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Abstract

The recent years have witnessed a rapid increase in the number of scientific articles in biomedical domain. These literature
are mostly available and readily accessible in electronic format. The domain knowledge hidden in them is critical for
biomedical research and applications, which makes biomedical literature mining (BLM) techniques highly demanding.
Numerous efforts have been made on this topic from both biomedical informatics (BMI) and computer science (CS)
communities. The BMI community focuses more on the concrete application problems and thus prefer more interpretable
and descriptive methods, while the CS community chases more on superior performance and generalization ability, thus
more sophisticated and universal models are developed. The goal of this paper is to provide a review of the recent advances
in BLM from both communities and inspire new research directions.
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Introduction

Due to the rapid development of biomedical research, there
is a large number of biomedical literature available online in
electronic format. For example, COVID-19 was first detected in
December 2019 in Wuhan, China, and then it led to an outbreak
in China in January 2020, then in March 2020 it became a global
pandemic. According to LitCOVID [1], there has already been
more than 1000 research articles about COVID-19 until March
2020. In reality, it is almost impossible for the readers to keep up
with all the articles they are interested in. This makes automatic
knowledge extraction and mining from biomedical literature
highly demanding.

Biomedical literature mining (BLM) refers to the field of devel-
oping text mining and natural language processing (NLP) tech-
niques for automatic knowledge extraction and mining from
biomedical literature. Comparing with other biomedical texts
such as clinical notes, biomedical literature has the following
characteristics: (1) they are more easily accessible thanks to

the publicly available database MEDLINE and free search engine
PubMed; (2) they tend to use professional language and have
diverse ways of expressing the same concept; and (3) they can
be lengthy with diverse contents about the new biomedical
knowledge. As a research field, BLM integrates NLP, biomedical
informatics (BMI) and data mining. BLM techniques have been
successfully applied in applications including biomedical litera-
ture retrieval, biomedical question/answering, clinical decision
support, etc.

In the past decade, researchers from both BMI and computer
science (CS) communities have made great efforts on BLM. In
general, the BMI community tends to focus more on specific
problems, while the CS community works more on developing
new algorithms. Because of the popularity and importance of
BLM, there have been some surveys about the early efforts on
related topics [2-8].

Recently, deep learning technologies [9] have been developing
rapidly and they have demonstrated strong potentials in various
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Figure 1. The hierarchy of different tasks of BLM.

disciplines including NLP [10]. Deep learning models such as
long short-term memory (LSTM) [11], convolutional neural net-
work (CNN) [12] and bidirectional encoder representations from
transformers (BERT) [13] have been firmly established as the
state-of-the-art (SOTA) approaches in NLP tasks such as named
entity recognition (NER) [14] and relation extraction (RE) [15, 16].
Numerous efforts have since continued to make advances in
BLM with deep learning models (e.g. [17-21]).

This paper aims to survey the recent advances in BLM with
special focus on various deep learning techniques. The PRISMA
diagram of the literature surveyed in this paper is shown in
Figure 2. We organize this survey into five different sections:
biomedical NER and normalization, biomedical text classifica-
tion, RE, pathway extraction and hypothesis generation. These
topics have been widely studied in BLM in recent years. In partic-
ular, biomedical NER and normalization are the most basic tasks
for extracting meaningful and interesting entities from biomed-
ical articles, whose relationships can be identified through RE.
Biomedical text classification is crucial for tasks like categorizing
and indexing biomedical articles. Pathway extraction can merge
connected relations and generate pathways by integrating them.
New potential biomedical discovery can be discovered through
hypothesis generation from biomedical literature. Among these
tasks, biomedical NER and normalization along with text clas-
sification are the basis of the other tasks. They are necessary
steps for enabling the implementation of other downstream
tasks including RE. Pathway extraction and hypothesis genera-
tion are usually conducted on top of RE. Figure 1 illustrates the
hierarchical relationships among these different tasks. Table 1

Table 1. SOTA studies for different tasks discussed in this paper

summarizes the SOTA performances achieved for these tasks
together with their corresponding models.

Biomedical NER and normalization

In order to structualize the unstructured texts in biomedical
literature to facilitate further analysis, a fundamental task is
to accurately identify the various biomedical entities that are
of interests to the readers, such as chemical ingredients, genes,
proteins, medications, diseases, symptoms, etc. This is referred
to as the NER problem.

Effective NER has been widely studied in general NLP [30-35],
so does biomedical NER [36-46]. Biomedical NER recognizes the
entities in texts as predefined categories (e.g. diseases, chem-
icals, genes, etc.), and it is the basis for many downstream
analytical tasks such as enabling the search engines to index,
organize and link biomedical documents, mining entity relations
from the biomedical literature, etc.

Building a high-performance (e.g. measured by precision and
recall) biomedical NER system is quite challenging due to the
limited availability of high-quality labeled data, as well as the
linguistic variation of texts such as the use of abbreviations,
non-standardized names (e.g. Zomig, Zomigon and Zolmitriptan
actually refer to the same medication) and lengthy descriptions.
This makes biomedical named entity normalization (NEN) also
a critical task.

Task definition

Technically, the goal of biomedical NER is to find the boundaries
of mentions of biomedical entities from the text. Biomedical
NEN is to map obtained biomedical named entities into a con-
trolled vocabulary. On one hand, NEN can be considered as a
follow-up task of NER because normalization is typically con-
ducted on the NER outputs. On the other hand, both NER and
NEN can be regarded as sequence labeling problems. Figure 3
shows an example of the task of biomedical NER and NEN, in
which the input is a sentence ‘Takotsubo syndrome secondary
to Zolmitriptan’, which contains a disease name ‘Takotsubo
syndrome’ and a chemical name ‘Zolmitriptan’. The output is
B-I-O (Begin-Inside-Outside) tag for each word in this sentence
and the entity ID for each biomedical entity.

On this topic, Alshaikhdeeb et al. [6] provided an early review
on biomedical NER, where they mainly focused on traditional
methods. In this paper, we will focus on more recent studies.

