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ABSTRACT
Knowledge transfer has been of great interest in current machine
learning research, as many have speculated its importance in mod-
eling the human ability to rapidly generalize learned models to new
scenarios. Particularly in cases where training samples are limited,
knowledge transfer shows improvement on both the learning speed
and generalization performance of related tasks. Recently, Learning
Using Privileged Information (LUPI) has presented a new direction
in knowledge transfer by modeling the transfer of prior knowledge
as a Teacher-Student interaction process. Under LUPI, a Teacher
model uses Privileged Information (PI) that is only available at
training time to improve the sample complexity required to train a
Student learner for a given task. In this work, we present a LUPI
formulation that allows privileged information to be retained in a
multi-task learning setting. We propose a novel feature matching
algorithm that projects samples from the original feature space
and the privilege information space into a joint latent space in a
way that informs similarity between training samples. Our exper-
iments show that useful knowledge from PI is maintained in the
latent space and greatly improves the sample efficiency of other
related learning tasks. We also provide an analysis of sample com-
plexity of the proposed LUPI method, which under some favorable
assumptions can achieve a greater sample efficiency than brute
force methods.

CCS CONCEPTS
• Computing methodologies → Multi-task learning; • Ap-
plied computing → Health informatics.
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1 INTRODUCTION
In classical supervised learning, the learner is presented with the
training tuple {(xi ,yi )}

m
i=1 and performs an optimization task of

finding the best model in a hypothesis space h : X → Y to ap-
proximate some true f : X → Y which explains the data. Given a
new task, knowledge transfer [21] is often applied to accelerate the
learning process by distilling and transferring relevant knowledge
from previous tasks to the unseen one. Under classical formulations,
the learner incorporates prior information in one of several ways:

• Direct transfer of parameters from old hypothesis models to
the new task and fine-tuning [21] the parameters.

• Learning multiple tasks (online or batched) related to the
current task [4, 11].

• Using the prior knowledge (i.e. a knowledge graph) to con-
strain the hypothesis space by regularization [6].

• Using representations (i.e. embeddings) of X and / or Y from
previous tasks for new tasks [19, 29].

• Accelerate learning rate and model compression by Distilla-
tion as typically seen in Teacher-Student models [12].

In each of these settings, knowledge transfer operates directly
within the X , Y and H spaces to improve generalization of in-
formation from old models to the new task.

Recently, Learning Using Privileged Information (LUPI) [27] has
provided a new paradigm for knowledge transfer. Under LUPI,
the learner now interacts with a Teacher who provides privileged
information (PI), which is available exclusively at training time.
From the learner’s perspective, the training set is now extended
to the tuple {(xi ,x∗i ,yi )}

m
i=1, and the test set stays the same. Some

examples of PI include: 1) Future information that relates X and
Y . For example, using future stock prices beyond the prediction
window during training. 2) Auxiliary information describing the
label space that is available only to a subset of samples. For example,
physician notes that accompany diagnostic predictions which is
only available after the diagnosis is made.
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At a high-level, PI provides some similarity information between
training samples from the original feature space, and the Teacher
hypothesis serves as additional “explanations” of the hypothesis
space [26, 27]. As a result, [26] showed that the LUPI Teacher pro-
vides a principled way to improve the generalization error of Student
learners using agnostic PAC models, providing some theoretical
improvements in the number of samples required to generalize to
test set data (i.e. improves sampling efficiency).

However, under the current state-of-art LUPI formulations such
as [16] and [15], PI is incorporated by means of support vectors and
dropout schemes, both of which fail to explore the underlying simi-
larity structure between examples in the PI space X ∗. For example
the mode distribution and pairwise similarity between points in the
X ∗ space is largely unused. The PI contributes as auxiliary training
features and kernel information, but much of the LUPI information
is lost at inference time and beyond. A significant question remains:
can privileged information be retained for future tasks?

Ideally, we want the LUPI Teacher to incorporate PI in a way
that is specific enough to inform similarity between training sam-
ples yet general enough to be retained across future tasks. As a
motivating example, consider the medical setting, where electronic
health records (EHR) are often sparse, noisy, and full of missing
data. Complex tasks such as multi-task learning of many diseases
are often difficult to do because of the long-tail property of diseases
– that is, diseases with very few training samples (i.e. < 100) are
very difficult to learn using EHR features alone. On the other hand,
medical research on rare diseases are often plenty – large volumes
of clinical journals focus on text descriptions of rare diseases in the
medical setting. As a result, clinical texts such as discharge notes
are unavailable at inference time, but when used retrospectively
during training can serve as a source of PI that allows for rare
diseases to be learned with few examples.

In this work, we propose a LUPI formulation that achieves pre-
cisely this. First, we introduce the idea of building a vocabulary of
PI features by unsupervised learning using external data sources.
We then propose a mechanism for learning a joint representation
between the PI information and the original set of example features
by exploiting their co-occurrence statistics in the training data. We
finally learn a shared decision function using a contrastive-loss
to distinguish between samples drawn from the joint latent space
based on their labels for each task. In experiments, we demonstrate
the effectiveness of our method in retaining PI obtained from exter-
nal data sources to support multi-task prediction tasks in the EHR
setting against other transfer learning methods. We demonstrate
that such an approach both improve the prediction accuracy as
well as decrease the samples required to train an accurate model,
especially for rare-diseases.

2 RELATEDWORKS
Our methods provide several advantages over traditional transfer
learning schemes. In the following section, we highlight some of
these differences as well as improvements over related LUPI works.

Limitations of incorporating PI as auxiliary targets. When
considering retraining PI in the multi-task setting, an intuitive
approach may be to incorporate PI as auxiliary prediction targets.
For example, suppose a multi-task learning (MTL) model considers

a set of T1, ...Tt tasks. PI can potentially be used as the Tt+1 task
and discarded during testing when it is not available. This approach
utilizes inductive learning and retains PI information by allowing
for parameter sharing among the multi-task models during training
[21, 28].

