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Abstract

The recent years have witnessed a rapid increase in the number of scientific articles in biomedical domain. These literature

are mostly available and readily accessible in electronic format. The domain knowledge hidden in them is critical for

biomedical research and applications, which makes biomedical literature mining (BLM) techniques highly demanding.

Numerous efforts have been made on this topic from both biomedical informatics (BMI) and computer science (CS)

communities. The BMI community focuses more on the concrete application problems and thus prefer more interpretable

and descriptive methods, while the CS community chases more on superior performance and generalization ability, thus

more sophisticated and universal models are developed. The goal of this paper is to provide a review of the recent advances

in BLM from both communities and inspire new research directions.
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Introduction

Due to the rapid development of biomedical research, there

is a large number of biomedical literature available online in

electronic format. For example, COVID-19 was first detected in

December 2019 in Wuhan, China, and then it led to an outbreak

in China in January 2020, then in March 2020 it became a global

pandemic. According to LitCOVID [1], there has already been

more than 1000 research articles about COVID-19 until March

2020. In reality, it is almost impossible for the readers to keep up

with all the articles they are interested in. This makes automatic

knowledge extraction and mining from biomedical literature

highly demanding.

Biomedical literaturemining (BLM) refers to the field of devel-

oping text mining and natural language processing (NLP) tech-

niques for automatic knowledge extraction and mining from

biomedical literature. Comparing with other biomedical texts

such as clinical notes, biomedical literature has the following

characteristics: (1) they are more easily accessible thanks to
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the publicly available database MEDLINE and free search engine

PubMed; (2) they tend to use professional language and have

diverse ways of expressing the same concept; and (3) they can

be lengthy with diverse contents about the new biomedical

knowledge. As a research field, BLM integrates NLP, biomedical

informatics (BMI) and data mining. BLM techniques have been

successfully applied in applications including biomedical litera-

ture retrieval, biomedical question/answering, clinical decision

support, etc.

In the past decade, researchers from both BMI and computer

science (CS) communities have made great efforts on BLM. In

general, the BMI community tends to focus more on specific

problems, while the CS community works more on developing

new algorithms. Because of the popularity and importance of

BLM, there have been some surveys about the early efforts on

related topics [2–8].

Recently, deep learning technologies [9] have been developing

rapidly and they have demonstrated strong potentials in various
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Figure 1. The hierarchy of different tasks of BLM.

disciplines including NLP [10]. Deep learning models such as

long short-term memory (LSTM) [11], convolutional neural net-

work (CNN) [12] and bidirectional encoder representations from

transformers (BERT) [13] have been firmly established as the

state-of-the-art (SOTA) approaches in NLP tasks such as named

entity recognition (NER) [14] and relation extraction (RE) [15, 16].

Numerous efforts have since continued to make advances in

BLM with deep learning models (e.g. [17–21]).

This paper aims to survey the recent advances in BLM with

special focus on various deep learning techniques. The PRISMA

diagram of the literature surveyed in this paper is shown in

Figure 2. We organize this survey into five different sections:

biomedical NER and normalization, biomedical text classifica-

tion, RE, pathway extraction and hypothesis generation. These

topics have beenwidely studied in BLM in recent years. In partic-

ular, biomedical NER and normalization are themost basic tasks

for extracting meaningful and interesting entities from biomed-

ical articles, whose relationships can be identified through RE.

Biomedical text classification is crucial for tasks like categorizing

and indexing biomedical articles. Pathway extraction can merge

connected relations and generate pathways by integrating them.

New potential biomedical discovery can be discovered through

hypothesis generation from biomedical literature. Among these

tasks, biomedical NER and normalization along with text clas-

sification are the basis of the other tasks. They are necessary

steps for enabling the implementation of other downstream

tasks including RE. Pathway extraction and hypothesis genera-

tion are usually conducted on top of RE. Figure 1 illustrates the

hierarchical relationships among these different tasks. Table 1

summarizes the SOTA performances achieved for these tasks

together with their corresponding models.

Biomedical NER and normalization

In order to structualize the unstructured texts in biomedical

literature to facilitate further analysis, a fundamental task is

to accurately identify the various biomedical entities that are

of interests to the readers, such as chemical ingredients, genes,

proteins, medications, diseases, symptoms, etc. This is referred

to as the NER problem.

Effective NER has been widely studied in general NLP [30–35],

so does biomedical NER [36–46]. Biomedical NER recognizes the

entities in texts as predefined categories (e.g. diseases, chem-

icals, genes, etc.), and it is the basis for many downstream

analytical tasks such as enabling the search engines to index,

organize and link biomedical documents,mining entity relations

from the biomedical literature, etc.

Building a high-performance (e.g.measured by precision and

recall) biomedical NER system is quite challenging due to the

limited availability of high-quality labeled data, as well as the

linguistic variation of texts such as the use of abbreviations,

non-standardized names (e.g. Zomig, Zomigon and Zolmitriptan

actually refer to the same medication) and lengthy descriptions.

This makes biomedical named entity normalization (NEN) also

a critical task.

Task definition

Technically, the goal of biomedical NER is to find the boundaries

of mentions of biomedical entities from the text. Biomedical

NEN is to map obtained biomedical named entities into a con-

trolled vocabulary. On one hand, NEN can be considered as a

follow-up task of NER because normalization is typically con-

ducted on the NER outputs. On the other hand, both NER and

NEN can be regarded as sequence labeling problems. Figure 3

shows an example of the task of biomedical NER and NEN, in

which the input is a sentence ‘Takotsubo syndrome secondary

to Zolmitriptan’, which contains a disease name ‘Takotsubo

syndrome’ and a chemical name ‘Zolmitriptan’. The output is

B-I-O (Begin-Inside-Outside) tag for each word in this sentence

and the entity ID for each biomedical entity.

On this topic, Alshaikhdeeb et al. [6] provided an early review

on biomedical NER, where they mainly focused on traditional

methods. In this paper, we will focus on more recent studies.

