Numerical Analysis of Two Phase Cross-Flow Heat Exchanger for High Power Density Equipment in Data Centers under Dynamic Conditions

Carol Caceres*+, Alfonso Ortega*, Aaron Wemhoff**, Gerard F. Jones++
Villanova University
Villanova, PA, USA, 19085
Email: *acacere4@villanova.edu
*alfonso.ortega@villanova.edu
**aaron.wemhoff@villanova.edu
++gerard.jones@villanova.edu

ABSTRACT

Computational demand in the IT sector has increased dramatically and so rack level power densities from 10 to 50 kW/rack are increasingly common. Expanding the capabilities of the IT equipment requires thermal management systems able to handle time dependent thermal loads. Emerging system designs will almost certainly have to utilize close-coupled cooling subsystems to augment or replace traditional centralized perimeter air handlers. Distributed cooling technologies such as close-coupled rear-door heat exchangers, overhead heat exchangers, and in-row cooler heat exchangers have been developed to meet these high demands. To increase the thermal performance of the cross-flow heat exchangers, two phase flow is used with low-boiling-point refrigerants such as R134a, R407c, and R410a. In this study, a physics-based numerical model for cross-flow heat exchanger is developed in order to understand dynamic behavior. A system of partial differential equations for mass, momentum, and energy conservation has been solved using the finite difference method and implemented in MATLAB. Thermodynamic properties are obtained from COOLPROP. The dynamic model of cross-flow heat exchangers may be used to develop improved control strategies and increase energy efficiencies to meet the ever-increasing cooling demands of data centers.

KEY WORDS: Cross-Flow Heat Exchangers, Data Center, Two Phase

NOMENCLATURE

\begin{tabular}{ll}
A & Molecular weight, gr/mol \\
\(c\) & Pressure, kPa \\
\(c\) & Prandtl number \\
\(D\) & Longitudinal tube pitch, m \\
\(E\) & Waffle height, m \\
\(f\) & Heat flux, W/m² \\
\(Fr\) & Reynolds number \\
\(F_{\rho}\) & Slip-ratio \\
\(h\) & Suppression factor \\
\(h\) & Temperature, K \\
\(u\) & Velocity, m/s \\
\(X_f\) & Projected wavy length, m \\
x & Quality
\end{tabular}

Greek symbols

\begin{tabular}{ll}
\(\alpha\) & Void fraction \\
\(\gamma\) & Advection momentum multiplier \\
\(\delta\) & Thickness, m \\
\(\varepsilon\) & Convergence tolerance \\
\(\eta\) & Efficiency \\
\(\rho\) & Density, kg/m³ \\
\(\bar{\rho}\) & Average Density, kg/m³ \\
\(\phi\) & Two phase friction multiplier
\end{tabular}

Subscripts

\begin{tabular}{ll}
\(a\) & Air \\
\(c\) & Collar \\
\(c - a\) & Cross sectional area \\
\(cr\) & Critical \\
\(f\) & Fin \\
\(go\) & Gas only \\
\(l\) & Saturated liquid \\
\(lo\) & Liquid only \\
\(r\) & Refrigerant \\
\(t - p\) & Two phase \\
\(v\) & Saturated gas \\
\(w\) & Wall \\
\(w & l\) & Wall and liquid contact \\
w & v & Wall and gas contact
\end{tabular}
INTRODUCTION

Data center power density is continuously increasing. High power density data centers have had to migrate to new technologies such as close-coupled hybrid air-liquid cooling systems. Specifically, rear door heat exchangers, overhead heat exchangers, in-row coolers and rack enclosures are used for high density racks [1].

Figure 1 highlights some differences between classical centralized and close-coupled cooling techniques. For instance, classical data centers (Fig. 1a) deliver cooling through a raised floor. Controlling the amount of cold air to the servers with centralized cooling is not simple and does not reduce the presence of hot spots. On the other hand, a close-coupled system (Fig. 1b, Fig. 1c, and Fig. 1d) is proximate to the servers, offering opportunities of controlling the amount of local cooling delivered. Rear door, in-row, and overhead units are equipped with dedicated fans controlled by variable frequency drives that are controlled to deliver flow as needed by the load. Thus, close coupled cooling technologies increase energy efficiency by providing cold air to the servers according to demand.