A major disadvantage of this inductive approach is the constraint
on relatedness of tasks. For example, it is hard to know beforehand
which subset of tasks will contribute positively to the target, and
poor selection of parameter transfer can actually lead to negative
transfer, leading to poor performance on the target task [21]. By
contrast, LUPI uses PI that is by definition specific to the current task.
However, unlike MTL, LUPI does not use a shared feature space
between the PI and original data, i.e. X , X ∗ and cannot directly
incorporate the Teacher hypothesis via direct parameter sharing.

Limitations of incorporating PI as prior constraints. In re-
cent years, relational-knowledge provides an alternative approach
to inductive learning by incorporating domain-specific knowledge
in the form of regularized priors for target tasks [6, 9]. In contrast
to parameter-sharing, relational-knowledge is agnostic to the col-
lection of source tasks and should apply universally to all learning
tasks given the same feature space X . This formulation overcomes
the limitation of task similarity in the former case, but it is also
very expensive to construct reliable relational-knowledge, such as
knowledge graphs. By constraining the hypothesis space of the
target task with relational-knowledge, the speed of convergence
can be improved. However, inductive learning techniques generally
focus on improving either accuracy of prediction or convergence
rate rather than sample complexity. The main focus of LUPI, on
the other hand, is to provide some guarantees on improving the
sample efficiency of the Student learner.

Limitations of incorporating PI with Data Fusion. Another
approach of incorporating PI for multi-task learning is to learn a
model that uses both the original set of features and PI features
for prediction. For example, PI may be seen as an auxiliary source
of information, similar to the Multi-modal Learning (MML) setting
[1, 20]. However, the main drawback of this approach is that the PI
features are unavailable at test time, leading to poor generalization
of the hypothesis model since it is conditioned on both X and X ∗.

For example, suppose we have some data fusion model д : X ×

X ∗ → Z , and a hypothesis function h : Z → Y . At training
time, both the PI and the original features are utilized to train
h(д(x ,x∗)) = y. At test time, however, since only X is available,
д(x , 0) may actually map to a completely different set of features in
Z , leading to a biased h(z) = y. In other words, ifX is under-utilized
during training, h(z) will likely lead to poor generalization at test
time. Unfortunately, since PI is by definition a more task-specific
descriptor of Y , this is the most likely case and presents a limitation
for data fusion methods for incorporating PI.

Similarly, generative models also offer a possible way of incorpo-
rating PI into the modeling process by learning a domain-invariant
latent representation or transformation function betweenX andX ∗.
For example, recent works such as VRADA and RadialGAN both
attempt to learn a domain-invariant latent representation between
datasets so that examples from multiple sources can be used for a
target task [8, 30]. However, these models improve the hypothesis
function by means of data augmentation (i.e. increasing the samples
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available) rather than decreasing the sample complexity required to
train an accurate model. This subtle difference becomes important
when “big data” is not available for complex data problems, for
example modeling rare diseases in healthcare records.

Knowledge Transfer by LUPI: Finally, LUPI provides some per-
formance guarantees with regard to the sample efficiency of the
Student learner, so long as the PI and the Teacher model satisfy
some conditions [26, 27]. However, the main drawback of current
formulations of LUPI is that the PI used is highly specific to the
task at hand – if PI information for one task can be carried over
for other related tasks, no current mechanisms exist to exploit this
advantage. Our work applies elements of both inductive and trans-
ductive learning to alleviate this limitation of LUPI. Although recent
works such as [15] has generalized the LUPI framework to deep
learning settings, our work extends LUPI to allow for multi-task
and transfer learning, enabling the generalization of a PI source to
accelerate the sample efficiency of many tasks.

3 PRELIMINARIES
LUPI Preliminaries. Traditionally, LUPI is applied to training data
of the form:

(x1,x
∗
1 ,y1), (x2,x

∗
2 ,y2)...(xm ,x

∗
m ,ym ) ∈ Dtrain,

where xi ∈ Rn denotes example feature (EF) vectors from the origi-
nal feature space, and x∗i ∈ Rn∗ denotes privileged information (PI)
vectors from the privileged information space. Dtrain indicates
that the PI inputs are only available during training. yi ∈ {−1,+1}
denotes the ground truth labels for inputs (xi ,x∗i ). LUPI then con-
siders two pattern recognition problems:

• Using {(xi ,yi )}
m
i=1, find rule h(xi ) = yi .

• Using {(x∗i ,yi )}
m
i=1, find rule f ∗(x∗i ) = yi

Suppose that the f ∗(x∗i ) = y can produce low generalization error,
the LUPI task is to transfer knowledge of rules in the X ∗ space
to improve learning in the X space. In [27] and [26], knowledge
transfer between h(x) and f ∗(u∗s ) is achieved by by minimizing the
difference between them over a subset of frames in the privileged
Kernel space:

y = f ∗(x∗) =
∑m

i=1
β∗sK

∗(u∗s ,x
∗) + b∗ ≈

∑m

i=1
αiK(xi ,x) (1)

where s = 1, ...k , denotes the number of frames, and K∗(u∗s ,x
∗)

denotes the frames u∗s , which are vectors in the Kernel space of
the privileged information that support the PI. In an ideal situation
where the Student learner matches the Teacher perfectly, we will
have α ≈ β∗ in the respective Kernel parameters.

Problem Setting and Assumptions. We consider a similar prob-
lem setting where we are given Dtrain = {(xi ,x

∗
i ,yi )}

m
i=1. We as-

sume that there exists a set of vocabulary with size d that define the
PI space. x∗i j = 1 if the jth term in the PI vocabulary is contained in
the x∗i sample, x∗i j = 0 otherwise. We also denote x∗i = {w1, ...,wk }

as a decomposition of x∗i into k individual components such that
eachw j ∈ {0, 1}d is a one-hot vector, corresponding to a non-zero
component in x∗i , and x∗i = w1 + w2+, ...,+wk . In the following
sections, we denote {w j }

d
j=1 as the set of “words” that compose the

PI vocabulary. Thus, x∗i gives the co-occurrence label of each word
w j ∈ {w j }

d
j=1 with respect to the sample xi .

