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ABSTRACT. We introduce techniques to study the topology of Stein fillings of a given contact
three-manifold (Y,¢) which are not negative definite. For example, given a spin® rational
homology sphere (Y, s) with s self-conjugate such that the reduced monopole Floer homology
group HM .(Y,s) has dimension one, we show that any Stein filling which is not negative
definite has b = 1 or 2, and b, is determined in terms of the Frgyshov invariant. The
proof of this uses Pin(2)-monopole Floer homology. More generally, we prove that analogous
statements hold under certain assumptions on the contact invariant of £ and its interaction
with Pin(2)-symmetry. We also discuss consequences for finiteness questions about Stein
fillings.

In the past twenty years, the topology of Stein fillings of contact three-manifolds has been a
central topic of research at the intersection of symplectic geometry, gauge theory and mapping
class groups (see [OS04a], [CE12] for introductions to the topic). One of the main goals is
to classify the Stein fillings of a given contact three-manifold (Y, &), the prototypical example
given by Eliashberg’s celebrated result that any Stein filling of (93, &4) is diffeomorphic to
D* [Eli90]. Following that, the classification has been carried over in several other cases of
interest, see for example [McD90], [Lis08], [Wen10].

In this paper, we focus on the less ambitious yet very challenging task of understanding the
algebraic topology (e.g. the intersection form) of the Stein fillings of a given contact three-
manifold (Y,¢). While many classification results rely on the characterization of rational
symplectic 4-manifolds [McD90], and therefore are mostly effective when dealing with negative
definite Stein fillings, we will focus here on the case of indefinite fillings. We will discuss some
applications toward this goal of monopole Floer homology [KMO07], and in particular its
Pin(2)-equivariant version defined in [Linl8]. The latter is a Floer theoretic analogue of the
invariants introduced in [Manl6], and can be used to provide an alternative (but formally
identical) disproof of the Triangulation Conjecture.

Throughout the paper, all Floer homology groups will be taken with coefficients in F, the
field with two elements, and we will focus for simplicity on the case of a rational homology
sphere Y. To give some context, recall that for a given spin® structure s, if the reduced
Floer homology group HM .(Y,s) vanishes then all Stein fillings of contact structures (Y, &)
for which s¢ = s have by = 0 [0S04b], [Ech18].

We focus first on the next simplest case in which HM (Y, s) = F has dimension one, under
the additional assumption that s is self-conjugate, i.e. s = § (or, equivalently, s is induced by
a spin structure). This in turn implies (see Section 1 below) that either

HM'(K 5) = Tth(y) S IE‘—2]7,(Y)

—

HM.(Y,s) = Tth(y) OF ony)-1,
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where h(Y,s) is the Frgyshov invariant of Y. Here T is the F[[U]]-module F[[U,U~!]/U -
F[[U]] (to which we refer as the tower), and the indices determine the grading of the lowest
degree element. We call these two cases Type I and Type 11 respectively. By Poincaré duality,
if (Y,s) has Type I then (—Y,s) has Type I, and viceversa.

Remark 1. For the reader more accustomed with Heegaard Floer homology, let us point out
that under the isomorphism between the theories ([Taul0],[CGH11] or [KLT11] and subse-
quent papers) we have HM ,(Y,s) = HEFI*(Y,s) and d(Y,s) = —2h(Y,s).

We have the following.

Theorem 1. Let (Y, &) with s¢ = s self-conjugate, and suppose HM o(Y,s) = F. The following
hold:
o if (Y,5) has Type I, and (W,w) is a Stein filling of (Y, ) which is not negative definite,
then W has even intersection form and by =1 and by = —8h(Y,s) + 9.
o if (Y,s) has Type II, and (W,w) is a Stein filling of (Y,&) which is not negative
definite, then W has even intersection form and by =2 and b, = —8h(Y,s) + 10.