Task Authors Dataset Method F-score
Biomedical NER Zhao et al. [22] BC5CDR / NCBI Disease BiLSTM-CNN-CRF-based multi-task ~ 0.8763/ 0.8745
learning
Biomedical NEN Zhao et al. [22] BC5CDR / NCBI Disease BiLSTM-CNN-CRF-based multi-task ~ 0.8917 / 0.8823
learning
Relevant topic recognition Jiang et al. [23] MGI database and Mouse GXD Random forest classifier 0.923
Biomedical literature indexing Dai et al. [24] PMC Open Access Subset Attention-based CNN 0.7021
PPIs extraction Hsieh et al. [25] AlMed and Biolnfer RNNs 0.769/0.872
Genotype-phenotype Xing et al. [26] TAIR database Representation learning 0.6683
associations extraction
Drug-Drug interactions Zhangetal. [27] DDI 2013 extraction corpus Hierarchical RNNs 0.729
extraction
Pathway extraction Poon et al. [28] GENIA event extraction dataset Distant supervision method 0.371
Hypothesis generation Sang et al. [29] SemKG Graph-based link prediction 0.892
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Figure 2. PRISMA flow diagram: recent advances in BLM.
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Figure 3. An example of the task of biomedical NER and normalization.

Methods of biomedical NER

Conventional biomedical NER methods can be roughly catego-
rized into three classes: dictionary-based approaches, seman-
tic approaches and statistical approaches. Dictionaries-based
approaches [39, 41] use term matching strategy to find the
same entities in text that also appear in dictionaries, thus the
method is difficult to generalize to recognize the entities out-
side the vocabulary. Semantic approaches require rich domain-
knowledge to construct rules or patterns for identifying the
named entities (e.g. [47-50]). Statistical approaches treat NER as a
classification problem and train statistical models (e.g. decision
trees or SVMs [37, 51], or Markov models-based sequence tagging
methods such as HMM and CRFs [38, 40, 42]) to achieve the goal.

In recent years, deep learning models (e.g. [13, 52]) have
been firmly established as the SOTA approaches in sequence
modeling. Numerous efforts have since been devoted to applying
those deep learning techniques to NER as they can be trained in
an end-to-end way without additional feature engineering.
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Figure 4 demonstrates a typical neural network model for
NER, which consists of the following layers:

® Character level embedding which represents each character
within every word as a vector.

® A CNN which extracts features encoding the morphological
and lexical information observed in the characters within
each word. The final output of this CNN would be a vector
representation of each word, which is typically combined
with another word embedding vector pre-trained on a large
external biomedical text corpus such as PubMed abstracts.
(As an alternative, Sahu and Anand [44] also exploited the
power of recurrent neural network (RNN) to obtain the mor-
phological and shape features of words in character level
word embedding and used it as a feature concatenating
with the word embedding for recognition.)

® Word-level bidirectional long short-term memory (BiLSTM)
layer to model the long-range dependency structure in
medical texts. A BiLSTM [53] computes two separate
latent embedding vectors for every word in a sequence
that capture both the forward and backward semantic
dependencies of the word sequence. The two vectors will
be concatenated.

® A decoder layer that transforms the BiLSTM representation
by an affine transformation.

® A conditional random field (CRF) layer that calculates the
word sequence likelihood.

One specific model that is getting popular in NLP recently
is the BERT model [13], wherein the major building block is
transformer [54]. Transformer applies the attention mechanism
to learn contextual relations between words in sentences. It
is composed of two components including an encoder that
encodes textual input and a decoder that predict labels for a
particular task. BERT is a new paradigm of Transformer which
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Figure 4. A neural network model for biomedical NER tasks, where character level embeddings are combined as one vector and then concatenated to form the

pre-trained word embedding.

pre-trains deep bidirectional representations from unlabeled
text by considering both left and right context in all layers
of attentions. There are two steps in BERT: pre-training and
fine-tuning. During pre-training, the model is trained on large
amount of unlabeled texts over different pre-training tasks like
predicting masked tokens in text and predicting next sentence.
For fine-tuning, the BERT model is first initialized with the pre-
trained parameters, and all of the parameters are fine-tuned
using labeled data from the downstream tasks. Unlike the tra-
ditional left-to-right language modeling objective, BERT is pre-
trained on two tasks: predicting randomly masked tokens and
predicting whether two sentences follow each other. This setting
is very different from previous language modeling studies which
encode text sequence either from left to right or in a bidirectional
order. The BERT framework is shown in Figure 5. BERT broke
several records for how well computational models can handle
language modeling tasks. Using BERT, an NER model can be
trained by feeding the output vector of each token into a classifi-
cation layer that predict the NER label. Beltagy et al. [55] released
a pre-trained contextualized embedding model for scientific text
based on BERT, named SciBERT. SciBERT achieved SOTA biomed-
ical NER performance on both the BC5CDR [56] and NCBI-disease
[57] data sets, which are used for benchmarking biomedical NER.
BioBERT [17] trained a BERT model on biomedical texts sourced
from PubMed article abstracts and full texts. They found that
BioBERT can improve performance on several biomedical NLP
tasks including biomedical NER. Peng et al. [58] introduced a
biomedical language understanding evaluation benchmark and
evaluated several baselines. They found that the BERT model

pre-trained on PubMed abstracts and MIMIC-III clinical notes
achieved best results on biomedical NER.

Methods of biomedical NEN

Biomedical NEN another crucial task for BLM. It has been high-
lighted as a subtask in different NLP related evaluation or com-
petition series such as SemEval [59] and BioCreative [60]. A
variety of approaches have been proposed on this topic [61-65].
Most of them assumed that the named entities are already iden-
tified and focused on developing techniques for normalization
afterwards. For example, Kang et al. [62] applied a rule-based NLP
technique to improve disease normalization in biomedical text.
Leaman et al. [64] developed a system called DNorm, which per-
forms disease name normalization with a pairwise learning to
rank approach based on CREF. Lee et al. [65] leveraged a dictionary-
lookup method for medical NEN. In all these approaches, the
biomedical NER and normalization were treated as two separate
processes, and the accuracy of biomedical NER directly affects
the normalization performance.

