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ABSTRACT
Effective biomedical literature retrieval (BLR) plays a central role in
precisionmedicine informatics. In this paper, we propose GRAPHENE,
which is a deep learning based framework for precise BLR. GRAPHENE
consists of three main different modules 1) graph-augmented doc-
ument representation learning; 2) query expansion and represen-
tation learning and 3) learning to rank biomedical articles. The
graph-augmented document representation learning module con-
structs a document-concept graph containing biomedical concept
nodes and document nodes so that global biomedical related con-
cept from external knowledge source can be captured, which is
further connected to a BiLSTM so both local and global topics can
be explored. Query expansion and representation learning module
expands the query with abbreviations and different names, and then
builds a CNN-based model to convolve the expanded query and
obtain a vector representation for each query. Learning to rank min-
imizes a ranking loss between biomedical articles with the query
to learn the retrieval function. Experimental results on applying
our system to TREC Precision Medicine track data are provided to
demonstrate its effectiveness.

CCS CONCEPTS
• Information systems → Information retrieval; Document
representation; Learning to rank; • Computing methodolo-
gies→ Neural networks; • Applied computing→ Life and medi-
cal sciences.
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1 INTRODUCTION
Precision medicine [3], with the goal of providing the right treat-
ment to the right patient at the right time, holds great premise on
treating complicated diseases such as cancer. Biomedical literature
database stores the state-of-the-art information about the various
aspects related to precision medicine (e.g., patients, diseases, genet-
ics, treatments, etc.) and serves as a vital knowledge source. For
example, with the prevalence of Next Generation Sequencing (NGS)
technology, vast amounts of genetic variants can be identified for
a specific patient on a specific tissue (e.g., tumor). The domain ex-
perts, such as clinicians, pathologists, oncologists, need to search
the relevant literature on PubMed to interpret these genetic variants.
Therefore, an efficient and accurate biomedical literature retrieval
(BLR) system is crucial.

There are many challenges to building such an effective BLR sys-
tem. For example, the vocabulary of professional terms in biomedi-
cal articles is typically large, and there are many semantic variations
for the same biomedical concept (e.g., a specific genetic variant),
the relations between these concepts are complicated (which could
be explicit/implicit, direct/indirect, and known/unknown, etc.).

The goal of this paper is to develop a high-performance BLR
system in view of the above challenges. Specifically, our task is
to take patient information with the genetic variant as query and
retrieve relevant biomedical articles from literature databases such
as MEDLINE1. Here the patient information can be either in a struc-
tured form (disease name, variant, demographic, ...) or unstructured
text. The output should be a list of biomedical articles which are
ranked according to the relevance with the query.

There are mainly two types of retrieval models can be used for
our scenario. The first type is the traditional document retrieval
model which represents the query and documents both as one-hot
representations and matches query and documents with similarity
measures such as cosine similarity. In particular, one-hot repre-
sentations can be generated through the bag-of-words model or
TF-IDF model. In the bag-of-words model, a text (such as a query
or a biomedical article) is represented as the bag (multiset) of its
words, disregarding grammar and even word order but keeping
multiplicity. TF-IDF model is a better approach compared to the
bag-of-words model. It assigns a weighting to each word in the
1MEDLINE (https://www.nlm.nih.gov/bsd/medline.html) is a bibliographic database
of life sciences and biomedical information. It includes bibliographic information
for articles from academic journals covering medicine, nursing, pharmacy, dentistry,
veterinary medicine, and health care.
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Figure 1: The framework of graph augmented deep learning with knowledge empowerment engine for for biomedical litera-
ture retrieval.

document and put that weighting in the vector, which is allowed to
normalize the count/frequency of the word. Yet the drawback of the
traditional retrieval model is apparent. Consider one takes "lung
cancer" as the query, then the model can only retrieve the articles
with exactly the term "lung cancer" in their contents. A notable
exception is PubMed which expands the query by mapping it to
related MeSH terms [21]. Although this increases recall, it often
decreases precision which is crucial for precision medicine [13].
The second type is deep learning models, such as DeepMatch [22]
and Delta [25], which have demonstrated superior performance
in recent years. The advantage of these models comes from their
flexible representation learning process for the query and the doc-
uments. In particular, the learned representations can encode the
underlying semantics for queries and documents. This greatly en-
hanced the capturing of the semantically similar words but with
different expressions such as "cancer" and "tumor", "diabetes" and
"hyperglycemia". Therefore, take "diabetes" as query these models
might find articles with "hyperglycemia". However, it is still diffi-
cult for these models to identify indirectly/implicitly related terms
such as "diabetes" and "metformin", in which case we would need
external knowledge base [36].