There are plenty of rational homology spheres satisfying the hypotheses of Theorem 1,
including among the others many Seifert fibered spaces. Notice that when Y is an integral
homology sphere, our theorem fixes the intersection form of an indefinite Stein filling com-
pletely: this follows from the classification of even indefinite unimodular lattices (Theorem
1.2.21 in [GS99]), and the fact that the self-conjugacy requirement is trivial. In particular,

in the Type I case the intersection form is H @ Eg_h(y), while in the Type I case it is
2H @ Eé_h(y). With this in mind, our result should be thought as a generalization of the

results in [Sti02] that classify the intersection forms of Stein fillings of the Brieskorn sphere
+3(2,3,11); this has Type II (resp. Type I) and h = F1. In particular, it is shown in
[Sti02] that a non-negative definite filling of —¥(2,3,11) has intersection form H, while a
non-negative definite filling of ¥(2,3,11) has intersection form 2H @ 2FEg. While the key
input of [Sti02] is the existence of a nice embedding of —(2,3,11) inside the K3 surface as
the boundary of the nucleus N(2), our proof is purely Floer theoretic, hence it works when
there are no explicit topological inputs.

Remark 2. The canonical contact structure on 3(2, 3, 11) also admits a negative definite Stein
filling, namely the (deformation of the) resolution of the singularity {z2+y3+ 2! = 0} < C3.
An example of indefinite Stein filling is given by the Milnor fiber of this singularity.

The Brieskorn sphere with opposite orientation —3(2,3,7) has Type I with A = 0; there-
fore all indefinite fillings have intersection form H @ Eg. We can generalize this example to all
integral surgeries on the figure-eight knot M (n) (where —%(2,3,7) = M(—1)), all of which
have HM (M (n)) = F supported in a self-conjugate spin® structure [OS03]. These manifolds
are hyperbolic for |n| > 5 [Marl6]. Contact structures on these manifolds, and their fillability
properties, have been thoroughly studied in [CM19]. For example, the authors construct for
n = —1,...,—9 a Stein fillable contact structure £ on M (n) for which s¢ is self-conjugate
(as it has non-vanishing reduced contact invariant). For negative n, (Y, s¢) has Type I and
h = =™kl 5o that our main result implies that any indefinite Stein filling of (M(n), &) has
by =1 and b, = 10 + n. We also refer the reader to [Bal08] for more examples obtained by
analyzing genus one, one boundary component open books where the result applies.
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Our first theorem has consequences regarding finiteness questions for Stein fillings. In
particular, it was conjectured (Conjecture 12.3.16 of [OS04al) that given a contact manifold
(Y, &), the Euler characteristic of its Stein fillings can only attain finitely many values. While
this was later shown to be false [BVHM15], it is still of great interest to understand for which
classes of contact three-manifolds this finiteness condition holds. On our end, we have the
following.

Corollary 2. Given a contact rational homology sphere (Y, &), suppose s¢ = s is self-conjugate
and HM .(Y,s) has dimension one. Then the set of Euler characteristics of the Stein fillings

of (Y, €) is finite.

Remark 3. While the examples in [BVHM15] are not rational homology spheres, it was pointed
out by Stipsicz that their examples can be modified to show that the boundedness property
does not hold for this restricted class. To see this, one just need to attach a fixed Stein
cobordism from the contact manifolds considered in [BVHM15] to a rational homology sphere;
this is easily constructed via surgery.

Even though the statement of Theorem 1 itself does not involve Pin(2)-monopole Floer
homology [Lin18], its proof relies on it. Indeed, Pin(2)-symmetry has been already fruitfully
exploited to study the topology of closed symplectic 4-manifolds [Bau08], [Li06], and our re-
sult can be thought as an analogue of those in the case of Stein fillings. The key observation is
that the bar version of Pin(2)-monopole Floer homology HS,, unlike its standard counterpart
HM.,, is non-trivial for cobordisms with small positive b3 [Lin17]; this in turn is a version for
cobordisms of the classical Donaldson Theorems B and C [DK90].

More generally, we can provide obstructions on the intersection form of the indefinite Stein
fillings of (Y,¢) in terms of the interaction with Pin(2)-monopole Floer homology of the
contact invariant c(§) € HM (=Y, s¢) defined in [KMOSO07]; as the precise statements require
some additional background and terminology (which we review in Section 1), we postpone
them to Section 3. Let us point out that the obstructions we provide are applicable in concrete
situations where the reduced Floer homology HM .(—Y,s¢) has arbitrarily large dimension.