We make no assumptions on the example features (X ) with
regards to data type. However, for simplicity, let us take xi =

{x
(t )
i }Tt=1,x

(t )
i ∈ Rn to be the time-series data type, where each

sample xi has T time-steps, and each x
(t )
i is a real-valued vector of

n-dimensions. Finally, we define the multi-task learning objective
as learning yi = {0, 1}C to be a set of C binary classification tasks.

4 PROPOSED METHOD
At a high-level, the main intuition behind our proposed method is
to decompose the LUPI process into three parts:

(1) Build a dictionary of PI features and learn a distributed rep-
resentation [19] over the PI vocabulary.

(2) Find a joint representation space (Φ) between the PI and
example features.

(3) Jointly learn the decision functions h∗ : Φ → Y by feature-
matching in the joint representation space.

The first process uses unsupervised learning to embed the PI vocab-
ulary into a vector space. The second process allows for some of the
privileged information to be retained at inference time, despite not
having direct access to the PI vectors. The third process allows for
PI information for one task to be transferred for other C − 1 tasks
in the label space. In the following subsections, we will examine
how to achieve (1) – (3) in detail. We also provide analysis of how
(3) can maintain the favorable LUPI sample efficiency.

Building the PI vocabulary: First, we can define д∗(w j ;θд∗) as
an embedding function that maps д∗ : X ∗ → Φ. Note that x∗i
consists of individual words, {w1, ...,wk }. So д∗(w j ;θд∗) embeds
each individual word in the PI vocabulary rather than the PI samples
(i.e., x∗i ). The rationale behind д

∗(.) is to encode each word in the PI
vocabulary into a vector space so vector operations can be applied
to the PI. We specifically consider embedding function of the form,

д∗(w j ;θд∗) = wT
j θд∗. (PI Embedding)

Since eachw j ∈ {0, 1}d hasw jk = 1 only when j = k , thew j vector
simply selects the jth column in θд∗. We restrict θд∗ ∈ Rd×k so
that θд∗ produces a lower-dimensional representation of each word
in the PI vocabulary. For this first step, we do not restrict the PI to
come from the original dataset {(xi ,x∗i ,yi )}. In fact, we can learn
the embedding θд∗ for our PI using any data source by applying the
following word-model:

Score(w1,w2) =

{
1 ifw1,w2 ∈ x∗i
0 otherwise

(Co-occurence)

д(w1,w2) = σ {(θд∗w1)
T (θд∗w2)} (Word Model)

Lemb = BCE(Score(w1,w2),д(w1,w2)). (2)

Here, σ (.) denotes the Sigmoid activation function, and BCE(.) de-
notes the binary cross-entropy loss: −

∑
i [ai (loдbi )+ (1−ai )loд(1−

bi )]. The cross-term (θд∗w1)T (θд∗w2) gives the similarity between
w1 and w2 in the embedding space, which is then scored against
Score(w1,w2) based on whetherw1,w2 both appear in x∗i . We note
that the embedding loss Lemb is trained separately from the rest
of the LUPI model since it is not specific to the dataset.
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Learning the Joint Representation: Next, let us define д(xi ;θд)
to be the embedding function that maps д : X → Φ. In this work,
we consider the following for д(.) and д∗(.):

• Distributed representation of PI vocabulary, which captures
its underlying manifold structure and is obtained by unsu-
pervised learning [19].

• Encoding of X into a fixed length vector by deep embedding
methods such as [5, 17].

For time-seriesX , we take the embedding functions to be a recurrent
encoder neural network:

д(xi ;θд) = RNN (xi ;θд) (EF Embedding)

The motivation behind using the embedding functions д(x) and
д∗(w) is to extend the idea of Student and Teacher kernels, which
allow for the privileged information to provide information about
similarity between training samples in the feature space [26]. Us-
ing neural encoding for д(x ;θд) allows such feature spaces to be
represented by a fixed-length vector without losing the underlying
spatio-temporal information.

To find commonality between example features and PI, we in-
troduce a matching function (µ) that maps each (д(xi ),д

∗(w j )) pair
onto the interval [0, 1], i.e., µ : Φ × Φ → [0, 1]d :

µ(д(xi ),д
∗(w j );A) =

exp(max{0, [д(xi );д∗(w j )]
TA})∑d

p=1 exp(max{0, [д(xi );д∗(wp )]TA})
. (3)

Here, [д(xi );д∗(w j )] ∈ R
2k denotes the concatenation of the д(xi )

and д∗(w j ) embeddings in the joint latent space. The parameter
matrix A projects the pairs (д(xi ),д∗(w j )) onto R, and the softmax
activation normalizes the pairwise scores against other word-pairs
in the PI vocabulary. Thus, for each sample mapped from the feature
space X , the matching function µ produces a set of corresponding
weights over all of the words in the PI vocabulary.

We make the key observation that for each wordw j , the output
weight of the matching function should correspond to the jth com-
ponent of thex∗i sample in the training data. That is, µ(д(xi ),д∗(w j );A) ≈
x∗i j . Using this fact, we can learn the matching function by mini-
mizing over the following objective:

Lϕ (θд ,θд∗ ,A) = −
1
md

m∑
i=1

d∑
j=1

[x∗i j log µi (д(xi ),д
∗(w j );A)

+ (1 − x∗i j )log (1 − µi (д(xi ),д
∗(w j );A))]. (4)

Each component of the PI vector x∗i can thus be interpreted as
providing an indicator label for likelihood of the (xi ,w j ) pair to
occur together. The similarity control mechanism highlighted in
Eqn. 4 differs from the Kernel-matching mechanism mentioned
previously in Eqn. 1. The limitation of Eqn. 1 is that two sets of
Kernel weights need to be learned simultaneously: α for K(xi ,x)
and β for K∗(x∗i ,x

∗). By contrast, our joint representation for xi
and x∗i encourages a single hypothesis model to be used to map h∗ :
Φ → Y . Since matrix A captures the д(xi ) and д∗(w∗

j ) interactions,
it preserves the PI in the space of Φ and allows relevant PI to be
retrieved at test time.