HEAT EXCHANGER CHARACTERISTICICS

The most common transient studies on cross-flow heat exchangers are related to HVAC systems. In these systems, the refrigerant condition at the outlet of the evaporator is saturated vapor or superheat. In the modeling of dynamic HVAC systems, the evaporator and condenser use the moving boundary model [8-11] assuming an average void fraction. This assumption simplifies the transient modeling of heat exchangers since several components such as compressors and expansion valves must be considered in the simulation. The refrigerant outlet condition in close-coupled systems is two phase. Vapor quality at the outlet of the heat exchanger ensures that the heat exchange is maximized due to the high heat transfer coefficient in two phase flow. The objective of this investigation is to develop an accurate computational model for a dynamic refrigerant based evaporator. In this work, the prediction of the thermodynamic quality distribution is crucial. Slip-ratio effects are also considered in the proposed model, affecting the quality distribution and the quality at the outlet of the heat exchanger.

The load on the servers is variable with time, affecting the reaction of the hybrid cooling system. Hence, the dynamic behavior of these cooling technologies must be understood in order to develop effective control strategies. Del Valle et al. [2-5] and Gao et al. [6, 7] studied the transient response of a cross flow heat exchanger, which is the heart of close-coupled system. These studies were focused on heat exchange using chilled water for data center applications. The authors developed transient models for a single-phase cross-flow heat exchanger. The current paper investigates the transient behavior of refrigerant based evaporators. The capacity and performance gains in two phase heat exchangers makes them an attractive option as thermal load continues increase.

<table>
<thead>
<tr>
<th>Table 1. Heat Exchanger Geometry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipe ID</td>
</tr>
<tr>
<td>Pipe Material</td>
</tr>
<tr>
<td>Fin Type</td>
</tr>
<tr>
<td>Fins Material</td>
</tr>
<tr>
<td>Fins per inch</td>
</tr>
<tr>
<td>Dimensions</td>
</tr>
</tbody>
</table>
CROSS-FLOW HEAT EXCHANGER ANALYSIS

The heat exchanger transfers heat between two working fluids, air and refrigerant. The materials of construction and the configuration of flow passages greatly affect heat exchanger performance. Figure 3 shows the working fluid and as well as pipe and fins that are involved in heat transfer processes.

Air Energy Equation

A transient energy balance is obtained for the air side, where the air flows in the y direction as shown in Fig. 3. The equation neglects the axial conduction effects.

\[
\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial z} = 0
\]
(6)

where the average density is defined in terms of saturated densities and the void fraction \(\alpha \):

\[
\alpha = \frac{1}{1 + S \frac{\rho_l}{\rho_v}}
\]
(7)

The void fraction is an important parameter that characterizes the portion of gas and liquid. The void fraction is defined by

\[
\alpha = \frac{x}{S - x - S}
\]
(8)

and,

\[
H_u = \frac{j \rho u c_v}{\rho u c_v}
\]
(9)

Wall Energy Equation

The wall energy balance is performed considering the fins and the pipe together as the wall of the heat exchanger. The energy equation follows assumptions and analysis found in Mishra et al. [13-15], Syed and Idem [16], Del Valle et al. [2-5] and Gao [6, 7]. Hence, the transient energy balance equation for the heat exchanger wall becomes

\[
\frac{\partial T_w}{\partial t} + \frac{\partial \rho u (T_w - T_v)}{\partial z} + \frac{\partial \rho u H_r (T_w - T_v)}{\partial z} = 0
\]
(5)

Note that Eq. (5) contains the refrigerant-side heat transfer with its associated heat transfer coefficient, \(H_r \). The expression used to obtain the heat transfer coefficient for the refrigerant will be covered in the next section.

