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ABSTRACT

Many real-world problems are time-evolving in nature, such as

the progression of diseases, the cascading process when a post

is broadcasting in a social network, or the changing of climates.

The observational data characterizing these complex problems are

usually only available at discrete time stamps, this makes the exist-

ing research on analyzing these problems mostly based on a cross-

sectional analysis. In this paper, we try tomodel these time-evolving

phenomena by a dynamic system and the data sets observed at dif-

ferent time stamps are probability distribution functions generated

by such a dynamic system. We propose a theorem which builds a

mathematical relationship between a dynamical system modeled by

differential equations and the distribution function (or survival func-

tion) of the cross-sectional states of this system. We then develop

a survival analysis framework to learn the differential equations

of a dynamical system from its cross-sectional states. With such a

framework, we are able to capture the continuous-time dynamics

of an evolutionary system. We validate our framework on both

synthetic and real-world data sets. The experimental results show

that our framework is able to discover and capture the generative

dynamics of various data distributions accurately. Our study can po-

tentially facilitate scientific discoveries of the unknown dynamics

of complex systems in the real world.
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1 INTRODUCTION

Most of the real world problems are dynamic in nature, however,

what we can observe are only cross-sectional states at specific time

points. Inferring the evolutionary dynamics of a complex system

from the observations of its cross-sectional states is a fundamental

research problem in various domains, ranging from biology [10],

physics [3], social science [14], to computer science [21], etc. For

example, Barabási and Albert [5] studied how complex networks

grow over time by observing their cross-sectional power-law degree

distributions. Yoshida et al. [22] inferred the evolutionary mecha-

nisms of an ecological system from its cross-sectional abundance of

species. Sinatra et al. [18] and Wang et al. [19] explored how schol-

ars’ scientific impact changes at long term by studying the citation

distribution of their papers. Oliveira and Barabási [16] inferred the

decision-making dynamics of human beings from the inter-event

time distribution of the correspondence patterns of Darwin and

Einstein (or from the online collaborations behaviors [28]). Pierson

et al. [17] inferred the longitudinal progression patterns of diseases

from cross-sectional patients’ records. In those cases, it is usually

difficult to infer the continuous-time evolutionary dynamics of

the system because of its complexity and/or the lack of longitu-

dinal records. Moreover, the existing research on understanding

such dynamics is mostly case-by-case in different scenarios. To the

best of our knowledge, there is no prior work trying to derive a

general theoretical framework to reveal the intrinsic relationship

between various dynamical systems and the distributions of their

cross-sectional states. Such a relationship can further be helpful of

learning the evolutionary dynamics of complex systems directly

from their cross-sectional data samples. This can facilitate scientific

discoveries of the unknown evolutionary mechanisms of complex

dynamical systems (e.g., complex social, biological, environmental

and environmental systems, etc.) in the real world, based on which

we can make better prediction [11] and control [12].
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We aim at filling in such a gap in this paper. Specifically, we theo-

retically prove that the distribution function (e.g., the heavy-tailed,

narrow-tailed, power-law or S-shaped, etc.) of the cross-sectional

states (e.g., nodes’ degree, citation number, wealth, cities’ or tu-

mors’ size, etc.) of a dynamical system, is generated by a dynamical

system modeled by differential equation
dxi (t )
dt |x0 =

dF −1(1−
ti
t )

dt =

dΛ−1(ln(
S (x

0
)

ti
t ))

dt with uniform random signals as inputs (Theorem 2.1

and Corollary 2.1.1). Under this theorem, we prove the equivalence

between probability distributions and their generative dynamics,

and develop a set of statistical tools to infer their possible gener-

ative dynamics from the cross-sectional distributions of observed

data samples.

In order to demonstrate the capabilities of our theory, in Ta-

ble 1 we derive the generative dynamics of several distributions

describing the cross-sectional states of dynamical systems, ranging

from narrow-tailed distributions to heavy-tailed ones, and then

find new cross-sectional distributions of several typical dynamical

systems composed of interpretable mechanisms like preferential

attachment, growth competition, environment limit, and so on [4].

Many of these derived distributions and dynamical systems are

discovered for the first time. Furthermore, we propose a showcased

statistical model based on survival analysis to encompass typical

dynamical mechanisms, which enables the learning process of the

underlying dynamics of complex systems directly from data.

We validate our framework on both synthetic and real-world

data sets. As for the synthetic data sets, our framework recovers the

ground-truth distributions (covering narrow-tailed, heavy-tailed

andmixture distributions) and their generative dynamics accurately.

We then apply our framework to a wide range of real-world data

sets to infer their generative dynamics. Even if the distributions of

real-world data sets exhibit more complexities, our framework is

able to capture and reproduce the real-world data sets accurately.