Table 1. SOTA studies for different tasks discussed in this paper

Task Authors Dataset Method F-score

Biomedical NER Zhao et al. [22] BC5CDR / NCBI Disease BiLSTM–CNN–CRF-based multi-task

learning

0.8763 / 0.8745

Biomedical NEN Zhao et al. [22] BC5CDR / NCBI Disease BiLSTM–CNN–CRF-based multi-task

learning

0.8917 / 0.8823

Relevant topic recognition Jiang et al. [23] MGI database and Mouse GXD Random forest classifier 0.923

Biomedical literature indexing Dai et al. [24] PMC Open Access Subset Attention-based CNN 0.7021

PPIs extraction Hsieh et al. [25] AIMed and BioInfer RNNs 0.769 / 0.872

Genotype-phenotype

associations extraction

Xing et al. [26] TAIR database Representation learning 0.6683

Drug-Drug interactions

extraction

Zhang et al. [27] DDI 2013 extraction corpus Hierarchical RNNs 0.729

Pathway extraction Poon et al. [28] GENIA event extraction dataset Distant supervision method 0.371

Hypothesis generation Sang et al. [29] SemKG Graph-based link prediction 0.892
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Figure 2. PRISMA flow diagram: recent advances in BLM.

Figure 3. An example of the task of biomedical NER and normalization.

Methods of biomedical NER

Conventional biomedical NER methods can be roughly catego-

rized into three classes: dictionary-based approaches, seman-

tic approaches and statistical approaches. Dictionaries-based

approaches [39, 41] use term matching strategy to find the

same entities in text that also appear in dictionaries, thus the

method is difficult to generalize to recognize the entities out-

side the vocabulary. Semantic approaches require rich domain-

knowledge to construct rules or patterns for identifying the

named entities (e.g. [47–50]). Statistical approaches treat NER as a

classification problem and train statistical models (e.g. decision

trees or SVMs [37, 51], or Markovmodels-based sequence tagging

methods such as HMM and CRFs [38, 40, 42]) to achieve the goal.

In recent years, deep learning models (e.g. [13, 52]) have

been firmly established as the SOTA approaches in sequence

modeling.Numerous efforts have since been devoted to applying

those deep learning techniques to NER as they can be trained in

an end-to-end way without additional feature engineering.

Figure 4 demonstrates a typical neural network model for

NER, which consists of the following layers:

• Character level embeddingwhich represents each character

within every word as a vector.
• A CNN which extracts features encoding the morphological

and lexical information observed in the characters within

each word. The final output of this CNN would be a vector

representation of each word, which is typically combined

with another word embedding vector pre-trained on a large

external biomedical text corpus such as PubMed abstracts.

(As an alternative, Sahu and Anand [44] also exploited the

power of recurrent neural network (RNN) to obtain the mor-

phological and shape features of words in character level

word embedding and used it as a feature concatenating

with the word embedding for recognition.)
• Word-level bidirectional long short-term memory (BiLSTM)

layer to model the long-range dependency structure in

medical texts. A BiLSTM [53] computes two separate

latent embedding vectors for every word in a sequence

that capture both the forward and backward semantic

dependencies of the word sequence. The two vectors will

be concatenated.
• A decoder layer that transforms the BiLSTM representation

by an affine transformation.
• A conditional random field (CRF) layer that calculates the

word sequence likelihood.

One specific model that is getting popular in NLP recently

is the BERT model [13], wherein the major building block is

transformer [54]. Transformer applies the attention mechanism

to learn contextual relations between words in sentences. It

is composed of two components including an encoder that

encodes textual input and a decoder that predict labels for a

particular task. BERT is a new paradigm of Transformer which
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Figure 4. A neural network model for biomedical NER tasks, where character level embeddings are combined as one vector and then concatenated to form the

pre-trained word embedding.

pre-trains deep bidirectional representations from unlabeled

text by considering both left and right context in all layers

of attentions. There are two steps in BERT: pre-training and

fine-tuning. During pre-training, the model is trained on large

amount of unlabeled texts over different pre-training tasks like

predicting masked tokens in text and predicting next sentence.

For fine-tuning, the BERT model is first initialized with the pre-

trained parameters, and all of the parameters are fine-tuned

using labeled data from the downstream tasks. Unlike the tra-

ditional left-to-right language modeling objective, BERT is pre-

trained on two tasks: predicting randomly masked tokens and

predictingwhether two sentences follow each other. This setting

is very different from previous languagemodeling studies which

encode text sequence either from left to right or in a bidirectional

order. The BERT framework is shown in Figure 5. BERT broke

several records for how well computational models can handle

language modeling tasks. Using BERT, an NER model can be

trained by feeding the output vector of each token into a classifi-

cation layer that predict the NER label. Beltagy et al. [55] released

a pre-trained contextualized embeddingmodel for scientific text

based on BERT, named SciBERT. SciBERT achieved SOTA biomed-

ical NER performance on both the BC5CDR [56] and NCBI-disease

[57] data sets, which are used for benchmarking biomedical NER.

BioBERT [17] trained a BERT model on biomedical texts sourced

from PubMed article abstracts and full texts. They found that

BioBERT can improve performance on several biomedical NLP

tasks including biomedical NER. Peng et al. [58] introduced a

biomedical language understanding evaluation benchmark and

evaluated several baselines. They found that the BERT model

pre-trained on PubMed abstracts and MIMIC-III clinical notes

achieved best results on biomedical NER.

Methods of biomedical NEN

Biomedical NEN another crucial task for BLM. It has been high-

lighted as a subtask in different NLP related evaluation or com-

petition series such as SemEval [59] and BioCreative [60]. A

variety of approaches have been proposed on this topic [61–65].

Most of them assumed that the named entities are already iden-

tified and focused on developing techniques for normalization

afterwards. For example, Kang et al. [62] applied a rule-based NLP

technique to improve disease normalization in biomedical text.

Leaman et al. [64] developed a system called DNorm, which per-

forms disease name normalization with a pairwise learning to

rank approach based on CRF. Lee et al. [65] leveraged a dictionary-

lookup method for medical NEN. In all these approaches, the

biomedical NER and normalization were treated as two separate

processes, and the accuracy of biomedical NER directly affects

the normalization performance.

