),

we have
| ´ ξ ` cos θ0pr ´ ζq| ď εM,

so, as cos θ0 “ 1´O1pθ
2
0{2q,

O1pδ{πq`p1`O1pδ
2{2qqpr´ρd`O1p3d

3δqq “ O1pεMq,

and thus, using r ď 4d, ρd ď d, and δ “ 8πd4
?
ε ď 1,

r ´ ρd “ O1pεM ` δ{π ` 3d3δ `
5

2
δ2d`

3

2
d3δ3q

(46)

“ O1

´

4εd` δp
1

π
` 3d3 `

5

2
d`

3

2
d3q

¯

(47)

“ O1p200d7
?
εq (48)

To conclude the proof of (30), we use the fact that

}x´x0}2 ď
ˇ

ˇ}x}2´}x0}2
ˇ

ˇ`p}x0}2`
ˇ

ˇ}x}2´}x0}2
ˇ

ˇqθ0.

This fact simply says that if a 2d point is known to
have magnitude within ∆r of some r and is known to
be within angle ∆θ from 0, then its Euclidean distance
to the point of polar coordinates pr, 0q is no more than
∆r ` pr `∆rq∆θ.

Finally, we establish that ρd Ñ 1 as dÑ8. Note that
ρd`1 “ p1´

qθd
π qρd`

sin qθd
π and ρ0 “ 0. It suffices to show

ρ̃d Ñ 0, where ρ̃d :“ 1 ´ ρd. The following recurrence
relation holds: ρ̃d “ p1´

qθd´1

π qρ̃d´1`
qθd´1´sin qθd´1

π , with
ρ̃0 “ 1. Using the recurrence formula (15) and the fact
that qθ0 “ π, we get that

ρ̃d “
d
ÿ

i“1

qθi´1 ´ sin qθi´1

π

d
ź

j“i`1

`

1´
qθj´1

π

˘

(49)

using (36), we have that

d
ź

j“i`1

´

1´
qθj´1

π

¯

ď

d
ź

j“i`1

´

1´
1

j

¯

“ exp
´

´

d
ÿ

j“i`1

1

j

¯

ď exp
´

´

ż d`1

i`1

1

s
ds
¯

“
i` 1

d` 1

Using (35) and the fact that qθi´1 ´ sin qθi´1 ď qθ3
i´1{6,

we have that ρ̃d ď
řd
i“1

qθ3i´1

6π ¨ i`1
d`1 Ñ 0 as dÑ8.

E. Proof of WDC for Gaussian Matrices

In this section, we establish a bound on the probability
that a Gaussian matrix satisfies the WDC, provided it
corresponds to a sufficiently expansive layer of a neural
network.

Lemma 11. Fix 0 ă ε ă 1. Let W P Rnˆk have i.i.d.
N p0, 1{nq entries. If n ą ck log k, then with probability
at least 1´8ne´γk, W satisfies the WDC with constant ε.
Here c, γ´1 are constants that depend only polynomially
on ε´1.

The WDC with constant ε can be written as

}W t
`,xW`,y ´Qx,y} ď ε (50)

for all nonzero x, y P Rk. A common way to establish
concentration of a random function simultaneously over
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an infinite number of values of px, yq, like (50), is as
follows:
‚ Show concentration of the quantity with high prob-

ability for a fixed px, yq.
‚ Bound the Lipschitz constant of the quantity with

respect to px, yq.
‚ Take a union bound over a net whose size is given

by the Lipschitz constant.
This argument does not apply in the present case because
W t
`,xW`,y is not continuous with respect to px, yq. To

deal with this lack of continuity, we form two continuous
variants that are greater and less than W t

`,xW`,y , respec-
tively, with respect the semidefinite ordering. We now
introduce some notation in order to state these bounds.
Let

h´εpzq “

$

’

&

’

%

0 z ď ´ε,

1` z
ε ´ε ď z ď 0,

1 z ě 0,

and

hεpzq “

$

’

&

’

%

0 z ď 0,
z
ε 0 ď z ď ε,

1 z ě ε.