Our developed system is called GRAPHENE, which stands for
GRaphAugmented deeP learning witH knowlEdge empowermeNt
Engine. Our model learns literature representations with local text
and external structured knowledge and matches queries with the
pair-wise learning to rank mechanism. The overall architecture of
GRAPHENE is shown in Figure 1, which is composed of 3 main
modules. The first is a document representation learning module.
We propose to construct a document-concept graph, upon which
a graph-augmented document representation is learned to encode
both the underlying semantics of the literature and the information
from non-local relevant medical concepts. The second is patient

information query representation learning module, where we pro-
pose to expand query and learn representations through the con-
volution upon the expanded query. The third is a learning to rank
module, which minimizes the pairwise ranking loss between the
patient information and biomedical article to learn a partial order
of relevance of biomedical articles. The organic integration of these
components makes GRAPHENE possible to retrieve biomedical
articles effectively and precisely.

Experimental results on TREC Precision Medicine data [27]
demonstrate that our model can effectively retrieve most relevant
biomedical articles with patient information. The results also show
that our model outperforms those deep neural retrieval models
which represent documents with textual information only, suggest-
ing the necessity of encoding graph-based external knowledge into
document representation.

The paper is organized as follows. Section 2 includes related
studies in biomedical literature retrieval and document retrieval
methodology. Section 3 describes the details of graph-augmented
document representation learning algorithm. Section 4 describes
the details of CNN-based query representation learning algorithm
and pair-wise learning-to-rank algorithm. Experimental results are
presented in Section 5, and the paper is concluded in Section 6.

2 RELATEDWORK
2.1 Biomedical Literature Retrieval
There has already been a lot of research on biomedical literature re-
trieval [6–8, 25, 30, 39]. For example, Zheng andWan [39] proposed
to use the paragraph vector technique to learn the latent semantic
representation of texts and treat the latent semantic representa-
tions and the original bag-of-words representations as two different
modalities. They then proposed to use the multi-modality learning
algorithm to retrieve biomedical literature for clinical decision sup-
port. Soldaini et al. [30] applied query reformulation techniques to
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address the need of literature search based on case reports. Best
Match [6] is the first relevance search algorithm for PubMed that
leverages the intelligence of users andmachine-learning technology
as an alternative to the traditional sorting techniques. Delta [25] is a
deep learning based model that applies convolution operation upon
an updated document matrix in which each word is replaced with
the most similar word in the query. However, this model takes the
key topic word and other words in query with equal importance,
making the retrieval out of focus.

2.2 Document Retrieval Models
The traditional document retrievalmodels represent both the queries
and documents as one-hot representations and match query and
documents with similarity measures like cosine similarity. As we
stated in the introduction, the problem of this method is that the se-
mantically similar query-document pairs without exact expression
match cannot be identified.

In recent years, deep learning based retrieval models, such as
DeepMatch [22], PACRR [17], Delta [25], Conv-KNRM [4], MASH
RNN [19], have dominated the document retrieval research. In
particular, these models have been focusing on 1) flexible repre-
sentation learning for query and documents and 2) measuring the
similarity between query and documents at different levels. Corre-
spondingly, there are two main categories of deep neural informa-
tion retrieval (IR) models. One is the representation-focused model,
which tries to learn good representations for both query and doc-
uments with deep neural networks, and then conducts matching
between the learned representations. Examples include DSSM [16],
C-DSSM [9], ARC-I [15], Delta [25], MASH RNN [19]. The other is
the interaction-focused model, which first builds local interactions
(i.e., local matching signals) between the query and documents, and
then uses deep neural networks to learn the overall matching score.
Examples include DeepMatch [22], ARC-II [15], DRMM [11], ESR
[35], PACRR [17], Conv-KNRM [4] and SMASH RNN [19].

These deep neural IR models can effectively exploit the under-
lying semantics for queries and documents, which can be good at
matching similar but differently expressed words like "cancer" and
"tumor", "diabetes" and "hyperglycemia". Therefore, take "diabetes"
as query the model might find articles with "hyperglycemia". But
these model cannot find articles indirectly/implicitly related to "dia-
betes" like the article with "metformin" because it requires external
knowledge (metformin, against, diabetes). Although prior research
generally confirms that external knowledge has great value for
document retrieval [10, 29, 32], little research has been conducted
to show the value of the external knowledge on deep neural IR
models. There are studies trying to perform query expansion or
leverage pre-trained embeddings of name entities using external
knowledge bases. For example, Xiong and Callan [33] presented
a simple and effective method to improve query expansion with
Freebase. They proposed a supervised model to combine the infor-
mation derived from Freebase descriptions and categories so that
‘effective terms can be selected for query expansion. In another
paper, Xiong et al. [35] proposed a ranking technique for matching
query and documents, where a knowledge graph is leveraged to
pre-train the embeddings of the named entities in both query and
documents.

Table 1: Symbols and descriptions.

Symbol Description
qk k-th query with patient information or MeSH terms
di document nodes, each of them consists of a sequence

of k words (x (i)1 ,x
(i)
2 , ...,x

(i)
k )

d
(j)
pk the document which is ranked as j-th in the ranking

list for query pk
c j biomedical concept nodes
h(i)k the k-th hidden state of RNN in modelling document

di

g(l )di the hidden state of document node vdi in the l-th
layer of the graph neural network.

g(l )ci the hidden state of biomedical node vci in the l-th
layer of the graph neural network.