Methods of joint modeling biomedical NER and
normalization

Recently there has been research on joint modeling of biomed-
ical NER and normalization because of their inter-dependency.
For example, semi-CRF has been used for joint entity recogni-
tion and disambiguation [66], where Viterbi decoding is used
for assigning part-of-speech tags and normalizing non-standard
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Figure 5. Overall pre-training and fine-tuning procedures for BERT, which uses the same same multi-layer architecture (except the output layer) for pre-training and

fine-tuning.

tokens simultaneously. Semi-Markov models are also used for
joint disease entity recognition and normalization. Leaman and
Lu [67] leverage a joint scoring function for both tasks. Their
model uses exact inference with dynamic programming to dis-
courage non-local features. Leaman et al. [68] developed a high-
performance chemical named entity recognizer and normalizer
by combining two independent machine learning models in an
ensemble. Lou et al. [69] proposed a transition-based model to
jointly perform disease NER and normalization, which casts the
output construction process into an incremental state transition
process. Zhao et al. [22] further proposed a deep neural multi-
task learning framework with explicit feedback strategies to
jointly model biomedical NER and normalization. This method
incorporates both the feedback strategies from the low-level task
(biomedical NER) to the high-level task (biomedical NEN) and
vice versa, which makes it possible to convert task hierarchy into
the parallel mode while maintaining mutual supports between
tasks.

Challenges

There are many challenges on accurate biomedical NER and
NEN. A large number of synonyms and alternative expressions
of the same entity leads to the explosion of word vocabulary.
Moreover, many entities involve long sequences of tokens, which
makes it more difficult to detect the boundaries exactly. These
entities may also be mentioned by abbreviations, sometimes in
non-standard ways. Polysemy or ambiguity could be a potential
issue as well. For example, proteins (normally class GENE) are
also chemical components and depending on the context. They
occasionally should be classified as class CHEMICAL; tokens that
are sometimes of class SPECIES can be part of a longer entity
of class DISEASE referring to the specialization of disease on
specific species.

Nested entities are common in biomedical text, where dif-
ferent biological entities of interest are often composed of one
another. For example, the GENIA corpus (http://www.geniapro
ject.org/) is labeled with entity types such as protein and DNA,
wherein roughly 17% of entities are embedded within another
entity. However, the current biomedical NER research typically
just focus on the outermost entities.

Biomedical NEN also remains a challenging problem. Even
though in some cases normalization can be considered as a
database look-up, usually no exact match can be found between
the recognized entity in the text and the reference entity set.
The main reason is that biomedical terms have many variations,
which can be categorized as three main types. The first is syn-
tactic variations, where the identified entity contains relatively
small character differences with its canonical form present in
the reference set, such as different capitalization, reordering of
words, typos, or errors (e.g. ‘FOXP2’ and ‘FOX-P2’). The second
is the different forms of the same biomedical term such as
synonyms and abbreviations. The third is semantic variations,
where the recognized entity does not exist in the reference set
even when taking external knowledge bases to get synonyms of
the recognized biomedical entity.

Biomedical literature classification

The problem of text classification has been widely studied in NLP
and it has been applied in diverse domains. In this section, we
will review the text classification research in BLM.

Task definition

There are two typical biomedical article classification tasks,
relevant topic recognition and biomedical literature indexing.
Relevant topic recognition determines if a biomedical publica-
tion is related to a given topic. For example, one task of BioCre-
ative III  (https://biocreative.bioinformatics.udel.edu/tasks/
biocreative-iii/) is to determine if a biomedical publication is
related to PPI (protein-protein interaction) [70, 71]. Participants
were asked to extract DDIs from biomedical articles and classify
them into four predefined classes in the DDI extraction task of
SemEval 2013 [72].

Biomedical literature indexing is another important biomedi-
cal text classification problem. It assigns a set of terms (e.g. MeSH
(Medical Subject Headings) terms) to each specific biomedical
article to denote concepts that are discussed in the article.
For example, Jimeno et al. [73] exploited the MeSH indexing of
MEDLINE papers to generate a data set for word sense disam-
biguation.
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Methods

Conventional studies on relevant topic recognition utilized
classical machine learning models, such as supervised machine
learning models, ranking models and ontology matching
models, to achieve the goal. For example, Donaldson et al. [74]
adopted an support vector machine (SVM) trained with the
words in MEDLINE abstracts to identify the abstracts related to
PPIs. Polavarapu et al. [75] also applied the SVM to categorize
biomedical literature into topics including epidemiology,
cancer, congenital disabilities. Dobrokhotov et al. [76] used a
probabilistic latent categoriser (PLC) with Kullback-Leibler (KL)
divergence to re-rank documents returned from PubMed search
to curate information in the Swiss-Prot database [77]. Dollah et
al. [78] proposed to classify a collection of biomedical abstracts
with an ontology alignment algorithm.

The problem of assigning MeSH terms to biomedical articles
is essentially a multi-label classification problem, which treats
each MeSH term as a binary classification task [79-81]. Zhang
et al. [82] provided a literature review on multi-label classifica-
tion, and many models therein have been applied in this context,
such as k-nearest neighbor (KNN) [83], Naive Bayes [84], SVM
[85], learning to rank approaches [79, 86-88], etc. There are also
studies emphasizing more on feature engineering instead of
the classifier. For example, MeSHLabeler [87] tackled the MeSH
indexing problem by integrating multiple types of evidence gen-
erated from BOW representation in the framework of learning
to rank. Peng et al. [89] proposed a DeepMeSH model that incor-
porates the deep semantic information to generate large-scale
MeSH indexing.

Recent advances with deep learning

Recent advances in deep neural networks have been established
as SOTA models for biomedical text classification. While con-
ventional supervised machine learning models require manual
feature engineering, deep learning models can directly take raw
text inputs and work in an end-to-end way.

Many models on MeSH indexing has been proposed with
deep learning methods [24, 90-95]. These studies typically com-
prises two modules: 1) a neural network to produce a likelihood
scores for each MeSH term and 2) a classifier to determine if
the term relevant or irrelevant. Different neural network archi-
tectures, including multi-layer feed-forward neural networks
[90, 93], convolution neural networks (CNN) [91], RNNs, pre-
trained deep neural language models like BERT and ELMo [96,
97], and attention-based model [24, 94, 95], have been adopted.
It is worth mentioning that the FullMeSH model, which trained
an attention-based CNN for each section has achieved SOTA
performance on infrequent MeSH headings [24].

Challenges

Although biomedical text classification is a classical topic, there
are still challenges that have not been completely resolved yet.