When applied to a vector, let h´ε and hε act component-
wise. Let wti be the ith row of W . Note that
W t
`,xW`,y “

řn
i“1 1wi¨xą01wi¨yą0 ¨ wiw

t
i , and define

G´εpx, yq :“
n
ÿ

i“1

h´εpwi ¨ xqh´εpwi ¨ yqwiw
t
i

Gεpx, yq :“
n
ÿ

i“1

hεpwi ¨ xqhεpwi ¨ yqwiw
t
i .

As h´εpzq ě 1zą0pzq and hεpzq ď 1ză0pzq for all
z P R, we have that for all nonzero x, y that Gεpx, yq ĺ

W t
`,xW`,y ĺ G´εpx, yq. Thus, it suffices to establish a

matrix upper bound on G´ε and a matrix lower bound
on Gε.

First we establish a matrix upper bound on G´εpx, yq
uniformly over all nonzero x, y. For ease of exposition,
in the next two Lemmas, we will take the entries of W to
be i.i.d. N p0, 1q. In this case, ErW t

`,xW`,ys “ nQx,y .

Lemma 12. Fix 0 ă ε ă 1. Let W P Rnˆk have i.i.d.
N p0, 1q entries. If n ą ck log k, then with probability at
least 1´ 4ne´γk,

@x ‰ 0, y ‰ 0, G´εpx, yq ĺ nQx,y ` 3εnIk.

Here, c and γ´1 are constants that depend only polyno-
mially on ε´1.

Proof. Note that the entries of W are assumed to have
N p0, 1q entries, and not N p0, 1{nq entries like in most of
this paper. In this proof, the values of the constants c and

γ may change from line to line, but they are all bounded
above and below, respectively, by some ε-dependent
constant. Without loss of generality, let x, y P Sk´1.

First, we bound ErG´εpx, yqs for fixed x, y P

Sk´1. Noting that h´εpzq ď 1zě´εpzq “ 1zą0pzq `
1´εďzď0pzq, we have

ErG´εpx, yqs ĺ E
”

n
ÿ

i“1

1wi¨xě´ε1wi¨yě´ε ¨ wiw
t
i

ı

ĺ E
”

n
ÿ

i“1

p1wi¨xą01wi¨yą0

` 1´εďwi¨xď0 ` 1´εďwi¨yď0q ¨ wiw
t
i

ı

“ nQx,y ` nEr1´εďwi¨xď0 ¨ wiw
t
is

` nEr1´εďwi¨yď0 ¨ wiw
t
is.

We now bound Er1´εďwi¨xď0 ¨ wiw
t
is. For deriving this

bound, we may take x “ e1 without loss of generality.
We have for ε ă 1,

Er1´εďwi¨xď0 ¨ wiw
t
is “

ˆ

ζ1 0
0 ζ2 ¨ In´1

˙

,

0 ď ζ1 ď

ż 0

´ε

z2 1
?

2π
e´z

2
{2dz ď

ε

2
,

0 ď ζ2 ď

ż 0

´ε

1
?

2π
e´z

2
{2dz ď

ε

2
.

Thus, Er1´εăwi¨xă0 ¨ wiw
t
is ĺ ε

2Ik for any x ‰ 0,
resulting in

ErG´εpx, yqs ĺ nQx,y ` εn ¨ Ik. (51)

Second, we show concentration of G´εpx, yq for fixed
x, y P Sk´1. Let ξi “

a

h´εpwi ¨ xq
a

h´εpwi ¨ yqwi.
We have

G´εpx, yq ´ ErG´εpx, yqs

“

n
ÿ

i“1

´

h´εpwi ¨ xqh´εpwi ¨ yqwiw
t
i

´ E
“

h´εpwi ¨ xqh´εpwi ¨ yqwiw
t
i

‰

¯

(52)

“

n
ÿ

i“1

pξiξ
t
i ´ Eξiξtiq. (53)

Note that ξi is sub-Gaussian for all i and that the sub-
Gaussian norm of ξi is bounded above by an absolute
constant, which we will call K. By the first part of
Remark 5.40 in [77], there exist constants cK and
γK such that for all t ě 0, with probability at least
1´ 2e´γKt