3 REPRESENTATION LEARNING FOR
DOCUMENT-CONCEPT GRAPH

In this section, we present a graph-augmented representation learn-
ing approach for documents and biomedical concepts through the
Document-Concept Graph (DCG). There are two types of nodes
in a DCG: the biomedical concepts and documents. There are also
two types of edges in the graph. One links concepts and documents
according to their co-occurrence relationships. The other links pair-
wise concepts if any semantic relationship can be identified between
them in a specific knowledge base. With the DCG representation,
the global topics of the documents are effectively encoded through
the document-concept relationships. Moreover, such topics can
further be enhanced with external knowledge sources through the
transitions on the graph. In this paper, we denote scalars by lower-
case letters, such as x ; vectors by boldface lowercase letters, such
as x; and matrices by boldface upper case letters, such as X. Table 1
lists the symbols and their descriptions that are used throughout
this paper.

More formally, a DCG G consists of two types of nodes, the doc-
ument nodes {di } and the biomedical concept nodes {c j }. A docu-
mentdi is composed of a sequence ofk words (x (i)1 ,x

(i)
2 , ...,x

(i)
k ) and

containsnmedical concepts (c(i)1 , c
(i)
2 , ..., c

(i)
n ). A specific biomedical

concept c j can be composed of a single word or multiple words,
which corresponds to a medical named entity or a key topic in
medical domain. We link a concept node c j to a document node
di if this document contains the concept c j . We link two concept
nodes cu and cv if there exists any relations between them in ex-
ternal knowledge bases. Given the document-concept graph G , our
objective is to learn the representation for each document node.

3.1 Document-Concept Graph Construction
Figure 2 illustrates an example of DCG. The construction of a DCG
consists of four steps: 1) tokenization; 2) word embedding; 3) medi-
cal concept extraction; 4) edge construction.

Tokenization. Given a biomedical article, tokenization is neces-
sary to convert the texts into space-separated sequences of words
(words may include punctuation or be followed by punctuation).
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…… The BRAF V600E mutation is the most common
genetic alteration in papillary thyroid cancer (PTC).
However, the prognostic value of this mutation remains
unclear ……

BRAF V600E papillary thyroid cancer

Figure 2: An example of the document-concept graph.

In our work, the Stanford CoreNLP [23] is leveraged to conduct
tokenization on documents.

Word Embedding. After tokenization, unsupervised word repre-
sentation learning models like Glove [26] and Word2Vec [24] are
implemented on all documents to get semantic representation for
each word which would be useful in later parts.

Medical Concept Extraction. Since each document might contain
multiplemedical concepts corresponding to different types of biomed-
ical named entities, such as genes, diseases, chemicals, mutations,
etc., which can be detected through medical named recognition and
normalization methods and tools [31, 37].

Edge Construction. Given all detected medical concepts in docu-
ments, we can construct the edges in a DCG. It is straightforward
to link the document and concept nodes by just checking whether
the concept is included in the document as the same way in [38].
For the edges linking concept nodes, we extract them from external
knowledge bases as in [40].

3.2 Document Representation Learning
Given the DCGG , our next step is to learn effective representations
for documents, which is a so crucial factor for the performance
of our system. In particular, we propose to learn such representa-
tion through a graph (DCG) augmented recurrent neural network
(RNN) model, which is shown in Figure 3. Our model has three
components:

• Encoder, which generates context-aware hidden representa-
tions for each biomedical document with a recurrent neural
network;

• Graph Module, which is essentially the DCG capturing the
relationships among the documents and biomedical concepts
as we introduced in the last subsection.

• Decoder, which exploits the contextual information gener-
ated by the encoder and the graph to predict key topics of
the documents. Our goal is to predict the title for the abstract
of each biomedical article.

…

…

𝑑𝑖

Encoder
(BiLSTM)

Decoder
(BiLSTM)

Document 𝑑𝑖

𝑥1
(𝑖) 𝑥2

(𝑖)
𝑥𝑘
(𝑖)

Title

Document-Concept Graph

𝑑𝑗

𝑑𝑚

Disease Gene Demo Patient 𝑝𝑘

Match Match

Biomedical article

Biomedical concept

(𝑑𝑖, 𝑝𝑘) is annotated as relevant

Figure 3: Graph-augmented RNN for document representa-
tion learning.

3.2.1 Encoder. We first use an encoder to generate document repre-
sentations. Given a documentdi withword sequence (x

(i)
1 ,x

(i)
2 , ...,x

(i)
k )

of length k , each word x (i)k is represented by a vector x(i)k , which is
obtained from some pre-trained word embedding. We encode the
document with a recurrent neural network defined as

h(i)1:k = RNN(x(i)1:k ; 0;Θenc) (1)

where x(i)1:k represents the input word sequence (x (i)1 ,x
(i)
2 , ...,x

(i)
k ),

h(i)1:k denotes the hidden states [h(i)1 , h
(i)
2 , ..., h

(i)
k ]. 0 denotes an all-

zero vector. Θenc denotes parameters of the encoder. We implement
the RNN as a bi-directional LSTM [14] to encode each document.