® Large label space. There are more than 29,000 MeSH terms
for indexing biomedical articles, which makes efficient
multi-label learning in such a large space difficult.

® Label relationship. The relations amonglabels (MeSH terms)
are complicated. Effective exploration of such relationships
in the learning process is challenging.

® Label bias. Due to the large label space, it is difficult for
the ground truth labels (MeSH terms) provided by domain
experts to be precise on the training data set. This could

potentially impact the quality of the learned classifiers.
Creating an accurate unbiased training data set is another
challenge.

Biomedical RE
Task definition

RE for BLM refers to the detection and classification of relation
mentions among different biomedical concepts within the main
texts. The goal of RE is to detect the occurrences of pre-specified
types of relationships between entity pairs. Comparing with
the types of biomedical entities, the types of entity relations
are more diverse. Figure 6 presents an example of the task of
biomedical entity RE, where the input is a set of sentences, and
the output is the set of identified relations.

There have been many existing studies on biomedical rela-
tion extraction. Template/rule-based methods use patterns (usu-
ally in the form of regular expressions) generated by domain
experts to extract relations and involved concepts from text [98].
Automatic template construction methods create relationship
templates automatically by checking the text patterns surround-
ing the concept pairs [99-101]. Statistical methods identify these
relationships by looking for concepts that frequently co-occur
[102]. NLP-based methods perform sentence parsing to decom-
pose the text into a structure from which relationships can be
readily extracted [103]. Shahab [7] provided a survey on existing
techniques for extracting different types of biomedical relations.

Methods for different relation extraction tasks

According to the concrete types, we categorize the biomedical
relation extraction research into 4 different classes: protein-
protein interactions, genotype-phenotype relations, chemical-
protein interactions and drug-drug interactions.

Protein-protein interactions (PPIs)

PPIs are indispensable for understanding the complex disease
mechanisms and designing appropriate treatments. As we men-
tioned above, existing PPI extraction methods can be either
rule/template based [104-107] or automatic [108, 109]. Simple
rules, such as co-occurrence, have been used in the early efforts
of PPI extraction. These methods assume that two proteins are
likely to interact with each other if they co-occur in the same
sentence/abstract. One potential issue of these approaches is
that their false positive rates tend to be high. Later studies used
manually specified rules, which can achieve a much lower false-
positive rate, but often suffer from a low recall rate [104, 110].
Recently, machine learning approaches have been leveraged in
automatic PPI extraction. By learning the language rules from
annotated texts, machine learning techniques can perform bet-
ter than rule-based methods in terms of both decreasing the
false-positive rate and increasing the coverage. For example,
Huang et al. [108] developed a dynamic programming algorithm
that extracts patterns from sentences with part-of-speech labels
from part-of-speech taggers. Kim et al. [109] developed a kernel-
based approach for learning gene and protein-protein inter-
action patterns. Chowdhary et al. [111] developed a Bayesian
network-based approach for extracting PPI triplets from unstruc-
tured text. Yu et al. [25] proposed to exploit the grammatical
relationship within each PPI triplet extracted by NLP techniques
and construct shortest path based features to build a classifier
for PPI extraction.
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Candidates:
1. (PAHX, interact, FKBP52) ? True:False
2. (PAHX, interact, FKBP12)? True:False

...... PAHX has the physical capacity to interact with the FKBP12-like domain of FKBP52,
but not with FKBP12, suggesting that it is a particular and specific target of FKBP52......

3. (FKBP52, interact, FKBP12) ? True:False

Figure 6. An example of biomedical RE. There are three biomedical entities co-occurred in this text piece. The biomedical RE process is to assemble them and determine

if a specific relation holds for each pair.

Genotype-phenotype associations (GPA)

Identification of GPA from biomedical literature plays a central
role in precision medicine. There have been existing studies on
on this topic. Regarding the specie type, most of these research
focuses on the associations between human genes and phe-
notypes [112, 113]. Regarding the entity type, these research
usually focus on specific phenotypes such as disease and gene
associations [114, 115]. According to the extraction methodology,
there were pattern-based [116] or learning-based approaches [26]
approaches as well.

Chemical-protein interactions (CPI)

CPI identifies the interactions among chemical compounds and
proteins in human body, which is a fundamental task in drug
discovery and development. Because of the large number of
chemical compounds and genes, it is exhaustive for domain
experts to identify them from literature. This makes automatic
extraction methods attractive. In particular, Zhu et al. [117] pro-
posed a probabilistic model called mixture aspect model (MAM)
to mine implicit CPIs in the text based on compound-target
co-occurrence patterns. Wariko et al. [118] utilized a linguis-
tic pattern-aware dependency tree kernel to extract CPIs, and
their method obtains an F-score of 36.54% on the BioCreative
challenge VI [119]. Lung et al. [120] constructed CPI pairs and
triplets and exploited sophisticated features by analyzing the
sentence structures. They achieved an F-score of 56.71% in the
same challenge.

Drug-drug interactions (DDI)

DDl identification is an essential task in post-market drug safety
surveillance, or pharmacovigilance. In general, the problem of
DDI detection can be regarded as a binary classification prob-
lem. Existing methods for DDI extraction include co-occurrence-
based, rule-based and machine learning approaches [121]. Co-
occurrence-based methods establish a relationship between two
drugs based on their co-occurrences [122]. Linguistic rule-based
approaches combine shallow parsing and syntactic simplifica-
tion with pattern matching [123]. In particular, complex sen-
tences are broke down into clauses from which trigger words
or subject-predicate-object patterns can be used to recognize
the relations among them. With the better availability manually
annotated corpora, methods based on machine learning, espe-
cially deep neural networks have become popular in DDI relation

extraction tasks as well. One can refer to Zhang et al. [21] for a
recent survey.

Biomedical knowledge base curation

Biomedical relation extraction can support the curation of
biomedical knowledge bases, which comprise biomedical
entities and relations (e.g. gene A inhibits gene B and gene C is
involved in disease G) and are natural assemblies of biomedical
NER and relation extraction. On this topic, Ren et al. [124] devel-
oped the iTextMine system including an automated workflow to
run multiple text-mining tools on a large text corpus for knowl-
edge base curation. Singhal et al. [115] proposed a machine learn-
ing approach to curate biomedical knowledge base via extracting
disease-gene-variant triplets from biomedical literature.

