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Abstract

We study the solvability of second boundary value problems of fourth-order
equations of Abreu type arising from approximation of convex functionals whose
Lagrangians depend on the gradient variable, subject to a convexity constraint.
These functionals arise in different scientific disciplines such as Newton’s prob-
lem of minimal resistance in physics and the monopolist’s problem in economics.
The right-hand sides of our Abreu-type equations are quasilinear expressions of
second order; they are highly singular and a priori just measures. However, our
analysis in particular shows that minimizers of the 2D Rochet-Choné model per-
turbed by a strictly convex lower-order term, under a convexity constraint, can
be approximated in the uniform norm by solutions of the second boundary value
problems of singular Abreu equations. © 2019 Wiley Periodicals, Inc.

1 Introduction

In this paper, we study the solvability and convergence properties of second
boundary value problems of fourth-order equations of Abreu type arising from ap-
proximation of several convex functionals whose Lagrangians depend on the gradi-
ent variable, subject to a convexity constraint. Our analysis in particular shows that
minimizers of the 2D Rochet-Choné model perturbed by a strictly convex lower-
order term, under a convexity constraint, can be approximated in the uniform norm
by solutions of the second boundary value problems of Abreu-type equations. An
intriguing feature of our Abreu-type equations is that their right-hand sides are
quasilinear expressions of second-order derivatives of a convex function. As such,
they are highly singular and a priori just measures. The main results consist of
Theorems 2.1, 2.3, 2.6, and 2.8 to be precisely stated in Section 2. In the follow-
ing paragraphs, we motivate the problems to be studied and recall some previous
results in the literature.

Let Q¢ be a bounded, open, smooth, and convex domain in R” (n > 2). Let
F(x,z,p) : R* xR x R” — R be a smooth function that is convex in each of
the variables z € R and p = (p1,..., pn) € R”. Let ¢ be a convex and smooth
function defined in a neighborhood of 2¢. In several problems in different sci-
entific disciplines such as Newton’s problem of minimal resistance in physics and
the monopolist’s problem in economics (see, for example, [3, 6,26]), one usually
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encounters the following variational problem with a convexity constraint:
(1.1) inf / F(x,u(x), Du(x))dx
ueS[p.R20] /o

where

(12) S[p, Qo] = {u: Qo — R | u is convex,

u admits a convex extension ¢ in a neighborhood of €2¢}.

Due to the convexity constraint, it is in general difficult to write down a tractable
Euler-Lagrange equation for the minimizers of (1.1) [5,7,23]. Lions [23] showed
that, in the sense of distributions, the Euler-Lagrange equation for a minimizer u
of (1.1) in a limiting case of the constraint (1.2) is of the form

OF "9 (OF
a—z(x,u(x),Du(x))—;a—m(a—m(x,u(x),Du(x)))
(1.3) "o
- Z_ ax,- 3XJ' Mij
i,j=1

for some symmetric nonnegative matrix & = (iij)1<i,j<n Of Radon measures;
see also Carlier [5] for a new proof of this result and related extensions.

The structure of the matrix p in (1.3), to the best of the author’s knowledge,
is still mysterious up to now. Thus, for practical purposes such as implementing
numerical schemes to find minimizers of (1.1), it is desirable to find suitably ex-
plicit approximations of i in particular and minimizers of (1.1) in general. This
has been done by Carlier and Radice [8] when the Lagrangian F' does not depend
on the gradient variable p; see Section 1.1 for a quick review. In this paper, we
tackle the more challenging case when F depends on the gradient variable. This
case is relevant to many realistic models in physics and economics such as the ones
described in [3, 26].