2

,

}G´εpx, yq ´ EG´εpx, yq} ď maxpδ, δ2qn,

where δ “ cK

b

k
n`

t?
n
. If n ą p2{εq2c2Kk, t “ ε

?
n{2,

and ε ă 1, we have that with probability at least 1 ´
2e´γKε

2n{4,

}G´εpx, yq ´ EG´εpx, yq} ď εn. (54)
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Third, we bound the Lipschitz constant of G´ε. For
x̃, ỹ P Rk we have

G´εpx, yq ´G´εpx̃, ỹq

“

n
ÿ

i“1

“

h´εpwi ¨ xqh´εpwi ¨ yq

´ h´εpwi ¨ x̃qh´εpwi ¨ ỹq
‰

wiw
t
i

“

n
ÿ

i“1

“

h´εpwi ¨ xq
`

h´εpwi ¨ yq ´ h´εpwi ¨ ỹq
˘

` h´εpwi ¨ ỹq
`

h´εpwi ¨ xq ´ h´εpwi ¨ x̃q
˘‰

wiw
t
i

“W t
“

diag
`

h´εpWxq
˘

diag
`

h´εpWyq ´ h´εpWỹq
˘

` diag
`

h´εpWỹq
˘

diag
`

h´εpWxq ´ h´εpWx̃q
˘‰

W.

Thus,

}G´εpx, yq ´G´εpx̃, ỹq}

ď }W }2
”

}h´εpWxq}8}h´εpWyq ´ h´εpWỹq}8

` }h´εpWỹq}8}h´εpWxq ´ h´εpWx̃q}8

ı

ď }W }2
”

max
iPrns

ˇ

ˇh´εpwi ¨ yq ´ h´εpwi ¨ ỹq
ˇ

ˇ

`max
iPrns

ˇ

ˇh´εpwi ¨ xq ´ h´εpwi ¨ x̃q
ˇ

ˇ

ı

ď }W }2
”

max
iPrns

1

ε

ˇ

ˇwi ¨ px´ x̃q
ˇ

ˇ`max
iPrns

1

ε

ˇ

ˇwi ¨ py ´ ỹq
ˇ

ˇ

ı

ď }W }2
1

ε

´

max
iPrns

}wi}2

¯

p}x´ x̃}2 ` }y ´ ỹ}2q

where the second inequality follows because |h´εpzq| ď
1 for all z, and the third inequality follows because h´ε
is 1{ε-Lipschitz.

Let E1 be the event that }W } ď 3
?
n. By Corollary

5.35 in [77], we have that PpE1q ě 1´2e´n{2, if n ě k.
Let E2 be the event that maxiPrns }wi}2 ď 2

?
k. By

a single-tailed variant of Corollary 5.17 in [77], there
exists a constant γ0 such that for fixed i, }wi}2 ď 2

?
k

with probability at least 1´ e´γ0k. Thus, PpE2q ě 1´
ne´γ0k.

On E1 X E2, we have

}G´εpx, yq ´G´εpx̃, ỹq}

ď
18n

?
k

ε
p}x´ x̃}2 ` }y ´ ỹ}2q. (55)

for all x, y, x̃, ỹ P Sk´1.
Finally, we complete the proof by a covering argu-

ment. Let Nδ be a δ-net on Sk´1 such that |Nδ| ď

p3{δqk. Take δ “ ε2

36
?
k

. Combining (54) and (51), we
have

@x, y P Nδ, G´εpx, yq ĺ EG´εpx, yq ` εnIk
ĺ nQx,y ` 2εnIk.

with probability at least 1 ´ 2|Nδ|e
´γKε

2n{4 ě 1 ´

2p 3
δ q
ke´γKε

2n{4 ě 1 ´ 2e´γKε
2n{4`k logp3¨36

?
k{ε2q. If

n ą c̃k log k, for some c̃ “ Ωpε´2 log ε´1q, then this
probability is at least 1´2e´γ̃n for some γ̃ “ Opε2q. For
any x, y P Sk´1, let x̃, ỹ P Nδ be such that }x´ x̃}2 ă δ
and }y ´ ỹ}2 ă δ. By (55), we have that

@x ‰ 0, y ‰ 0, G´εpx, yq ĺ G´εpx̃, ỹq `
18n

?
k

ε
2δIk

ĺ nQx,y ` 3εnIk.