We construct the textual representation for document di by
averaging the hidden states of its words, i.e. Enc(di ) = 1

k (
∑k
t=1 h

(i)
t ).

These learned representations are then fed into the DCG as the
initial representation of the document nodes. The final document
representation will be the combination of the textual representation
and the structural representation induced from the DCG. In the
following, we introduce how such structural representations are
learned.

3.2.2 The Graph Module. The graph module is designed to get
the structural representations for document nodes via message
passing in the DCG G. Specifically, we adopt a restricted graph
convolutional network (GCN) to achieve this goal.

Given the DCGG = (V ,E), where for a document node vdi (rep-
resenting document di ), it has the encoding Enc(di ) capturing its
textual information. For a concept node vc j (representing biomedi-
cal concept c j ), it has a pre-trained word embedding representation.
The graph module enhances such representation with the graph
structure in DCG. More concretely, it operates on local neighbor-
hoods in the graph to integrate medical concepts information to
document nodes. This means that we want the information flow
from concept nodes to document nodes and the information flow
between concept nodes, but we do not want the concept node to
be influenced by the information from document nodes since we
assume the semantic of a medical concept is much more concrete
and stable than the document.
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Precisely, at each layer of the GCN, each document node gets
information from its neighboring concept nodes, i.e.,

g(l+1)di
= δ

©­«
∑

m∈Mi

α fm (g(l )di , g
(l )
c j )

ª®¬ (2)

where g(l )di ∈ Rd
(l )

is the hidden state of document node vdi in the
l-th layer of the neural network, with d(l ) being the dimension-
ality of this layer’s representation. Incoming messages from fm
are accumulated and passed through an element-wise activation
function δ (.), such as ReLU.Mi denotes the set of incoming mes-
sages for document node vdi . fm (., .) is typically chosen to be a
(message-specific) neural network-like function or simply a linear
transformation fm (g(l )di , g

(l )
c j ) = Wdgc j with a weight matrix Wd .

α is a reward factor. The neighboring biomedical concepts of an
article may differ in their importance. Therefore, it is reasonable
to assign different weights to those medical concepts in sending
message to their central document node. For those neighboring
concept nodes which do not match any related queries, we set α = 1.
For those neighboring concept nodes which match related queries,
we set α > 1.

At each layer of the GCN, each concept node get information
from its neighboring concept nodes, i.e.,

g(l+1)ci = δ
©­«
∑
n∈Ni

fn (g
(l )
ci , g

(l )
c j )

ª®¬ (3)

where g(l )ci ∈ Rd
(l )

is the hidden state of concept node vci in the
l-th layer of the neural network, with d(l ) being the dimensional-
ity of this layer’s representation. Incoming messages of the form
fn are accumulated and passed through an element-wise activa-
tion function δ (.), such as ReLU. Ni denotes the set of incoming
messages for concept node vci . fn (., .) is typically chosen to be a
(message-specific) neural network-like function or simply a linear
transformation fn (g

(l )
ci , g

(l )
c j ) =Wcgc j with a weight matrix Wc .

In each layer of the GCN, information is only propagated through
neighboring nodes that are directly connected. Thus we can stack
more GCN layers to get a larger node receptive field, i.e. each
node can get information from more distant neighbors through
transitivity on the graph. After L layers, for each document node
vdi we obtain its structural representation GCN(di ) = g(L)di

. Such
representation will be combined with its corresponding textual
representation Enc(di ) to form the final representation of each
document, i.e.

vdi = fl (Enc(di ) ◦ GCN(di )) (4)

where fl is a linear transformation and ◦ is the concatenation
operator. In this way the representation captured both the local
textual information (induced from the encoder) and the global topic
information (learned from the GCN) of each document.

3.2.3 Decoder. Tomake sure document representations can encode
relevant local and non-local concepts, we design a decoder to see if
key relevant information can be reproduced. The decoder takes as
input the representation of each document vdi and generates a title
for the document. In particular, given the document representation

(disease, expansion) (gene, expansion) (demo, expansion)

Word
Embedding

Convolution
Layer

Pooling

Topic fusion of patient 𝑝𝑘

…… …… ……

Figure 4: Query representation learning model based on
CNN.

vdi , we apply a recurrent neural network to generate a word or a
medical concept once a time from a controlled vocabulary including
words and medical entities. The decoder is defined as

w
(i)
1:L = RNN(h(i)1:L , vdi ,Θdec) (5)

w
(i)
1:L represents the generatedword/entity sequence, L is the set max

length of generated sequence. The process would stop early when
‘EOS’ (end-of-sequence) is generated, h(i)1:L = [h(i)1 , h

(i)
2 , ..., h

(i)
L ] de-

notes the hidden states. vdi serves as the initialization for each
state, Θdec denotes parameters of the decoder. We implement the
RNN as a bi-directional LSTM to generate word/entity sequence.

In this way, we can construct the loss to optimize over the model
parameters using the sequence cross-entropy loss shown as follows

Lgraph = −

I∑
i=1

L∑
l=1

p(wl |di ,w<l ;Θ) (6)

where I is the number of documents, L is the max length of gener-
ated sequence of word/entity, Θ represents all parameters involved
in encoder, graph module, and decoder.