Theorem 3. There exists a sequence (Y;,&;), i = 1, of contact rational homology three-spheres
such that:

e any indefinite Stein filling of (Y;,&;) has intersection form 2H @ Eg;
e the dimension of HM.(=Y;, s¢,) tends to infinity; if fact, the image of the contact
element jic(§) € HM (=Y, s¢,) in the reduced group is a non-zero element in the
image of U%.
As a consequence, for each i =1 the set of the Euler characteristics of Stein fillings of (Y3, &;)

s finite.

Remark 4. We emphasize in the statement of the result that j.c(§) is non-zero, as when
jxc(§) = 0 all Stein fillings are negative definite [OS04b], [Ech18].

Acknowledgements. The author would like to thank Andras Stipsicz for sharing his exper-
tise on the subject. This work was partially funded by NSF grant DMS-1807242.
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1. Pin(2)-MONOPOLE FLOER HOMOLOGY

We will review some background on the Pin(2)-monopole Floer homology groups defined
in [Linl8]. We will assume the reader to be familiar with the formal properties of usual
monopole Floer homology [KMO7]; for a gentle introduction, we refer the reader to [Linl6].
Consider (Y,s) a rational homology sphere equipped with a self-conjugate spin® structure.
The Seiberg-Witten equations then admit a Pin(2)-symmetry, where

Pin(2) = S'uj- St cH.
In particular, the action of j induces an involution 7 on the moduli spaces of configurations
B(Y,s). One can then exploit this extra symmetry to provide refined Floer theoretic invariants
(1) o HS (Y, s) 25 HS,(V,s) 25 HSL (Y, 5) 5

which are read respectively H-S-to, H-S-from and H-S-bar. These are also absolutely graded
modules over the graded ring

R =F[[VII[QI(@°)

where V' and @ have degree respectively —4 and —1. We will be mostly interested in the
HS.(Y,s) version. This invariant fits in the Gysin exact sequence

o~ o~

HS.(Y,s) HS,(Y,s)
T T
ﬁ]\\/./.(Y, 5)

where 7, and ¢ have degree 0. This is an exact sequence of R-modules, where the R-action
on ﬁ]\\/l.(Y, 5) is obtained by sending Q to 0 and V to U2. In the case Y = S3, we have
I;TTS’.(SS) = R(—1) and this fits together with @.(53) = F[[U]]{—1) in gradings between
—4k and —4k — 3 for k = 0 as follows:

F — F F

F . F

A\

F F — F

Here the three columns represent (left to right) s o oM . and s «» respectively, and the
horizontal maps are ¢ and .
In general, we always have for a rational homology sphere that, up to grading shift,

(2) HS.(Y,s) = F[[V,V1[Q]/(@),
and that p, is an isomorphism in degrees low enough and zero in degrees high enough.
Using the Gysin exact sequence, one can show the following [HKL17].

Theorem 4. [Corollary 2 of [HKL17]] Suppose s is self-conjugate, and HM o(Y,s) = 1. Then
the extra F summand is in degree either —2h(Y,s) or —2h(Y,s) — 1.
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Accordingly, we have that one of the two alternatives
HM.(Y,5) = F[[U]] an(ve)-1 ®F oncye)
HM (Y, 5) = F[[U]] —on(v,e)—1 @ F _on(v,e)—1

holds, corresponding to our definitions of Type I and II. When (Y,s) has Type I, we have
the identification as F[[V]]-modules

HS.(Y,5) = F[[V]I(~2h — 3) @ F[[V])(~2h) ® F[[V][(~2h — 1)

and the action of @) sends each column injectively into the next one. The corresponding high
degree part of the Gysin exact sequence looks like

F — F F

When (Y,s) has Type I, we have the identification as F[[V]]-modules
HS.(Y,5) = F[[V]K=2h — 3) @ F[[V]|(~2h — 4) @ F[[V]|(~2h — 1)

and the action of @ sends each column injectively into the next one. The corresponding high
degree part of the Gysin exact sequence looks like

F >F®F— F

F—F _F
F . _F
F F — F

Here, in the middle column we have highlighted the U-action on the F[[U]]-summand using
dotted arrows. We record the following observations.

Lemma 5. Suppose HM .(Y,s) = F. Then the map ps in Pin(2)-monopole Floer homology
is injective. Furthermore, the generator of HM (Y, s) is in the image of .

