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Abstract
Weprove a sharp Zhong–Yang type eigenvalue lower bound for closedRiemannianmanifolds
with control on integral Ricci curvature.
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1 Introduction

One trend in Riemannian geometry since the 1950’s has been the study of how curvature
affects global quantities like the eigenvalues of the Laplacian. On a closed Riemannian
manifold (Mn, g), assuming that RicM ≥ (n − 1)H (H > 0), Lichnerowicz [16] proved the
lower bound λ1(M) ≥ Hn, where λ1 is the first nonzero eigenvalue of the Laplace–Beltrami
operator in (Mn, g),

div(∇u) := �u = −λ1u.
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Obata [17] proved the rigidity result that equality holds if and only if Mn is isometric to
S
n
H . In the case RicM ≥ 0, one can not prove a positive lower bound without a constraint on

the diameter of M . Note that the diameter constraint is automatic when H > 0 by Myers’
theorem. If the diameter of M is D, Li and Yau [14,15] proved a gradient estimate for the
first nontrivial eigenfunction and showed that

λ1(M) ≥ π2

2D2 .

Zhong and Yang [30] improved this result, and obtained the optimal estimate

λ1(M) ≥ π2

D2 .

Hang andWang [12] proved the rigidity result that equality holds if and only ifM is isometric
to S

1 with radius D
π
. When H < 0, improving Li–Yau’s estimate [15], Yang showed the

following explicit estimate in [26],

λ1(M) ≥ π2

D2 e
−Cn

√
(n−1)|H |D, (1.1)

where Cn = max{√n − 1,
√
2}. The general optimal lower bound estimate for λ1(M) for

all H is proved in [1,8,13,27] using gradient estimate, probabilistic ‘coupling method’ and
modulus of continuity, respectively, see also [2,4]. The general lower bound gives a com-
parison of the first eigenvalue to a one-dimensional model and an explicit lower bound was
given by Shi and Zhang [24] which takes the form

λ1(M) ≥ 4(s − s2)
π2

D2 + s(n − 1)H for all s ∈ (0, 1). (1.2)

In recent years, there has been an increasing interest in relaxing the pointwise curvature
assumption, by assuming a bound in an L p sense as in [10]. In the fundamental work [19] the
basic Laplacian comparison and Bishop–Gromov volume comparison have been extended to
integral Ricci curvature. Many topological invariants can be expressed in terms of L p norms
of the curvature, and these bounds are also more suitable than pointwise bounds in the study
of Ricci flow. To be more precise, let ρ (x) be the smallest eigenvalue for the Ricci tensor.
For a constant H ∈ R, let ρH be the amount of Ricci curvature lying below (n − 1)H , i.e.

ρH = max{−ρ(x) + (n − 1)H , 0}. (1.3)

We will be concerned mainly with ρ0, the negative part of Ric. The following quantity
measures the amount of Ricci curvature lying below (n − 1)H in an L p sense

k̄(p, H) =
(

1

vol(M)

ˆ
M

ρ
p
Hdv

) 1
p =
( 

M
ρ
p
Hdv

) 1
p

.

Clearly k̄(p, H) = 0 iff RicM ≥ (n − 1)H .
In [10], Gallot obtained a lower bound for λ1(M) for closed manifolds with diameter

bounded from above and k̄(p, H) small by a heat kernel estimate, see Theorem 2 below. The
estimate is not optimal though. When H > 0, Aubry [3] obtained an optimal lower bound
estimate for the first nonzero eigenvalue, which recovers the Lichnerowicz estimate. Recently
the second and third authors [23] extended this to the p-Laplacian. See [5] for improvement
in the Kahler case.

In this paper we obtain an optimal estimate for H = 0, recovering the Zhong–Yang
estimate. Namely,
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Zhong–Yang type eigenvalue estimate with integral curvature condition

Theorem 1 Let (Mn, g) be a closed Riemannian manifold with diameter ≤ D and λ1(M) be
the first nonzero eigenvalue. For any α ∈ (0, 1), p > n

2 , n ≥ 2, there exists ε(n, p, α, D) > 0
such that if k̄(p, 0) ≤ ε, then

λ1(M) ≥ α
π2

D2 .

The constant ε can be explicitly computed, see Appendix.
The proofs for λ1(M) we mentioned before for pointwise lower Ricci curvature bound do

not work well with integral curvature condition. Here we use a gradient estimate similar to
the one of Li and Yau. Their technique can not be applied directly in the integral curvature
case, as it relies on a pointwise lower bound to control the term Ric(∇u,∇u) coming from
the Bochner formula. To overcome this difficulty, we use the technique developed by Zhang
and Zhu [28,29]. See [6,20,21] for other applications of this technique. The strategy consists
in introducing an auxiliary function J via a PDE that absorbs the curvature terms appearing
in the Bochner formula, and to find appropriate bounds for J (see Sect. 2). We also follow
the approach of [14], that uses an ODE comparison technique instead of the original barrier
functions of [30] (see Sect. 3).

Remark 1 In general, p > n
2 and the smallness of k̄(p, 0) are both necessary conditions,

see e.g. [9]. In particular, for our estimate, the example of the dumbbells of Calabi shows
that only assuming that k̄(p, 0) is bounded is not enough: consider a dumbbell Dε ⊆ R

3,
consisting of two equal spheres joined by a thin cylinder of length l and radius ε, with
smooth necks. Assume without loss of generality that vol(Dε) ≤ 1. Then, as explained in
[7], λ1(Dε) ≤ Cε2, so no positive lower bound is possible, as we can consider a sequence
of dumbbells with ε → 0. Notice that in this example, k̄(p, 0) can not be made small. This
follows from Gauss–Bonnet: since Dε is homeomorphic to S2, the integral of the sectional
curvature over Dε is 4π . However, over the two spheres it is close to 8π , and over the cylinder
it’s 0. Hence, the two necks contain negative curvature, that amounts to almost −4π . This
implies that vol(Dε)k̄(1, 0) ≈ 4π . We can make the construction so that k̄(1, 0) > 2π , thus
for p > n

2 = 1 we have k̄(p, 0) ≥ k̄(1, 0) > 2π , so the integral curvature can not be made
small.