4 LEARNING TO RANK DOCUMENTS
In this section, we propose a learning-to-rank model to identify
relevant biomedical articles for a given query (e.g., patient with ge-
netic information in terms of treatment, prevention, and prognosis
of the disease) with the document representation vector learned.
First, we discuss how to effectively represent a query.

4.1 Representation learning for query
Each query contains information including the patient’s disease
name, the relevant genetic variants (which genes), basic demo-
graphic information (age, sex), etc. It is very common that the same
disease and variant have different expressions. For example ‘leu-
cocythemia’ and ‘leukemia’ are the same disease but expressed
in different ways. Disease names are frequently expressed using
abbreviations in literature. Different institutions may name the
same genetic variants in different ways. All these aspects make
it challenging to match the query to relevant biomedical articles.
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Therefore, it is necessary to expand queries to incorporate these
different expressions.

To get the flexible representation of the query, we propose to
utilize a variety of knowledge bases in Table 2 to carefully expand
gene, variant, and disease terms.

Table 2: Knowledge bases used for query expansion

Expansion Knowledge bases

gene name expansion NCBI GeneDB, HGNC, COSMIC, En-
trez Gene Library, NCBI Homo Sapiens,
PMDG

disease expansion NCI thesaurus, MeSH hierarchy,
SNOMED/Lexigram, SNOMED CT

variant expansion COSMIC

Since the query is given as structured patient information includ-
ing disease, variant, and demographic, it is crucial to combine them
together and represent as a vector. We exploit convolutional neural
network (CNN) to convolve structured items and obtain the vector
representation of the query. Note that this part shares the same
pre-trained word embedding vocabulary as is used in the document
representation learning part. The CNN model is shown in Figure 4.

For the query of MeSH terms, we expand each term via knowl-
edge bases in Table 2 and apply CNN to convolve each Mesh term
and its expansion so as to share the same CNN model with clinical
topics.

4.2 Learning to rank biomedical articles
For each (pk ,D) pair, where D is a ranking list (d1,d2,d3, ......)
of biomedical articles with the superscript indicating the ranking
order of the document and pk is the k-th query, we define a relevant
scoring function f (pk ,d

i ) as

f (pk ,di ) =


W × vpk − vdi




1 (7)

where we use an ℓ1 norm in the latent space, but other metrics
could be used as well, vdi is the vector representation obtained
from document representation learning and vpk is the vector rep-
resentation obtained from patient representation learning, W is
linear transformation matrix. The scoring function evaluates the
relevance between pk and di , smaller value indicates higher rele-
vance between pk and di . Therefore, we can generate the following
pairs of partial order from the sample (pk ,D):

f (pk ,d
1) < f (pk ,d

2);

f (pk ,d
1) < f (pk ,d

3);

f (pk ,d
2) < f (pk ,d

3);
......

(8)

With these pairs, we can define the loss of pairwise learning to rank
as follows

Lrank =
K∑
k=1

I∑
i=1

J∑
j>i

max(0, f (pk ,dipk ) − f (pk ,d
j
pk )) (9)

This is a margin loss to make sure the score of dipk is smaller than
d
j
pk when j > i , where dipk denotes the document is ranked as i-th
for the query pk . Our object is to minimize total loss on all training
data. For a new query, the biomedical articles would be ranked
according to the value of scoring function. The ranking model is
trained to give more relevant documents a smaller score by tuning
its parameters to minimize the pairwise maximum margin loss.

Therefore, the total loss of the entire ranking frameworkGRAPHENE
is defined as

L = Lgraph + Lrank (10)
The Adagrad stochastic gradient descent method is used to train
the model with mini-batch mode.

5 EXPERIMENTS
This section describes the details of our empirical study on evalu-
ating our proposed framework, including the ranking benchmark
dataset, the experimental settings, and results.

5.1 Data set
We use the dataset from TREC Precision Medicine track (http:
//www.trec-cds.org/, 2017 and 2018) clinical scenarios and medi-
cal articles for empirical evaluation. We also exploited the MeSH2

terms of each biomedical article in the first dataset as query and
take the corresponding article to be the unique relevant document
to be retrieved. The TREC dataset comprises 80 clinical scenarios
(called topics) with structured patient scenarios including informa-
tion related to disease, genetic variants, demographics, and other
relevant factors. The dataset was curated by precision oncologists
from MD Anderson. Therefore, it included relevant information
about cancer patients such that participant systems can retrieve
pertinent biomedical articles. The biomedical article corpus is com-
posed of approximately 26.8 million MEDLINE abstracts with titles
and associated MeSH terms. It is supplemented with two additional
sets of abstracts: (i) 37,007 abstracts from recent proceedings of
the American Society of Clinical Oncology (ASCO), and (ii) 33,018
abstracts from recent proceedings of the American Association for
Cancer Research (AACR). These additional datasets were added
to increase the set of potentially relevant treatment information.
One reason for this is because the fact that the latest research is
often presented at conferences such as ASCO and AACR prior to
submission to journals (thus these proceedings may represent a
more up-to-date snapshot of scientific knowledge than MEDLINE).