Methods of joint modeling biomedical NER and
normalization

Recently there has been research on joint modeling of biomed-

ical NER and normalization because of their inter-dependency.

For example, semi-CRF has been used for joint entity recogni-

tion and disambiguation [66], where Viterbi decoding is used

for assigning part-of-speech tags and normalizing non-standard
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Figure 5. Overall pre-training and fine-tuning procedures for BERT, which uses the same same multi-layer architecture (except the output layer) for pre-training and

fine-tuning.

tokens simultaneously. Semi-Markov models are also used for

joint disease entity recognition and normalization. Leaman and

Lu [67] leverage a joint scoring function for both tasks. Their

model uses exact inference with dynamic programming to dis-

courage non-local features. Leaman et al. [68] developed a high-

performance chemical named entity recognizer and normalizer

by combining two independent machine learning models in an

ensemble. Lou et al. [69] proposed a transition-based model to

jointly perform disease NER and normalization, which casts the

output construction process into an incremental state transition

process. Zhao et al. [22] further proposed a deep neural multi-

task learning framework with explicit feedback strategies to

jointly model biomedical NER and normalization. This method

incorporates both the feedback strategies from the low-level task

(biomedical NER) to the high-level task (biomedical NEN) and

vice versa,whichmakes it possible to convert task hierarchy into

the parallel mode while maintaining mutual supports between

tasks.

Challenges

There are many challenges on accurate biomedical NER and

NEN. A large number of synonyms and alternative expressions

of the same entity leads to the explosion of word vocabulary.

Moreover,many entities involve long sequences of tokens,which

makes it more difficult to detect the boundaries exactly. These

entities may also be mentioned by abbreviations, sometimes in

non-standard ways. Polysemy or ambiguity could be a potential

issue as well. For example, proteins (normally class GENE) are

also chemical components and depending on the context. They

occasionally should be classified as class CHEMICAL; tokens that

are sometimes of class SPECIES can be part of a longer entity

of class DISEASE referring to the specialization of disease on

specific species.

Nested entities are common in biomedical text, where dif-

ferent biological entities of interest are often composed of one

another. For example, the GENIA corpus (http://www.geniapro

ject.org/) is labeled with entity types such as protein and DNA,

wherein roughly 17% of entities are embedded within another

entity. However, the current biomedical NER research typically

just focus on the outermost entities.

Biomedical NEN also remains a challenging problem. Even

though in some cases normalization can be considered as a

database look-up, usually no exact match can be found between

the recognized entity in the text and the reference entity set.

Themain reason is that biomedical terms havemany variations,

which can be categorized as three main types. The first is syn-

tactic variations, where the identified entity contains relatively

small character differences with its canonical form present in

the reference set, such as different capitalization, reordering of

words, typos, or errors (e.g. ‘FOXP2’ and ‘FOX-P2’). The second

is the different forms of the same biomedical term such as

synonyms and abbreviations. The third is semantic variations,

where the recognized entity does not exist in the reference set

even when taking external knowledge bases to get synonyms of

the recognized biomedical entity.

Biomedical literature classification

The problemof text classification has beenwidely studied inNLP

and it has been applied in diverse domains. In this section, we

will review the text classification research in BLM.

Task definition

There are two typical biomedical article classification tasks,

relevant topic recognition and biomedical literature indexing.

Relevant topic recognition determines if a biomedical publica-

tion is related to a given topic. For example, one task of BioCre-

ative III (https://biocreative.bioinformatics.udel.edu/tasks/

biocreative-iii/) is to determine if a biomedical publication is

related to PPI (protein-protein interaction) [70, 71]. Participants

were asked to extract DDIs from biomedical articles and classify

them into four predefined classes in the DDI extraction task of

SemEval 2013 [72].

Biomedical literature indexing is another important biomedi-

cal text classification problem. It assigns a set of terms (e.g.MeSH

(Medical Subject Headings) terms) to each specific biomedical

article to denote concepts that are discussed in the article.

For example, Jimeno et al. [73] exploited the MeSH indexing of

MEDLINE papers to generate a data set for word sense disam-

biguation.
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Methods

Conventional studies on relevant topic recognition utilized

classical machine learning models, such as supervised machine

learning models, ranking models and ontology matching

models, to achieve the goal. For example, Donaldson et al. [74]

adopted an support vector machine (SVM) trained with the

words in MEDLINE abstracts to identify the abstracts related to

PPIs. Polavarapu et al. [75] also applied the SVM to categorize

biomedical literature into topics including epidemiology,

cancer, congenital disabilities. Dobrokhotov et al. [76] used a

probabilistic latent categoriser (PLC) with Kullback-Leibler (KL)

divergence to re-rank documents returned from PubMed search

to curate information in the Swiss-Prot database [77]. Dollah et

al. [78] proposed to classify a collection of biomedical abstracts

with an ontology alignment algorithm.

The problem of assigning MeSH terms to biomedical articles

is essentially a multi-label classification problem, which treats

each MeSH term as a binary classification task [79–81]. Zhang

et al. [82] provided a literature review on multi-label classifica-

tion, andmanymodels therein have been applied in this context,

such as k-nearest neighbor (KNN) [83], Naive Bayes [84], SVM

[85], learning to rank approaches [79, 86–88], etc. There are also

studies emphasizing more on feature engineering instead of

the classifier. For example, MeSHLabeler [87] tackled the MeSH

indexing problem by integrating multiple types of evidence gen-

erated from BOW representation in the framework of learning

to rank. Peng et al. [89] proposed a DeepMeSH model that incor-

porates the deep semantic information to generate large-scale

MeSH indexing.

Recent advances with deep learning

Recent advances in deep neural networks have been established

as SOTA models for biomedical text classification. While con-

ventional supervised machine learning models require manual

feature engineering, deep learning models can directly take raw

text inputs and work in an end-to-end way.