Remark 2 Since in the caseRicM ≥ 0onehas rigidity, a natural questionwould be to ask if one
could get almost rigidity in the Gromov–Hausdorff sense (see [22]), i.e. if λ1(M) is close to

λ1(S1) = π2

D2 , can we conclude that M is close to S1 in the Gromov–Hausdorff topology? As
was explained in [12, page 8], this is not true, as one could consider the shrinking sequence of
boundaries of ε-neighborhoods of a line segment with length π , whose eigenvalues converge
to 1, but that converges in the Gromov–Hausdorff sense to the line segment.

Remark 3 As the proof given in [26] for the case H < 0 is similar to the case H = 0,
adjusting our proof accordingly should yield an integral curvature version of the estimate
(1.1). We conjecture that integral curvature versions of the estimate (1.2) and the optimal
lower bound estimate when H < 0 should also hold.

The paper is organized as follows: in Sect. 2 we prove estimates on the auxiliary function
J mentioned above, in Sect. 3 we prove the sharp gradient estimate needed to derive our main
theorem, and we prove Theorem 1 in Sect. 4. Finally, in Appendix we have an appendix with
explicit estimates on ε (the upper bound of k̄(p, 0)) depending on the Sobolev and Poincaré
constants, p, n and D.
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2 Estimates on the auxiliary function

In what follows, for f ∈ L p(M), we use the notation

‖ f ‖∗
p :=

( 
M

| f |pdv

) 1
p

.

First we recall an earlier eigenvalue and Sobolev constant estimate for closed manifolds
with integral Ricci curvature bounds which we will use.

Theorem 2 [10, Theorem 3,6] Given Mn closed Riemannian manifold with diameter D,
for p > n/2, H ∈ R, there exist ε (n, p, H , D) > 0, C (n, p, H , D) > 0 such that if

k̄(p, H) ≤ ε, then Is(M) ≤ C (n, p, H , D)/vol(M)
1
n , where Is(M) = sup{ vol(	)1− 1

n

vol(∂	)
: 	 ⊂

M, vol(	) ≤ 1
2 vol(M)}. In particular,

λ1(M) ≥ �rough(n, p, H , D) > 0, (2.1)

and for any u ∈ W 1,2(M),

‖u − ū‖∗
2p
p−1

≤ Cs‖∇u‖∗
2 (2.2)

‖u‖∗
2p
p−1

≤ Cs‖∇u‖∗
2 + ‖u‖∗

2 (2.3)

where ū = ffl
M u, the average of u, and Cs =

(
p

p−1

) 1
2
C(n, p, H , D).

In [10] the weaker isoperimetric constant was obtained, it was improved to the optimal power
above in [18].

Remark 4 From the estimate on λ1 we can derive a Poincaré inequality. Notice that

�rough ≤ λ1 = infffl
M f dv=0

ffl
M |∇ f |2dvffl
M f 2dv

≤
ffl
M |∇w|dvffl

M |w − w|2dv
,

where w ∈ H1(M). Hence we have

(‖w − w‖∗
2)

2 ≤ �−1
rough(‖∇w‖∗

2)
2. (2.4)

As mentioned in the introduction, in the proof of the gradient estimate in Proposition 4
we introduce an auxiliary function J that absorbs the curvature terms. To be able to derive a
sharp lower bound for λ1(M), we need to construct and estimate J from a PDE as follows.
For τ > 1 and σ ≥ 0, consider

�J − τ
|∇ J |2
J

− 2Jρ0 = −σ J . (2.5)

Here ρ0 is defined as in (1.3). Using the transformation J = w− 1
τ−1 , we see that this equation

is equivalent to

�w + Vw = σ̃w, (2.6)

where V = 2(τ − 1)ρ0 and σ̃ = (τ − 1)σ . We choose −σ̃ be the first eigenvalue of the
operator � + V ; in particular, if RicM ≥ 0 we have σ = σ̃ = 0, and J ≡ 1 is a solution to
(2.5). The main goal of this section is to prove the following propositions.
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Proposition 1 There exists ε(n, p, D, τ ) > 0 such that if k̄(p, 0) ≤ ε, then there is a number
σ and a corresponding function J solving (2.5) such that

0 ≤ σ ≤ 4ε. (2.7)

Proof Since −σ̃ is the first eigenvalue, w does not change sign. In particular, by possibly
scaling w, we can assume that w ≥ 0, ‖w‖∗

2 = 1. By integrating Eq. (2.6) over M we get
ˆ
M
Vwdv = σ̃

ˆ
M

wdv.

Since w ≥ 0 and V ≥ 0, we conclude that σ̃ ≥ 0, so σ ≥ 0.
To obtain the upper bound, multiply Eq. (2.6) by w, integrate over M , and divide by

vol(M). This way, we obtain:

σ̃ = σ̃

 
M

w2dv =
 
M

w�wdv +
 
M
Vw2dv = −

 
M

|∇w|2dv +
 
M
Vw2dv.

Define the average of w

w :=
 
M

wdv ≤ ‖w‖∗
2 = 1.