Finally, we obtain the augmented representation ofxi as aweighted
combination of G∗ = {д(w j )}

d
j=1 and д(xi ):

ϕ(xi ) = д(xi ) +
d∑
j=1

µi (д(xi ),д
∗(w j );A) · д∗(w j ) (5)

One can think of G∗ as the set of basis vectors supporting the PI
space (similar to frames for the PI Kernel [26]). The augmented
representation ϕ(xi ) contains both information from the original xi
as well as relevant information retrieved from G∗. Note that since
the PI vectors x∗j ∈ X ∗ are not directly used at testing time, each
sample xi ∈ Dtest is mapped into Φ using д(.), and the trained µ(.)
selects the corresponding bases in G∗ to construct ϕi .

This is quite different from representation fusionmethods [22, 29],
which only try to learn a shared representation space for input
modalities X1, ...,Xk , without a matching function to control the
contribution of each modality to the hypothesis. For example, we
can take X1 to be the original feature space and X2 to be the privi-
leged information. At test time, when X2 is unavailable, X1 inputs
with masked X2 components may be projected into a completely
different location in the shared representation space than if the
X2 information were available. Furthermore, model fusion methods
[22] may also under-utilize the original feature space during train-
ing, as the PI contain more information related to the target task.

Coupling Decision Functions with Feature Matching:
LUPI typically considers 2 hypothesis functions: the Student hy-
pothesis h : X → Y , and Teacher hypothesis f ∗ : X ∗ → Y . Since
we have already addressed the problem of finding a common “frame
of reference” between the original feature space and the PI space
by the matching function µ, the main focus for this portion of
our method has to do with finding an efficient f ∗ that relates the
privileged information to the labels. Fortunately, we can directly
approximate f ∗ : X ∗ → Y by a function h∗ : Φ → Y that maps
samples from the joint representation space to the label space. This
is because Φ is constructed by embedding function д∗(.) on X ∗

and is an approximation of the Kernel space for the privileged
information.

In the case that the target task is classification, we can formulate
h∗ as a feature matching problem between samples from Φ and Y .
Specifically, we can use contrastive loss [10] to find an invariant
representation h∗ : Φ → Y and vice versa, by minimizing the
distance between similar samples drawn from the joint embedding
space based on signals from the label space:

L(W ,yi ,x
+
i ,x

−
i ) = (1 − yi )MW (x+i ,x

−
i )

+ (yi )(max{0,C −MW (x+i ,x
−
i )}) (Contrastive)

L(W ) =
1
S

∑S

i=1
L(W , (yi ,x

+
i ,x

−
i )

i ) (6)

whereMW (x+,x−) = | |ϕ(x+;W ) − ϕ(x−;W )| |2 refers to a parame-
terized distance metric with respect to projections ϕ(x+) and ϕ(x−),
and C is the slack variable which defines the margin of separa-
tion between them. ϕ(.) is simply the projection function from
eqn. 5, which is parameterized byW = [θд ,θд∗ ,A] from eqn. 4.
Intuitively, MW finds the distance between augmented projections
of x+i and x−i , i.e., ϕ(x

+
i ) and ϕ(x

−
i ), which are compared by their
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labels yi . Given a training pair (xi ,x∗i ,yi ), a set of k similarity sam-
ples Si = {(x+i ,x

−
i ,yi )

j }kj=1 is constructed around the (xi ,yi ) pair,
whereby x+i denotes samples with the same label as yi = y+, and
x−i denotes samples with a different label than yi , y−. Thus, x+
and x− denote positive samples (similar) and negative samples (dis-
similar), respectively.

A variety of negative sampling techniques can be used to obtain
the set S [3, 10, 14]. In practice, we found picking 5 − 10 negative
samples that are close to ϕ(xi ) and 5 − 10 samples that are far
from ϕ(xi ) to be sufficient in creating S for each training triplet
(xi ,x

∗
i ,yi ). We refer the reader to [10] and [3] for more information

about the contrastive loss and the construction of S .
Finally, we combine the two portions of our learning task (i.e.

representation learning and joint hypothesis) into the optimization
task:

min
Θ

L(W ) + λLϕ (θд ,θд∗ ,A) + Ω(W ), (7)

whereW = [θд ,θд∗ ,A] is the total set of parameters for the learning
task. λ is the hyperparameter which controls the trade-off between
the contrastive loss to learn h∗ and the representation loss in eqn.
4. Ω(.) is the regularization term used to constrain the hypothesis
space of the joint model.

5 ANALYSIS OF SAMPLING EFFICIENCY
Results from Existing Agnostic Models
For an agnostic hypothesis model, such as non-linearly separable
SVM, the generalization error bound holds with 1 − δ probability:

R(h) ≤ Remp (h) +O
∗(

√
∆H log(m/∆H ) − log δ

m
), (VC-bound)

where |R(h) − Remp (h)| = ϵ ∈ [0, 1] is the generalization error rep-
resented by the difference between expected and empirical training
risks. ∆H is the VC-dimension of the given SVM model class,m is
the sample size, and δ ∈ (0, 1), whereas under the SVM+ formula-
tion in [26], the generalization error is given by:

R(h) ≤ Remp (f
∗) +O∗

(
(∆H + ∆F ∗ )log( m

∆H+∆F ∗
) − log δ

m

)
,

(SVM+)

where Remp (f
∗) denotes the error rate of the Teacher’s hypothesis

f ∗ : X ∗ → Y , and ∆F ∗ denotes the VC-dimension of the Teacher
model. In the original SVM, the model needs to re-estimatem slack
variables for each training sample, in addition to the n parame-
ters inw . At a high-level, the hypothesis function f ∗ of the LUPI
Teacher serves as a slack function which approximates these slack
variables for each xi , eliminating the need for the Student to es-
timate them during training [26]. The number of estimations in
the latter case reduces to O(m + n), rather than O(mn). As a re-
sult, the sampling efficiency improves fromm ≤ O(

∆H+log(1/δ )
ϵ 2 )

tom ≤ O(
∆H log∆H+log(1/δ )

ϵ ) in the number of samples required to
achieve the same generalization error ϵ .