Many models on MeSH indexing has been proposed with

deep learning methods [24, 90–95]. These studies typically com-

prises two modules: 1) a neural network to produce a likelihood

scores for each MeSH term and 2) a classifier to determine if

the term relevant or irrelevant. Different neural network archi-

tectures, including multi-layer feed-forward neural networks

[90, 93], convolution neural networks (CNN) [91], RNNs, pre-

trained deep neural language models like BERT and ELMo [96,

97], and attention-based model [24, 94, 95], have been adopted.

It is worth mentioning that the FullMeSH model, which trained

an attention-based CNN for each section has achieved SOTA

performance on infrequent MeSH headings [24].

Challenges

Although biomedical text classification is a classical topic, there

are still challenges that have not been completely resolved yet.

• Large label space. There are more than 29,000 MeSH terms

for indexing biomedical articles, which makes efficient

multi-label learning in such a large space difficult.
• Label relationship. The relations among labels (MeSH terms)

are complicated. Effective exploration of such relationships

in the learning process is challenging.
• Label bias. Due to the large label space, it is difficult for

the ground truth labels (MeSH terms) provided by domain

experts to be precise on the training data set. This could

potentially impact the quality of the learned classifiers.

Creating an accurate unbiased training data set is another

challenge.

Biomedical RE

Task definition

RE for BLM refers to the detection and classification of relation

mentions among different biomedical concepts within the main

texts. The goal of RE is to detect the occurrences of pre-specified

types of relationships between entity pairs. Comparing with

the types of biomedical entities, the types of entity relations

are more diverse. Figure 6 presents an example of the task of

biomedical entity RE, where the input is a set of sentences, and

the output is the set of identified relations.

There have been many existing studies on biomedical rela-

tion extraction.Template/rule-basedmethods use patterns (usu-

ally in the form of regular expressions) generated by domain

experts to extract relations and involved concepts from text [98].

Automatic template construction methods create relationship

templates automatically by checking the text patterns surround-

ing the concept pairs [99–101]. Statistical methods identify these

relationships by looking for concepts that frequently co-occur

[102]. NLP-based methods perform sentence parsing to decom-

pose the text into a structure from which relationships can be

readily extracted [103]. Shahab [7] provided a survey on existing

techniques for extracting different types of biomedical relations.

Methods for different relation extraction tasks

According to the concrete types, we categorize the biomedical

relation extraction research into 4 different classes: protein–

protein interactions, genotype–phenotype relations, chemical–

protein interactions and drug–drug interactions.

Protein–protein interactions (PPIs)

PPIs are indispensable for understanding the complex disease

mechanisms and designing appropriate treatments. As wemen-

tioned above, existing PPI extraction methods can be either

rule/template based [104–107] or automatic [108, 109]. Simple

rules, such as co-occurrence, have been used in the early efforts

of PPI extraction. These methods assume that two proteins are

likely to interact with each other if they co-occur in the same

sentence/abstract. One potential issue of these approaches is

that their false positive rates tend to be high. Later studies used

manually specified rules, which can achieve a much lower false-

positive rate, but often suffer from a low recall rate [104, 110].

Recently, machine learning approaches have been leveraged in

automatic PPI extraction. By learning the language rules from

annotated texts, machine learning techniques can perform bet-

ter than rule-based methods in terms of both decreasing the

false-positive rate and increasing the coverage. For example,

Huang et al. [108] developed a dynamic programming algorithm

that extracts patterns from sentences with part-of-speech labels

from part-of-speech taggers. Kim et al. [109] developed a kernel-

based approach for learning gene and protein-protein inter-

action patterns. Chowdhary et al. [111] developed a Bayesian

network-based approach for extracting PPI triplets fromunstruc-

tured text. Yu et al. [25] proposed to exploit the grammatical

relationship within each PPI triplet extracted by NLP techniques

and construct shortest path based features to build a classifier

for PPI extraction.
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Figure 6. An example of biomedical RE. There are three biomedical entities co-occurred in this text piece. The biomedical RE process is to assemble them and determine

if a specific relation holds for each pair.

Genotype–phenotype associations (GPA)

Identification of GPA from biomedical literature plays a central

role in precision medicine. There have been existing studies on

on this topic. Regarding the specie type, most of these research

focuses on the associations between human genes and phe-

notypes [112, 113]. Regarding the entity type, these research

usually focus on specific phenotypes such as disease and gene

associations [114, 115]. According to the extractionmethodology,

therewere pattern-based [116] or learning-based approaches [26]

approaches as well.

Chemical–protein interactions (CPI)

CPI identifies the interactions among chemical compounds and

proteins in human body, which is a fundamental task in drug

discovery and development. Because of the large number of

chemical compounds and genes, it is exhaustive for domain

experts to identify them from literature. This makes automatic

extraction methods attractive. In particular, Zhu et al. [117] pro-

posed a probabilistic model called mixture aspect model (MAM)

to mine implicit CPIs in the text based on compound-target

co-occurrence patterns. Wariko et al. [118] utilized a linguis-

tic pattern-aware dependency tree kernel to extract CPIs, and

their method obtains an F-score of 36.54% on the BioCreative

challenge VI [119]. Lung et al. [120] constructed CPI pairs and

triplets and exploited sophisticated features by analyzing the

sentence structures. They achieved an F-score of 56.71% in the

same challenge.

Drug–drug interactions (DDI)

DDI identification is an essential task in post-market drug safety

surveillance, or pharmacovigilance. In general, the problem of

DDI detection can be regarded as a binary classification prob-

lem. Existingmethods for DDI extraction include co-occurrence-

based, rule-based and machine learning approaches [121]. Co-

occurrence-basedmethods establish a relationship between two

drugs based on their co-occurrences [122]. Linguistic rule-based

approaches combine shallow parsing and syntactic simplifica-

tion with pattern matching [123]. In particular, complex sen-

tences are broke down into clauses from which trigger words

or subject-predicate-object patterns can be used to recognize

the relations among them.With the better availability manually

annotated corpora, methods based on machine learning, espe-

cially deep neural networks have become popular in DDI relation

extraction tasks as well. One can refer to Zhang et al. [21] for a

recent survey.