Then, using the Sobolev inequality (2.2), for p > n/2

σ̃ = −
 
M

|∇w|2dv +
 
M
V (w + w − w)2dv

≤ −
 
M

|∇w|2dv + 2
 
M
V (w − w)2dv + 2

 
M
V (w)2dv

≤ −
 
M

|∇w|2dv + 2‖V ‖∗
p

( 
M

(w − w)
2p
p−1 dv

) p−1
p + 2‖V ‖∗

1

≤ −
 
M

|∇w|2dv + 2C2
s ‖V ‖∗

p

 
M

|∇w|2dv + 2‖V ‖∗
1.

where Cs is the Sobolev constant. Since 2C2
s ‖V ‖∗

p ≤ 4C2
s (τ − 1)ε, choosing ε > 0 small

enough so that 4C2
s (τ − 1)ε ≤ 1, we deduce

σ̃ ≤ 2‖V ‖∗
1 ≤ 2‖V ‖∗

p ≤ 4(τ − 1)ε.

Hence

σ ≤ 4ε.

��
Proposition 2 For any δ > 0, there exists ε(n, p, D, τ ) > 0 and a solution J to (2.5) such
that if k̄(p, 0) ≤ ε then

|J − 1| ≤ δ. (2.8)

Proof Claim 1 ‖w − w‖∗
2 ≤ K1

√
ε, where K1 = K1(p, n, D, τ ).

Going back to Eq. (2.6), we have that, since w ≤ 1,

−�w(w − w) = (V − σ̃ )w(w − w)

= (V − σ̃ )(w − w)2 + w(w − w)(V − σ̃ )
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≤ |V − σ̃ |(w − w)2 + w((w − w)2|V − σ̃ | + |V − σ̃ |)
≤ 2(w − w)2|V − σ̃ | + |V − σ̃ |.

After integration by parts and dividing by vol(M):

 
M

|∇w|2dv ≤ 2
 
M

|V − σ̃ |(w − w)2dv +
 
M

|V − σ̃ |dv

≤ 2

( 
M

|V − σ̃ |pdv

)1/p ( 
M

(w − w)
2p
p−1 dv

) p−1
p + ‖V − σ̃‖∗

1

≤ 2C2
s

(
‖V ‖∗

p + ‖σ̃‖∗
p

) 
M

|∇w|2dv + ‖V ‖∗
1 + ‖σ̃‖∗

1

≤ 12C2
s (τ − 1)ε

 
M

|∇w|2dv + 6(τ − 1)ε.

Then choosing ε small enough so that 12C2
s (τ − 1)ε ≤ 1

2 , we deduce

 
M

|∇w|2dv ≤ 12(τ − 1)ε.

Finally, using Poincaré inequality (2.4),

(‖w − w‖∗
2)

2 =
 
M

|w − w|2dv ≤ �−1
rough

 
M

|∇w|2dv ≤ 12�−1
rough(τ − 1)ε ≡ K 2

1 ε.

Claim 2 ‖w − w‖∞ ≤ K2(
√

ε + ε).

Denote h := w − w. To derive the L∞ bound for h, we will use Moser’s iteration on a
closed manifold. The technique written below is a slight modification of the one used in [25],
introducing a potential term, (c.f. [11]). Notice that h satisfies

−�h = (V − σ̃ )h + w(V − σ̃ ).

Let g = V − σ̃ and f = w(V − σ̃ ), then h satisfies

− �h = gh + f . (2.9)

Thus, h is a weak solution, in the sense that

ˆ
M

∇h∇φdv =
ˆ
M
ghφdv +

ˆ
M

f φdv

for all nonnegative φ ∈ W 1,2(M).
Define h = h+ + k, where k = ‖ f ‖∗

p . Notice that ∇h = 0 if h ≤ 0, and ∇h = ∇h if

h > 0. Consider φ = h
l

vol(M)
∈ W 1,2(M). Then for some l ≥ 1 we have

l
 
M

|∇h|2hl−1
dv ≤

 
M
ghh

l
dv +

 
M

f h
l
dv.

Hence
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l
 
M

|∇h|2hl−1
dv ≤

 
M

|g|hl+1
dv +

 
M

| f |h
l+1

k
dv

≤
 
M

ψh
l+1

dv

≤ ‖ψ‖∗
p

(
‖h‖∗

(l+1) p
p−1

)l+1

, (2.10)

where ψ = |g| + | f |
k (in particular 1 ≤ ‖ψ‖∗

p ≤ 1 + ‖g‖∗
p). Note that∣∣∣∣∇

(
h

l+1
2

)∣∣∣∣
2

=
∣∣∣∣ l + 1

2
h

l−1
2 ∇h

∣∣∣∣
2

= (l + 1)2

4
h
l−1|∇h|2.

So (
‖∇(h

l+1
2 )‖∗

2

)2
≤ (l + 1)2

4l
‖ψ‖∗

p

(
‖h‖∗

(l+1) p
p−1

)l+1

.

Let s = 2p
n > 1 and r = s+1

2 > 1. Note that p
p−1 = sn

sn−2 . Using the Sobolev inequality

(2.3) for u ∈ W 1,2(M) and q > n
2 ,

‖u‖∗
2q
q−1

≤ Cs‖∇u‖∗
2 + ‖u‖∗

2,

and let q = rn
2 . We make this choice, q > n/2, so that we can treat the cases n = 2 and

n > 2 together. Note that if q = n/2, then 2q
(q−1) = 2n

(n−2) is the usual Sobolev exponent.
Then we have

(
‖h‖∗

(l+1) rn
rn−2

) l+1
2 = ‖h l+1

2 ‖∗
2rn
rn−2

≤ Cs‖∇(h
l+1
2 )‖∗

2 + ‖h l+1
2 ‖∗

2

≤ Al(‖h‖∗
(l+1) sn

sn−2
)
l+1
2 + (‖h‖∗

l+1)
l+1
2 ,

(2.11)

where Al = Cs
l+1
2
√
l

√‖ψ‖∗
p from (2.10).