This implies that our approach can uncover plausible generative

dynamics of the observed data. It is worthwhile to highlight our

contributions as follows:

• ANovel Theorem:We give a theorem which builds a math-

ematical relationship between a dynamical system described

in differential equations and the distribution or survival func-

tion of the cross-sectional states of this dynamical system.

(Section 2).

• Novel Findings: By applying our theorem, we have dis-

covered many new distributions, new hazard functions in

survival analysis and new differential equations describing

dynamical systemswith interpretablemechanisms (Section 3,

see Table 1).

• A Practical Model: We propose a statistical model to learn

the differential equations of unknown dynamical systems

directly from empirical datasets (Section 4).

2 PROPOSED THEOREM

2.1 Notations

Notations in probability theory, survival analysis, point process [1]

and dynamical systems /differential equations [4] are used:

• Probability theory: LetX be a random variable generated from

a cumulative distribution function F (X ≤ x) =
∫ x
x0

f (s)ds =

1 − S(X > x), and we observe n data samples x1, ..., xn . Here
we assume the F (X ) is absolutely continuous. The f (x) and
S(x) = 1 − F (x) are the probability density function and the

survival function (or complementary cumulative distribution

function) of the X respectively.

• Survival analysis:The hazard function λ(x) of theX is defined

as:

λ(x ) = lim

∆x→0
+

Pr (x ≤ X < x + ∆x |X ≥ x )
∆x

=
f (x )
S (x )

, (1)

interpreted as the the probability of X sampled with value

x+ conditional on X not being sampled with value smaller

than x . We define Λ(x) =
∫ x
x0

λ(s)ds as the cumulative hazard

function. Due to the fact that Λ(x) is monotonically increas-

ing, thus Λ(x) is invertable and we define Λ−1
: R+ → R,

Λ−1(Λ(x)) = x . Similarly, we can define F−1 : R+ → R,

F−1(F (x)) = x .
• Point process: We use P(t |λp ) = {t1, ..., ti , ...|0 < t1 ≤

... ≤ ti ≤ .. ≤ t} to denote a Poisson point process un-

til time t with the occurrence time ti of event i , and intensity
rate λp > 0. Its equivalent counting process is N (t |λp ) =∑
i≥1 1(0,t ](ti ).

• Dynamical system: We define a dynamical system changing

over time t by differential equationsD(t) = {xi (t)|
dxi (t )
dt ,xi (ti ), i =

1, 2, ...}, where xi (t) is the state of the i
th

agent who joined

the system at time ti > 0, and the state of agent i is chang-

ing according to the differential equation
dxi (t )
dt with initial

value xi (ti ).

2.2 Proposed Theorem and Corollary

Our main theorem gives the generative dynamics of an arbitrary

distribution function F (x) as follows:

Theorem 2.1. Given a dynamical systemD(t) = {xi (t) > 0|
dxi (t )
dt ,

xi (ti ) = x0; i = 1, 2, ...} consisting of agent i who arrives in the system
at time ti according to a Poisson process P(t |λp ) = {t1, ..., ti , ....|0 <
t1 ≤ ... ≤ ti ≤ ... ≤ t} , the state of agent i changes accord-
ing to a differential equation dxi (t )

dt |x0 with initial value x0, and
the cross-sectional states of D(t) at time point t , namely x(t) =
{x1(t), ...,xi (t), ...}, follows the distribution F (x(t)) if and only if
dxi (t )
dt |x0 =

dF −1(1−
ti
t )

dt .

Corollary 2.1.1. Under the same conditions as Theorem 2.1, the
cross-sectional states x(t) = {x1(t), ...,xi (t), ...} of D(t) at time t

follows distribution F (x(t)) if and only if dxi (t )
dt |x0 =

dΛ−1(ln(
S (x

0
)

ti
t ))

dt .

Usually, the survival function S(x0) = 1 at the initial state x0,

and thus we get the generative dynamics as
dxi (t )
dt |x0 =

dΛ−1(ln t
ti
)

dt .

According to the theorem and the corollary, the statistical prop-

erties of F (x), say heavy tail, narrow tail, power law, or S-shape

etc., essentially originate from the growth dynamics
dxi (t )
dt |x0 =

dF −1(1−
ti
t )

dt =
dΛ−1(ln(

S (x
0
)

ti
t ))

dt consisting of agents who randomly

comes to the system at a constant speed with same initial state x0.
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Figure 1: Our theorem and the corollary connect the dots
above.

By applying our Theorem 2.1 and Corollary 2.1.1, we try to build

a mathematical relationship between a dynamical system governed

by differential equations, and the distributions or hazard functions

of the system’s cross-sectional states as shown in Fig. 1. Examples

are shown in Table 1 and discussed in detail in Section 3.

2.3 Proof

Based on Lemma 2.2, 2.3 and 2.4, we show the detailed proof of

Theorem 2.1 and the Corollary 2.1.1.