1.1 Fourth-Order Equations of Abreu Type
Approximating Convex Functionals with a Convexity Constraint
When ¢ is strictly convex in a neighborhood of €29, the Lagrangian F(x, z, p)
does not depend on p, that is, F(x,z, p) = F°(x,z), and uniform convex in
its second argument and %F 0(x, z) is bounded uniformly in x for each fixed z,
Carlier and Radice [8] show that one can approximate the minimizer of

(1.4) inf / FOCx,u(x))dx
ueS[p,Ro0] /o

by solutions of second boundary value problems of fourth-order equations of Abreu
type. More precisely, for each ¢ > 0, consider the following second boundary value
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problem for a uniformly convex function u#, on an open euclidean ball B containing
Qo:

ij 92 .
82?,j=1 Uy’ 3xi'§’§j = ge(-,ue) in B,

_ 2, \—1 :

(1.5) we = (det D<uy) in B,
Ug =@ on dB,
We =Y on 0B,

where ¥ := (det(D?¢))~! on 4B,

%(Xﬂl), x € Qo,
Lu(x) —(x)), x e B\Qo,

and U, = (U,’) is the cofactor matrix of

gelx.u) = {

9%y
D, :( G ) = (o))
1<i,j<n

dx; 0x;

of the uniformly convex function ., that is,
Ue = (det D%ug)(Due) .
Carlier and Radice [8, theorems 4.2 and 5.3] show that (1.5) has a unique uniformly
convex solution u, € W44 (B) (for all ¢ < oo), which converges uniformly on
Qg to the unique minimizer of (1.4) when ¢ — 0.
The first equation of (1.5) is a fourth-order equation of Abreu type. We will say
a few words about this fully nonlinear, geometric equation. Let

.. 2
(U¥) = (det D2u)(D2u)™" and uyj = — 1
dx; 0x;

for any function u#. The Abreu equation [1] for a uniformly convex function u

n
> UY[(detD*u) ) = f
i,j=1
first arises in differential geometry [1,11,12], where one would like to find a Kihler
metric of constant scalar curvature. Its related and important cousin is the affine
maximal surface equation [30-32] in affine geometry:

n
i i _ntl
3 Ul [(det D2u) n+2} =0
-~ ij
i,j=1
We call (1.5) the second boundary value problem because the values of the function
ue and its Hessian determinant det D?u, are prescribed on the boundary dB. This

is in contrast to the first boundary value problem, where one prescribes the values
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of the function u, and its gradient Du, on dB. The fourth-order equation in (1.5)
arises as the Euler-Lagrange equation of the functional

1
/ FOLx,u(x))dx + —/ (u—@)?dx — 8[ logdet D?u dx.
Q0 2e Jp\Qo B

At the functional level, the penalization ¢ /| g log det D2y dx involving the loga-
rithm of the Hessian determinant acts as a good barrier for the convexity constraint
in problems like (1.4); see also [2] for related rigorous numerical results at a dis-
cretized level. At the equation level, the results of Carlier and Radice [8] show
that, when the Lagrangian F* does not depend on p, the matrix & in (1.3) is well
approximated by e(D?u,)~! = e(uy) where u; is the solution of (1.5). To see
this, we just note that the cofactor matrix Uy of D?u; is dlvergence free, that is,

Zn—l 32 UU = 0foralli = 1,...,n, and hence, noting that U/ w, = usf, we

can write the left-hand side of the ﬁrst equation in (1.5) as

n
82
Ul] — Ulj
Z 0x; Bx] Z dx; 0x; (U we) Z ij

i,j=1 i,j=1 j=1

1.2 Gradient-Dependent Lagrangians and the Rochet-Choné Model

The analysis of Carlier-Radice [8] left open the question of whether one can
approximate minimizers of (1.1) by solutions of second boundary value problems
of fourth-order equations of Abreu type when the Lagrangian I depends on the
gradient variable p. This case is relevant to physics and economic applications.
We briefly describe here the Rochet-Choné model in economics. In the Rochet-
Choné model [26] of the monopolist problem in product line design where the cost
of producing product ¢ is the quadratic function %|q |2, the monopolist’s profit as a
functional of the buyers’ indirect utility function u is

d(u) = /Q %x -Du(x) — %|Du()c)|2 — u(x)}y(x)dx.