Let a := n(s−r)
sn−2 > 0 so that it satisfies

a + (1 − a)

(
rn

rn − 2

)
= sn

sn − 2
.

Then by Hölder and Young’s inequality

xy ≤ ξ xγ + ξ
− γ ∗

γ yγ ∗
,

with γ =
(
(1 − a)

(
rn

rn−2

) ( sn−2
sn

))−1
and γ ∗ = ( sn−2

sn a
)−1

,

(‖h‖∗
(l+1) sn

sn−2
)
l+1
2 =

( 
M
h

(l+1) sn
sn−2 dv

) sn−2
2sn

≤
( 

M
h

(l+1) rn
rn−2 dv

)(1−a) sn−2
2sn
( 

M
h
l+1

dv

) sn−2
2sn a

≤ ξ

( 
M
h

(l+1) rn
rn−2 dv

) rn−2
2rn + ξ− (1−a)

a
rn

rn−2

( 
M
h
l+1

dv

) 1
2

.
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Inserting this into inequality (2.11) and setting ξ = 1
2A−1

l , we have

(
‖h‖∗

(l+1) rn
rn−2

) l+1
2 ≤ Al

(
ξ

( 
M
h

(l+1) rn
rn−2 dv

) rn−2
2rn

+ ξ− (1−a)
a

rn
rn−2

( 
M
h
l+1

dv

) 1
2
)

+ (‖h‖∗
l+1

) l+1
2

= 1

2

(
‖h‖∗

(l+1) rn
rn−2

) l+1
2 +

(
2

1−a
a

rn
rn−2A

1−a
a

rn
rn−2+1

l + 1

) (‖h‖∗
l+1

) l+1
2 .

Renaming l + 1 by l > 1, and μ = rn
rn−2 , we obtain

‖h‖∗
lμ ≤

(
(2Al−1)

s
s−r + 2

) 2
l ‖h‖∗

l .

Let lk = lμk . Then

‖h‖∗
lk ≤

k∏
j=1

(
(2Al j−1−1)

s
s−r + 2

) 2
l j ‖h‖∗

l .

Note that Al = O(
√
l) so that A = limk→∞

∏k
j=1

(
(2Al j−1−1)

s
s−r + 2

) 2
l j < ∞ hence

‖h‖∞ ≤ A‖h‖∗
l (2.12)

for l > 1. In particular, let l = 2 so that

sup h+ ≤ ‖h‖∞ ≤ A‖h‖∗
2

= A‖h+ + ‖ f ‖∗
p ‖∗

2

≤ A(‖h‖∗
2 + ‖w(V − σ̃ )‖∗

p)

≤ A(K1
√

ε + 6(τ − 1)ε)

≤ A (K1 + 6(τ − 1)) (
√

ε + ε) ≡ K2(
√

ε + ε).

Here we have used Claim 1. Since −h satisfies the same equation (except for a sign in f ),
we conclude that

|w − w| = |h| ≤ K2(
√

ε + ε).

Claim 3 For ε small enough, w > 1
2 .

From the previous claim, we know that w ≤ w + K2(
√

ε + ε). Since ‖w‖∗
2 = 1 and

w ≤ 1,

1 =
 
M

w2dv ≤
 
M

(w + K2(
√

ε + ε))2dv

= (w + K2(
√

ε + ε)
)2 ≤ w2 + 2K2(

√
ε + ε) + K 2

2 (
√

ε + ε)2.

Hence, choosing ε > 0 small enough

1

4
< 1 − 2K2(

√
ε + ε) − K 2

2 (
√

ε + ε)2 ≤ w2,
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so that w > 1
2 . This allows us to finish the proof of the lemma. Consider the function

w2 := w/w. w2 satisfies the same equation as w, and we know by claims 2 and 3 that

1 − δ̃ ≤ w2 ≤ 1 + δ̃,

where δ̃ := 2K2(
√

ε + ε). Define J := w
− 1

τ−1
2 . We can establish the bounds for J using the

1st order Taylor polynomial of f (x) = x− 1
τ−1 near x = 1, on the domain (1− δ̃, 1+ δ̃). We

know that f (x) = 1 + R1(x), where the remainder can be estimated by

|R1| = | f ′(x∗)(x − 1)| ≤ 2δ̃

(τ − 1)(1 − δ̃)
τ

τ−1
,

where x∗ ∈ (1 − δ̃, 1 + δ̃). Choosing ε > 0 small enough so that 2δ̃

(τ−1)(1−δ̃)
τ

τ−1
≤ δ, we get

the estimate

|J − 1| ≤ δ,

concluding the proof of the proposition. ��

3 Sharp gradient estimate

As in the RicM ≥ 0 case, to obtain a sharp estimate we need to consider the following ODE
with an additional parameter η ∈ R,⎧⎪⎨

⎪⎩
(1 − u2)Z ′′(u) + uZ ′(u) = −ηu on [−1, 1]
Z(0) = 0

Z(±1) = 0,

(3.1)

which has the explicit solution

Z(u) = 2η

π

(
arcsin(u) + u

√
1 − u2

)
− ηu.

Furthermore, the function Z(u) satisfies the following inequalities.

Proposition 3 For numbers η = 1 + δ and J ≤ η, we have

η−1(Z ′)2 − 2J−1Z ′′Z + Z ′ ≥ 0, (3.2)

2Z − uZ ′ + 1 ≥ 1 − η, u ∈ [−1, 1], (3.3)

η(1 − u2) ≥ 2|Z |. (3.4)

Proof By direct computation,

Z ′(u) = −η + 4η

π

√
1 − u2,

Z ′′(u) = −4η

π

u√
1 − u2

.