Recent advances with deep learning

Relation extraction is essentially a classification problem which
can be solved by classical supervised machine learning tech-
niques. These methods take handcraft features as inputs, such
as surface, lexical, syntactic features, or features derived from
existing ontologies. The use of kernels based on dependency
trees has also been explored [125]. The construction of use-
ful handcrafted features is difficult and time-consuming. More
recently, a few studies have investigated the use of deep neural
networks, such as CNNs (see Figure 7) and RNNs (see Figure 8),
for relation extraction, which are detailed below.

The CNN architecture, illustrated in Figure 7, consists of four
main layers, similar to the one used in text classification. For
better encoding the information of input sentence, the model
usually uses CNN layers to capture n-gram level features. The
embedding layer converts each word into an embedding vector
via a lookup table. The convolutional layer with rectified linear
unit (ReLU) activation transforms the embeddings into feature
maps by sliding filters over the word tokens. The pooling layer
reduces the dimensionality of the feature map vectors by select-
ing the highest, lowest, or mean feature values. The multi-layer
perceptron (MLP) layer outputs the probability of each relation.
Under this framework, Liu et al. [126] proposed a method for DDI
extraction.

RNNs model text by exploring the long and short term depen-
dencies in word sequences. It can extract lexical and sentence
level features without any complicated NLP preprocessing pro-
cedures such as parsing. RNNs can directly represent essential
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Figure 8. RNN-based framework for relation extraction.

linguistic structures, i.e. word sequences and constituent/depen-
dency trees. On this topic, Hsieh et al. [25] proposed a novel
approach based on RNNs to capture the long-term relation-
ships among words in order to identify PPIs. Cross-validation

results demonstrate that it outperforms existing methods in
the two largest corpora, Biolnfer [127] and AIMed [128], with
relative improvements of 10% and 18%, respectively on these two
datasets [25].
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Figure 9. BioBERT framework proposed by Lee et al. [17].

Comparing with previous research that focused on extracting
binary relations from single sentences, there are recent stud-
ies on more general setting of extracting n-ary relations that
span multiple sentences. For example, Peng et al. [129] explored
a general framework for cross-sentence n-ary relation extrac-
tion based on graph LSTM. The graph structure makes it easy
to incorporate rich linguistic characteristics. Experiments on
biomedical corpus showed that extraction beyond the sentence
boundary exploited much more knowledge, and encoding such
rich linguistic knowledge can lead to consistent performance
gain.

Another thing we want to emphasize there is that the pre-
viously discussed BERT model has also been demonstrated to
be highly successful for relation extraction. In particular, Beltag
et al. [55] used 1.14M papers randomly picked from Semantic
Scholar to fine-tune BERT and built SciBERT. The corpus includes
18% CS papers and 82% biomedical papers. SciBERT obtained
results comparable to SOTA models in relation extraction. Lee
et al. proposed BioBERT [17], which is a pre-trained language
representation model in biomedical domain. The overall process
for pre-training and fine-tuning BioBERT is illustrated in Figure 9.
First, BioBERT is initialized with pre-trained BERT on general
domain corpora. Then, BioBERT is pre-trained on biomedical
texts (e.g. PubMed articles). BioBERT was further fine-tuned on
several biomedical corpora for BLM tasks. BioBERT only requires
a limited number of task-specific parameters but outperforms
the SOTA models in biomedical relation extraction by 3.49 F1
score. Both SciBERT and BioBERT share the same basic BERT
model architecture shown in Figure 5.

Challenges

There are several challenges for biomedical RE compared to
general-domain RE tasks. The first is the non-standard expres-
sion variation of biomedical entities as we discussed in Section 2.
Second, the general RE models typically extract binary relations
from the text, such as ‘Founding-location(IBM, New York)’, but
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BioBERT: pre-trained with
Biomedical domain corpora

the relations involved in the medical literature could be unary,
binary, or n-ary relations in which multiple entities are involved
in a single relationship. Third, the availability of well-annotated
biomedical relations is much less than general relations because
of its requirements on domain expertise, which makes sufficient
training of complex deep learning models challenging. Fourth,
new findings keep appearing in biomedical domain. Developing
models for identification of new unseen relations is a challeng-
ing problem as well.

Biological pathway extraction

Biological pathways are crucial for understanding the underlying
mechanisms of complex diseases such as cancer. According
to the definition on National Human Genome Research Insti-
tute (https://www.genome.gov/about-genomics/fact-sheets/Bio
logical-Pathways-Fact-Sheet), ‘A biological pathway is a series of
actions among molecules in a cell that leads to a certain product
or a change in a cell. Pathways can also turn genes on and off, or
spur a cell to move.” Most of the pathway knowledge is contained
in free text (such as biomedical literature) which needs huge
human efforts to understand and interpret [130]. Therefore, it
is highly demanding for developing computational approaches
for extraction of biological pathways from biomedical literature
in an automatic way.

Task definition

Biological pathways involve the interactions among hetero-
geneous entities such as genes, gene products and small
molecules such as metabolites. Examples of interactions include
transcriptional regulation (e.g. transcription factor binding for
transcription initiation) and post-translational regulation (e.g.
kinase phosphorylation for protein activity modulation). For
simplicity, most existing studies focus on static pathways such
as signaling transduction and gene regulation, rather than
metabolic networks and dynamics. For example, ‘protein A is
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Table 2. Summary of notable papers in this review

Author Dataset Architecture Highlight
Medical NER and normalization
Carreras et al. (2003) [30] CoNLL-2003 AdaBoost classifier Named Entity Extraction system for the CoNLL-2003
Leaman and Gonzalez (2008)[38] BioCreative 2 GM CRF Executable survey of advances in biomedical NER
Finkel and Manning (2009) [32] GENIA and JLPBA Discriminative Constituency  using a discriminative constituency parser

Parsing

Hettne et al. (2009)[39]

Chowdhury and Lavelli (2010) [42]
Abacha and Zweigenbaum (2011)[43]

Rocktéschel et al. (2012) [41]
Leaman et al. (2013) [64]
Leaman et al. (2015) [68]
Leaman and Lu (2016) [67]

Lee et al. (2016) [65]

Sahu et al. (2016) [44]
Chen et al. (2017) [45]

Lou et al. (2017) [69]

Zhao et al. (2019) [22]