Here Q¢ C R” is the collection of types of agents and y is the relative frequency
of different types of agents in the population. For a consumer of type x € g, the
indirect utility function #(x) is computed via the formula

u(x) = max{x -q — p(q)}
q€Q
where Q C R” is the product line and p: Q — R is a price schedule that the mo-

nopolist needs to design to maximize her overall profit. Since u is the maximum of
a family of affine functions, it is convex. Maximizing ®(u) over convex functions
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u is equivalent to minimizing the following functional Jy over convex functions u:
Jo(u) =/ FRC (x, u(x), Du(x))dx
Qo

1
where FRC(X,Z,, p) = §|p|23/(x) —x-py(x) + zy(x).

As mentioned in [16], even in this simple-looking variational problem, the convex-
ity is not easy to handle from a numerical standpoint. Mérigot and Oudet [24] were
among the first to make interesting progress in this direction. Here we analyze this
problem and its generalization from an asymptotic analysis standpoint.

In this paper, we are interested in using the second boundary value problems
of fourth-order equations of Abreu type to approximate minimizer(s) of the varia-
tional problem

(1.6) inf  J(u)
ueS[e,Q0]
where
.7 J(u):/ F(x,u(x), Du(x))dx
Qo

with F(x,z, p) = F°(x,2) + Fl(x, p).

The choice of form of F in (1.7) simplifies some of our arguments and is clearly
motivated by the analysis of the Rochet-Choné model.

Similar to the analysis of (1.5) carried out by Carlier-Radice [8], our analysis
leads us to two very natural questions concerning the following second boundary
value problem of a highly singular, fully nonlinear fourth-order equation of Abreu
type for a uniformly convex function u:

Y7 i UYwi; = fs(-.u. Du, D*u) inQ,

(1.8) w = (det D?u)~! in Q,
U=q on 0€2,
w=1Y on 0%2.
Here (UY)1<;, j<n is the cofactor matrix of the Hessian matrix D%u = (u;j),

§ > 0, Q is a bounded, open, smooth, uniformly convex domain containing Q¢
and

f3(x.u(x), Du(x), D*u(x))
(1.9) RO u() - Y %(%(x Du(x))) x € Qo,
3 (u(x) — o(x)) x € Q\ Qo.
Question 1.

Given ¢, ¥, F 0 and F1, can we solve the second boundary value problem
(1.8)—(1.9)?
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Question 2.

Are minimizers of (1.6)—(1.7) well approximated by solutions of (1.8)—(1.9) when
§—0?

We will answer Questions 1 and 2 in the affirmative in two dimensions under suit-
able conditions on F© and F!—see Theorems 2.1 and 2.3, respectively—via anal-
ysis of singular Abreu equations.

1.3 Singular Abreu Equations

By now, the second boundary value problem for the Abreu equation is well
understood [9, 19-21, 32]. In particular, from the analysis in [20], we know that
if f € L9(Q) where ¢ > n, then we have a unique uniformly convex W*4(Q)
solution to the second boundary value problem of a more general form of the Abreu
equation:

Z?’]:l U'lwij = f inQ,
w = G’ (det Du) in 2,

1.10
(1-10) Uu=g on 9€2,
w=1y on 92
where ¢ € W*4(Q), v € W?4(Q) with infyg ¥ > 0, and G belongs to a
class of concave functions that include G(¢) = WT_I where 0 < 6 < 1/mn and

G(t) = logt. On the other hand, if the right-hand side f is only in L4(£2) with
g < n then solutions to (1.10) might not be in W*4(Q).

In [8], the authors established an a priori uniform bound for solutions of (1.5),
thus confirming the solvability of (1.5) in all dimensions, where g, is now bounded,
by using the solvability results for (1.10).

The second boundary value problem of Abreu type in (1.8) has highly singu-
lar right-hand side even in the simple but nontrivial setting of F%(x,z) = 0 and
Fli(x,p) = %|p|2. Among the simplest analogues of the first equation in (1.8) is

(1.11) UY[(det D*u)™Y;; = —Au  in Q.