We first show the inequality (3.2). It was shown in [14] that the solution to (3.1) when η = 1,
namely, z(u) = 2

π
(arcsin(u) + u

√
1 − u2) − u satisfies

(z′)2 − 2z′′z + z′ ≥ 0.

123



X. Ramos Olivé et al.

For η > 0, the solution is simply given by rescaling Z = ηz. Note that z, u, and −z′′ shares
sign, so that −zz′′ ≥ 0 on [−1, 1]. Since J ≤ η,

η−1(Z ′)2 − 2J−1Z ′′Z + Z ′ = η(z′)2 − 2J−1η2z′′z + ηz′ ≥ η((z′)2 − 2z′′z + z′) ≥ 0.

Similarly, for (3.4), the case η = 1 was shown in [14] and we obtain the result by rescaling.
Direct computation yields (3.3). ��
We mention that in Proposition 3, u, J are generic parameters, and u is a variable. In order
to prove the main result, we need to make the following choice.

Let φ be a nontrivial eigenfunction corresponding to λ1 and normalized so that for 0 ≤
a < 1, a + 1 = supφ and a − 1 = inf φ. Set u := φ − a, so that �u = −λ1(u + a).

Proposition 4 Let δ > 0 be fixed. Let J be the solution (2.5) with τ = 3+4δ
2δ . Suppose M is

a closed Riemannian manifold with k̄(p, 0) ≤ ε so that Proposition 1 and 2 holds for this
choice of δ. Then u defined as above satisfies the gradient estimate

J |∇u|2 ≤ λ̃(1 − u2) + 2aλ1Z(u), (3.5)

where λ̃ := C1λ1 + C2 with

C1 := 1 + δ + √
A

1 − √
B

(3.6)

and

C2 := σ

2(1 − √
B)

(
Z̃√
A

+ 1

2
√
B

)
, (3.7)

where A = A(δ) := 2δ(1 + δ), B = B(δ) := δ(5 + δ)

(1 − δ)
, and Z(u) is defined as in (3.1) for

η = 1 + δ with sup[−1,1] Z = Z̃ ≤ (0.116)η, and σ is given in Proposition 1.

Remark 5 Note that when δ → 0, then C1 → 1. Also, when σ/
√

δ → 0, then C2 → 0.

Proof Consider ξ < 1, and denote, for simplicity, u := ξ(φ − a). Note that comparing with
the previously defined u, there is an extra factor ξ so that −ξ ≤ u ≤ ξ . Then this u satisfies

�u = −λ1(u + ξa). (3.8)

Consider for a constant c,

Q := J |∇u|2 − c(1 − u2) − 2aλ1Z(u).

To obtain (3.5), we want to show that Q ≤ 0. By (3.4) and compactness of M , we can choose
a suitable c so that Q = 0 at the maximum point of Q. For the rest of the proof, we fix such
a constant c so that max Q = 0.

Our goal is to show that c ≤ C1λ1 +C2 for some constants C1,C2 such that (C1,C2) →
(1, 0) as δ → 0, σ/

√
δ → 0. Taking ξ → 1 will give us the gradient estimate.

If c ≤ (1 + δ)λ1, then we are done so we can assume that

c > (1 + δ)λ1, (3.9)

and in particular, c > Jλ1. Let the maximum point of Q be x0. Then |∇u(x0)| > 0, since if
∇u(x0) = 0, then
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0 = −c(1 − u2(x0)) − 2aλ1Z(u(x0))

≤ −c(1 − ξ2) + aλ1η(1 − ξ2)

= (aλ1η − c)(1 − ξ2) < 0,

a contradiction.
For convenience, we write Z = Z(u). By direct computation,

∇Q = (∇ J )|∇u|2 + J∇(|∇u|2) + 2cu∇u − 2aλ1Z
′∇u,

which at the maximum point is

∇(|∇u|2) = −∇ J

J
|∇u|2 − 2J−1cu∇u + 2J−1aλ1Z

′∇u. (3.10)

Let e1 = ∇u
|∇u| and complete to an orthonormal basis {e j }nj=1. Then at the maximal point we

have

Hess u(∇u,∇u) = − 1

2J
〈∇ J ,∇u〉|∇u|2 − c

u

J
|∇u|2 + aλ1Z ′

J
|∇u|2

so that

Hess u(e1, e1) = − 1

2J
〈∇ J ,∇u〉 − c

u

J
+ aλ1Z ′

J
, (3.11)

and for j �= 1,

Hess u(e1, e j ) = − 1

2J
〈∇ J , e j 〉|∇u|. (3.12)

Again by direct computation,

�Q = (�J )|∇u|2 + 2〈∇ J ,∇(|∇u|2)〉 + J�|∇u|2
+ 2c|∇u|2 + 2cu�u − 2aλ1Z

′′|∇u|2 − 2aλ1Z
′�u.

By Bochner formula and (3.8),

�Q = (�J )|∇u|2 + 2〈∇ J ,∇(|∇u|2)〉
+ J
(
2|Hess u|2 − 2λ1|∇u|2 + 2Ric(∇u,∇u)

)
+ 2c|∇u|2 − 2cuλ1(u + ξa) − 2aλ1Z

′′|∇u|2 + 2aλ21Z
′(u + ξa).

At the maximal point of Q, using Ric ≥ −ρ0 and (3.10), we have

0 ≥ (�J )|∇u|2 − 2
|∇ J |2
J

|∇u|2 − 4c
u

J
〈∇ J ,∇u〉 + 4

aλ1Z ′

J
〈∇ J ,∇u〉

+ 2J |Hess u|2 − 2λ1 J |∇u|2 − 2Jρ0|∇u|2
+ 2c|∇u|2 − 2cuλ1(u + ξa) − 2aλ1Z

′′|∇u|2 + 2aλ21Z
′(u + ξa).