For each clinical topic, there is a list of relevant biomedical ar-
ticles with human-labeled relevance scores. Therefore, it is very
convenient to generate a ranking list of articles for each topic. We
take 50 clinical topics of TREC PM track 2018 as the training set
and the left 30 clinical topics of TREC PM track 2017 as the testing
set. Due to the limited number of clinical topics for training a deep
neural IR model, we use the MeSH terms of each biomedical article
as the corresponding query to pre-train deep neural models. In the
pre-training stage, for each unique ⟨MeSH term, article⟩ pair, we
randomly sample a different article to generate a controlled pair
⟨MeSH terms, unrelated article⟩.
2MeSH (Medical Subject Headings, https://www.nlm.nih.gov/mesh/meshhome.html)
is the National Library of Medicine’s controlled vocabulary thesaurus. Each biomedical
article is associated with a set of MeSH terms describing the content of the citation.
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For each ⟨MeSH term, article⟩ pair, we can take the MeSH terms
as query and search the corresponding article. Since the Mesh terms
and article are one-one co-related. We can take the MeSH terms as
another query set to conduct biomedical literature retrieval task.
We split all pairs of ⟨MeSH, article⟩ and corresponding ⟨MeSH term,
unrelated article⟩ into a training/validation/test set randomly, with
the ratio of 8:1:1. The first part is for the training model, the second
for hyper-parameter tuning, and the third for evaluation. Since
there is only one matched article for a particular MeSH term query
in most cases. Therefore, it is more reasonable to use Prec.1 and
MRR instead of Prec.10 and NDCG.20 (which are explained in detail
below) as the metrics to evaluate the performance on the query set
of MeSH terms.

5.2 Evaluation Metrics and Settings
We introduce a set of metrics for evaluating the retrieval perfor-
mance of the algorithms. All metrics have values in the range of
[0, 1], with higher values for better rankings. When generating the
ranked list, for documents with the same relevance scores, they
will be ranked according to their IDs.

5.2.1 NDCG. Discounted Cumulative Gain (DCG) [18] is a rel-
evance and rank correlation metric that penalizes placement of
relevant documents at lower ranks. The traditional formula of DCG
accumulated at a particular rank position n is defined as:

DCG(n) =
n∑
i=1

reli
log2(i + 1)

(11)

Where reli is the graded relevance of the result at position i . Nor-
malized Discounted Cumulative Gain (NDCG) then measures the
relative DCG of a ranking compared to the best possible ranking
for that data: NDCG(n) = DCG(n)/IDCG(n), where IDCG(n) is the
DCG(n) for the ideal ranking. When there are multiple queries,
NDCG refers to the mean value across queries. We use the scaled
relevance levels, and quote “NDCG.20" metrics for n = 20.

5.2.2 Precision at Rank, MRR and MAP. Average Precision mea-
sures, for a single query, is the weighted sum of the precision
observed in a ranked list up to each specific rank weighted by the
actual relevance score of the corresponding document, averaged
over the number of relevant documents for that query. It is thus
a ranking measure that factors out the size of the ranked list and
the number of relevant documents, without any rank-based penal-
ization or discounting. The Mean Average Precision (MAP) is the
mean of the Average Precision across queries in our test dataset.
The Precision at rank n metrics (“Prec.n") is the retrieval precision
at rank n. The mean reciprocal rank (MRR) is the multiplicative
inverse of the rank of the first correct answer.

5.2.3 Implementation Details. In the experiments, we evaluate the
performance of GRAPHENE in two query sets for retrieving biomed-
ical articles, including (1) clinical topics, and (2) MeSH terms. Our
RNN network is a 3-layer BiLSTM with pre-trained word embed-
dings. Hyperparameters of our 2-layer GCN are set by the same
values reported in Kipf and Welling [20]. We follow the training
procedure outlined in Section 4.2 with the word embeddings setup
in Section 5.4. The best setting of the reward factor α for those
matched concept nodes is 1.6. We use a dropout rate of 0.5 and

train the model with Adagrad SGD with the initial learning rate of
0.001 and momentum of 0.9 for 50 epochs. For baseline deep neural
models, we use the same setting reported in their corresponding
papers.

5.3 Baselines
We compared the performance of GRAPHENE with the following
IR models as baselines.

BM25 [28] is a bag-of-words retrieval model that ranks a set
of documents based on the appearance of the query terms in each
document, regardless of the intra-relationship between the query
terms within a document (e.g., their relative proximity).

DLH13 (DFR) [1] is a probabilistic retrieval model based on
vector matching. However, they replace the term frequencies in the
bag-of-words model with the probabilities inferred from a fitted
Poisson model.

DeepMatch [22] is a deep learning architecture aiming at cap-
turing the complicated matching relations between two objects
from heterogeneous domains more effectively. DeepMatch is an
interaction-focused model. It directly modeled the object-object in-
teractions with a CNN-based architecture. In particular, it convolves
on object-object interaction matrix and predicts if two objects are
related.