To the best of our knowledge, the Abreu-type equation of the form (1.11) has not
appeared before in the literature. There are several serious challenges in establish-
ing the solvability of its second boundary value problem. We highlight here two
aspects among these challenges:

(C1) It is not known a priori if we can establish the lower bound and upper
bound for det D?u. Thus, for a convex function u, Au can be only a
measure.

(C2) Even if we can establish the positive lower bound A; and upper bound A,
for det D2u, that is, A; < det D?u < A, in 2, we can only deduce from
the regularity results for the Monge-Ampere equation of De Philippis-
Figalli-Savin [10], Schmidt [29], and Savin [27] that Au € L'T%0(Q)
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where g9 = go(n,A1,A2) > 0 can be arbitrarily small. In fact, from
Wang’s counterexample [33] to regularity of the Monge-Ampere equa-
tions, we know that go(n, A1,A2) — 0 when A2/A41 — oo. In other
words, the right-hand side of (1.11) has low integrability a priori, which
can be less than the dimension n. Thus, the results on the solvability of the
second boundary value problem of the Abreu equation in [9,19-21,32] do
not apply to the second boundary value problems of (1.11) and (1.8).

In this paper, we are able to overcome these difficulties for both (1.8) and
(1.11) in two dimensions under suitable conditions on the convex functions F°
and F!; see Theorem 2.1 which asserts the solvability of (1.8)—(1.9). This is
done via a priori fourth-order derivative estimates and degree theory. For the
a priori estimates, the structural conditions on F? and F! allow us to establish
that Ay < det D?u < A, in Q for some positive constants A; and A, and that
f5(-,u, Du, D?u), as explained in (C2) for —Au, belongs to L!T¢0(Q) for some
possibly small g9 > 0. We briefly explain here how we can go beyond second-
order derivative estimates and why the dimension is restricted to 2.

Note that (1.8) consists of a Monge-Ampere equation for # in the form of
det D2y = w™! and a linearized Monge-Ampere equation for w in the form of
Ui w;j = fs(-,u, Du, D?u) because the coefficient matrix (U¥) comes from
linearization of the Monge-Ampére operator:

ddet D%u
o
For the solvability of second boundary problems such as (1.8) and (1.11), as in [9,
19-21,32], akey ingredient is to establish global Holder continuity of the linearized
Monge-Ampere equation with right-hand side having low integrability. In our case,
the integrability exponent is 1 4 g¢ for a small g9 > 0.

To the best of our knowledge, the lowest integrability exponent g for the right-
hand side of the linearized Monge-Ampere equation (with Monge-Ampeére mea-
sure just bounded away from 0 and co) for which one can establish a global Holder
continuity estimate is ¢ > n/2. This fact was proved in the author’s paper with
Nguyen [22]. The constraint 1 + g9 > n/2 for small &g > 0 forces n to be 2.
It is exactly for this reason that we restrict ourselves in this paper to consider-
ing the case n = 2. Using the bounds on the Hessian determinant for ¥ and the
global Holder estimates in [22], we can show that w is globally Holder continuous.
Once we have this, we can apply the global C2-* estimates for the Monge-Ampere
equation in [28,32] to conclude that ¥ € C%*(Q). We update this information
to U w; i = f5(+,u, Du, D?u) to have a second-order uniformly elliptic equa-
tion for w with global Holder continuous coefficients and bounded right-hand side.
This gives second-order derivative estimates for w. Now, fourth-order derivative
estimates for u easily follows.

Under suitable conditions on F© and F! we can show that solutions to (1.8)-
(1.9) converge uniformly on compact subsets of 2 to the unique minimizer of
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(1.6)—(1.7); see Theorem 2.3. It implies in particular that minimizers of the 2D
Rochet-Choné model perturbed by a highly convex lower-order term, under a con-
vexity constraint, can be approximated in the uniform norm by solutions of second
boundary value problems of singular Abreu equations.

Remark 1.1. Our analysis also covers the case when w = (det D?u)~! in (1.8)
is replaced by w = (det D2u)?~! where 0 < 6 < 1/n. We will consider these
general cases in our main results.