Lemma 2.2. [8] Given a Poisson processP(t |λp ) = {t1, ..., ti , ...|0 <
t1 ≤ ... ≤ ti ≤ .. ≤ t} with N (t |λt ) = n, then the probability density
function of a random event time ti given the total time t is f (ti ) = 1

t ,
indicating a uniform distribution on (0, t].

Proof. The joint probability density function of random vari-

ables ti , i = 1, ...,n is:

Pr (ti < Ti ≤ ti + δi , i = 1, ..., n |N (t ) = n) =
Pr (N (ti + δi ) − N (ti ) = 1, N (tj+1) − N (tj + δj ) = 0,

i = 1, ..., n, j = 0, ..., n, t0 = 0, δ0 = 0)

Pr (N (t ) = n)


=

∏n
i=1 λpδi e

−λpδi e−λp (t−
∑n
i=1 δi )

e−λp t (λp t )n/n!
=

n!
tn

n∏
i=1

δi ,

(2)

and thus:

f (ti , i = 1, ..., n |N (t ) = n)

= lim

ti→0,i=1, . . .,n

Pr (ti < Ti ≤ ti + δi , i = 1, ..., n |N (t ) = n)∏n
i=1 δi

=
n!
tn

,

(3)

where 0 < t1 ≤ ... ≤ ti ≤ ... ≤ t . For the order statistics ti , i =
1, ...,n, f (ti ) =

1

t . □

Lemma 2.3. [9] Given a random variable u which follows uniform
distribution U (0, 1], then x = F−1(u) follows distribution F (x). Also,
if X follows distribution F (x), then F (x) follows uniform distribution
U (0, 1].

Proof. The cumulative density function of random variables x
is:

Pr (F −1(u) ≤ x ) = Pr (u ≤ F (x )) = F (x ), and also

Pr (F (x ) ≤ u) = Pr (x ≤ F −1(u)) = F (F −1(u)) = u
(4)

□

Lemma 2.4. Given a random variable u which follows uniform
distributionU (0, 1], then x = Λ−1(ln

S (x0)
u ) follows distribution F (x).

Also, S(x0)e−Λ(x ) follows uniform distribution U (0, 1].

Proof. According to the definition of hazard function λ(x),

λ(x ) =
f (x )
S (x )

=
−S ′(x )
S (x )

, (5)

by integrating both sides from initial state x0, we get∫ x

x
0

λ(s)ds = Λ(x ) = − ln

S (x )
S (x0)

, (6)

leading to

S (x ) = 1 − F (x ) = S (x0)e−Λ(x ) . (7)

Based on the result of Lemma 2.3, we get:

x = Λ−1(ln
S (x0)
1 − u

) (8)

follows distribution F (x). Because 1 − u also follows U (0, 1], we

get the result x = Λ−1(ln
S (x0)
u ) follows distribution F (x), and

S(x0)e
−Λ(x )

follows uniform distribution U (0, 1]. □

Right now, we lead to the proof of the main Theorem 2.1 and its

main Corollary 2.1.1:

Proof. For any agent xi in the dynamical system D , its arriving

time ti follows Poisson process P(t |λp ) = {t1, ..., ti , ...|0 < t1 ≤

... ≤ ti ≤ .. ≤ t} with N (t |λt ) = n, then ti
t follows uniform

distribution U (0, 1] (Lemma 2.2). Replace u = 1 −
ti
t in F−1(u) and

u = ti
t in Λ−1(ln

S (x0)
u ), get:

xi (t ) =
∫ t

t
0

dτ
dF −1(1 −

ti
τ )

dτ
= F −1(1 −

ti
t
) − F −1(1 −

ti
t0
).

xi (t ) =
∫ t

t
0

dτ
dΛ−1(ln(

S (x
0
)

ti
τ ))

dτ
= Λ−1(ln(

S (x0)
ti

t )).

(9)

follows distribution F (x(t)) , and also F (x(t)) has dynamicsïĳŽ

dxi (t )
dt

|x
0
=
dF −1(1 −

ti
t )

dt
=
dΛ−1(ln(

S (x
0
)

ti
t ))

dt
(10)

due to the equivalence described in Lemma 2.3 and 2.4. □

When S(x0) = 1, above equation leads to:

dxi (t )
dt

|x
0
=
dF −1(1 −

ti
t )

dt
=
dΛ−1(ln( tti

))

dt
. (11)

2.4 Parameter Estimation

Due to the equivalence of the dynamics
dxi (t )
dt and the distribution

f (x) described in the Theorem 2.1 and Corollary 2.1.1, we can learn

their shared parameters by observations collected from either of

them. Usually, we only get the cross-sectional observations f (x).
Thus, here we only show the parameter inference procedure with

respect to cross-sectional data.