Biomedical knowledge base curation

Biomedical relation extraction can support the curation of

biomedical knowledge bases, which comprise biomedical

entities and relations (e.g. gene A inhibits gene B and gene C is

involved in disease G) and are natural assemblies of biomedical

NER and relation extraction. On this topic, Ren et al. [124] devel-

oped the iTextMine system including an automated workflow to

run multiple text-mining tools on a large text corpus for knowl-

edge base curation. Singhal et al. [115] proposed amachine learn-

ing approach to curate biomedical knowledge base via extracting

disease-gene-variant triplets from biomedical literature.

Recent advances with deep learning

Relation extraction is essentially a classification problem which

can be solved by classical supervised machine learning tech-

niques. These methods take handcraft features as inputs, such

as surface, lexical, syntactic features, or features derived from

existing ontologies. The use of kernels based on dependency

trees has also been explored [125]. The construction of use-

ful handcrafted features is difficult and time-consuming. More

recently, a few studies have investigated the use of deep neural

networks, such as CNNs (see Figure 7) and RNNs (see Figure 8),

for relation extraction, which are detailed below.

The CNN architecture, illustrated in Figure 7, consists of four

main layers, similar to the one used in text classification. For

better encoding the information of input sentence, the model

usually uses CNN layers to capture n-gram level features. The

embedding layer converts each word into an embedding vector

via a lookup table. The convolutional layer with rectified linear

unit (ReLU) activation transforms the embeddings into feature

maps by sliding filters over the word tokens. The pooling layer

reduces the dimensionality of the feature map vectors by select-

ing the highest, lowest, or mean feature values. The multi-layer

perceptron (MLP) layer outputs the probability of each relation.

Under this framework, Liu et al. [126] proposed a method for DDI

extraction.

RNNsmodel text by exploring the long and short term depen-

dencies in word sequences. It can extract lexical and sentence

level features without any complicated NLP preprocessing pro-

cedures such as parsing. RNNs can directly represent essential
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Figure 7. CNN-based framework for relation extraction.

Figure 8. RNN-based framework for relation extraction.

linguistic structures, i.e.word sequences and constituent/depen-

dency trees. On this topic, Hsieh et al. [25] proposed a novel

approach based on RNNs to capture the long-term relation-

ships among words in order to identify PPIs. Cross-validation

results demonstrate that it outperforms existing methods in

the two largest corpora, BioInfer [127] and AIMed [128], with

relative improvements of 10% and 18%, respectively on these two

datasets [25].
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Figure 9. BioBERT framework proposed by Lee et al. [17].

Comparingwith previous research that focused on extracting

binary relations from single sentences, there are recent stud-

ies on more general setting of extracting n-ary relations that

span multiple sentences. For example, Peng et al. [129] explored

a general framework for cross-sentence n-ary relation extrac-

tion based on graph LSTM. The graph structure makes it easy

to incorporate rich linguistic characteristics. Experiments on

biomedical corpus showed that extraction beyond the sentence

boundary exploited much more knowledge, and encoding such

rich linguistic knowledge can lead to consistent performance

gain.

Another thing we want to emphasize there is that the pre-

viously discussed BERT model has also been demonstrated to

be highly successful for relation extraction. In particular, Beltag

et al. [55] used 1.14M papers randomly picked from Semantic

Scholar to fine-tune BERT and built SciBERT. The corpus includes

18% CS papers and 82% biomedical papers. SciBERT obtained

results comparable to SOTA models in relation extraction. Lee

et al. proposed BioBERT [17], which is a pre-trained language

representationmodel in biomedical domain. The overall process

for pre-training and fine-tuning BioBERT is illustrated in Figure 9.

First, BioBERT is initialized with pre-trained BERT on general

domain corpora. Then, BioBERT is pre-trained on biomedical

texts (e.g. PubMed articles). BioBERT was further fine-tuned on

several biomedical corpora for BLM tasks. BioBERT only requires

a limited number of task-specific parameters but outperforms

the SOTA models in biomedical relation extraction by 3.49 F1

score. Both SciBERT and BioBERT share the same basic BERT

model architecture shown in Figure 5.

Challenges

There are several challenges for biomedical RE compared to

general-domain RE tasks. The first is the non-standard expres-

sion variation of biomedical entities aswe discussed in Section 2.

Second, the general RE models typically extract binary relations

from the text, such as ‘Founding-location(IBM, New York)’, but

the relations involved in the medical literature could be unary,

binary, or n-ary relations in which multiple entities are involved

in a single relationship. Third, the availability of well-annotated

biomedical relations is much less than general relations because

of its requirements on domain expertise,whichmakes sufficient

training of complex deep learning models challenging. Fourth,

new findings keep appearing in biomedical domain. Developing

models for identification of new unseen relations is a challeng-

ing problem as well.

Biological pathway extraction

Biological pathways are crucial for understanding the underlying

mechanisms of complex diseases such as cancer. According

to the definition on National Human Genome Research Insti-

tute (https://www.genome.gov/about-genomics/fact-sheets/Bio

logical-Pathways-Fact-Sheet), ‘A biological pathway is a series of

actions amongmolecules in a cell that leads to a certain product

or a change in a cell. Pathways can also turn genes on and off, or

spur a cell tomove.’ Most of the pathway knowledge is contained

in free text (such as biomedical literature) which needs huge

human efforts to understand and interpret [130]. Therefore, it

is highly demanding for developing computational approaches

for extraction of biological pathways from biomedical literature

in an automatic way.