Using (3.11) and (3.12) we also have the lower bound of the Hessian term
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|Hess u|2 ≥
n∑
j=1

(Hess u(e1, e j ))
2

= 1

4J 2
|∇ J |2|∇u|2 + c

u

J 2
〈∇ J ,∇u〉 − aλ1Z ′

J 2
〈∇ J ,∇u〉

+ c2
u2

J 2
− 2cuaλ1Z ′

J 2
+ a2λ21(Z

′)2

J 2
.

Inserting the Hessian lower bound we have

0 ≥
(

(�J ) − 3

2

|∇ J |2
J

− 2Jρ0

)
|∇u|2 − 2c

u

J
〈∇ J ,∇u〉 + 2

aλ1Z ′

J
〈∇ J ,∇u〉

+2c2u2

J
− 4cuaλ1Z ′

J
+ 2a2λ21(Z

′)2

J
− 2λ1 J |∇u|2

+2c|∇u|2 − 2cuλ1(u + ξa) − 2aλ1Z
′′|∇u|2 + 2aλ21Z

′(u + ξa). (3.13)

Let β = 2δ

1 + δ
. By Cauchy–Schwarz, we bound the mixed term as follows,

2
aλ1Z ′
√
J

〈∇ J√
J

,∇u

〉
≥ −β

a2λ21(Z
′)2

J
− |∇ J |2

β J
|∇u|2

and

−2c
u√
J

〈∇ J√
J

,∇u

〉
≥ −δc2

u2

J
− |∇ J |2

δ J
|∇u|2.

Plugging these into (3.13) we deduce

0 ≥
(

(�J ) −
(
3 + 4δ

2δ

) |∇ J |2
J

− 2Jρ0

)
|∇u|2

+ (2 − δ)
c2u2

J
− 4cuaλ1Z ′

J
+ (2 − β)

a2λ21(Z
′)2

J
− 2λ1 J |∇u|2

+ 2c|∇u|2 − 2cuλ1(u + ξa) − 2aλ1Z
′′|∇u|2 + 2aλ21Z

′(u + ξa).

Now using the fact that Q = 0 at the maximal point, written explicitly

|∇u|2 = cJ−1(1 − u2) + 2aλ1 J
−1Z , (3.14)

we substitute to the second and third lines of the above so that

0 ≥
(

(�J ) −
(
3 + 4δ

2δ

) |∇ J |2
J

− 2Jρ0

)
|∇u|2

− 4cuaλ1Z ′

J
− 2λ1

(
c(1 − u2) + 2aλ1Z

)
+ 2cJ−1 (c(1 − u2) + 2aλ1Z

)− 2cuλ1(u + ξa)

− 2aλ1Z
′′ J−1 (c(1 − u2) + 2aλ1Z

)+ 2aλ21Z
′(u + ξa)

+ (2 − δ)
c2u2

J
+ (2 − β)

a2λ21(Z
′)2

J
.

Using the Eq. (2.5) with τ = 3+4δ
2δ , substituting (3.14) again, and noting that 2− β = 2η−1,
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0 ≥ −σ
(
c(1 − u2) + 2aλ1Z

)
+ 2a2λ21

(
ξ Z ′ − 2J−1Z ′′Z + η−1 J−1(Z ′)2)

)
− 2acλ1 J

−1 ((1 − u2)Z ′′ + uZ ′ + ξu J
)

+ 2aλ1(cJ
−1 − λ1)(2Z − uZ ′)

− 2λ1c + 2c2 J−1 − 2acλ1 J
−1 + 2aλ21

− δ J−1c2u2 + 2acλ1 J
−1 − 2aλ21.

After some rearranging we have

0 ≥ 2a2λ21
(
ξ Z ′ − 2J−1Z ′′Z + η−1(Z ′)2

)+ 2a2λ21η
−1(J−1 − 1)(Z ′)2

− 2acλ1 J
−1 ((1 − u2)Z ′′ + uZ ′ + ξu J

)
+ 2aλ1

(
cJ−1 − λ1

) (
2Z − uZ ′ + 1

)
+ 2(cJ−1 − λ1)(c − aλ1)

+ (cσ − c2 J−1δ)u2 − cσ − 2aσλ1Z .

The first line is grouped by terms with a2λ21, then using (3.9), we group terms as products
of cJ−1 − λ1 since it has a sign, the second line grouped from the remaining terms with a
factor acλ1, and the last are remaining terms which would mostly be zero for the pointwise
bounded case since σ = 0. Using the ODE (3.1), the inequalities (3.2), (3.3), and (3.9), we
have

0 ≥ 2a2λ21(ξ − 1)Z ′ + 2a2λ21η
−1(J−1 − 1)(Z ′)2

− 2acλ1 J
−1(ξ J − η)u

+ 2aλ1(cJ
−1 − λ1)(1 − η)

+ 2(cJ−1 − λ1)(c − aλ1)

− cσ − 2aσλ1Z − c2 J−1δ.

Since η > 1 and u ≥ −ξ ≥ −1, −η ≤ Z ′ ≤ η( 4
π

− 1) ≤ η, and using Proposition 2 we
replace J by either 1− δ or 1+ δ appropriately, and noting that 2a2λ21η

−1(J−1 − 1)(Z ′)2 ≥
−2δc2 we get

0 ≥ −2a2λ21η(1 − ξ)

− 2acλ1

(
η − ξ + δη

1 − δ

)

− 2aλ1

(
c − λ1 + cδ

1 − δ

)
(η − 1)

+ 2 (c − λ1 − δc) (c − aλ1)

− cσ − 2aσλ1Z − c2δ

1 − δ
− 2δc2.