Complexity of Proposed LUPI Method
In this section, we examine the sample complexity of our proposed
LUPI method. For simplicity, let us consider the classification setting

where we are given a hypothesis class H of finite VC-dimensions
which define a set of functions mapping X to a label set {0, 1}, and
let the 0−1 loss function define the empirical risk. Let ∆H = d < ∞.
By the fundamental theorem of PAC learning (Thm. 6.7 in
[23]), there exist C1,C2 ∈ R such that:

(1) H is agnostic PAC learnable and has the uniform convergence
property with sample complexity

C1
d + log(1/δ )

ϵ2
≤ m(ϵ,δ ) ≤ C2

d + log(1/δ )
ϵ2

(Agnostic)

(2) There exists a Realizable subset Hr such that the sample
complexity is defined by

C1
d + log(1/δ )

ϵ
≤ m(ϵ,δ ) ≤ C2

d log(1/ϵ) + log(1/δ )
ϵ

.

(Realizable)

The main difference between agnostic and realizable PAC mod-
els lies in whether the classifier can completely classify a train-
ing set S = {(xi ,yi )}

m
i=1. That is, the training error Remp (h) =

1
m

∑m
i=1 L(h(xi ),yi ) = 0 for the particular hypothesis class under

some empirical risk minimization (ERM) algorithm. On the other
hand, when we have yi , h(xi ) for some training data, there ex-
ist some examples for which the current hypothesis class can not
successfully separate (i.e. cannot realize an accurate ERM hypothe-
sis with 0 empirical risk), suggesting that the optimal solution is
either not contained in the span of the given hypothesis class, or
the ERM algorithm cannot converge to the optimal solution in the
hypothesis space. Fortunately,[25] introduces some conditions for
which a sample complexity between O(

log(1/δ )
ϵ ) and O(

log(1/δ )
ϵ 2 ) is

possible for some classes of models. Specifically, Tsybakov showed
that m(ϵ,δ ) ≤ C

d log(1/δ )+log(1/δ )
ϵn , 1 < n < 2 exists under two

general scenarios:
• When there is zero training error (ERM realizable).
• When the classification margin between the given hypothe-
sis class and another realizable hypothesis class is bounded.

LUPI qualifies the second Tsybakov condition by leveraging a re-
alizable Teacher that provides a mechanism to bound the margins
of the Student ERM classifier. Specifically, [27] considers the case
where the Student hypothesis class H is non-realizable and the
Teacher hypothesis f ∗ ∈ F ∗ is a realizable classifier that approx-
imates an Oracle classifier with zero-training error. [27] showed
that using kernel alignment between the Teacher and the Student,
the latter can satisfy the Tsybakov conditions, leading to a sample
complexity that is comparable to the realizable case. [26] further
showed that, under some assumptions on H∗, one can achieve
O(

log(1/δ )
ϵ ) ≤ m(ϵ,δ ) ≤ O(

log(1/δ )
ϵ 2 ) so long as the Teacher classi-

fier H∗ has lower VC-dimension and training error than H .
In our model, we provide the margin bounding mechanism by

contrastive loss in Eqn. Contrastive. Under the condition that the
Teacher model f ∗(x∗) has a lower VC-dimension and y · h(x) >
c0C − M(x+,x−), the C − M(x+,x−) term from the Contrastive
eqn. serves as the approximate slack margin of the oracle classifier.
To see this, let p ∈ R and q ∈ R be random values. Suppose that
p < 0, then either q < 0 or p − q < 0 is true. We then also have
P(p < 0) ≤ P(q < 0) + P(p − q < 0). If we take p = y · h(x) and
q = y · f ∗(x∗), then with 1− δ probability, we can express the error
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bounds of the Student and Teacher models as follows,

P(y · h(x) < 0) ≤ P(y · f ∗(x∗) < 0) + P(y · h(x) < y · f ∗(x∗)).

Under the contrastive loss in eqn. (Contrastive), we can re-formulate
the above as:

P(y · h(x) < 0) = P(y · f ∗(x∗) < 0) + P(y · h(x) < C −M(x+,x−))

≤ P(y · f ∗(x∗) < 0) + O

(
∆H + ∆f ∗ − ln δ

m

)
=⇒ m ≤ O

(
(∆H + ∆f ∗ log(1/δ ) + log(1/δ )

ϵn

)
,

where 1 < n < 2 if P(y · f ∗(x∗) < 0) is satisfied, i.e. if the Teacher
model is realizable. We note that although our proposed LUPI model
is PAC learnable, i.e. has the uniform convergence property, we
cannot bound the computational complexity of learning. Specifi-
cally, if we allow the embedding components д(.) and д∗(.) to be
non-convex functions, then finding the global optimum for ϕ(x)
becomes an NP-hard problem. In other words, the above analy-
sis only examine the sample complexity bounds, but it does not
provide insight into the computational runtime of learning, or the
actualization of the uniform convergence property.

6 EXPERIMENTS
We empirically assess the effectiveness of our LUPI formulation
for improving sample efficiency and generalization performance in
a multi-task setting. First, we consider performance accuracy on
numerous diagnostic prediction tasks, which are individually binary
classification problems. This allows us to evaluate the ability of our
LUPI formulation to actually transfer the privileged information to
improve the learning efficiency in a multi-task setting. We bench-
mark the learning accuracy of our method against the performance
of various transfer learning baselines. We also perform an abla-
tion study on the privilege information components of our model
to ascertain its necessity. Finally, we perform prediction tasks on
classes with only sparse examples – as defined by ≤ 100 training
samples, and compare the sample efficiency of our model against
select models from other transfer learning paradigms.