Remark 1.2. As mentioned above, due to the possibly low integrability of the right-
hand side —Auwu of (1.11), our analysis is at the moment restricted to two dimen-
sions. However, for the solvability of the second boundary value problem, it is
quite unexpected that the structure of —Awu in two dimensions, that is, —Au =
—trace(U"/), allows us to replace the term (det D2u)~! in (1.11) by H(det D?u)
for very general functions H including H(d) = d?~! for 6 € [0,00) \ {1}; see
Theorem 2.6. Note that it is an open question if (1.10) is solvable for f € L9(Q)
wheng > nand G (d) = d?! where § € [%, 00).

Remark 1.3. It should not come as a surprise when Abreu-type equations appear
in problems motivated from economics. On the one hand, in addition to [8] and
this paper, Abreu-type equations also appear in the continuum Nash’s bargaining
problem [34]. On the other hand, the monopolist’s problem can be treated in the
framework of optimal transport (see, for example, [15,16]), so it is not totally unex-
pected to have deep connections with the Monge-Ampere equation. The interesting
point here is that Abreu-type equations involve both the Monge-Ampere equation
and its linearization.

NOTATION. The following notations will be used throughout the paper. Points
in R” will be denoted by x = (x1,...,x5) € R?or p = (p1,..., pn) € R™. I, is
the identity n x n matrix. We use v = (v, ..., v,) to denote the unit outer normal
vector field on 32 and vy on 32p. Unless otherwise stated, repeated indices are
summed such as U/ wij = sz=1 Ui Wij;

OF%(x,z aF(x,
0z p;
2 FL(x,
VpF'(x,p) = (Fp (x. p).-.. Fp (x, P)): Fp, p (X, p) = ‘( .p);
dp; dp;
32F1(x p) n 9 8F1(x p)
F) =27 WP (v, FL N 0 P\
pixj (x.p) pidx; W( p (x,p)) ; axi( opi )

Weuse U = (U i )1<i,j<n to denote the cofactor matrix of the Hessian matrix

0%u
Dy = (ax,ax,) = (ij)1=i.j=n
[ 2ddd )
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of a function u € C?(RQ). If u is uniformly convex in €2, then we have U =
(det D2u)(D%u)~ L.

The rest of the paper is organized as follows. We state our main results in Sec-
tion 2. In Section 3, we recall tools used in the proofs of our main theorems. In
Section 4, we establish a priori estimates. Section 5 proves the main results in
Theorems 2.1, 2.3, 2.6, and 2.8.

2 Statements of the Main Results

Let § > 0 and let ¢, 2 be open, smooth, bounded, convex domains in R” such
that Q¢ € 2. We study the solvability of the following second boundary value
problem of a fully nonlinear, fourth-order equation of Abreu type for a uniformly
convex function u:

i i1 UYwi; = fs(-.u, Du, D*u) inQ,

@.1) w = (det D2y)?~1 in 2,
u=gq on 9€2,
w =1 on d€2.

Here U = (U"j)lsi,jsn is the cofactor matrix of the Hessian matrix D2y = (uij)
and

fs(x,u(x), Du(x), D?u(x))
(2.2) AV O%x u(x)) = div(Vp F(x, Du(x))). x € Q.
5 () = p(x), x €9\ Q.
We consider the following sets of assumptions for nonnegative constants p, co,
C*, C_'O, Cy:
@3) (F7(x.2) = 2D =) = plz =2 £, 2)] < (12D
forallx € Qpandallz,7 € R

where 71 : [0, 0c0) — [0, 00) is a continuous and increasing function;

24) 0<Fp, (x,p) < Culps |Fy ., (x. p)| < colp| + Cu

for all x € €2¢ and for each i;

‘Fpll.(x,p)‘ < Co|p| + C« for x € 3 and for each i;
VpFle )l <n(lph)  forall x € Q.

Our first main theorem is concerned with the solvability of (2.1)—(2.2) in two
dimensions.