Refrigerant Equations

Studies have been performed for cross-flow heat exchangers in HVAC equipment, achieving superheat or saturated vapor at the outlet of the exchanger. In close-coupled systems, the refrigerant at outlet of the heat exchanger is a two phase mixture. Several insights and the analysis in this section have been extracted from Jia et al. [17-19] and Kapadia et al. [20]. The governing equations for the refrigerant side considers a one dimensional two phase flow.

The continuity equation is,

\[
\rho \frac{\partial u}{\partial t} + \rho u \frac{\partial u}{\partial z} = 0
\]
(10)

The term \(\gamma \) in Eq. (10) accounts for the acceleration of the vapor compared to the liquid:

\[
\gamma = \frac{(x - Sx - 1)(Sx - x - S)}{S}
\]
(11)

The source term \(f_z \) in Eq. (10) corresponds to the frictional forces between the vapor and the wall, and the liquid and the wall:

\[
f_z = f_{w,av} + f_{w,sv}
\]
(12)

Equation (12) is evaluated using the correlation proposed by Müller and Heck [21]. In order to obtain the frictional pressure gradient the following expression is calculated;
\[f_z = \left(\frac{\partial p}{\partial z} \right)_{\text{fg}} = \phi_{\text{fg}} \left(\frac{\partial p}{\partial z} \right)_{\text{lo}} \]
(13)

where, the pressure gradient in two phase flow due to friction forces depends on a frictional multiplier and the gradient pressure when the fluid flow is considered liquid. The multiplier according Müller and Heck [21] is

\[\phi_{\text{lo}} = Y^2 x^2 + (1 - x)^{3/2} \left[1 + 2x(Y^2 - 1) \right] \]
(14)

Friction factors for Eqs. (16) and (17) are calculated with the Fang and Zhou [22] expression, where a smooth pipe is assumed.

\[f = 0.25 \left[\log \left(\frac{150.39}{\text{Re}^{0.8357}} - \frac{152.66}{\text{Re}} \right) \right]^{-2} \]
(18)

A refrigerant two phase velocity is defined as

\[u = \frac{G}{\rho_v} \]
(19)

Equation (19) will be used in the homogenous and non-homogeneous analysis.

Finally, to complete the set of equations the energy equation in the refrigerant is obtained as

\[\frac{\partial h}{\partial t} + \frac{\partial \rho_v h u}{\partial x} + \frac{\pi D}{A_{\text{avg}}} H_r(T_r - T_v) = 0 \]
(20)

Two types of enthalpy are in the refrigerant energy equation, the average enthalpy Eq. (21) and the thermodynamic enthalpy Eq. (22).

\[h_a = \alpha \rho_v h_v + (1 - \alpha) \rho_l h_l \]
(21)

\[h_l = x h_v + (1 - x) h_l \]
(22)

As in Eq. (5), Eq. (20) contains the heat transfer coefficient, \(H_r \). A well-known correlation to evaluate the heat transfer coefficient for two phase flow is given by Liu and Winterton [23].

\[H_r = \left((E \cdot E_x \cdot h_{\text{fg}})^2 + (S \cdot S_x \cdot H_{\text{pool}})^2 \right)^{1/2} \]
(23)

where the enhancement factor \(E \) is,

\[E = \left(1 + x \cdot Pr_l \left(\frac{\rho_v}{\rho_l} - 1 \right) \right)^{0.35} \]
(25)

and the suppression factor \(S \) is,

\[S = \frac{1}{1 + 0.055E^{0.1}Re_l^{0.16}} \]
(26)

In the first term on the right hand side in Eq. (24), a heat transfer coefficient correlation is needed. The Dittus-Boelter relation was used and evaluated in terms of saturated liquid properties:

\[H_{\text{lo}} = 0.023 \left(\frac{k_l}{d} \right) Re_l^{0.8} Pr_l^{0.4} \]
(27)

The pool boiling heat transfer coefficient is calculated with the expression proposed by Cooper [24].

\[H_{\text{pool}} = 55 \left(\frac{P}{P_{cr}} \right) \left(-\log \left(\frac{P}{P_{cr}} \right) \right)^{0.55} M^{-0.5} (q_{\text{in}})^{2/3} \]
(28)

Equation (29) is analyzed in the two next subsections for a homogenous and then a non-homogeneous two phase flow.