Recall that Z̃ := sup Z = O(η). Our goal now is to obtain a quadratic inequality in terms of
(c − λ1). Using η ≥ 1, we first rewrite the first term and split the remaining terms so that
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0 ≥ −2a2λ21η(η − ξ)

− 2acλ1(η − ξ) − 2acλ1
δη

1 − δ

− 2aλ1(c − λ1)(η − 1) − 2aλ1
cδ

1 − δ
(η − 1)

+ 2(c − λ1)(c − aλ1) − 2δc(c − aλ1)

− cσ − 2aσλ1 Z̃ − c2δ

1 − δ
− 2δc2.

Since 0 ≤ a < 1 and noting that ξ ≤ 1, η ≥ 1, and c ≥ λ1, we replace a by 1 or 0 according
to the sign so that

0 ≥ −2λ21η(η − ξ)

− 2cλ1(η − ξ) − 2cλ1
δη

1 − δ

− 2λ1(c − λ1)(η − 1) − 2λ1
cδ

1 − δ
(η − 1)

+ 2(c − λ1)
2 − 4δc2

− cσ − 2σλ1 Z̃ − c2δ

1 − δ
.

Combining the first two terms, and adding and subtracting λ1, we get

0 ≥ −2λ1(η − ξ)(c − λ1 + λ1η + λ1) − 2cλ1
δη

1 − δ

− 2λ1(c − λ1)(η − 1) − 2λ1
cδ

1 − δ
(η − 1)

+ 2(c − λ1)
2 − 4δc2 − cσ − 2σλ1 Z̃ − c2δ

1 − δ
.

After further rearranging we have,

0 ≥ −2λ21(η − ξ)(η + 1) + 2 (c − λ1)
2 − 4δc2 − cσ − 2σλ1 Z̃ − c2δ

1 − δ

− 2λ1 (c − λ1) (2η − ξ − 1) − 2λ1

(
cδ

1 − δ

)
(2η − 1).

Completing the square in terms of (c − λ1), we get(
(c − λ1) − λ1

2
(2η − ξ − 1)

)2
≤ λ21

4(η − ξ)(η + 1) + (2η − ξ − 1)2

4
+ σλ1 Z̃

+ cλ1

(
δ

1 − δ

)
(2η − 1) + c2

(
δ(4 − δ)

(1 − δ)

)
+ c

σ

2
.

Using λ1 ≤ c we get
(

(c − λ1) − λ1

2
(2η − ξ − 1)

)2
≤ λ21

4(η − ξ)(η + 1) + (2η − ξ − 1)2

4
+ σλ1 Z̃

+ c2
((

δ

1 − δ

)
(2η − 1) + δ(4 − δ)

(1 − δ)

)
+ c

σ

2
.
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Let

A = A(η, ξ) := 4(η − ξ)(η + 1) + (2η − ξ − 1)2

4
,

B = B(δ) :=
(

δ(5 + δ)

(1 − δ)

)
.

Then

(
(c − λ1) − λ1

2
(2η − ξ − 1)

)2
≤ A

(
λ1 + σ Z̃

2A

)2
− σ 2 Z̃2

4A
+ B
(
c + σ

4B

)2 − σ 2

16B

≤ A

(
λ1 + σ Z̃

2A

)2
+ B
(
c + σ

4B

)2
.

Using the inequality
√
a2 + b2 ≤ a + b, for a, b ≥ 0,

c − λ1 ≤ λ1

2
(2η − ξ − 1) + √

A

(
λ1 + σ Z̃

2A

)
+ √

B
(
c + σ

4B

)
.

Letting ξ → 1, we have

c ≤ λ1

1 − √
B

(
η + √

A + σ Z̃

2λ1
√
A

)
+
(

σ

4
√
B(1 − √

B)

)

recalling that η = 1 + δ so that A := A(1 + δ, 1) = 2δ(1 + δ). ��

4 Proof of Theorem 1

We now give the sharp eigenvalue lower bound. By Proposition 4 we have

J |∇u|2 ≤ (C1λ1 + C2)(1 − u2) + 2aλ1Z(u).

By (2.1), we have a rough lower bound of the first eigenvalue, λ1 ≥ �rough > 0 so that

λ1 ≥ J |∇u|2
(C1 + C2�

−1
rough)(1 − u2) + 2aZ(u)

.

Let b := C1 + C2�
−1
rough and let γ be the shortest geodesic connecting the minimum and

maximum point of u with length at most D. Recalling that max u = 1 and min u = −1
from the construction given above Proposition 4, integrating the gradient estimate along the
geodesic and using change of variables x(s) = u(γ (s)) and that Z is odd,

D
√

λ1 ≥ √λ1

ˆ
γ

ds

≥ (1 − δ)

ˆ
γ

|∇u|ds√
b(1 − u2) + 2aZ(u)

= (1 − δ)

ˆ 1

−1

dx√
b(1 − x2) + 2aZ(x)
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= (1 − δ)

ˆ 1

0

(
1√

b(1 − x2) + 2aZ(x)
+ 1√

b(1 − x2) − 2aZ(x)

)
dx

= 1 − δ√
b

ˆ 1

0

1√
1 − x2

⎛
⎝ 1√

1 + 2aZ(x)
b(1−x2)

+ 1√
1 − 2aZ(x)

b(1−x2)

⎞
⎠ dx

≥ 1 − δ√
b

ˆ 1

0

1√
1 − x2

(
2 + 3a2(Z(x))2

b2(1 − x2)2

)
dx

≥ 1 − δ√
b

π,

so that

λ1 ≥ (1 − δ)2

b

π2

D2 .