In conclusion, the result of this lemma holds if n ą
p2{εq2c2Kk and n ą c̃k log k, with probability at least
1´2e´γKε

2n{4´2e´n{2´ne´γ0k´2e´γ̃n ą 1´4ne´γk

for some γ “ Opε2q and c̃ “ Ωpε´2 log ε´1q.

Lemma 13. Fix 0 ă ε ă 1. Let W P Rnˆk have i.i.d.
N p0, 1q entries. If n ą ck log k, then with probability at
least 1´ 4ne´γk,

@x ‰ 0, y ‰ 0, Gεpx, yq ľ nQx,y ´ 3εnIk.

Here, c and γ´1 are constants that depend only polyno-
mially on ε´1.

Proof. The proof follows that of Lemma 12 exactly.
First, we bound ErGεpx, yqs for fixed x, y P Sk´1.

For deriving this bound, we take x “ e1 without loss of
generality. Noting that hεpzq ě 1zą0pzq´10ďzďεpzq for
all z, we have

ErGεpx, yqs ľ nQx,y ´ nEr10ďwi¨xďε ¨ wiw
t
is

´ nEr10ďwi¨yďε ¨ wiw
t
is.

We have

Er10ďwi¨xďε ¨ wiw
t
is “

ˆ

ζ1 0
0 ζ2 ¨ In´1

˙

,

0 ď ζ1 ď

ż ε

0

z2 1
?

2π
e´z

2
{2dz ď

ε

2
,

0 ď ζ2 ď

ż ε

0

1
?

2π
e´z

2
{2dz ď

ε

2
.

Thus, Er10ďwi¨xďε ¨ wiw
t
is ĺ ε

2Ik for any x ‰ 0,
resulting in

ErGεpx, yqs ľ nQx,y ´ εn ¨ Ik.

Second, the same argument as in Lemma 12 provides
that for fixed x, y P Sk´1, if n ą p2{εq2c2Kk, then we
have that with probability at least 1´ 2e´γKε

2n{4,

}Gεpx, yq ´ EGεpx, yq} ď εn.

Third, the same argument as in Lemma 12 provides
that on the event E1 X E2, we have

}Gεpx, yq ´Gεpx̃, ỹq} ď
18n

?
k

ε

“

}x´ x̃}2 ` }y ´ ỹ}2
‰

.

for all x, y, x̃, ỹ P Sk´1.
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Finally, we complete the proof by an identical cov-
ering argument as in Lemma 12. We have that if n ą
c0k log k then with probability at least 1´ 4ne´γk,

@x, y P Sk´1, Gεpx, yq ľ nQx,y ´ 3εnIk.

We may now prove Lemma 11.

Proof of Lemma 11. It suffices to show

@x, y P Rk, }W t
`,xW`,y ´ nQx,y} ď 3nε,

where A has i.i.d. N p0, 1q entries. The result is imme-
diate if x “ 0 or y “ 0. For all nonzero x and y , we
have Gεpx, yq ĺ W t

`,xW`,y ĺ G´εpx, yq. The lemma
then follows directly from Lemmas 12 and 13.

F. Proof of RRIC

We will make use of a standard concentration result
used in proving the Restricted Isometry Property from
compressed sensing [61].

Lemma 14 (Variant of Lemma 5.1 in [61]). Let A P

Rmˆn have i.i.d. N p0, 1{mq entries. Fix 0 ă ε ă
1, k ă m. Fix a subspace T Ă Rn of dimension k.
With probability at least 1´ pc1{εq

ke´γ1εm,

p1´ εq}x}22 ď }Ax}
2
2 ď p1` εq}x}

2
2, @x P T,

and

|xAx,Ayy ´ xx, yy| ď ε}x}2}y}2, @x, y P T.

Let V “
ŤM
i“1 Vi and W “

ŤN
j“1Wj , where Vi and

Wj are subspaces of Rn of dimension at most k for all
i, j. Then,

|xAx,Ayy ´ xx, yy| ď ε}x}2}y}2, @x P V, y PW,

with probability at least 1´MNpc1{εq
2ke´γ1εm. Here,

c1 and γ1 are universal constants.