Task definition

Biological pathways involve the interactions among hetero-

geneous entities such as genes, gene products and small

molecules such asmetabolites. Examples of interactions include

transcriptional regulation (e.g. transcription factor binding for

transcription initiation) and post-translational regulation (e.g.

kinase phosphorylation for protein activity modulation). For

simplicity, most existing studies focus on static pathways such

as signaling transduction and gene regulation, rather than

metabolic networks and dynamics. For example, ‘protein A is
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Table 2. Summary of notable papers in this review

Author Dataset Architecture Highlight

Medical NER and normalization

Carreras et al. (2003) [30] CoNLL-2003 AdaBoost classifier Named Entity Extraction system for the CoNLL-2003

Leaman and Gonzalez (2008)[38] BioCreative 2 GM CRF Executable survey of advances in biomedical NER

Finkel and Manning (2009) [32] GENIA and JLPBA Discriminative Constituency

Parsing

using a discriminative constituency parser

Hettne et al. (2009)[39] Corpora for Chemical Entity

Recognition

Rule-based method Rule-based term filtering for small molecules and drugs in text

Chowdhury and Lavelli (2010) [42] Arizona Disease Corpus CRF Use a feature set specifically tailored for disease names

Abacha and Zweigenbaum (2011)[43] i2b2 corpus Hybrid approach Hybrid approach based on both machine learning and domain knowledge

Rocktäschel et al. (2012) [41] SCAI corpus CRF Combining a CRF with a dictionary

Leaman et al. (2013) [64] NCBI disease corpus Pairwise learning to rank Use BANNER [38] to locate disease mentions

Leaman et al. (2015) [68] CHEMDNER dataset CRF Ensemble two independent models for chemical NER and normalization

Leaman and Lu (2016) [67] NCBI Disease corpus and

BioCreative 5 CDR corpus

Semi-Markov model The first ML model for joint modelling recognition and normalization

Lee et al. (2016) [65] BioCreative V CDR corpus

and DNER corpus

CRF Ensemble CRF models for disease recognition/normalization

Sahu et al. (2016) [44] NCBI disease corpus RNN Use CNN and RNN to get character-based embedded features

Chen et al. (2017) [45] BioCreative II gene mention

and JNLPBA 2004 corpus

RNN BLSTM-CRF model with attention for medical NER

Lou et al. (2017) [69] BC5CDR corpus and NCBI

disease corpus

Transition-based model Cast the output construction process into an incremental state transition process

Zhao et al. (2019) [22] BC5CDR corpus and NCBI

disease corpus

Deep multi-task learning Convert hierarchical tasks into parallel multi-task mode

Biomedical text classification

Donaldson et al. (2003) [74] PubMed abstract SVM locate protein-protein interaction data in literature

Rios et al. (2015) [91] MEDLINE articles CNN a CNN-based model to conduct a multi-label classification

Peng et al. (2019) [97] Ten Benchmarking Datasets BERT and ELMo Compassion between BERT and ELMo on 10 datasets

Singh et al. (2018) [95] PubMed abstract GRU a neural sequence-to-sequence (seq2seq) model for structured multi-label classification

Yan et al. (2018) [176] PubMed abstract CNN-based hybrid model can adaptively deal with features of documents that have sequence relationships

Relation extraction

Blaschke et al. (1999) [104] Medline abstracts Rule-based method automatic detection of protein-protein interactions

Giuliano et al. (2006) [177] AImed corpus and LLL

Challenge

Kernel method Use shallow linguistic information only

Chowdhary et al. (2009) [111] Mannuly labeled PubMed

abstracts

Bayesian network Extract PPI triplets from medical literature

Chowdhury et al. (2011) [178] DDIExtraction 2011 Ensemble method Combine two different machine-learning approaches to extract DDI

He et al. (2013) [179] DDIExtraction 2011 Stacked generalization Combine the feature-based, graph and tree kernels

Bui et al. (2014) [180] DDI-2011 and DDI-2013 SVM Very traditional RE method for extracting drug-drug interactions

Collier et al. (2015) [112] BMC collection Search and retrieve A novel technique for flexibly capturing diverse phenotypes

Pathway extraction

Craven and Kumlien (1999) [134] Yeast Protein Database ML method Map information from text sources into structured representations

Ng and Wong (1999) [181] GENBANK and MEDLINE IR and IE Automatic pathway discovery

Yao et al. (2004) [182] 12 papers and 116 abstracts user-involved extraction Designed with appropriate level of users’ involvement on information extraction

Kemper et al. (2010) [135] MEDLINE Text mining Integrate a pathway visualizer, text mining systems and annotation tools as PathText

(Continued)
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activated by protein B’ and ‘small molecule C can inhibit such a

process’. This kind of information is critical to the understanding

of disease mechanism and drug development.

Figure 10 shows an example cancer pathway extracted from

biomedical literature. As shown in this example, pathways can

forma graphwhere eachnode represents a gene or gene product,

and each edge represents an interaction. The pathway extrac-

tion task is typically formulated as a classification problem in

previous studies, i.e. classifying each extracted pairwise relation

into one of the well-defined type of relations. The final pathway

structure is obtained by merging these extracted relations.

Methods

Many existing studies on pathway extraction are rule-based sys-

tems (e.g. GeneWays system [131], Petri net [132], BioJAKE [133]),

but extraction of hand-crafted rules are expensive and time-

consuming. These approaches generally suffer from low recall

due to the flexibility of textual expression. As an alternative,

machine learning methods can perform effective and automatic

rule engineering, but they require large scale annotated exam-

ples to achieve satisfactory performance, which still requires

lots of human efforts. Craven and Kumlien [134] proposed a

way to alleviate such problem with distant supervision from

existing knowledge bases. Poon et al. [28] applied the distant

supervision framework to extract pathway interactions from

PubMed abstracts and showed that their proposed method is

superior to the rule-based approach.

In addition, hybrid approaches which take advantage of both

rule-based and machine learning approaches have also been

actively investigated. For example, Kemper et al. [135] proposed

a PathText system including a pathway visualizer, annotation

tools, as well as a text mining system integrating syntactic anal-

ysis, NER, disambiguation of acronyms, real-time co-occurrence

searches, etc. Through PathText, users can have a complete

experience of visualized pathway extraction. Miwa et al. [136]

extended the capabilities of PathText and developed PathText2,

which combined multiple techniques from the various seman-

tic search systems and introduced a new document ranking

component. It also offered a new API supporting human com-

puter interactions. Yao et al. [137] developed the PathwayFinder

system for pathway extraction with user interactions. Specifi-

cally, it provides an interface through which any particular user

can influence the result of NER and modify syntactic patterns,

whichmakes the extracted pathwaymore robust andwith better

quality.