Homogeneous Analysis Refrigerant Equations

In a homogeneous analysis it is assumed that the slip-ratio is equal to one. In other words, the vapor and liquid velocity are the same.

Substituting \(S = 1 \) into the equations (7), (8), (19), (21), (22), into Eq. (29) leads to,

\[\frac{\partial h}{\partial t} + \frac{\partial \rho_v h \cdot u}{\partial x} + \frac{\pi D}{A_{\text{avg}}} H_r(T_r - T_v) = 0 \]
(29)

Equation (29) is analyzed in the two next subsections for a homogenous and then a non-homogeneous two phase flow.

Refrigerant Equations for Non-Homogeneous Flow

For non-homogeneous flow,

\[\frac{S}{\gamma} = \text{function of } (\gamma), \quad x = \text{function of } (t, z) \]
(31)

The steps used to derive Eq. (30) are also used here, except that the slip-ratio now is a function of vapor quality, which is a function of time and position. The result is:
Combining Eqs. (34) and (32) results in the expression
\[
\rho h_{fg} \left(\frac{\rho_x}{\rho_r} - 1 \right) x + 1 \left(S + x(x-1) \frac{dS}{dx} \frac{dx}{dt} \right) \frac{x}{1-x} + \left(\frac{1}{1-x} \right)^2 \frac{dx}{dt} \right)
\]
\[
\rho h_{fg} \left(\frac{\rho_x}{\rho_r} - 1 \right) x + 1 \left(\frac{S + x(x-1) \frac{dS}{dx} \frac{dx}{dt}}{1-x} \right) \frac{x}{1-x} + \left(\frac{1}{1-x} \right)^2 \frac{dx}{dt} \right)
\]

The system of partial differential equations of Eqs. (1), (5), (10), (30), and (35) or (36). The wall equation (5) is discretized explicitly in time. The air equation (1) is discretized using backward differencing in space and backward differencing in time. Equations (10), (30), (35) and (36) are discretized in a similar way and described in the Appendix.

Equations (30), (35), and (36) are first solved to obtain quality. These are non-linear equations, therefore the equations must be solved iteratively. However, these equations have an embedded heat transfer coefficient, \(H_r \), which also is a quality-dependent parameter. In Cooper’s Eq. (28) the heat transfer coefficient is embedded. Inserting Eq. (37) into Eq. (28) gives an implicit form of Eq. (23). Hence, iteratively the heat transfer coefficient is obtained using
\[
q^* = H_r(T_v - T_r)
\]

Equation (10) is used to calculate the local pressure. The results provide the local saturated properties. The flow chart of Fig. 5 shows the procedure to solve the system of equations.

![Flow chart for numerical solution](image)

The perturbation of the air inlet temperature is the driving mechanism that generates changes over time in the heat exchanger. A ramp temperature simulating a jump in the air inlet temperature is the driving force in this study.
temperature leaving the servers is used as the time dependent perturbation. Figure 6 shows the assumed inlet air temperature to the heat exchanger. Note that the air temperature is higher than the inlet refrigerant temperature so that the heat exchanger will behave as an evaporator. The air velocity used is 3.65 m/s. The mass flux of refrigerant is 410 kg/m²s, and saturated conditions are considered at the inlet of the heat exchanger with a refrigerant temperature of 294K. These parameters were selected based on typical data center specifications. The refrigerant chosen is R134a. Refrigerants properties were obtained with COOLPROP [36] and connected to the calculations in MATLAB.

The heat exchanger thermal capacitance is 1348 J/K and the core mass is 1.81 kg based on the cross-flow heat exchanger shown in Fig. 2.