A cobordism (W, s) with s = § induces a map on the corresponding Pin(2)-monopole Floer
homology groups; this fits in a natural commutative diagram with the Gysin exact sequence
and the map induced on the usual Floer homology groups. The key observation underlying
our results is the following.
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Proposition 6. Given two rational homology spheres (Yy,s0) and (Y1,81) equipped with self-
congugate spin® structures, and consider a cobordism (W,s) with s self-conjugate and by = 0
between them. Consider the induced map

HS,(W,s) : HS4(Yo,50) — HS.(Y1,51),

where we can identify both groups up to grading shift as in Equation (2). Then:

o ifby =0, HS.(W,s) acts as multiplication by V¥ for some k (so it is an isomorphism);

o if bl =1, HS.(W,s) acts as multiplication by QV* for some k;

o if b =2, HS.(W,s) acts as multiplication by Q*V* for some k;

o if by =3, HS«(W,s) vanishes.
ll'n alf cases, the value of k is determined by the grading shift, which is given by the formula
1(5by —by).

Graphically, the cases by = 0, 1,2 look like

F — F F F F F
N

F — F F F F F
N

F — F F F F F

after a suitable grading shift.

Proof. The first three bullets were proved in [Linl8] and [Lin17]. Let us recall the basic idea
behind their proof. In the case b = 0, the relevant reducible moduli spaces are transversely
cut out and consist of a copy of CPL. In the case by = 1, before adding perturbations in the
blow-up, the moduli space of solutions is again CP! but in this case the linearization has one
dimensional cokernel; adding an extra perturbation in the blow-up corresponds to choosing a
generic equivariant map
s:CP' - R

where the action is the antipodal on the source and x — —x on the target. The zero set
571(0) is a generator of the one dimensional homology of CP!/7 = RP?, which corresponds
to the claimed computation of multiplication by (). Notice that a choice of such an equivariant
section is equivalent to choosing a section of the tautological line bundle over RP?. Similarly,
when b; = 2 we are dealing with equivariant maps CP' — R?; here the zero set consists of
4N + 2 points, which again descends to a generator of the zero dimensional homology of RP2.

Now, if b; = 4k + 3, the map is zero for grading reasons. Let us focus on the case
by = 4k + 2. In this case, before adding perturbations the relevant moduli space of reducible
solutions is a copy of CP?**1 and the cokernel has real dimension 4k + 2. The perturbations
in the blow-up correspond to equivariant maps

CPQk-i-l N R4k+2,
where the action on CP?**1 is given by
[Z1 TW1 ot 2kl Z’LUk_H] — [—11_]1 21 =Wt :Zk+1]

and is again z — —x on the target. We are interested in the zero locus of such map. On the
other hand, when k£ > 1 any such map is homotopic to a map with no zeroes, because there
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is an equivariant map
Cp2k+l _, R3k+3

which is never zero. This is obtained by taking k& + 1-copies of the standard squaring map
(CQ N R3

(@.8) = (010 = 13) Re(a 3). Im(a5) )

restricting to the unit sphere in C%*%2, and modding out by the S'-action. This implies that
the induced map vanishes. Finally, the cases b = 4k or 4k + 1 follow from this by stabilizing
with an equivariant map with values in R? and R respectively. O

2. PROOFS

We begin by discussing some results about Floer theoretic properties of Stein cobordisms;
these are essentially obtained by rephrasing the results in [Sti02] in the language of monopole
Floer homology. The key observation here is that the assumption that the Stein filling is not
negative definite allows us to apply the gluing properties of the Seiberg-Witten invariants; we
refer the reader to Chapter 3 of [KMO07] for a thorough discussion of the formal picture, and
briefly discuss here what we will need.

Suppose we are given a closed oriented 4-manifold X given as the union X = X; uy Xo
along a hypersurface Y. We will assume that by (X;) > 1 and Y is a rational homology
sphere. The latter assumption assures that a spin® structure sy on X is determined by the
two restrictions s; = sx|x,. We will write sx = §; Uy 52, and denote by s the restriction to
Y. As by (X;) > 1, we obtain relative invariants

w(Xl,Sl) € HM’(KE)
w(X2752) € HM.(-Y,s)

where we can identify the last group with HM®(Y,s) using Poincaré duality. The pairing
theorem for the Seiberg-Witten invariants m(X,s) says that

m(X751 vy 52) = <w(X1,51)a 77ZJ(X2,52)> (mOd 2)
where
(o) HM (Y, s) ® HM*(Y,s) > F
is the duality pairing. The relative invariants v(x, 5,) can be interpreted in terms of cobordism
maps; for example 1 (x, ) is the image under

HM ,(X,\B*, s1) — HM.(S%) — HM,(Y,s)

of 1 e F[[U]] = ﬁM.(S?’); under our assumption by (X1) > 1, the image lies in HM ((Y,s) =
ker(p,) € HM.(Y,s). With this in mind, we have the following.