In addition to biological pathway, other structures such as

protein interaction network and gene-disease-drug interac-

tion network are also of paramount interests to biomedical

researchers in the era of precision medicine. However, to

the best of our knowledge, there is still no study yet on

automatic extraction of such network structures directly from

the literature, instead the current research typically extracts

pairwise relations first and then ensemble them offline. We

have reviewed the pairwise entity relation extraction methods

in Section 2.4.

Potential applications with deep learning

There is still no study to solve this pathway extraction task with

deep learning techniques. The main reason is that there is no

public available training data, which makes training supervised

deep learning models challenging to achieve. If we have enough
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Figure 10. A pathways extraction from biomedical literature example from [28].

Figure 11. Examples of hypothesis generation by inferring unseen relations from biomedical articles.

Figure 12. The example of ABC model for connecting fish oil and Raynaud’s

disease.

training data, several potential deep models are applicable for

this task, such as RNN, CNN and Transformer.

Challenges

One major challenge of the computational pathway extraction

systems is the insufficient involvement of users. More precisely,

although some systems provide a way to interact with users, it is

too ambitious to achieve a fully automated pathway extraction

system without any user intervention because of the following

reasons: 1) The diverse and complex expressions in the biomed-

ical literature make it difficult to extract pathways accurately; 2)

The low accuracy of the extracted results discourages the further

utilization of the system; 3) Some necessary context information

is missing, such as conditions of interactions; 4) The varied and

continuously changing demandsmake it hard to adapt promptly.

Moreover, many single sentences in scientific publications tend

to have multiple biomedical entities involved, which makes the

relation extraction procedure have minimal context as clues

to use. Just like the example in Figure 10, the single sentence

contains four entities, three event triggers and six roles.

Biomedical hypothesis generation

The increasing growth rate of the scientific literature makes it

challenging for researchers to stay up-to-date with all relevant

research in order to formulate novel research hypotheses in

their specific disciplines. The generation of hypotheses, also

known as literature-based discovery (LBD), attempts to make

novel biomedical discoveries from the literature with computa-

tional approaches.

Task definition

Automated LBD, which uses published articles to discover new

biomedical knowledge via generating new hypotheses, is a sub-

field of BLM. The goal of hypothesis generation is to detect

underlying relations that are not present in the text but instead

are inferred by the presence of other explicit relations. In other

words, it is a way to identify implicit connections by logically

combining explicit facts scattered throughout different studies.

Specifically, hypothesis generation is usually referred to

the process of connecting two pieces of knowledge previously

regarded as unrelated [138]. For example, it may be known that

disease A is caused by chemical B, and that drug C is known to

reduce the amount of chemical B in the body. However, because

the respective articles were published separately from one

another (called ‘disjoint data’), the relationship between disease

A and drug C may be unknown. Hypothesis generation aims to

detect these implicit relations frombiomedical articles. Figure 11

presents examples of hypothesis generation by inferring unseen

relations.

It is worthwhile to mention that biomedical hypothesis gen-

eration is different than relational extraction. Relation extrac-

tion focuses on extracting relationships between entities that
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Figure 13. An overview schematic of a general end-to-end pipeline of LBD.

have been explicitly identified in the text, while hypothesis

generation attempts to reveal relationships that are unknown

yet.

Thilakaratne et al. [8] surveyed the existing computational

techniques used in the LBD process with a set of key milestones

over a timeline of topics including LBD validation checks, major

LBD tools, application areas, domains and generalizability of LBD

methodologies. The survey did not mention applications with

deep learning on LBD and challenges, which are covered in this

paper.

Problem settings

The core objective of hypothesis generation is to predict a possi-

ble relationship between two biomedical terms based on a text

corpus [2, 139]. Different from a typical link prediction problem,

which are usually either based on triangle closing models [140]

or positive semi-definite graph kernels [141], hypothesis gener-

ation aims at providing a rationale and evidence in the form

of connecting terms. There are two variations of the problem

setting, closed discovery and open discovery. The former enables

people to perform confirmatory analysis, while the latter is for

scenarios that require more exploratory paradigms [142]. As an

famous example, consider the queries ‘Is Fish oils and Raynaud’s

Disease connected?’ versus ‘What are the therapeutic options

for Raynaud’s Disease?’. The first question is a closed discovery

problem,where the answer could either YES or NO. If the answer

is Yes, the following step should be identifying the evidence that

supports this claim. The second question is an open discovery

problem. The answer needs to be obtained by exploring all con-

ceptswith Raynaud’s disease as potential therapeutic indication.

Such questions usually have a ‘grounded’ biomedical concept on

one side and a meta-type that defines the characteristics of the

possible terms that can appear on the other side [143].

Biomedical hypothesis generation has led to many discov-

eries such as potential disease treatments [144–147], as well as

understanding and discovering new health benefits of supple-

ments [148]. It is particularly promising in a number of appli-

cations in pharmaceutical industry such as drug development

[149–151], drug repurposing [144, 150, 152–157] and pharmacovig-

ilance [152, 158–160], which are further highlighted below.

Drug discovery and development are expensive and time-

consuming processes. Drug repurposing refers to the process

of identification of disease targets as alternative potential

indications of existing drugs. Successful repurposing can save

lots of time and financial cost for drug development because it

does not need to go through the initial in-silico and part of the

in-vitro phases. For example, COVID-19 is now a global epidemic.

Until March 2020 there have been nearly 300K confirmed cases

with over 11K deaths 185 countries and areas (https://www.

who.int/emergencies/diseases/novel-coronavirus-2019). There

is an urgent need on the development of effective treatment for

COVID-19. Complete de-novo drug discovery would be very time

consuming in this case. Remdesivir, a drug that was originally

developed for treating ebola, has demonstrated effectiveness

of treating COVID-19 [161], so does hydroxychloroquine, whose

original indication is malaria [162]. LBD can provide essential

helps for the drug repurposing process. Andronis et al. [163]

reviewed various LBD methods that are critical for the detection

of hidden connections between biomedical entities and suggest

that visualization techniques can help scientists perform tests.