Under-relaxation was used in the iterative procedure. The relaxation parameter factor is taken as 0.5. Spatial discretization was studied, showing that between 80 to 100 nodes for the refrigerant gives mesh-independent results. The same number of nodes were used in the air flow direction. A small time step of 0.1 s was chosen to accurately track the solution. Typical run times were about 1-2 minutes.

The wall temperature is shown in Fig 9. Wall temperature decreases over length as result of increasing HTC over length as seen in Fig. 8. Recall that the refrigerant temperature remains constant during the phase change. The wall temperature increases with time because of the assumed increase in air temperature of Fig. 7.

From Fig. 10, note that the pressure changes are generally small, but the local pressure affects the thermodynamic properties and thus the entire solution of the problem. Overall, the heat exchanger experiences a maximum pressure drop of about 4 kPa. Therefore, the influence of thermodynamic property variation due to pressure drop is minor.

The air outlet temperature is obtained and shown in Fig. 11. The air-side response is essential since the air leaving the heat exchanger will provide cooling to servers. Therefore, accurate predictions of air outlet temperature subject to variable cooling loads is crucial in a close-coupled system.

RESULTS

Homogenous Flow Results

The inlet temperature of the refrigerant is less than the air temperature. Therefore, the refrigerant is heated by the air and will undergo evaporation. In doing so the quality will increase in the direction of the refrigerant flow and over time. Figure 7 shows quality as function of the total length of the refrigerant flow in the heat exchanger tube.

The HTC (heat transfer coefficient) shows the same trends of Fig. 7, with an increase in HTC values with distance in the direction of refrigerant flow and over time. Note that the magnitudes of HTC are much larger than one would normally expect from single phase flow of a liquid.

Fig. 6. Air temperature perturbation boundary condition.

Fig. 7. Dynamic quality distribution. Homogeneous flow approach.

Fig. 8. Local heat transfer coefficient. Homogeneous flow approach.
Non-Homogenous Flow Approach Results

Adding slip-ratio effects alters the acceleration of the vapor relative to the liquid velocity.

Comparable results were found for heat transfer coefficient, wall temperature, local pressure and air temperature. In addition, the momentum equation; i.e., the local pressure distribution, is seen to have measurable effects on the quality distribution through the slip-ratio.

SUMMARY AND CONCLUSIONS

A computational model was developed for transient two phase flow and heat transfer applied to a cross-flow heat exchanger with air cooling on one side and refrigerant on the other. Through appropriate scaling, it was demonstrated that the energy and mass conservation equations for the refrigerant may be combined to form a single equation in refrigerant quality, which appears in nearly all the remaining equations.
governing the system performance. It was shown that the energy equations for the wall and air stream may be reduced to a thermally lumped system, such that the temperatures depend only on time for both constituents.

From our results several comments are noteworthy.

1. It is observed that the gamma factor influences the local pressure prediction for the homogeneous and non-homogeneous flow approach. In the non-homogeneous method the advection term directly is affected through the function γ.

2. For the refrigerant equations, a slip-ratio upper and lower bound were investigated. This covers a wide range of possible solutions. Experimental validation is needed in order to provide a recommended slip-ratio correlation.

3. The lower bound adopted in this work is slightly more conservative compared with Awad and Muzychka [35]. They analyzed steady-state experimental data with void fraction models prediction and found that data is located between the limits proposed. Transient experimental data are needed to validate results such as void fraction or thermodynamic quality obtained with the numerical method.

4. Turner and Wallis slip-ratio predict higher vapor velocities compared with the velocity ratio predicted by Chen. The residence time for the gas phase is small, predicting low thermodynamic quality distribution.

5. The computational technique runs quickly. Challenges are observed related to the non-homogenous quality expression, where the derivative of the slip-ratio depending on the model chosen with respect to quality will become complicated according to the model chosen.

6. The local pressure variation is minor and can be assumed to be constant for purposes of thermodynamics calculations in the heat exchanger geometry considered. Moreover, cross-flow heat exchangers with smaller pipe diameters are used today. Hence, the pressure drop is significant on those heat exchangers and is the reason for considering the momentum equation.