Recall in the limiting case (c.f. Remark 5) that b → 1 as δ → 0 and σ/
√

δ → 0. Let

α := (1 − δ)2

b
to obtain the result.

Acknowledgements The authors would like to thank Christian Rose for his interest in the paper and Hang
Chen for helpful comments in an earlier version of the paper. We also thank Jian Hong Wang for carefully
checking the earlier version and finding a typo.

Appendix: Estimate of �

In this appendix we will give explicit bounds for ε depending on p, n, D, and in terms of
the SobolevCs and Poincaré�−1

rough constants, which have explicit expressions in [10]. Note
that the Sobolev and Poincaré constants can be estimated and do not change for ε smaller
than some fixed number. We show that it suffices to choose

ε<min

{
(n − 1)

(
1

BD
ln

(
1+ 1

2p+1

))2
,

δ

12C2
s (3 + 2δ)

,

(√
7 − 2

K2

)2
,

1

8K2

(
4

3+2δ

) 9+6δ
3+2δ

}

(4.1)

where B(p, n) =
(
2p−1

p

) 1
2
(n − 1)1−

1
2p

(
2p−2
2p−n

) p−1
2p

, K2 = A(K1 + 9+6δ
δ

), K1 =√
6�−1

rough

(
2 + 3

δ

)
andA(n, p, D) is the constant that appears fromMoser’s iteration (2.12).

It suffices to choose ε smaller than the worst of the following conditions:

(1) To apply the Sobolev inequalities that follow fromTheorem 2, ε needs to be small enough
so that the theorem holds. Using our notation, the condition that needs to be satisfied in
[10, Theorem 3, 6] is

 
M

(
ρ0

(n − 1)α̃2 − 1

)p

+
dv ≤ 1

2

(
eBα̃D − 1

)−1
(4.2)
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for some α̃ > 0. Multiplying (4.2) by α̃2p and raising both sides to the power 1/p we
get

( 
M

(
ρ0

n − 1
− α̃2

)p

+
dv

) 1
p

≤ α̃2

2
1
p

(
eBα̃D − 1

)− 1
p
.

Note that
( 

M

(
ρ0

n − 1
− α̃2

)p

+
dv

) 1
p

≤
∥∥∥∥ ρ0

n − 1
− α̃2

∥∥∥∥
∗

p
≤ k̄(p, 0)

n − 1
+ α̃2 ≤ ε

n − 1
+ α̃2.

Thus, it suffices to impose that for some fixed α̃ > 0 we have

ε

n − 1
+ α̃2 ≤ α̃2

2
1
p

(
eBα̃D − 1

)− 1
p
,

or equivalently

ε ≤ (n − 1)α̃2

⎛
⎝ 1

2
1
p
(
eBα̃D − 1

) 1
p

− 1

⎞
⎠ .

So choosing α̃ = 1
BD ln

(
1 + 1

2p+1

)
we obtain

ε ≤ (n − 1)

(
1

BD
ln

(
1 + 1

2p+1

))2
(4.3)

(2) In Proposition 1 and in Claim 1 of Proposition 2 we need ε to satisfy

ε ≤ 1

24C2
s (τ − 1)

, (4.4)

where Cs is the Sobolev constant of (2.2). From the proof of Proposition 4, τ = 3+4δ
2δ so

we get

ε <
δ

12C2
s (3 + 2δ)

.

(3) In Claim 3 of Proposition 2 we need ε to satisfy

1

4
< 1 − 2K2(

√
ε + ε) − K 2

2 (
√

ε + ε)2.

This implies that

ε <

⎛
⎝−1

2
+
√
1

4
+

√
7 − 2

2K2

⎞
⎠

2

.

To get a cleaner estimate, notice that sinceA > 1, then K2 > 6, thus
√
7−2
2K2

<
√
7−2
12 < 3

4 .

Using that for 0 < x < 3 we have that −1 + √
1 + x > x , letting x = 2(

√
7−2)
K2

, we get

ε <

(√
7 − 2

K2

)2
. (4.5)
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(4) In Claim 3 of Proposition 2 we also need ε to be small enough so that

2δ̃

(τ − 1)(1 − δ̃)
τ

τ−1
≤ δ,

where δ̃ = 2K2(
√

ε + ε). This condition is equivalent to

(
1

δ̃
− 1

)
δ̃

1
τ ≥
(

2

δ(τ − 1)

) τ−1
τ =

(
4

3 + 2δ

) 3+2δ
3+4δ ≡ C3(δ).

Note that since δ < 1, we have that τ > 3
2 . Then we get that δ̃

1
τ > δ̃

2
3 . It suffices to

choose ε small enough so that (
1

δ̃
− 1

)
δ̃
2
3 ≥ C3.

Notice that if δ < 1
2 , then C3 > 1. Thus, choosing δ̃ < 1

8C3
3
we get that

(
1

δ̃
− 1

)
δ̃
2
3 > (2C3)

3 − 1

(2C3)2
> C3 + 7C3

3 − 1

4C2
3

> C3 + 7 − 1

4
> C3,

so the condition is satisfied. This gives us the last condition

ε < −1

2
+
√√√√√

1

4
+ 1

16K2

(
4

3+2δ

) 9+6δ
3+2δ

.

As above, to get a cleaner estimate, notice that if δ < 1
2 then

1

16K2

(
4

3+2δ

) 9+6δ
3+2δ

<
1

16K2
<

1

96
<

3

4
,

so using the same property as in (3) we get that it suffices to assume

ε <
1

8K2

(
4

3+2δ

) 9+6δ
3+2δ

. (4.6)

From (4.3), (4.4), (4.5), and (4.6), we arrive at (4.1).
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