(2.5)

THEOREM 2.1 (Solvability of highly singular second boundary value problems
of Abreu type). Letn = 2and 0 < 0 < 1/n. Let § > 0 and let Q9,2 be
open, smooth, bounded, and convex domains in R" such that Qo € Q. Assume
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moreover that Q2 is uniformly convex. Assume that ¢ € C31(Q) and v € CH1(Q)
with infag ¥ > 0. Assume that (2.3)—(2.5) are satisfied.

(1) If either min{cy, Co} is sufficiently small (depending only on infyq ¥, Qg
and ), or min{p, %} is sufficiently large (depending only on min{cg, o},
Qo, and Q), then there is a uniformly convex solution u € W*4(Q) to the
system (2.1)—(2.2) for all g € (n, 00).

(ii) If co = Cx = 0, then there is a unique uniformly convex solution u €
WH4(Q) to the system (2.1)~(2.2) for all ¢ € (n, 00).

Theorem 2.1 will be proved in Section 5. The existence proof uses a priori
estimates in Theorem 4.1 and degree theory. For the a priori estimates, the technical
size conditions in (i) guarantee the uniform bound for # and the L? bound for its
gradient Du in terms of the data of the problem.

Remark 2.2. Consider the perturbed Rochet-Choné model
F(x,z,p) = F%(x,2) + F'(x, p)

where

FO(x,z) = y(x)z + §IZI2, Fl(x,p) = %V(X)|P|2 —x - py(x)

where p > 0 is a constant and y is a Lipschitz function satisfying 0 < y <
C1,|Dy| < Cyin Qg. Then (2.3)—(2.5) are satisfied with suitable constants cg, Cg,
Cs, and Cx. If y = 0 on 99, then ¢y = C4 = 0. More generally, if maxyg y(x)
is small, then ¢g is small. If | Dy | 700 (q,) is small, then cg is small.

A

Our second main theorem asserts the convergence of solutions to (2.1)—(2.2)
in two dimensions to the unique minimizer of (1.6)—(1.7) when the Lagrangian
F(x,z,p) = F%x,z) + Fl(x, p) is highly convex in the second variable.

THEOREM 2.3 (Convergence of solutions of the approximate second boundary
value problems of Abreu type to the minimizer of the convex functional). Let
n=2and0 <6 < 1/n. Let Qq, Q be open, smooth, bounded, convex domains in
R™ such that Qo € Q2. Moreover, assume that Q2 is uniformly convex. Assume that
¢ € C>YQ) is uniformly convex with infg det D%>¢ > 0 and ¥ € CY1(Q) with
infyo ¥ > 0. Assume that (2.3)—(2.5) are satisfied, and p > 0. For each ¢ > 0,
consider the following second boundary value problem:

32?,1:1 Uslj(ws)ij = fs('aus»Dus,Dzus) in 2,
we = (det D2u,)?1 in 2,
Ue = @ on 092,
We =Y on 092.

(2.6)
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Here U, = (Ueij)lsi,jsn is the cofactor matrix of the Hessian matrix D%y, =
((ug)ij) and

@7) fo(x ue(x). Dute(x), D?ue(x))
O ug(x)) — div(Vp F1(x, Dug(x))), x € Qq,
] e(x) — (x), x € 2\ Q.

Assume that either ¢g = Cx = 0 or p is sufficiently large (depending only on
co + Cx, Qo and Q). Let ug be a uniformly convex solution ug € W*4(Q) to the
system (2.6)—(2.7) for all g € (n,00). Then, u, converges uniformly on compact
subsets of Q to the unique minimizer u € S[p, Q0] (defined in (1.2)) of the problem
(1.6) where J is defined by (1.7).

Theorem 2.3 will be proved in Section 5.

Remark 2.4. For the convergence result in Theorem 2.3, we need to establish a
uniform bound for u, independent of ¢; see Lemma 4.4. For this, the uniform
convexity of ¢ plays an important role. On the other hand, in Theorem 2.1, we
basically use the boundary value of ¢ on 9€2, and therefore ¢ need not be uniformly
convex.

Remark 2.5. Several pertinent remarks on Theorem 2.3 are in order.