Delta [25] constructs a “modified" document matrix first by
replacing the words in the documents by the closest words in the
query. Convolutions will be performed on this matrix to obtain a
final relevance score.

5.4 Pre-trained word embeddings
We initialized the word embedding matrix with three types of
pre-trained word embeddings respectively. The first is Word2Vec
100 dimensional embeddings trained on all 27.5 million MEDLINE
biomedical articles in our data. The second is GloVe 100 dimen-
sional embeddings trained on the same entire 27.5 million MED-
LINE biomedical articles. The third is the randomly initialized 100
dimensional embeddings which are uniformly sampled from range
[−

√
3

dim ,+
√

3
dim ], wheredim is the dimension of embeddings [12].

5.5 Results
This section presents the performance results of different retrieval
models over the two benchmark query sets. The overall summary
of the results is displayed in Table 3.

From the table we can observe that

• The deep neural IR models, Delta and DeepMatch, perform
significantly better than the traditional retrieval models. This
verifies the advantage of these deep neural models for re-
trieving relevant documents compared to retrieval models
based on simple matching with one-hot representations.

• The TREC PM track models are the top two results reported
at TREC precision track 2017. Since these two models uti-
lize many external knowledge bases, rules, and ensemble
strategies, these top two TREC PM track models produce
very good results.

• Our GRAPHENE system achieves the best performance.
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Table 3: Comparison of different retrieval models over the query sets MeSH terms and clinical topics. The value with * is
infNDCG value.

Model Type Model Name MeSH terms Clinical topics

Prec.1 MRR MAP NDCG.20 MAP Prec.10

Traditional Retrieval Models BM25 0.0927 0.2364 0.2359 0.2832 0.0908 0.2967
DLH13 0.1374 0.2873 0.2856 0.4726 0.1280 0.4800

Deep Neural IR Models DeepMatch 0.2111 0.3604 0.3589 0.6081 0.4375 0.6132
Delta 0.3136 0.3897 0.3842 0.6796 0.4856 0.6831

TREC PM track UD_GU_BioTM - - - 0.4135* - 0.6400
UTD HLTRI - - - 0.4593* - 0.6172

Our Approach
GRAPHENE(-graph) 0.2745 0.3712 0.3674 0.6138 0.4693 0.6342
GRAPHENE(-reward) 0.3354 0.4269 0.4243 0.6736 0.5732 0.6837

GRAPHENE 0.3356 0.4296 0.4276 0.6907 0.5967 0.7024

In order to test the necessity of the different components in
GRAPHENE, we also implemented two variants. GRAPHENE(-
graph) excludes the graph module in document representation
learning part. GRAPHENE(-reward) ignores the reward part when
the passing message from concept nodes to document nodes by
assigning equal weights on all messages. From the results we can
see that both variants perform worse than the original GRAPHENE,
which indicates that all components in GRAPHENE are important
and necessary.

Moreover, we can also observe that GRAPHENE performs the
best on the query set of MeSH terms, which is a one-one match-
ing problem, which means that given a set of MeSH terms only
one biomedical article should be matched in most cases. This also
demonstrates the potential of our model in precise searching prob-
lems such as question answering, email search, citation recommen-
dation, etc.

Table 4: Performance with different choices of pre-trained
word embeddings on deep neural IR models

Word Embedding Model MAP
MeSH terms Clinical topics

Random
DeepMatch 0.1826 0.2723
Delta 0.3276 0.4054
GRAPHENE 0.3629 0.4362

Word2Vec
DeepMatch 0.33326 0.4155
Delta 0.3521 0.4645
GRAPHENE 0.4131 0.5903

Glove
DeepMatch 0.3589 0.4375
Delta 0.3842 0.4856
GRAPHENE 0.4276 0.5967

We have also tested the effects of initialization with different
strategies for pre-training the word embeddings described in Sec-
tion 5.4. The results are shown in Table 4. From the table we can
observe that

• Models using pre-trained word embeddings achieve a sig-
nificant improvement as opposed to the ones using random
embeddings.

• Models usingGloVe embeddings outperforms usingWord2Vec
consistently for different neural models in different data sets.

• DeepMatch and Delta rely more heavily on pre-trained word
embeddings compared to our proposed GRAPHENE.

The reason why pre-trained word embeddings affect less on our
GRAPHENE is probably due to the encoder-decoder part of GRAPHENE
to generate title can provide training of more customized word em-
beddings on large-scale abstract-to-title samples.

Moreover, we also investigated the importance of pre-training via
the query set of MeSH terms for biomedical literature retrieval. We
have performed experiments without pre-training on ‘MeSH terms’
and directly trained the model on 50 clinical topics. According to
the results in Table 5, deep neural IR models without pre-training
using MeSH terms query set drop sharply on the performance
of biomedical literature retrieval. Compared to DeepMatch, the
performance of Delta and our proposed GRAPHENE have a greater
dependency on the pre-training with large-scale data.