Lemma 7. Suppose (W,w) is a Stein filling of (Y,&), and Y is rational homology sphere.
Suppose that furthermore by (W) > 0, s¢ = s is self-conjugate and HM .(Y,s) = F. Denoting
by s, the canonical spin® structure of w, we have:
e the map induced by (W\B*,s,) from ﬁ]\\J.(S?’) =TF[[U]] to ﬁ]\\J.(Y,ﬁ) maps 1 to the
generator of HM 4(Y,s) < ﬁ]\\J.(Y,s).
e 5, is self-conjugate.
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Proof. The key input is that any Stein domain W can be embedded in Kahler surface X
which is minimal of general type [LM97]; in fact, we can assume by (X\W) > 1 and that
X\W is not spin [Sti02]. To see why the last condition can be achieved, one can do surgery
on W to create a new Stein domain W’ containing a surface with odd self-intersection (hence
not spin), and then apply the Lisca-Matic construction to W’. Now, we know that X has
basic classes exactly the canonical classes £Kx, with Seiberg-Witten invariant +1 [Mor96].
The pairing theorem therefore implies that

w(W,sw) e HM.(Y,s) =TF

is a non-zero element, and the first bullet follows.
Suppose now that s, # 5,. Denoting by s’ the canonical spin® structure on X\W, we have

Ky =s,uys and —KXZEwaﬁ_/.

Furthemore, as X\W is not spin, s’ # §. Now, conjugation acts trivially on HM(Y,s) = F,
so by the pairing theorem §,, Uy s’ and s, Uy §’ are also basic classes, which is a contradiction
as + Kx are the only basic classes. O

Lemma 8. Suppose (W,w) is a Stein filling of (Y,§), and Y is rational homology sphere.
Then by (W) = 0.

Proof. Topologically, any Stein domain is obtained from B* by attaching only 1 and 2-handles
[OS04al; in particular, the map m(Y) — 71 (W) is surjective, and the result follows. O

Proof of Theorem 1. Let us focus on the case of Type [, as the case of Type I is identical.
Denote by x the generator of HM (Y, s) = F. By the previous lemma, the spin® structure s,
on W induced by w is self-conjugate; in particular W is spin, hence it has even intersection
form. We have the commutative diagram

H8.(5%) —2 @i1.(5%)
HS.(W\B4,s,,) [ kﬁﬂ.(W\B‘*,sw)
—~ Ly

HS.(Y,s) —— HM.(Y,s)

By Lemma 7, oM +(W\B*) maps 1 to x; by commutativity of the diagram, we see that

ITL\S’.(W\BZI) maps 1 € R to the top degree element of ]fITS’.(Y, s) (cfr. Lemma 5). Now, we
have also the commutative diagram

H5.(S%) —2— HS.(5%)
HS.(W\B4,s,) l HS(W\B4, 5,,)
HS.(Y,8) —— HS.(Y, )

As both horizontal maps p are injective, we see that HS,(W\B*) is given by multiplication
by an element of the form QV*; therefore Proposition 6 implies that by = 1. Finally, as x has
degree —2h and 1 has degree —1, the map has grading shift —2h(Y,s) + 1, so we also readily
obtain the formula for b, . O
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Proof of Corollary 2. Given a contact three-manifold (Y, &), there is a constant C' (depending
only on (Y, £)) such that for any Stein filling W we have 30(W)+2x (W) = C (Theorem 12.3.14
in [OS04a]). As in our case by (W) = 0, the latter inequality reads is 5b5 (W) = by, (W) + C.
In particular an upper bound on by (W) of fillings, as provided by Theorem 1, implies an
upper bound b, (W), hence on the Euler characteristic. O

3. GENERALIZATIONS INVOLVING THE CONTACT INVARIANT

As mentioned in the introduction, our main result can be generalized in terms of how the
contact invariant c(§) € HM (=Y, s¢) defined in [KMOSO07] interacts with Pin(2)-monopole
Floer homology. Here we follow the notation of [Ech18], and we refer the reader to that paper
for a pleasant introduction to the subject. For our purposes, we will only need the fact that
the contact invariant of (S3,&,4) is the bottom of the tower in HM ,(—S%), and the following
naturality property.