Proof. This proof is an immediate extension of Lemma
5.1 in [61]. As A is Gaussian, we may take T to be the
span of k standard basis vectors and directly apply the
lemma in that paper. The inner product form follows
by a standard argument based on the parallelogram
identity. The last inequality holds by applying the second
inequality to all subspaces of the form spanpVi,Wjq,
which have dimension at most 2k, and by applying a
union bound.

In order to apply Lemma 14, we now provide an upper
bound for the number of subspaces that arise from the
objective f .

Lemma 15. Let V be a subspace of Rk. Let W P Rnˆk
have i.i.d. N p0, 1{nq entries. With probability 1,

|tdiagpWv ą 0qW | v P V u| ď 10ndimV . (56)

Proof. Let ` “ dimV . By rotational invariance of
Gaussians, we may take V “ spanpe1, . . . , e`q without
loss of generality. Without loss of generality, we may let
W have dimensions nˆ ` and take V “ R`.

We will appeal to a classical result from sphere
covering [78]. If n hyperplanes in R` contain the origin
and are such that the normal vectors to any subset of ` of
those hyperplanes are independent, then the complement
of the union of these hyperplanes is partitioned into at
most

2
`´1
ÿ

i“0

ˆ

n´ 1

i

˙

disjoint regions. Note that for fixed W , |tdiagpWv ą
0qW | v P R`u| equals the number of binary vectors of
the form p1wi¨vą0qiPrns for v P S`´1. Each such binary
vector corresponds uniquely to one of the disjoint regions
given by partitioning the unit sphere in R` by the n
half-spaces going through the origin with normal vectors
twiuiPrns. With probability 1, any subset of ` rows of W
are linearly independent, and thus,

|tdiagpWv ą 0qW | v P R`u| “ 2
`´1
ÿ

i“0

ˆ

n´ 1

i

˙

ď 2`
´en

`

¯`

ď 10n`.

where the first inequality uses the fact that
`

n
`

˘

ď pen{`q`

and the second inequality uses that 2`pe{`q` ď 10 for all
` ě 1.

Lemma 16. Let Wi P Rniˆni´1 have i.i.d. N p0, 1{niq
entries for i “ 1, . . . , d. Let k “ n0. Then, with
probability 1,

|tWi,`,x | x ‰ 0u| ď 10ink1n
k
2 ¨ ¨ ¨n

k
i . (57)

Proof. Recall that W1,`,x “ diagpW1x ą 0qW1 and
Wi,`,x “ diagpWiWi´1,`,x ¨ ¨ ¨W1,`,xx ą 0qWi. The
case of i “ 1 holds with probability 1 by applying
Lemma 15 with V “ Rk.

Next, we establish the i “ 2 case. Let W` “ tW`,x |

x ‰ 0u. Note that @x ‰ 0,

W2,`,x P
ď

ŴPW`

tdiagpW2v ą 0qW2 | v P range Ŵ u.

Let the random variable XŴ ,W2
“ |tdiagpW2v ą

0qW2 | v P range Ŵ u|. Note that by Lemma 15, for
any fixed Ŵ , PW2

pXŴ ,W2
ď 10nk2q “ 1. Hence, condi-
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tioned on the probability 1 event E :“ t|W`| ď 10nk1u,
we have PW2

p
ř

ŴPW`
XŴ ,W2

ď 102nk1n
k
2q “ 1. Thus,

PW1,W2

˜

ÿ

ŴPW`

XŴ ,W2
ď 102nk1n

k
2

¸

“

ż

Ω1

PW2

˜

ÿ

ŴPW`

XŴ ,W2
ď 102nk1n

k
2

¸

dµ1

“

ż

E

PW2

˜

ÿ

ŴPW`

XŴ ,W2
ď 102nk1n

k
2

¸

dµ1

“ 1,

where Ω1 and µ1 are the state space and probability
measure for the random variable W1. Hence, |tW2,`,x |

x ‰ 0u| ď 102nk1n
k
2 with probability 1.

The case of larger i follows by repeating the logic
above.