7. The heat transfer coefficient in the refrigerant-side increase due to the temperature rising in the air inlet temperature into the heat exchanger. Therefore, the quality distribution predicted exhibits continuous growth in time and space as a result of the air temperature perturbation.

Future studies will include the upper and lower limits for the heat transfer coefficient and frictional pressure drop. Experimental measurements are underway in order to obtain data for model validation for a close-coupled cross-flow heat exchanger.

ACKNOWLEDGEMENTS

This material is based upon the work supported by the national Science Foundation Center for Energy Smart Electronic System (ES2) under the Grant No. IIP-1738782. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

References

Appendix

Wall Energy Equation Discretized

\[
\Delta M_a c_a \left(\frac{T_{w_{i,j}}^{k+1} - T_{w_{i,j}}^k}{\Delta t} \right) + \Delta A \eta_s H_s (T_{w_{i,j}}^k - T_{r_{i,j}}^k) + \Delta A \eta_i H_i (T_{a_{i,j}}^k - T_{e_{i,j}}^k) = 0
\]

(A1)

Air Energy Equation Discretized

\[
\Delta M_a c_a \left(\frac{T_{a_{i,j}}^{k+1} - T_{a_{i,j}}^k}{\Delta t} \right) + \dot{m}_a c_a \left(T_{a_{i,j}}^{k+1} - T_{a_{i,j}}^k \right) + \Delta A \eta_i H_i (T_{r_{i,j}}^k - T_{a_{i,j}}^k) = 0
\]

(A2)

Homogeneous Energy Equation Distribution

\[
\frac{\rho_s \rho_r h_f}{\rho_s + x_s^{k+1} (\rho_i - \rho_s)} \left(x_{r_{i+1}}^{k+1} - x_{r_{i}}^{k+1} \right)
\]

\[
Gh_f \left(\frac{x_{r_{i+1}}^{k+1} - x_{r_{i}}^{k+1}}{\Delta z} \right) + \frac{\pi D}{A_{c-a}} H_s (T_{r_{i+1}}^k - T_{r_{i}}^k) = 0
\]

(A3)

Refrigerant Momentum Equation

\[
\frac{(\bar{\rho} u)^{k+1}_{i+1} - (\bar{\rho} u)^{k}_{i}}{\Delta t} + \frac{(\bar{\gamma} \bar{\rho} u^2_{i+1} - (\bar{\gamma} \bar{\rho} u^2_{i})_{i+1}}{\Delta z} - \frac{p_{i+1}^{k+1} - p_{i+1}^{k}}{\Delta z} - f_{z_{i}} = 0
\]

(A4)

Non-Homogeneous Energy Equation Distribution (Turner and Wallis Upper Bound)

\[
\frac{\rho h_f \left[\frac{\rho_s}{\rho_i} - 1 \right] x_{r_{i+1}}^{k+1} + 1}{0.72 \left(x_{r_{i+1}}^{k+1} \right)^{0.28} \left(\frac{\rho_s}{\rho_i} \right)^{0.6} \left(\frac{\bar{\rho} u}{\bar{\rho}_s} \right)^{0.05}}
\]

\[
\left\{ - \left(x_{r_{i+1}}^{k+1} \right)^{0.28} \left(\frac{\rho_s}{\rho_i} \right)^{0.6} \left(\frac{\bar{\rho} u}{\bar{\rho}_s} \right)^{0.05} - \frac{p_{i+1}^{k+1} - p_{i+1}^{k}}{\Delta z} \right\}
\]

\[
\frac{\Delta t}{\rho h_f} \left\{ \frac{x_{r_{i+1}}^{k+1} - x_{r_{i}}^{k+1}}{\Delta z} \right\} +
\]

\[
Gh_f \left(x_{r_{i+1}}^{k+1} - x_{r_{i}}^{k+1} \right)
\]

\[
\frac{\pi D}{A_{c-a}} H_s (T_{r_{i+1}}^k - T_{r_{i}}^k) = 0
\]

(A5)