Theorem 9 (Theorem 1 of [Echl8]). Let (W,w) be a strong symplectic cobordism between
(Y,€) and (Y', &), and let s, the corresponding spin® structure on W. We have

o(€) = HMo (W', 5.)e(¢).
where W1 denotes the reversed cobordism from =Y’ to =Y,
In what follows, for a self-conjugate spin® structure s we will work as it is customary with
the dual groups
HM.(-Y,s) = HM (V,s)
HS.(~Y,s) = HS"(V,s).

In this setup, recall that there are natural F[[V']]-submodules of HS «(—Y,5) defined as follows.
Consider the map

is : HSo(~Y,5) — HS.(-Y,5).
Here the first group can be identified with F[[V, V~1][Q]/(Q?), and the map is an isomorphism

in degrees high enough and zero in degrees low enough. We then define the «, 8 and y-towers
to be respectively the images

i* (Q2 ’ ]F[[V7 Vﬁl])? i* (Q : F[[Va Vﬁl])a Z*(F[[Vv Vﬁl])’

Notice that the chain involution j of Pin(2)—m0£clpole Floer homology induces an involution
at the homology level 7, on HM,(—Y,s) and HM.,(—Y,s); as iy is equivariant with respect
to these actions, 7, also induces an involution on HM ,(—Y,s) = kerp, = imj,. As it will not
cause confusion, in what follows we will also denote the image of c(§) in HM.(—Y,s) again

by ¢(§).

Theorem 10. Consider a contact rational homology sphere (Y, §) with s¢ = s self-conjugate.
Assume that the contact invariant c(§) € HM (=Y, ) is invariant under the action of 5, and
denote its grading by g(§). Consider

mec(€) € HSo (=Y, 5).
Suppose (W,w) is a Stein filling which is not negative definite. Then:
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o if mec(&) is a non-zero element of the B-tower, W has even intersection form, b = 1
and by =5 —4g(§).
o if mc(&) is a mon-zero element of the y-tower, W has even intersection form, b = 2

and by =10 — 4g(§).

This is a genuine generalization of Theorem 1; this is because, as the discussion below
will show, under the assumptions of Theorem 1 the contact invariant c(&) is the generator of
HM.(-Y,s) = F. This is of course invariant under the action of j., and furthermore when
(Y,s) has Type I (resp. Type II), 7, maps it to the 8 (resp. 7) tower.

Remark 5. We have omitted in the statement the case m.c(§) belongs to the a-tower; this is
because, as the proof below would show, W would be negative definite.

As a consequence, we have the following finiteness result.

Corollary 11. Suppose that a contact rational homology sphere (Y,§) with s¢ = s self-
conjugate satisfies the following:

e c(§) e HM(-Y,s) is invariant under the action of Js;
o T.c(£) is a non-zero element in iy (HS.(—Y,s)).

Then the set of Euler characteristics of Stein fillings of (Y, &) is finite.

We describe now a concrete example to which our result applies; up to reindexing, this
family is the one in the statement of Theorem 3. We look for n > 1 at the Stein fillable
contact structure &, on the Brieskorn homology sphere Y;, = 3(2,2n + 1,4n + 3) constructed
in [Karl4] by Legendrian surgery on a certain stabilized Legendrian (2,2n + 1)-torus knot.
Provided n > 1, this manifold has HM, of dimension strictly larger than 1. Let us focus on
the case n = 4k + 1 for k > 1. Following [Karl4], we see that for some F[[U]]-module J,

HM o(~ Y1) = TgF @ (F[[U]]/URHD)g @ T2,

The computation of the Heegaard Floer contact invariant provided in [Karl4], together with
its identification with the one in monopole Floer homology (see [Taul0], [CGH11] and sub-
sequent papers), implies that c(&y41) is either (0,U%#,0,0) or (1,U%#,0,0) (i.e. either the
bottom element of the second summand, or its sum with the bottom of the tower).