Biomedical text classification
Donaldson et al. (2003) [74]
Rios et al. (2015) [91]

Peng et al. (2019) [97]
Singh et al. (2018) [95]

Yan et al. (2018) [176]
Relation extraction

Blaschke et al. (1999) [104]
Giuliano et al. (2006) [177]

Chowdhary et al. (2009) [111]

Chowdhury et al. (2011) [178]
He et al. (2013) [179]

Bui et al. (2014) [180]

Collier et al. (2015) [112]

Pathway extraction

Craven and Kumlien (1999) [134]

Ng and Wong (1999) [181]
Yao et al. (2004) [182]
Kemper et al. (2010) [135]

Corpora for Chemical Entity
Recognition

Arizona Disease Corpus
i2b2 corpus

SCAI corpus

NCBI disease corpus
CHEMDNER dataset

NCBI Disease corpus and
BioCreative 5 CDR corpus
BioCreative V CDR corpus
and DNER corpus

NCBI disease corpus
BioCreative II gene mention
and JNLPBA 2004 corpus
BC5CDR corpus and NCBI
disease corpus

BC5CDR corpus and NCBI
disease corpus

PubMed abstract
MEDLINE articles
Ten Benchmarking Datasets
PubMed abstract
PubMed abstract

Medline abstracts

Almed corpus and LLL
Challenge

Mannuly labeled PubMed
abstracts

DDIExtraction 2011
DDIExtraction 2011
DDI-2011 and DDI-2013
BMC collection

Yeast Protein Database
GENBANK and MEDLINE

12 papers and 116 abstracts
MEDLINE

Rule-based method

CRF

Hybrid approach

CRF

Pairwise learning to rank
CRF

Semi-Markov model

CRF

RNN
RNN

Transition-based model

Deep multi-task learning

SVM

CNN

BERT and ELMo

GRU

CNN-based hybrid model

Rule-based method
Kernel method

Bayesian network

Ensemble method
Stacked generalization
SVM

Search and retrieve

ML method

IR and [E

user-involved extraction
Text mining

Rule-based term filtering for small molecules and drugs in text

Use a feature set specifically tailored for disease names

Hybrid approach based on both machine learning and domain knowledge
Combining a CRF with a dictionary

Use BANNER [38] to locate disease mentions

Ensemble two independent models for chemical NER and normalization
The first ML model for joint modelling recognition and normalization

Ensemble CRF models for disease recognition/normalization

Use CNN and RNN to get character-based embedded features
BLSTM-CRF model with attention for medical NER

Cast the output construction process into an incremental state transition process

Convert hierarchical tasks into parallel multi-task mode

locate protein-protein interaction data in literature

a CNN-based model to conduct a multi-label classification

Compassion between BERT and ELMo on 10 datasets

a neural sequence-to-sequence (seq2seq) model for structured multi-label classification
can adaptively deal with features of documents that have sequence relationships

automatic detection of protein-protein interactions
Use shallow linguistic information only

Extract PPI triplets from medical literature

Combine two different machine-learning approaches to extract DDI
Combine the feature-based, graph and tree kernels

Very traditional RE method for extracting drug-drug interactions

A novel technique for flexibly capturing diverse phenotypes

Map information from text sources into structured representations

Automatic pathway discovery

Designed with appropriate level of users’ involvement on information extraction
Integrate a pathway visualizer, text mining systems and annotation tools as PathText

(Continued)
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Table 2. Continued

Highlight

Architecture

Dataset

Author

Integrating and ranking the evidence for biochemical pathways to extend
PathText

MEDLINE IR based method

Miwa et al. (2013) [136]

The first attempt to formulate the distant supervision problem for

pathway extraction

Distant supervision method

Pathway Interaction

Poon et al. (2014) [28]

Database and PubMed

abstracts

Hypothesis generation

Investigate the ability of LBD methods to identify side effects of drugs

Reflective Random Indexing

and PSI

MMB and SemMedDB

Shang et al. (2014) [158]

Use LBD to explain adverse drug effects

LBD based method

44,250,865 sentences from

MEDLINE

Hristovski et al. (2016) [159]

Propose a method to prioritize the hypotheses generated by LBDs

Use textual and structural knowledge to infer hypothesis

Random Forest
Factor graph

SemMedDB
TCM abstracts

Rastegar et al. (2015) [183]
Zhao et al. (2018) [100]
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activated by protein B’ and ‘small molecule C can inhibit such a
process’. This kind of information is critical to the understanding
of disease mechanism and drug development.

Figure 10 shows an example cancer pathway extracted from
biomedical literature. As shown in this example, pathways can
form a graph where each node represents a gene or gene product,
and each edge represents an interaction. The pathway extrac-
tion task is typically formulated as a classification problem in
previous studies, i.e. classifying each extracted pairwise relation
into one of the well-defined type of relations. The final pathway
structure is obtained by merging these extracted relations.

Methods

Many existing studies on pathway extraction are rule-based sys-
tems (e.g. GeneWays system [131], Petri net [132], BioJAKE [133]),
but extraction of hand-crafted rules are expensive and time-
consuming. These approaches generally suffer from low recall
due to the flexibility of textual expression. As an alternative,
machine learning methods can perform effective and automatic
rule engineering, but they require large scale annotated exam-
ples to achieve satisfactory performance, which still requires
lots of human efforts. Craven and Kumlien [134] proposed a
way to alleviate such problem with distant supervision from
existing knowledge bases. Poon et al. [28] applied the distant
supervision framework to extract pathway interactions from
PubMed abstracts and showed that their proposed method is
superior to the rule-based approach.

In addition, hybrid approaches which take advantage of both
rule-based and machine learning approaches have also been
actively investigated. For example, Kemper et al. [135] proposed
a PathText system including a pathway visualizer, annotation
tools, as well as a text mining system integrating syntactic anal-
ysis, NER, disambiguation of acronyms, real-time co-occurrence
searches, etc. Through PathText, users can have a complete
experience of visualized pathway extraction. Miwa et al. [136]
extended the capabilities of PathText and developed PathText2,
which combined multiple techniques from the various seman-
tic search systems and introduced a new document ranking
component. It also offered a new API supporting human com-
puter interactions. Yao et al. [137] developed the PathwayFinder
system for pathway extraction with user interactions. Specifi-
cally, it provides an interface through which any particular user
can influence the result of NER and modify syntactic patterns,
which makes the extracted pathway more robust and with better
quality.