Table 5: Performance without pre-train via MeSH terms on
deep neural IR models

Model NDCG.20 MAP Prec.10

DeepMatch 0.1767 0.1265 0.1923
Delta 0.1134 0.0843 0.1243

GRAPHENE 0.1221 0.0752 0.1385

Figure 5 shows the overall scores of our model for biomedical
literature retrieval across all 30 clinical topics as compared to Delta
and DeepMatch. From the figures we can see that GRAPHENE
performs consistently better than the baseline models for nearly
all the topics across all evaluation measures on the query set of
clinical topics. Delta outperforms GRAPHENE in 4 clinical topics
and DeepMatch outperforms Delta in 3 clinical topics. Here, it is
worth to mention that the first and second sub-figures in Figure 5
show the evaluation on top n documents and the third sub-figure
in Figure 5 shows the evaluation on all related documents, and the
evaluation on top n results is much more stable than the evaluation
on all related documents.

The last question we investigated is whether the size of pre-
training query set ofMeSH termswould affect the final performance.
As shown in Figure 6, we check the performance of deep neural
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Figure 5: Prec.10 scores, NDCG.20 scores andMAP scores for
each clinical topic.

IR models on biomedical literature retrieval of clinical topics by
incrementally augmenting pre-training data. The results indicate
clearly that the size of pre-training data plays a key role in all three
deep neural IR models, and it is more critical to GRAPHENE and
Delta, both of which are representation-focused models rely more
heavily on large scale of pre-training data. This is consistent with
the results of previous work [34].

Case Study: Last but not the least, we performed a case study
to better understand the power of GRAPHENE. Table 6 shows an
example of retrieved relevant documents that are placed at rank 1
by GRAPHENE, DeepMatch and Delta, with respect to a specific
query. We highlight the biomedical concepts which are contained
in query in blue bold text and the relevant medical concepts with
entity in query blue italic text. From the results we can see that in
the document retrieved by GRAPHENE, there are matched disease
name “pancreatic cancer", matched gene variant “CDK6" and the
relevant medical concept “arsenic trioxide" (treatment of the pan-
creatic cancer), while only the disease name “pancreatic cancer"
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Figure 6: Comparison of deep neural IRmodels by incremen-
tally augmenting pre-training query set of MeSH terms.

appears in the most relevant document identified by Delta and
DeepMatch. This demonstrates the strong potential of GRAPHENE
on identification of semantic similar items despite the different
exact term expressions.

6 CONCLUSION
In this paper, we proposed a deep neural biomedical literature re-
trieval framework GRAPHENE which consists of graph-augmented
document representation learning, query expansion, and repre-
sentation learning, and learning to rank biomedical articles. The
graph-augmented document representation learning is applied
upon a document-concept graph which contains biomedical con-
cept nodes and document nodes so that global biomedical concept
co-occurrence can be explicitly modeled and graph convolution can
be easily adapted. Query representation learning exploits a CNN-
based model to convolve structured items of patients and output the
vector representation for each query. A learning-to-rank algorithm
is proposed to use partial order between biomedical articles with the
given patient and learn the rank of relevant articles. Experimental
results on TREC Precision Medicine track data provided compelling
evidence to support that our model can effectively retrieve most
relevant biomedical articles for a given query. The results also
demonstrated that our GRAPHENE improves previous deep neural
retrieval models which represent the document with textual in-
formation only, suggesting the necessity of encoding graph-based
external knowledge bases into document representation.

Since the great success of pre-trained BERT model in modeling
long text for many NLP tasks recently [2, 5], we want to integrate
it into our present GRAPHENE to replace the RNN-based encoder-
decoder module in our future work. Additionally, we also want
to leverage advantages from both representation-focused models
and interaction-focused models for our future work as they have
respective advantages.
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Table 6: Examples of matched documents ranked as top 1 by different deep neural IR models. Bold blue text is the medical
concepts which appear in the query, italic blue text is the related medical concept.

Query Model Document
GRAPHENE We have previously shown that arsenic trioxide blocks proliferation and induces apoptosis in human pancreatic

cancer cells at low, ...... expression of CDK2, CDK4, CDK6, and cyclin E were not affected ...... In summary, arsenic
trioxide induced apoptosis in pancreatic cancer cells through activating the caspase cascade via the mitochondrial
pathway ...... This old drug may be valuable for treatment of pancreatic cancer.

Pancreatic cancer;
CDK6 Amplification;
48-year-old male

Delta ...... An association has been reported between p16 mutations and pancreatic cancer ...... The second most frequent
cancer was pancreatic cancer ...... of pancreatic cancer was ...... The estimated cumulative risk of developing
pancreatic cancer in putative mutation ...... no cases of pancreatic cancer occurred. p16 mutation carriers have
a considerable risk of developing pancreatic cancer ......

DeepMatch ...... An association has been reported between p16 mutations and pancreatic cancer ...... The second most frequent
cancer was pancreatic cancer ...... of pancreatic cancer was ...... The estimated cumulative risk of developing
pancreatic cancer in putative mutation ...... no cases of pancreatic cancer occurred. p16 mutation carriers have
a considerable risk of developing pancreatic cancer ......
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