Given a set of cross-sectional data {x1, ...,xn−1,xn }t , we learn
the parameters Θ of the distribution f (x |Θ), or λ(x |Θ) by maximiz-

ing their log-likelihood function:

max

Θ
ln L(Θ |x1, ..., xn ) = ln

n∏
i=1

f (xi )

= ln

n∏
i=1

λ(xi )e−Λ(xi ) =
n∑
i=1

ln λ(xi ) −
n∑
i=1

Λ(xi )

(12)
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according to the parametric forms of f (x |Θ) and the relationship

f (x |Θ) = λ(x |Θ)e−Λ(x |Θ). Then, the estimated generative dynamics

is
dx̂i (t |Θ̂)

dt |x0 =
dΛ−1(ln(

S (x
0
|Θ̂)

ti
t ) |Θ̂)

dt . We show that sometimes it’s

more handy to use the Corollary 2.1.1 with respect to the survival

function and the hazard function in Section 4 Learning Dynamics
from Empirical Data.

2.5 Generator

Data samples can be generated through either dynamical system

side or distribution side. To generate cross-sectional data sam-

ples of xi (t) i = 1, 2, ... given generative dynamics
dxi (t )
dt |x0 is

straightforward by applying Theorem 2.1, namely observing xi (t) =∫ t
t0

dxi (τ )
dτ dτ at time t where arriving time ti of each agent i follows

Poisson process P(t |λp ) = {t1, ..., ti , ...|0 < t1 ≤ ... ≤ ti ≤ .. ≤ t}
and i = 1, ...,N (t |λt ).

On the other hand, to generate data samples from distribution

side, especially the cumulative hazard rate, the method is based

on solving the equation ln(u) + Λ(x) = ln S(x0) for x , where u is

generated from uniform distributionU (0, 1]. We can apply the most

general method, like Newton’s iterative method to solve above

equation. When we have F (x), S(x) or Λ(x), we can get samples by

using Lemma 2.3 or Lemma 2.4.

3 DISCOVERING DYNAMICS AND

DISTRIBUTIONS

By applying our Theorem 2.1 and Corollary 2.1.1, we discover (i)
generative dynamics of given distributions, and (ii) new (cross-

sectional) distributions generated by given dynamical systems at

time t . (iii) Interpretable patterns of dynamical systems, namely

“mechanisms”, are summarized. (iv) New distributions with needed

dynamic properties can be designed in a principled way.

In a word, we try to find intrinsic relationships between the cross-

sectional distributions, hazard functions in survival analysis and

their longitudinal generative dynamics. We showcase our results

in Table 1. Key steps to derive the table are shown in Table 3.

3.1 Discovering Longitudinal Generative

Dynamics

We have discovered some new generative dynamics of typical distri-

butions by the Theorem 2.1 and Corollary 2.1.1 (Refer to Table 1). To

the best of our knowledge, only exponential, power law, stretched

exponential (or Weibull) distributions and their generative dynam-

ics are discussed case by case [4].

• Power-law and Exponential distributions. Power-law

distribution f (x) = αxα
0
x−(α+1) where x ≥ x0 is famous

for its scaling property and generative mechanisms [5]. Its

hazard rate is in a much simpler form
α
x . By using the

Corollary 2.1.1 , we get the generative growth curve xi (t) =

x0(
t
ti )

1

α and the dynamic differential equation
dxi (t )
dt =

xi (t )
αt

(shown in Table 1). As for the studies on complex network

(statistical physics), the xi (t) represents the degree of node i ,

and
dxi (t )
dt ∝ xi (t) means the preferential attachment mech-

anism of network evolution. The αt represents the growth

competition due to the arriving of new nodes. In the sce-

nario of economy, the xi (t) represents the wealth and the

dxi (t )
dt ∝ xi (t) means the rich-get-richer (or Matthew) phe-

nomena. The αt represents the growth of the competition

due to the new competitors pouring into the market. Similar

dynamic ideas are applied to Dirichlet process. In contrast,

the exponential distribution f (x) = αe−αx has generative

dynamics
dxi (t )
dt = 1

αt , without the preferential attachment

term xi (t) and the growth rate decaying linearly due to the

growth competition, which corresponds to the random graph

scenario.

• Stretched-exponential orWeibull distributions. For the

stretched exponential f (x) = α
xθ

e−
α

1−θ (x
1−θ )

and Weibull

f (x) = αλαxα−1e−(λx )
α
, they share the same dynamics,

namely
dxi (t )
dt =

xθi (t )
αt and

dxi (t )
dt =

x 1−α
i (t )
λα αt . Compared

with the power law distribution, they have non-linear prefer-

ential attachment growth dynamics xθi (t), tuned by a power

exponent θ .
• Sigmoid and Log-logistic distributions. Sigmoid distri-

bution f (x) = ex
(1+ex )2 is widely used in deep learning as an

activation function. Our theorem explains its generative dy-

namics as
dxi (t )
dt = 1

t−ti , featuring a singular burst (of rate)

at the birth time ti and then growing ln( tti − 1) similar to the

exponential case ln( tti )/α . As for the log-logistic distribution

f (x) = λα (λx )α−1

[1+(λx )α ]2 , its generative dynamics
dxi (t )
dt =

xi (t )
α (t−ti )