(i) Theorem 2.3 is applicable to the perturbed Rochet-Choné model consid-
ered in Remark 2.2. Theorem 2.3 implies that minimizers of the 2D Rochet-
Choné model perturbed by a highly convex lower-order term, under a con-
vexity constraint, can be approximated in the uniform norm by solutions of
second boundary value problems of Abreu-type equations.

(i1) The minimization problem (1.6)—(1.7) when Fl(ic, p) = %)/(x)|p|2 —x-
py(x) with y(x) = 0 on dQ (that is, cg = Cx« = 0) was studied by
Carlier in [4].

(iii) In Theorem 2.3, when p > 0 is large and ¢y + Cy > 0, we are unable
to prove the uniqueness of uniformly convex solutions u, to (2.6)—(2.7).
Despite this lack of uniqueness, Theorem 2.3 says that we have the full
convergence of all solutions u, to the unique minimizer u € S[g, Q] of
the problem (1.6)—(1.7). This is surprising to us.

In Theorem 2.1, the function F!(x, p) grows at most quadratically in p. The
following extension deals with a more general Lagrangian F'.

THEOREM 2.6. Let Q C R2 be an open, smooth, bounded, and uniformly convex
domain. Assume that ¢ € C®(Q) and ¥ € C®(Q) with infyg ¥ > 0. Let
F(p):R? — R and H:(0,00) — (0,00) be smooth. Consider the following
second boundary value problem of a fourth-order equation of Abreu type for a
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uniformly convex function u:

S7 o1 Ulwy = —div(V, F(Du)) in Q.

2.8) w = H(det D?u) in Q,
u=gq on 082,
w=1 on 0%2.

(i) Assume that F is convex and that Fp,; p,(p) is bounded for p bounded.
Assume that H is strictly decreasing, H(d) — 0 when d — oo, and
H(d) — oo when d — 0. Then there exists a smooth, uniformly convex
solution u € C®(Q) 10 (2.8). If H(d) = d? ! where 0 < 0 < % then
the solution is unique.

(ii) Assume that 0 < Fp,p,(p) < Cxla. Assume that H is strictly monotone
and that H=' maps compact subsets of (0, 00) into compact subsets of
(0, 00). Then there exists a smooth, uniformly convex solution u € C*®(S2)

to (2.8).
Theorem 2.6 will be proved in Section 5.

Remark 2.77. Examples of Lagrangians F in Theorem 2.6(i) include
1

F(p) = ~|pl* (s = 2,5 integer), or F(p) = ez!7F.
s

The existence results in Theorem 2.1 and 2.6 can be extended to certain noncon-
vex Lagrangians F. To illustrate the scope of our method, we consider the case of
Lagrangian

1 1
PGz, p) = 72— 1%+ |pP

arising from the study of Allen-Cahn functionals. Our existence result for the
singular Abreu equation with Allen-Cahn Lagrangian states as follows.

THEOREM 2.8. Let Q@ C R? be an open, smooth, bounded, and uniformly convex
domain. Assume that ¢ € C*(Q) and € C® () with infyg ¥ > 0. Then there
exists a smooth, uniformly convex solution u € C%(Q) to the following second
boundary value problem:

NP UTw=ud—u—Au inQ,

i,j=1
2.9) w = (det D?u)~! in 2,
U=q on 082,
w=y on 092.

Theorem 2.8 will be proved in Section 5.

Remark 2.9. It would be interesting to establish the higher-dimensional versions
of Theorems 2.1, 2.3, 2.6, and 2.8.



SINGULAR ABREU EQUATIONS 13

Remark 2.10 (Universal constants). In Sections 4 and 5, we will work with a fixed
exponent ¢ > n, and we call a positive constant universal if it depends only on
n, 0, 4, 3, o, €0, Cx,Cy, P> Q, QO’ ||(p||W4‘7(Q)’ ”W”qu(ﬂ)’ and infaQ W We
use C, Cy, C, ... todenote universal constants, and their values may change from
line to line.

3 Tools Used in the Proofs of Main Theorems

In this section, we recall the statements of two main tools used in the proofs of
our main theorems.