In addition to biological pathway, other structures such as
protein interaction network and gene-disease-drug interac-
tion network are also of paramount interests to biomedical
researchers in the era of precision medicine. However, to
the best of our knowledge, there is still no study yet on
automatic extraction of such network structures directly from
the literature, instead the current research typically extracts
pairwise relations first and then ensemble them offline. We
have reviewed the pairwise entity relation extraction methods
in Section 2.4.

Potential applications with deep learning

There is still no study to solve this pathway extraction task with
deep learning techniques. The main reason is that there is no
public available training data, which makes training supervised
deep learning models challenging to achieve. If we have enough
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Figure 10. A pathways extraction from biomedical literature example from [28].
Obesity Diabetes
Obesity usually increases the risk of diabetes.
People with diabetes have more sugar in blood Hyperglycemia

called hyperglycemia.

Metformin has become a mainstay of type 2
diabetes management and is now the recommended
first-line drug for treating the disease.

Metformin

Figure 11. Examples of hypothesis generation by inferring unseen relations from biomedical articles.

Raynaud’s Disease

Blood viscosity and
Vascular reactivity

Figure 12. The example of ABC model for connecting fish oil and Raynaud'’s
disease.

training data, several potential deep models are applicable for
this task, such as RNN, CNN and Transformer.

Challenges

One major challenge of the computational pathway extraction
systems is the insufficient involvement of users. More precisely,
although some systems provide a way to interact with users, itis
too ambitious to achieve a fully automated pathway extraction
system without any user intervention because of the following
reasons: 1) The diverse and complex expressions in the biomed-
ical literature make it difficult to extract pathways accurately; 2)
The low accuracy of the extracted results discourages the further
utilization of the system; 3) Some necessary context information
is missing, such as conditions of interactions; 4) The varied and
continuously changing demands make it hard to adapt promptly.
Moreover, many single sentences in scientific publications tend
to have multiple biomedical entities involved, which makes the
relation extraction procedure have minimal context as clues
to use. Just like the example in Figure 10, the single sentence
contains four entities, three event triggers and six roles.

Biomedical hypothesis generation

The increasing growth rate of the scientific literature makes it
challenging for researchers to stay up-to-date with all relevant
research in order to formulate novel research hypotheses in
their specific disciplines. The generation of hypotheses, also
known as literature-based discovery (LBD), attempts to make
novel biomedical discoveries from the literature with computa-
tional approaches.

Task definition

Automated LBD, which uses published articles to discover new
biomedical knowledge via generating new hypotheses, is a sub-
field of BLM. The goal of hypothesis generation is to detect
underlying relations that are not present in the text but instead
are inferred by the presence of other explicit relations. In other
words, it is a way to identify implicit connections by logically
combining explicit facts scattered throughout different studies.

Specifically, hypothesis generation is usually referred to
the process of connecting two pieces of knowledge previously
regarded as unrelated [138]. For example, it may be known that
disease A is caused by chemical B, and that drug C is known to
reduce the amount of chemical B in the body. However, because
the respective articles were published separately from one
another (called ‘disjoint data’), the relationship between disease
A and drug C may be unknown. Hypothesis generation aims to
detect these implicit relations from biomedical articles. Figure 11
presents examples of hypothesis generation by inferring unseen
relations.

It is worthwhile to mention that biomedical hypothesis gen-
eration is different than relational extraction. Relation extrac-
tion focuses on extracting relationships between entities that
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Figure 13. An overview schematic of a general end-to-end pipeline of LBD.

have been explicitly identified in the text, while hypothesis
generation attempts to reveal relationships that are unknown
yet.

Thilakaratne et al. [8] surveyed the existing computational
techniques used in the LBD process with a set of key milestones
over a timeline of topics including LBD validation checks, major
LBD tools, application areas, domains and generalizability of LBD
methodologies. The survey did not mention applications with
deep learning on LBD and challenges, which are covered in this

paper.

Problem settings

The core objective of hypothesis generation is to predict a possi-
ble relationship between two biomedical terms based on a text
corpus [2, 139]. Different from a typical link prediction problem,
which are usually either based on triangle closing models [140]
or positive semi-definite graph kernels [141], hypothesis gener-
ation aims at providing a rationale and evidence in the form
of connecting terms. There are two variations of the problem
setting, closed discovery and open discovery. The former enables
people to perform confirmatory analysis, while the latter is for
scenarios that require more exploratory paradigms [142]. As an
famous example, consider the queries ‘Is Fish oils and Raynaud’s
Disease connected?’ versus ‘What are the therapeutic options
for Raynaud’s Disease?’. The first question is a closed discovery
problem, where the answer could either YES or NO. If the answer
is Yes, the following step should be identifying the evidence that
supports this claim. The second question is an open discovery
problem. The answer needs to be obtained by exploring all con-
cepts with Raynaud’s disease as potential therapeutic indication.
Such questions usually have a ‘grounded’ biomedical concept on
one side and a meta-type that defines the characteristics of the
possible terms that can appear on the other side [143].
Biomedical hypothesis generation has led to many discov-
eries such as potential disease treatments [144-147], as well as
understanding and discovering new health benefits of supple-
ments [148]. It is particularly promising in a number of appli-
cations in pharmaceutical industry such as drug development
[149-151], drug repurposing [144, 150, 152-157] and pharmacovig-
ilance [152, 158-160], which are further highlighted below.
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Drug discovery and development are expensive and time-
consuming processes. Drug repurposing refers to the process
of identification of disease targets as alternative potential
indications of existing drugs. Successful repurposing can save
lots of time and financial cost for drug development because it
does not need to go through the initial in-silico and part of the
in-vitro phases. For example, COVID-19 is now a global epidemic.
Until March 2020 there have been nearly 300K confirmed cases
with over 11K deaths 185 countries and areas (https:/www:.
who.int/emergencies/diseases/novel-coronavirus-2019). There
is an urgent need on the development of effective treatment for
COVID-19. Complete de-novo drug discovery would be very time
consuming in this case. Remdesivir, a drug that was originally
developed for treating ebola, has demonstrated effectiveness
of treating COVID-19 [161], so does hydroxychloroquine, whose
original indication is malaria [162]. LBD can provide essential
helps for the drug repurposing process. Andronis et al. [163]
reviewed various LBD methods that are critical for the detection
of hidden connections between biomedical entities and suggest
that visualization techniques can help scientists perform tests.
Tari et al. [153] used a declarative programming language,
AnsProlog, to achieve the automated reasoning for the incom-
plete information of indirect relationships for drug indications.
They also introduced several publicly available knowledge
resources such as chemical structures, side effects and signaling
pathways for identifying alternative drug indications [154].