,

which also has the singular burst rate at birth time ti but
with a much faster growth due to the linear preferential-

attachment term xi (t).
• Log-normal and Normal distributions. Log-normal dis-

tribution f (x) = 1

x
√
2π

e−
(lnx )2

2 and normal distribution f (x) =

1√
2π

e−
x2
2 have the inferred generative dynamics

dxi (t )
dt =

xi (t)
dΦ−1(z)

dz
ti
t 2 and

dxi (t )
dt =

dΦ−1(z)
dz

ti
t 2 respectively, where

z = 1−
ti
t . They both decaywith squared growth competition,

but the log-normal has the linear preferential attachment

term xi (t), implying the heavy-tailed property.

• Uniform distribution. The uniform distribution f (x) =
1

b−a corresponds to the generative dynamic xi (t) = b −

(b − a) tit , which follows constrained exponential growth as

discussed later. The differential rate
dxi (t )
dt =

b−xi (t )
t features

an environment limit term b − xi (t) and growth competition

term
1

t .

3.2 Discovering Cross-sectional Distributions

Next, we get some new cross-sectional distributions generated

from dynamical systems with interpretable mechanisms [2] (Refer

to Table 1):

• Exponential growth. Due to the fast growth rate
dxi (t )
dt =

xi (t )
α , the uniform inputs lead to very heterogeneous outputs

transformed by an exponential growth system, exhibiting

a log-power-law distribution (or log-Cauchy distribution)
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f (x(ti )) =
α
ti

x ( αti ln
x
x
0

+1)2
. The ti in f (x) implies that the f (x)

is changing (unstable) over time. The exponential growth

can be explained by a branching process where
1

α is the

average branching factor, the growth of a full tree, and the

division of a cell at an early stage.

• Power-Lawand Stretched-Exponential growth.The power-

law growth dynamics
dxi (t )
dt =

xi (t )
αt and the stretched-

exponential growth dynamics
dxi (t )
dt =

xi (t )
αtθ

[23], featur-

ing preferential attachment xi (t) and linear- or non-linear-

growth competitions respectively. The power-law distribu-

tion f (x) = αxα
0
x−(α+1) is generated by power-law growth

dynamics, while the log-power-law distribution

f (x) =

α
t1−θi

x [ α (1−θ )
t1−θi

ln
x
x
0

+1]
2−θ
1−θ

with tuned exponent θ is gener-

ated by the stretched-exponential dynamics.

• Sigmoid, Log-Logistic, and Stretched Log-Logistic growth.

Following the logistic growth framework (preferential attach-

ment term times environment limit term xi (t) ∗ [N − xi (t)])
but with different rate of the growth competition, the Sig-

moid growth
dxi (t )
dt =

xi (t )[N−xi (t )]
α , log-logistic growth

dxi (t )
dt =

xi (t )[N−xi (t )]
αt , and the stretched-log-logistic growth

dxi (t )
dt =

xi (t )[N−xi (t )]
αtθ

, generate complex logistic form dis-

tributions as shown in Table 1. Taking the log-logistic growth

dxi (t )
dt =

xi (t )[N−xi (t )]
αt dynamics as an example, we can in-

terpret it as a growing scale-free network model with degree

constraints on the hub nodes, leading to more hubs with

moderate degree rather than few oligarchs.

• Confined Exponential, Confined Power-Law, andCon-

fined Stretched-Exponential growth. Following the con-

fined growth framework (environment limit term N − xi (t))
butwith different rate of the growth competition, the confined-

exponential growth
dxi (t )
dt =

N−xi (t )
α , confined-power-law

growth
dxi (t )
dt =

N−xi (t )
αt , and the confined stretched-exponential

growth
dxi (t )
dt =

N−xi (t )
αtθ

, generate complex confined-form

distributions as shown in Table 1. The uniform distribution

is generated from a special case of the confined power law

growth.

3.3 Interpretations and Implications

We further summarize common generative patterns of the cross-

sectional distributions by our theorem. For example, faster the

growth dynamics is, more heavy-tailed the distribution is, implying

a large data variance. We find the preferential attachment term

dxi (t )
dt ∝ xθi (t) is the common ingredient for the heavy-tailed

distribution, like power-law, stretched-exponential (or Weibull),

log-normal, log-logistic, log-power-law etc. as shown in Table 1. In

contrast, the faster the growth competition
dxi (t )
dt ∝ 1

tθ
is, like the

square competition in the dynamics
dxi (t )
dt =

dΦ−1(z)
dz

ti
t 2 of normal

distribution and the linear competition in the dynamics
dxi (t )
dt = 1

αt
of exponential distribution, the narrower the tail is, and thus less

variance.