For PI, we consider physician notes in the form of discharge
summaries, linking standard medical terminologies (i.e., UMLS
codes [2]) with diagnostic findings in the EHR. UMLS codes are a
set of standardized medical concepts used by clinicians to describe
physical findings of diseases and are used widely in both the EHR
as well as medical research [2]. [26] alluded at the idea that medical
datasets also contain vast amounts of privileged information in the
physician notes, which serve to explain the qualities of diseases that
can greatly aid decision rules. For experiments, we consider the
following set of data for example features, PI, and labels:

• Example Features X : continuous time-series data (i.e. lab
values, blood tests, imaging) and discrete static variables (i.e.
demographics information) that describe a patient.

• Privileged Information X ∗: physician notes containing de-
scriptions in natural language and medical terms (UMLS
concepts [2]) that summarize a particular visit for a patient.

• Target Task Y : prediction tasks of interest, such as mortality
(binary classification), disease prediction (multi-task and
transfer learning), ... etc.

Datasets and Setup: Table 1 provides a brief summary of data
sources for our experiments. For each data source, we extract unique
data modalities available in the dataset. MIMIC-III (Medical Infor-
mation Mart for Intensive Care) is a publicly available benchmark
dataset for predictive modeling and clinical decision support in
the intensive care unit (ICU) setting [13]. It should be noted that
MIMIC-III and STRIDE datasets are EHR datasets, although STRIDE
is comprised of clinical notes (PI vocabulary) obtained from mul-
tiple EHR datasets over 19 years of data collection. Documents in
table 1 refer to literature sources, including medical claims [7] and
research articles [9] that heavily utilize UMLS codes. We refer to the
clinical notes from EHR as the PI source, which we decomposed into
lists of UMLS codes. For example, a clinician’s note may contain
a text description of pneumonia which may utilize several UMLS
codes such as (Lower Lobe Consolidation, Staph Aureus, Productive
Cough) as keywords.

Table 1: Summary of datasets used in this study.

Database No. Patients UMLS ICD-9s Temporal
MIMIC-III 22, 043 928 148 40
STRIDE 4M 14, 256 None None

Documents 1.2M None 11, 245 None

MIMIC-III provides a rich source of temporal data, ranging
from laboratory tests, vital signs and respiratory parameters, all
of which provide hourly resolution of descriptive features. For
example features, we use 40 physiologic features, including vital
signs (i.e. heart rate, blood pressure, oxygen saturation,
temperature), blood tests (i.e. WBC count, platelets, INR) and
respiratory parameters: (i.e. PaO2/FiO2 ratio, PEEP). These tem-
poral features are the source of example features (EF) for our ex-
periments, i.e. X = {xi }

m
i=1,xi = {xti }

T
t=1. Preprocessing of these

features include binning the time-series by hourly average of each
feature and standardized feature values across all adult patients.

Physician notes (the source of PI) inMIMIC-III exist in the form of
discharge notes, which are physician documentation of key findings
relating to the patient’s hospital visit. We can represent the PI as
X ∗ = {x∗i }

m
i=1, where each x

∗
i ∈ {0, 1}d represents a discharge note

for the i-th patient, in the form of a d dimensional one-hot vector.
Here, d is the total number of UMLS codes that are found in all
of our data sources (MIMIC-III, STRIDES, and Documents). One
can think of the UMLS codes as a set of basis features for the PI
vectors. The rationale of using physician notes as PI is that they are
only available at the end of the hospital stay and contain copious
amount of valuable information regarding a wide array of clinical
decision support tasks, such as physical findings, periodic nurse
observations, medical or surgical complications, and indicators for
mortality risk. During training, we can incorporate these notes into
the learning regime, but they become unavailable at inference time.

For labels, MIMIC-III provides a wide range of potential tasks.
We focus on the prediction of ICD-9 diagnostic codes, where are a
set of diagnosis labels given to patients that identifies their disease
states. Each patient has a set codes that can be described by a label
vector yi ∈ {0, 1}C , where C denotes the total number of disease
classes considered. ICD-9 prediction is in fact a difficult multi-label
classification problem among other clinical benchmark tasks due
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the fact that the distribution of diseases often contain long tails [24].
In the typical case, a few diseases dominate in high frequency while
most diagnostic codes appear only a few times among all patients.
As a result, training samples are sparse for most diseases, leading to
poor prediction beyond the most frequent cases. Our experimental
task is to leverage information from PI under a multi-task learning
setting to improve the learning efficiency for a large set of ICD-9
codes, especially ones in the tail distribution (i.e. occurring with
few samples in the dataset). We consider the diagnoses appearing
in at least 1% of admissions, leaving C = 148 ICD-9 group codes to
formulate our multi-task prediction as C classification tasks. We
consider UMLS terms appearing at least 50 times in discharge notes,
leaving d = 928 UMLS terms to construct the PI vocabulary.

Initial Baselines: We establish some baseline performance of
various hypothesis models for our prediction tasks under 3 settings:

• Using only example features (EF only) to predict ICD-9 labels.
• Using only PI information to predict ICD-9 labels.
• Using both EF and PI information to predict ICD-9 labels.

For each setting, a diverse set of hypothesis classes are used, includ-
ing a standard recurrent neural network (RNN) and feed forward
perceptrons (MLP). The rationale behind these baselines is to de-
termine whether the PI indeed offers more information than the
original feature-set based on noisy timer-series data. Ideally, the
Teacher hypothesis class F ∗ should obtain lower empirical risk
while using lower model complexity (lower VC-dimension) com-
pared to the Student hypothesis class H without LUPI. Otherwise,
the Student learner will not improve its sample complexity by LUPI,
and any improvements in prediction accuracy will likely result
from a variance-reduction mechanism (i.e. ensemble) rather than
the LUPI mechanism. As a sanity check, we also included a com-
prehensive Teacher model using EF + PI features, which should
provide the best performance. We note, however, that because the
Teacher models use PI at test time, they are used to assess the qual-
ity of PI rather than benchmark Student performance. In practice,
PI is unavailable at test time, so the Teacher models cannot be
used for inference in a real-world setting. Table 2 summarizes the
performance of these baselines on held-out test set data.