Pharmacovigilance refers to ‘the pharmacological science
relating to the collection, detection, assessment, monitoring and
prevention of adverse effects with pharmaceutical products’
[164]. On this topic, Shang et al. [158] developed a scalable
LBD method which uses distributional statistics to infer and
apply discovery patterns to evaluate the plausibility of drug/ad-
verse drug reaction pairs for pharmacovigilance. Hristovski et al.
[159] presented a tool for providing pharmacological and phar-
macogenomics explanations for known adverse drug effects
through genes or proteins that link the drugs to the adverse
effects. Mower et al. [160] extended this paradigm by evaluating
machine learning classifiers when applied to high-dimensional
representations of relationships extracted from the literature
as a way to identify substantiated drug/adverse drug reaction
pairs.
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Methods

Most of the LBD systems are based on or derived from Swanson’s
ABC co-occurrence model [139]. In such a model, explicit knowl-
edge is encoded in the text in forms of ‘A implies B’ and ‘B implies
C’ relations. Implicit knowledge can be discovered by drawing
a ‘therefore A implies C’ conclusion. For instance, dietary fish
oil is mentioned in articles with blood viscosity and vascular
reactivity. These two terms are also mentioned in articles with
Raynaud’s disease. Swanson proposed that it is reasonable that
dietary fish oil and Raynaud’s disease might be associated. This
result has been validated experimentally [165] (see Figure 12).

Various tools have been developed to use the ABC co-
occurrence model for hypothesis generation [166]. For example,
Swanson’s Arrowsmith tool has utilized the co-occurrence of
biomedical terms in titles from MEDLINE abstracts to identify
existing associations [167]. The user of the system needs to
input a starting term and could get choices of appropriate
intermediate terms provided by the system. The predicted target
terms are ranked by counting the number of intermediate terms.
Similar idea have been explored in other systems as well (e.g.
CoPub [168] and FACTA+ [169]). These systems typically use
the text in the abstract, not just the title. The BITOLA system
made use of both the number of intermediate concepts and
the number of publications that support these intermediate
links as the score for ranking the association candidates [170].
These methods only considered local knowledge in terms of
the intermediate terms that co-occur with the starting and
the target terms. Recently Zhao et al. [100] discussed different
situations of ABC co-occurrence and proposed a factor graph
model, CausalTriad, which utilizes more holistic textual and
structural knowledge to infer the causal hypothesis.

In addition to the above ABC co-occurrence based modeling
paradigms, there were also other methodologies for LBD. For
example, the rarity principle [171-173], which looks at infre-
quently co-occurring terms rather than frequently co-occurring
ones. Bibliometric based systems used the citation information
to find the linkage and target literature [173]. Sang et al. [29]
further developed a biomedical knowledge graph-based LBD
approach for drug discovery.

Figure 13 presents a typical end-to-end pipeline of LBD. This
system takes a pair of medical terms (a medical term and
meta information in the case of open discovery) as input. The
task of the ‘Hypotheses Generation Module’ is to list a set of
assumptions that relate two inputs by mediation, e.g. ‘Fish oils —
Beta-Thromboglobulin— Raynaud Disease’. The ‘Ranking Mod-
ule’ is then responsible for generating these postulates, which
would be finally given to the end-user for further validations.
The generated hypotheses can be ranked via selected tools and
algorithms in the ranking module. Due to the cascading nature
of these modules, it is assumed that the output quality of the
generated module will affect the overall quality of the final
result.

Potential applications with deep learning

Most of the studies in hypothesis generation are based on the
ABC model. Deep learning models have rarely been used directly
in this task potentially due to the high interpretability require-
ments of the LBD process. It can be envisioned that deep learning
models training from large annotated biomedical text corpus
should be able to achieve better numerical performance mea-
sured on the generated hypotheses. However, it is essential
that those hypotheses are explainable. Therefore, effective deep
learning interpretability mechanisms [174, 175] are needed.

Challenges

Despite the promises, challenges remain for biomedical litera-
ture based hypothesis generation. In particular, 1) the assump-
tions in certain methods (such as the ABC co-occurrence based
approach) is too simple to capture the complexity of biomedi-
cal processes. Enrichment of these technologies with compre-
hensive biomedical context is important and challenging; 2)
many existing LBD methodologies and systems are developed
for research purpose. It is important to get them deployed in real
application settings where those systems can really help with,
such as basic science research, pharmaceutical research and
development, as well as clinical care, so that the new discoveries
can be prospectively evaluated; 3) the contents of the biomedical
articles could be biased towards their specialized disciplines.
Sometimes the discoveries from different articles could be con-
tradictory. Obtaining reliable and convincing hypotheses in this
scenario is challenging.

Conclusions

This paper surveyed the problems, methods and recent advances
in BLM. Given the broadness of this area, we picked five critical
tasks: biomedical NER and normalization, text classification,
relation extraction, biological pathway extraction and hypothe-
sis generation. Methods from both the CS and BMI communities
along with their typical application scenarios are reviewed. We
also emphasized the recent advances on these topics, especially
the potential of deep learning models. At the end of each section
we pointed out the challenges and future research directions.

Key Points

® Biomedical literature mining (BLM) is an important
area for both computer science and biomedical infor-
matics.

® The topics covered under the umbrella of BLM
are broad and diverse, such as biomedical named
entity recognition and normalization, biomedical text
classification, relation extraction, biological pathway
extraction and hypothesis generation.

® Many techniques based on conventional machine
learning algorithms have been proposed for BLM in
the last decade. Recently, deep learning models have
achieved the state-of-theart performance in many
BLM tasks.

® Due to the complexity of biomedical systems, there
are still many challenges faced by different BLM algo-
rithms.
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