On the other hand, distributions can be designed by their gener-

ative dynamics. For example, the since-then-growth-competition

1

t−ti can be used to design activation function with an initial burst,

the environment limit N − xi (t) and growth competition mecha-

nisms can be used to add constraints on the variance. Other ingre-

dients like the preferential attachment is used to generate heavy-

tailed distributions, and non-linear power exponent is used to add

model flexibility, and the combinations of above mechanisms can

be utilized to construct totally new and complex distributions with

needed dynamical properties.

4 LEARNING DYNAMICS FROM EMPIRICAL

DATA

In the previous section, we show how to infer the generative dy-

namics from distributions and how to get cross-sectional distribu-

tions from generative dynamics by our theorem. In this section, we

showcase a simple but versatile model by applying our theorem to

learn the dynamics directly from empirical data samples, together

with distribution fitting and sample generation procedures. More

complex models can be formulated in a similar way.

Applying our Theorem 2.1 and Corollary 2.1.1, we showcase a

parametric model to capture complex empirical distributions, which

is specified by the hazard function:

λ(x ) = β +
α

(x + ∆)θ (13)

where X > −∆. The corresponding probability density function

can be derived by the equation f (x) = λ(x)e
−
∫ x
x
0

λ(s)ds
. We get the

probability density function when θ , 1:

f (x ) = βe−βx−
α

1−θ [(x+∆)1−θ −∆1−θ ]

+ α (x + ∆)−θ e−βx−
α

1−θ [(x+∆)1−θ −∆1−θ ]
(14)

and the probability density function when θ = 1 is:

f (x ) = βe−βx (
x
∆
+ 1)−α +

α
∆
(
x
∆
+ 1)−(α+1)e−βx (15)

Equation 13 is a heavy-tailed mixture model which encompasses a

wide range of distributions
1
, including narrow-tailed, heavy-tailed,

and complex mixture distributions. Their generative dynamics is

derived by applying Theorem 2.1 (where x0 = 0 and S(x0) = 1):

dxi (t )
dt

|x
0
=

(xi (t ) + ∆)θ

β (xi (t ) + ∆)θ t + αt
, (16)

serving as the dynamic origin of a complex heavy-tailed-mixture

model we formulate:

• When θ , 1 and β = 0, the f (x) degenerates to a stretched

exponential (or Weibull) distribution f (x |β = 0) = α(x +

∆)−θ e
α

1−θ [(x+∆)
1−θ−∆1−θ ] 2

, we get special-case generative

dynamics:

dxi (t )
dt

|x
0
=

(xi (t ) + ∆)θ

αt
(17)

• When θ = 1 and β = 0, we get the generative dynamics

of distributions which show power-law tail, namely f (x) =

1
Without loss of generality, we here showcase a simple but versatile model. More

complex parametric models and their generative dynamics, e.g., λ(x ) =
∑
i

αi
(x+∆i )

θi
,

can be analyzed by our Theorem in a principled way.

2
Encompassing Gaussian-like distributions as special cases when θ = −1.
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α
∆ (

x
∆ + 1)

−(α+1)
as a special case:

dxi (t )
dt

|x
0
=
xi (t ) + ∆

αt
(18)

• When α = 0, we get the generative dynamics of the expo-

nential distribution f (x |α = 0) = βe−βx as a special case:

dxi (t )
dt

|x
0
=

1

βt
(19)

We learn the modeling parameters by the maximum likelihood

estimation framework. When given the hazard function Equ. 13,

we get the log-likelihood function as:

ln L(x1, ..., xn ) =
n∑
i=1

ln [β + α (xi + ∆)−θ ] − β
n∑
i=1

xi

−
α

1 − θ

n∑
i=1

[(xi + ∆)1−θ − ∆1−θ ]

(20)

Thus, general optimization algorithms with/without gradients like

the the interior point algorithm [6] or the Levenberg-Marquardt

algorithm [13] can be used for maximizing objective function 20 .

Specific optimization algorithms can be further designed based on

the choice of the distribution or dynamics.