Tari et al. [153] used a declarative programming language,

AnsProlog, to achieve the automated reasoning for the incom-

plete information of indirect relationships for drug indications.

They also introduced several publicly available knowledge

resources such as chemical structures, side effects and signaling

pathways for identifying alternative drug indications [154].

Pharmacovigilance refers to ‘the pharmacological science

relating to the collection, detection, assessment,monitoring and

prevention of adverse effects with pharmaceutical products’

[164]. On this topic, Shang et al. [158] developed a scalable

LBD method which uses distributional statistics to infer and

apply discovery patterns to evaluate the plausibility of drug/ad-

verse drug reaction pairs for pharmacovigilance. Hristovski et al.

[159] presented a tool for providing pharmacological and phar-

macogenomics explanations for known adverse drug effects

through genes or proteins that link the drugs to the adverse

effects. Mower et al. [160] extended this paradigm by evaluating

machine learning classifiers when applied to high-dimensional

representations of relationships extracted from the literature

as a way to identify substantiated drug/adverse drug reaction

pairs.
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Methods

Most of the LBD systems are based on or derived from Swanson’s

ABC co-occurrence model [139]. In such a model, explicit knowl-

edge is encoded in the text in forms of ‘A implies B’ and ‘B implies

C’ relations. Implicit knowledge can be discovered by drawing

a ‘therefore A implies C’ conclusion. For instance, dietary fish

oil is mentioned in articles with blood viscosity and vascular

reactivity. These two terms are also mentioned in articles with

Raynaud’s disease. Swanson proposed that it is reasonable that

dietary fish oil and Raynaud’s disease might be associated. This

result has been validated experimentally [165] (see Figure 12).

Various tools have been developed to use the ABC co-

occurrence model for hypothesis generation [166]. For example,

Swanson’s Arrowsmith tool has utilized the co-occurrence of

biomedical terms in titles from MEDLINE abstracts to identify

existing associations [167]. The user of the system needs to

input a starting term and could get choices of appropriate

intermediate terms provided by the system. The predicted target

terms are ranked by counting the number of intermediate terms.

Similar idea have been explored in other systems as well (e.g.

CoPub [168] and FACTA+ [169]). These systems typically use

the text in the abstract, not just the title. The BITOLA system

made use of both the number of intermediate concepts and

the number of publications that support these intermediate

links as the score for ranking the association candidates [170].

These methods only considered local knowledge in terms of

the intermediate terms that co-occur with the starting and

the target terms. Recently Zhao et al. [100] discussed different

situations of ABC co-occurrence and proposed a factor graph

model, CausalTriad, which utilizes more holistic textual and

structural knowledge to infer the causal hypothesis.

In addition to the above ABC co-occurrence based modeling

paradigms, there were also other methodologies for LBD. For

example, the rarity principle [171–173], which looks at infre-

quently co-occurring terms rather than frequently co-occurring

ones. Bibliometric based systems used the citation information

to find the linkage and target literature [173]. Sang et al. [29]

further developed a biomedical knowledge graph-based LBD

approach for drug discovery.

Figure 13 presents a typical end-to-end pipeline of LBD. This

system takes a pair of medical terms (a medical term and

meta information in the case of open discovery) as input. The

task of the ‘Hypotheses Generation Module’ is to list a set of

assumptions that relate two inputs bymediation, e.g. ‘Fish oils→

Beta-Thromboglobulin→ Raynaud Disease’. The ‘Ranking Mod-

ule’ is then responsible for generating these postulates, which

would be finally given to the end-user for further validations.

The generated hypotheses can be ranked via selected tools and

algorithms in the ranking module. Due to the cascading nature

of these modules, it is assumed that the output quality of the

generated module will affect the overall quality of the final

result.

Potential applications with deep learning

Most of the studies in hypothesis generation are based on the

ABCmodel. Deep learningmodels have rarely been used directly

in this task potentially due to the high interpretability require-

ments of the LBD process. It can be envisioned that deep learning

models training from large annotated biomedical text corpus

should be able to achieve better numerical performance mea-

sured on the generated hypotheses. However, it is essential

that those hypotheses are explainable. Therefore, effective deep

learning interpretability mechanisms [174, 175] are needed.

Challenges

Despite the promises, challenges remain for biomedical litera-

ture based hypothesis generation. In particular, 1) the assump-

tions in certain methods (such as the ABC co-occurrence based

approach) is too simple to capture the complexity of biomedi-

cal processes. Enrichment of these technologies with compre-

hensive biomedical context is important and challenging; 2)

many existing LBD methodologies and systems are developed

for research purpose. It is important to get them deployed in real

application settings where those systems can really help with,

such as basic science research, pharmaceutical research and

development, as well as clinical care, so that the new discoveries

can be prospectively evaluated; 3) the contents of the biomedical

articles could be biased towards their specialized disciplines.

Sometimes the discoveries from different articles could be con-

tradictory. Obtaining reliable and convincing hypotheses in this

scenario is challenging.

Conclusions

This paper surveyed the problems,methods and recent advances

in BLM. Given the broadness of this area, we picked five critical

tasks: biomedical NER and normalization, text classification,

relation extraction, biological pathway extraction and hypothe-

sis generation. Methods from both the CS and BMI communities

along with their typical application scenarios are reviewed. We

also emphasized the recent advances on these topics, especially

the potential of deep learningmodels. At the end of each section

we pointed out the challenges and future research directions.

Key Points

• Biomedical literature mining (BLM) is an important

area for both computer science and biomedical infor-

matics.
• The topics covered under the umbrella of BLM

are broad and diverse, such as biomedical named

entity recognition and normalization, biomedical text

classification, relation extraction, biological pathway

extraction and hypothesis generation.
• Many techniques based on conventional machine

learning algorithms have been proposed for BLM in

the last decade. Recently, deep learning models have

achieved the state-of-theart performance in many

BLM tasks.
• Due to the complexity of biomedical systems, there

are still many challenges faced by different BLM algo-

rithms.
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