We can now show concentration of vx,x0
to its expec-

tation with respect to C.

Lemma 17. Fix 0 ă ε ă 1. Let Wi P Rniˆni´1 ,
have i.i.d. N p0, 1{niq entries for i “ 1, . . . , d. Let
A P Rmˆnd have i.i.d. N p0, 1{mq entries that are
independent from all Wi. If m ą cdk logpn1n2 ¨ ¨ ¨ndq,
then with probability at least 1´ e´γm,

@x, y P Rk, }pΠ1
i“dWi,`,xq

tAtApΠ1
i“dWi,`,yq

´ pΠ1
i“dWi,`,xq

tpΠ1
i“dWi,`,yq}

ď εΠd
i“1}Wi,`,x}}Wi,`,y}. (58)

Here, c and γ´1 are constants that depend only
polynomially on ε´1.

Proof. For pedagogical purposes, we first establish the
lemma in the d “ 2 case. It suffices to show that
@x, y, w, v P Sk´1,

|xAW2,`,xW1,`,xw,AW2,`,yW1,`,yvy

´ xW2,`,xW1,`,xw,W2,`,yW1,`,yvy|

ď ε}W1,`,x}}W2,`,x}}W1,`,y}}W2,`,y}.

In order to apply Lemma 14, we will show that
tW2,`,xW1,`,xw | x,w P S

k´1u is a subset of a union
of at most 103pn2

1n2q
k subspaces of dimension at most

k. For fixed W1,W2, let A` “ tW1,`,x | x ‰ 0u
and B` “ tW2,`,x | x ‰ 0u. By Lemma 16, there
exists a probability 1 event, E, over pW1,W2q on which
|A`| ď 10nk1 and |B`| ď 102nk1n

k
2 . On E,

|tW2,`,xW1,`,x | x ‰ 0u| ď 103pn2
1n2q

k.

Note that dim rangepW2,`,xW1,`,xq ď k for all x ‰ 0.
Hence tW2,`,xW1,`,xw | x,w P Sk´1u Ă V , where

V is a union of at most 103pn2
1n2q

k subspaces of
dimensionality at most k.

By applying the second half of Lemma 14 to the sets
V and V , we get that for fixed W1,W2,

|xAW2,`,xW1,`,xw,AW2,`,yW1,`,yvy

´ xW2,`,xW1,`,xw,W2,`,yW1,`,yvy|

ď ε}W2,`,xW1,`,xw}2}W2,`,yW1,`,yv}2,

@x, y, w, v P Sk´1 (59)

with probability at least 1´ 103pc1n
2
1n2{εq

2ke´γ1εm ě
1 ´ e´γ2m, provided m ě c̃k logpn1n2q, for univer-
sal constants c1, γ1 and for some γ2 “

γ1ε
2 , c̃ “

Ωpε´1 log ε´1q.
Integrating over the probability space of pW1,W2q,

independence of A and pW1,W2q implies that (59) holds
for random pW1,W2q with the same probability bound.
Continuing from (59), we have

|xAW2,`,xW1,`,xw,AW2,`,yW1,`,yvy

´ xW2,`,xW1,`,xw,W2,`,yW1,`,yvy|

ď ε}W1,`,x}2}W1,`,y}2}W2,`,x}2}W2,`,y}2

@x, y, w, v P Sk´1 with probability at least 1 ´ e´γm.
for some γ ą 0.

For the case of d ě 2, the lemma follows similarly.
We have

|tΠ1
i“dWi,`,xx | x ‰ 0u| ď 10pd

2
qpnd1n

d´1
2 ¨ ¨ ¨n2

d´1ndq
k

on the probability 1 event. The analogous
bound to (59) holds with probability at least
1 ´ 10pd

2
qpc1n

d
1n

d´1
2 ¨ ¨ ¨n2

d´1nd{εq
2ke´γ1εm ě

1 ´ e´γ2m, provided m ě c̃dk logpn1n2 ¨ ¨ ¨ndq, for
some γ2 “

γ1ε
2 , c̃ “ Ωpε´1 log ε´1q.

G. Proof of Theorem 6

Theorem 6 can be proved by combining Lemmas 11
and 17.
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