Sample generators based on above hazard function and dynamic

differential equations are given as follows:

Input :Hazard function of λ(x ) = β + α
x+∆ , total event number n

Output : {x1, ..., xn }
1 Set current iteration i = 1;

2 while i ≤ n do

3 Sample u ∼ U (0, 1] ;

4 Solve logu +
∫ x
x
0

λ(s)ds = 0 for x by Algorithm 3.;

5 xi = x ;
6 i += 1 ;

7 end

Algorithm 1: Generating samples from hazard function Eq. 13

Input :Dynamic equation Eq. 13, Poisson process

P(t |λp ) = {t1, ..., ti , ... |t1 ≤ ... ≤ ti ≤ .. ≤ t } with
N (t |λt ) = n,

Output : {x1(t ), ..., xn (t )}
1 Set current iteration i = 1;

2 while i ≤ n do

3 if θ == 1 then

4 Solve βxi (t ) + α ln(
xi (t )
∆ + 1) = ln

t
ti

for xi (t ) by Algorithm 3.;

5 else

6 Solve βxi (t ) +
α [(xi (t )+∆)

1−θ −∆1−θ ]

1−θ = ln
t
ti

for xi (t ) by
Algorithm 3. (Equation solver in Supplemental Material Sec.D);

7 end

8 i += 1 ;

9 end

Algorithm 2: Generating samples from dynamic differential

Eq. 16

5 EXPERIMENTS

We validate our Theorem 2.1 and the Corollary 2.1.1 together with

parameter inference and simulation algorithms on both synthetic

and real-world datasets by answering the following questions:

• Can the dynamical systems generate cross-sectional distri-

butions predicted by our theorem?

• Can we learn the parameters of the generated distributions?

Input :Equation Φ(x ) = logu +
∫ x
x
0

λ(s)ds .
Output :x

1 Set ϵ = 10
−8
, x = 0;

2 while |Φ(x ) | ≤ ϵ do

3 if θ == 1 then

4 Φ(x ) = lnu + βx + α ln( x∆ + 1);

5 else

6 Φ(x ) = lnu + βx + α
1−θ [(x + ∆)

1−θ − ∆1−θ ];

7 end

8 Φ′(x ) = β + α (x + ∆)−θ ;

9 x = x −
Φ(x )
Φ′(x ) ;

10 end

Algorithm 3: Equation solver: Newton’s iterative method

• Can we recover the generative dynamics from its cross-

sectional distributions?

• What are the plausible generative dynamics of a wide range

of real-world datasets?

Moreover, to the best of our knowledge, there is no such a theorem

serving as our baselines which describies the relationships between

a dynamical system and the distribution of its cross-sectional states.

5.1 Synthetic data

Table 2: Experiment Configurations. Generative dynamics

and their cross-sectionally generated distributions.

Dynamics

dxi (t )
dt |x

0

PDF

f (x ) Parameters

Exponential
1

βt βeβx β = 0.01

Power Law
xi (t )+∆
αt α∆α x−(α+1) α = 1.5

∆ = 1

Mix model
xi (t )+∆

β (xi (t )+∆)t+αt
βe−βx ( x∆ + 1)

−α

+
α
∆ (

x
∆ + 1)

−(α+1)e−βx
β = 5e−4

α = 1

∆ = 5

Experiment setup. Table 2 lists the ground-truth setting with

three differential equations to capture three different underlying

generative dynamics, whose cross-sectional distribution follows

exponential distribution (narrow-tailed), power-law distribution

(heavy-tailed), and heavy-tailed mixture distribution respectively

predicted by the Theorem 2.1. For each dynamical system, we

set E[N (t |λt )] = 10
6
agents in the time interval (0, 106], namely

P(t |λp ) = {t1, ..., ti , ...|0 < t1 ≤ ... ≤ ti ≤ .. ≤ t} where t = 10
6

and λt = 1. The 10
6
agents change their states according to dy-

namics
dxi (t )
dt |x0=0 as shown in Table 2 and we observe their cross-

sectional states at time t = 10
6
.

Results. The dynamics indeed generate cross-sectional obser-

vations with predicted distributions by the Theorem 2.1. As shown

in Fig. 2 a-c, the distribution of generated states (purple dots) fits

the ground truth distribution (red lines) exactly for all the model

configurations, ranging from narrow-tailed distribution (Fig. 2(a)),

fat-tailed distribution(Fig. 2(b)), to mixture of fat-tailed distributions

(Fig. 2(c)). We further test the null hypothesis that the observational

data and the ground truth distribution are from the same contin-

uous distribution by using the two-sample Kolmogorov-Smirnov

test [20] at the 1% significance level. We accept the null hypothesis

at the the 1% significance level for all the settings, with p-value
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Figure 2: All the dynamical systems generate cross-sectional

samples with predicted distributions. Our model accurately

recovers the parameters of these dynamics, and the gen-

erators reproduce realistic data samples. Exp: Exponential,

PL:Power-Law, Mix: Mixture. All the figures are on log-log

plots.

(KS-distance) 0.99 ( 4.7∗10−4), 0.51 (1.2∗10−3), and 0.78 (6.9∗10−4)

for three settings respectively.

Our inference framework can learn the modeling parameters

from the cross-sectional data samples. By maximizing the log-

likelihood function indicated by Eq. 12 and Eq. 20, we get
ˆβ =

9.988 ∗ 10−3 for exponential case, α̂ = 1.499, ∆̂ = 0.999 for the

power-law case, and
ˆβ = 4.969 ∗ 10−4, α̂ = 1.000, ∆̂ = 5.005 for the

mixture model case, reaching the true value accurately as shown

in Table 2.