In this example, both the involution 7, and the map m, are explicitly computable (see
[Stol5], [Dail8] for a more general discussion of Seifert-fibered spaces):

e the action of 7, fixes 76+, switches the two copies of .J, and sends (0,U%,0,0) to
(U=2F U',0,0). Consequently, the action of 7, on HM ,(—Y,s) fixes the summand
F[[U]]/U P+ and switches the two copies of J;

e . maps the contact invariant c(&4;41) to the bottom of the ~-tower.

Below we depict graphically (omitting the J9? summand, which is irrelevant for our purposes)
the Gysin exact sequence in the case in which k£ = 1.
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F——F F F

T F F F
" “ y v
F F F F

In the picture, the relevant part of HM . is represented by the two middle columns, with
the dotted arrows denoting the U-action. The dashed arrows represent the V-action on the
~v-tower of HS,. Our result then implies that any Stein filling of (Yjxt1,&4x+1) which is not
negative definite is spin with b = 2 and b, = 10, hence has intersection form 2H @ Es.

As in the proof Theorem 1, an important step is to show the following.

Lemma 12. Suppose c(§) € HM (=Y, s) is j« invariant. Then for any Stein filling (W,w)
of (Y, &) with by > 0, s, is self-conjugate.

Given this lemma (which we will prove later) we are ready to prove Theorem 10.

Proof of Theorem 10. Recall that the contact invariant of (5%, &) is the bottom of the tower
of HM (—S3,&44). By removing a standard ball around a point, we get a strong symplectic
cobordism between (93, £.4) and (Y, €), so that by Theorem 9 the map HM ,((W\B*)1,s,)

maps c¢(€) to the bottom of the tower of HM .(—S?). Suppose W is not negative definite, so
that by Lemma 12 the induced spin® structure s, is self-conjugate. Then we get a commutative
diagram of the form

ML (-Y,8) ——— HS.(~Y,s)
ﬁ]\//./.((W\B“)T,sw)l [ITS.«W\B‘*)T,%)
H L (—5%) —— 5, (—8%)

Here m_g3 sends the bottom of the tower to the P/ottom of the a-tower. Focusing now on
the first bullet of the theorem, this implies that HS.((W\B*)!,s,) sends an element of the
B-tower (i.e. mxc(€)) to the bottom of the a-tower; as both these elements are in the image
of the respective map iy, looking at the commutative diagram
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HS.(—Yys) — HS.(~Y.5)
H&((W\Bﬂtsw)[ [f?s.«W\Bﬂtaw)
HS.(—53) i HS.(—S3)

we obtain from Proposition 6 that b5 = 1, and furthermore b, can be understood in terms
of the grading shift. Finally, both the second bullet of the theorem and the observation in
Remark 5 follow in the same way. O

We conclude by proving Lemma 12, which is essentially a refinement of Lemma 7.

Proof of Lemma 12. Consider again the embedding W < X into a minimal K&hler surface
of general type, with V' = X\W not spin and b3 (V') > 0. This embedding is Kéhler, so in
particular V' is a strong concave filling of (Y,¢). This implies that ¢(€) is in fact the relative
invariant of (V7,s,), i.e.

c(¢) = HM(VI\B*,s,,)(1) € HM ,(-Y,s).

While this is not explicitly stated in [Ech18], the gluing results in the dilating the cone
approach of discussed in his Section 2 applies directly to show a correspondence between
moduli spaces on

(R+ x {_Y}) Y ([1700) x Y)a
which are used to define the contact invariant c(§), and on
Rt x {-Y})uV

where in the latter case we use a symplectic form for which the cone is dilated enough. In
the latter case all solutions are irreducible, so they define a chain representing the relative
invariant of the cobordism V7.

The lemma now follows as Lemma 7, using the fact that X has exactly two basic classes
+ K x, the Seiberg-Witten invariants relative of to s; Uy so is the coefficient of 1 € HM ,(S?)
in

HM J(W\BY, 1)) o EM . (V\BY), 52)(1),

and the fact that c(§) is invariant under the conjugation action (so that we also have c¢(§) =
HM.(VI\B*35,)(1)). O

Remark 6. A similar identification of the contact invariant as a relative invariant is proved
in the setting of Heegaard Floer homology in [Pla04]; there the author discusses the specific
case in which V' is explicitly constructed in terms of the open book decomposition of (Y, ¢).
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