Since ICD-9 predictions involve a large number of classes, we
take both micro-averaged and macro-averaged AUC as evaluation
metrics. Macro-averagedAUC takes per-class average of AUC scores,
while micro-averaged AUC considers a single AUC score based on
a roll-out of label classes for each test set sample. We also include
micro-averaged F1-score and micro-averaged area under PRC to
quantify the trade-off between precision and recall.

• RNN Student denotes the Student learner using the RNN
model class conditioned exclusively on EF, using the LSTM
architecture as mentioned in [18].

• MLP Student denotes a feed-forward network conditioned
on the final time-step of EF.

• MLP Teacher denotes the Teacher feed-forward network
conditioned on PI only. Specifically, we use a weighted sum
of the PI embeddings for each x∗i = {w1, ...,wk }:

ϕ(x∗i ) =
1
k

∑k

j=1
wT
j θд∗

Table 2: Comparison of performance across baseline mod-
els. Micro-averaged AUC and Macro-averaged AUC are de-
noted asMi-AUCandMa-AUC, respectively.Micro-averaged
F1-score and AUC of precision-recall curve are denoted as
Mi-F1 and AUPRC, respectively.

Model Ma-AUC Mi-AUC Mi-F1 AUPRC
RNN Student 0.735 0.783 0.299 0.260
MLP Student 0.715 0.756 0.235 0.211
MLP Teacher∗ 0.824 0.868 0.446 0.432

Oracle Teacher∗ 0.845 0.882 0.497 0.510

(∗) denotes Teacher models using PI.

which maps each PI vector x∗i into a lower-dimensional rep-
resentation space, and θд∗ denotes the look-up matrix of
embeddings obtained in the first step of our LUPI algorithm.

• Oracle Teacher denotes the Teacher model which uses both
EF and PI for prediction.

h(xi ) = RNN (xi )

f ∗c (xi ,x
∗
i ) = σ (Whch(xi ) +Wдcд(x

∗
i ) + bc )

EF inputs are encoded into fixed-length vectors by a set of
RNN layers and the PI features are embedded into lower-
dimensional space by д(x∗) described previously. Since there
areC tasks (i.e.,C outputs), a classifier layer is used to predict
the 0 − 1 label for each ICD-9 code.

Here, we note that the embedding matrix θд∗ for learning the lower
dimensional representation of PI is obtained by the embedding
mechanism highlighted in the PI Embedding equations. Taking
the set of UMLS concept codes as the PI vocabulary, we leverage
the corpus available in STRIDE and Documents datasets to learn
the θд∗, conditioned on the UMLS codes. For example, given a
medical document consisting of a set of n relevant UMLS codes
®v = {w1,w2, ...wn }, we can train the θд∗ for the UMLS codes by
Eqn. 2, with the modified scoring function:

Score(w1,w2) =

{
1 ifw1,w2 ⊂ ®v

0 otherwise
(Co-occurence)

Note that each UMLS concept is represented bywi ∈ {0, 1}d , where
wi j = 1 for the index corresponding to the UMLS code. Thus,
θд∗[:, i] gives the the distributed representation of ith UMLS concept.
We train the embedding matrix θд∗ over STRIDE and Documents
before applying θд∗ on the MIMIC-III dataset for LUPI.

We see from table 2 that the PI provides strong signals for ICD-9
prediction. Large differences exist between the Student baselines
and the Teacher models across all performance metrics, suggesting
that the PI provides more information about the label space com-
pared to the original time-series features. Again, we emphasize here
that discharge notes (PI) are generated only after the diagnostic
predictions have been made by clinicians, and thus the Teacher
models are actually not available at inference time. Interestingly, we
also see that the Oracle teacher with combined features provided
additional performance boost compared to using PI exclusively as
features. This suggests that the temporal features provide some
complementary information not contained in the PI.
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Transfer Learning: Next, we benchmark performance for several
existing transfer learning paradigms for incorporating PI with the
Student model: transductive learning, inductive learning, andmodel
distillation. Under the transductive framework, we treat the PI as
auxiliary targets, much like target replication in [18]. We train a
joint hypothesis model h : X → X ∗ × Y to map from the original
EF space to the joint PI and label space. By contrast, we incorporate
X ∗ as an auxiliary input for the inductive framework. We use data
fusion to learn a joint representation д : X × X ∗ → Z before
learning a hypothesis function to predict h : Z → Y . For model
distillation, a Teacher network predicts a set of soft-labels over the
PI information, which the Student model uses as auxiliary input
for the final prediction model h : X × X ∗ → Y . Details of the setup
is explained below:

a) Multi-task learning. MTL is the representative transductive
learning technique. There is only one source domainD = {X , P(X )}

and two target tasks: TS = {X ∗,G} and TT = {Y ,H}. The MTL
model learns a joint model:

дk (xi ) = MLP(RNN (xi ;Wr ep );Wk ) (Shared Rep.)
hc (xi ) = MLP(RNN (xi ;Wr ep );Wc ) (Individual Hyp.)

LMTL =
1

mC

∑m

i=1

∑C

c=1
LY (hc (xi ),yic )

+
λ

dm

∑m

i=1

∑d

j=1
LX ∗ (дj (xi ),x

∗
i j ) (MTL Obj.)

whereWr ep is the shared weights for the representation model
RNN (xi ;Wr ep ), Wk and Wc are task-specific weights for target
hypothesis models. TheMTL loss is composed of two parts: (1) a loss
component over the joint label space E[LY (h(X ),Y )], and (2) a loss
term over the joint PI spaceE[LX ∗ (д(X ),X ∗)]. λ is a hyperparameter
which controls the trade-off between the multiple objectives during
learning. L(.) denotes some evaluation criterion to approximate the
0 − 1 loss, for example the binary cross-entropy (BCE) or mean
squared error (MSE). We used BCE in the proceeding experiments.

b) Data Fusion. For inductive learning, we used a variant of the
Siamese Network [14] to achieve data fusion between EF and PI.
We use two parallel networks, д : X → Z and д∗ : X ∗ → Z and
minimize the distance between д(x) and д∗(x∗) using the BCE loss.
We then learn a hypothesis function h : Z → Y .