We indeed recover the generative dynamics. By learning the

parameters from observed distributions, we infer the generative

dynamics and then generate the estimated growth dynamics x̂1(t).
As shown in Fig. 2 d-f, the estimated dynamics (green lines) fit the

true dynamics (purple dots) accurately.

5.2 Empirical data

We examine a wide range of real-world datasets from different

disciplines to answer what are their plausible generative dynamics.

In reality, the paradox is that sometimes we never know the real

generative dynamics. Thus, we evaluate our model by checking if

our model can fit and reproduce the reality we observed [27]. The

datasets are: (a) The number of occurrence of words in the novel

Moby Dick by Herman Melville [15]; (b) The number of deaths by

terrorist attacks worldwide from February 1968 to June 2006 [7];

(c) The inter-event-time of adding consecutive friends in WeChat

(largest social network in China) by an active user [24, 25]; (d) The
time interval of two retweets in a information cascade in Tencent

Weibo [26];(e) The time interval of chatting behavior in an online

group from Tencent QQ [29]; and (f) The response time of letter

correspondence for Einstein during his whole life [16].

Actually, distributions in the real world exhibit large complexity

as shown in Fig. 3. For example, the correspondence dynamics of

Einstein in Fig. 3f , we find: flat part when x (response time) is small,

implying Poisson (-like) process at short-time scale; heavy-tailed x
in the middle-time scale, implying a (priority-queue based) decision-

making process; and a bimodal part in the long-time scale, implying

a routinely Poisson (-like) process at long-time scale. Besides, we

find the inferred generative dynamics for real-world datasets are

highly non-linear and complex. For the Einstein case Fig. 3l, accel-

erating dynamics and then followed by a saturated part, implying

the intrinsic complex dynamics of Einstein’s lifetime correspon-

dence dynamics. In contrast, the dynamics of the global terrorist

attacks possibly follow consistently accelerating growth as shown

in Fig. 3h.

Though the intrinsic complexities in the datasets, we capture

them accurately by our framework and we plot the estimated distri-

bution in Fig. 3. In Fig. 3a-f, the estimated distributions (green lines)

capture the complex real distributions (purple dots) in all these

datasets. Further, we show their inferred dynamics in Fig. 3g-l. We

reproduce the data samples by observing these estimated dynamics

at time t and plot the distributions of the generated data in Fig. 3a-f

shown in green squares. We find the generated data well capture

the reality in all these widely different datasets. Specifically, we

get very small KS-distance for all the datasets: (a) 3.19 ∗ 10−1, (b)

3.48∗10−1, (c) 7.60∗10−2, (d) 2.10∗10−2, (e) 8.20∗10−2, (f) 7.60∗10−2,

implying that we learned their plausible generative dynamics.

6 CONCLUSION

Many laws of nature are of dynamic origins, however, what we can

observe are always cross-sectional states at a specific time point.

Thus, a lot of scientific efforts/literature follow this research ap-

proach: to learn the evolutionary dynamics of a complex system from
its cross-sectional states at a specific time point. Here we try to build

the first theoretical relationships between them. We treat distribu-

tion function of datasets as cross-sectional states generated by a

dynamical system in our Theorem 2.1 and Corollary 2.1.1, which

build the equivalence between a cross-sectional distribution (or

in the form of hazard function) and its generative dynamics the-

oretically. We then propose parameter estimation and simulation

algorithms. By applying our theory, we have discovered many new

generative dynamics of distributions, and new distributions gener-

ated by given dynamical systems. We further showcase a model to

learn the generative dynamics directly from empirical data samples.

We accurately capture various synthetic and complex real-world

datasets. Our study may potentially facilitate scientific discoveries

of the unknown generative dynamics of complex systems which

generate complex cross-sectional data in the real world.

Limitation and extensions. We can extend our Theorem 2.1

and Corollary 2.1.1 to the non-absolutely continuous cases: the cu-

mulative hazard function can be generalized as Λ(x) = −
∫ x
x0

dS (t )
S (t−)

to non-absolutely continuous case due to the fact that S(x) ismonotonously

decreasing [1]. The extension to the non-parametric cases can be

based on the non-parametric estimates for the Λ(x) (e.g. Nelson-
Aalen estimator ) and S(x) (e.g. Kaplan-Meier estimator) [1]. Semi-

parametric models which incorporate covariates remains to be

explored.
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Figure 3:The empirical PDFs, their distributionfitting results, learned generative dynamics and reproduced samples by observing
the dynamics cross-sectionally at time 106 for 6 real-world datasets from a wide range of scenarios. The empirical distributions
a-f and their inferred generative dynamics g-l are complex, but our method fits them accurately. All the figures are on log-log
plots.
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