д(xi ) = RNN (xi ;Wx ) (EF Embedding)
д∗(x∗i ) = MLP(x∗i ;Wx ∗ ) (PI Embedding)

h(xi ,x
∗
i ) = σ (Wдд(xi ) +Wд∗д

∗(x∗i ) + bд) (Joint Hyp.)

LZ (Wx ,Wx ∗ ) =
∑m

i=1
BCE(д(xi ),д

∗(x∗i )) (Fusion Loss)

LY (Wд ,Wд∗ ) =
∑m

i=1
BCE(h(xi ,x

∗
i ),yi ) (Task Loss)

LZ and LY are trained iteratively using alternating stochastic
gradient descent (SGD). At test time, a masking vector x∗test = {0}d
is used to represent PI, as it is unavailable for inference. Thus,
h(xi ,x

∗
test ) = yi is used for evaluation.

c) Distillation. Our distillation also contains two parts: a Teacher
network trained to generate soft-labels for PI, and Student network

Table 3: Comparison of performance across transfer learn-
ing models. Micro-averaged AUC and Macro-averaged AUC
are denoted as Mi-AUC and Ma-AUC, respectively. Micro-
averaged F1-score and AUC of precision-recall curve are de-
noted as Mi-F1 and AUPRC, respectively.

Model Ma-AUC Mi-AUC Mi-F1 AUPRC
MTL 0.783 0.836 0.384 0.336

Distillation 0.738 0.793 0.289 0.245
Data Fusion 0.779 0.811 0.374 0.328

Ours 0.838 0.845 0.397 0.344

conditioned on the EF and PI soft-labels to predict the ICD-9 targets.

д(xi ) = RNN (xi ;WT ) (Teacher)
hc (xi ) = MLP([д(xi );RNN (xi ;WRNN )];Wc ) (Student)

LTS =
∑m

i=1

∑C

c=1
BCE(hc (xi ),yi ) (Distillation Loss)

Here, [д(xi );RNN (xi ;WRNN )] denotes concatenation of the PI soft-
labels and the last hidden state of the RNN (xi ). The joint T-S loss
connects the Teacher and Student loss together, allowing the two
networks to be trained end-to-end.

Table 3 summarizes the AUC and retrieval scores for our LUPI
model against transfer learning baselines. We see that our LUPI
formulation outperformed other transfer learning baselines in all
major performance metrics. Vanilla Data Fusion and MTL networks
produced comparable performances, and Distillation did not have
significant improvement over the baseline Student models that did
not use PI. For Data Fusion, it is likely that since the PI contains a
lot more information than the original EF, the decision function of
the hypothesis model h(x ,x∗) relied heavily on access to PI.

Since PI is masked during testing due to unavailability,h(x , {0}d )
likely resulted in poor generalization. Comparable results can be
seen in MTL. The drop in performance is most likely due to negative
transfer [21] due to the wide range of tasks (ICD-9 codes) that
contribute uniformly to the multi-objective learning process. Unlike
our LUPI, the PI is not used to inform similarity between training
samples from different tasks, which do not share the same support
(i.e. different diagnosis may come from very different underlying
distributions). Thus, in both Data Fusion and MTL cases, the PI is
incorporated in a less efficient way than our proposed model.

Interestingly, we see that the MLP Teacher and Oracle Teacher
models in Table 2) still provided better AUC, F1 and AUPRC perfor-
mances over the all transfer learning models, including our LUPI
model. This result suggests that the PI is more informative for di-
agnostic tasks compared to the original EF, which is what enables
the LUPI method to be effective. One possible explanation of the
predictive power of the PI is that the embeddings of the UMLS
terms, which comprise the PI vocabulary, are learned based on their
co-occurrence with disease codes in public literature.

Performance with Sparse Examples: In addition to broad cov-
erage of tasks, we evaluate the sample efficiency of our proposed
model against transfer learning baselines by considering the more
rare diseases with very few training samples. This is actually quite
typical in the EHR setting, where diagnosis labels often have very
long tail distributions. We restrict our predictions to diagnostic
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Table 4: Performance of various models for 30 ICD-9 codes
appearing less than 100 times in the dataset.

Model Ma-AUC Mi-AUC Mi-F1 AUPRC
RNN Student 0.628 0.639 0.104 0.096
MLP Teacher 0.821 0.833 0.212 0.196
Oracle Teacher 0.801 0.805 0.256 0.146

MTL 0.717 0.724 0.150 0.122
Distillation 0.729 0.738 0.158 0.149
Data Fusion 0.821 0.826 0.307 0.237

Ours 0.834 0.835 0.381 0.330

codes appearing less than 100 times in the training and test sets
and examine the generalization of various modeling schemes.

In table 4, we see that performance decreased drastically for non-
transfer learning models such as the RNN Student and the Teacher
models (both MLP and Oracle). Transfer learning schemes such as
MTL and Distillation also decreased greatly in F1-score and AUPRC.
Interestingly, Data Fusion method was able to outperform other
transfer learning baselines in F1-score and AUPRC, suggesting that
learning a domain-invariant representation between the original
features and the PI provided a key improvement for sample effi-
ciency. However, our LUPI model achieved the best performance
among all the models for long-tail tasks. In fact, its performance
across stayed relatively consistent among this subset of tasks com-
pared to its performance on the original set of common diagnoses.

7 DISCUSSION AND CONCLUSION
In this work, we presented a novel LUPI framework for retaining
PI in the multi-task setting to improve sample complexity over
a wide range of related tasks. The key idea was to learn a joint
representation of the original feature space and the PI by leveraging
their co-occurrence information in the data. Decomposing the PI
into distributed representations of basis features was vital for the
realization of this mechanism. Experiments show that our proposed
LUPI method can out-perform baseline models and other transfer
learning methods in multi-task learning scenarios, particularly in
situations where training samples are very rare (< 100 samples
per task). In addition to improved performance, we also provided
sample complexity analysis that outline scenarios under which our
LUPI method can provide similar benefits over traditional transfer
learning approaches.
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