The first tool is the global Holder estimates for the linearized Monge-Ampere
equation with right-hand side having low integrability. These estimates were estab-
lished by Nguyen and the author in [22, theorem 1.7 and lemma 1.5]. They extend
in particular the previous result in [19, theorem 1.4] (see also [21, theorem 1.13])
where the case of L” right-hand side was treated.

THEOREM 3.1 (Global Holder estimates for the linearized Monge-Ampere equa-
tion_). Let Q be a bouﬁded, uniformly convex domain in R™ with 0Q2 € C3. Let
$:Q =R, ¢ € COLQ) N C2(Q) be a convex function satisfying

0<A<detD?’¢ <A<oo and ¢|y,e€C>.

Denote by (®7) = (det D2¢)(D?¢)~! the cofactor matrix of D*¢. Let v €
c()n w2 (R2) be the solution to the linearized Monge-Ampére equation

loc

Cbijl)ij =f inQ,

V=g on 0€2,
where ¢ € C*(32) for some a € (0,1) and f € L9(2) with q > n/2. Then,
v € CB(Q) with the estimate

lvlicsg < Clelicapey + 1 fllLae))

where 5 depends only on A, A, n, g, a, and C depends only on A, A,n,q,q,
diam(2), (| llc3aq) 10S2]l¢3, and the uniform convexity of €2.

The second tool we need is concerned with the global W2:1720 estimates for
the Monge-Ampere equation. They follow from the interior W2:1720 estimates
in De Philippis—Figalli-Savin [10] and Schmidt [29] and the global estimates in
Savin [27] (see also [14, theorem 5.3]).

THEOREM 3.2 (Global W2:1%¢0 estimates for the Monge-Ampere equation). Let
Q C R" (n > 2) be a bounded, uniformly convex domain. Let ¢:Q — R,
¢ € C%(Q) N C%(RQ) be a convex function satisfying

0<A<detD?p <A inQ.
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Assume that (p‘m and 02 are of class C3. Then, there is a positive constant
go € (0, 1) depending only n, A, A, and a positive constant K depending only on
n A A Q lellesag)y 1982 3, and the uniform convexity of 32 such that

”DZ(D”LHSO(Q) =K.
We will frequently use the following estimates for convex functions.

LEMMA 3.3. Let u be a convex function on Q where Q C R” is an open, bounded,
and convex set.

(1) We have the following L°° estimate for u in terms of its boundary value
and L? norm:

1]} oo gy < C(n, 2, maxu) + C(n,Q)/ lul? dx.
19} Q

(i) If Q¢ € R, then for any x € Qg, we have

maxgo U — u(x)
< . )
dist(x,0Q)  — dist(Qg, 9Q) (nalgxu + ullLoe())

PROOF OF LEMMA 3.3.

(i) The proof is by comparison with a cone. We show that if ¥ < 0 on 92,
then

n+1
(32) lull ooy < "t / uldx.
12 Ja

Applying this inequality to the convex function ¥ — maxyg #, we obtain

@D  [Du(x)| =

2
1 iy = (€02 [ ks + €. 2,maxon)
Q a2

< C(n,Q)/ lul?dx + C(n, Q, maxu).
Q 1i194

It remains to prove (3.2) when u < 0 on d€2. Suppose that |u| attains
its maximum at xo € £2. Let C be the cone with base 92 and vertex at
(x0,u(xp)). Then (3.2) follows from the following estimates:

1 ~
1|u(x0)||§2| = Volume of C 5/ luldx.
Q

oo Q ==
Il ool = —

n+1

(i) The estimate (3.1) just follows from the convexity of u; see, for example
[21, lemma 3.11]. O

4 A Priori Estimates for Singular Abreu Equations

In this section, § > 0 and $2¢, 2 are open, smooth, bounded, convex domains in
R™ such that Qg € 2. We assume moreover that 2 is uniformly convex.

The main result of this section is the following global a priori estimates for the
second boundary value problem (2.1)—(2.2).
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THEOREM 4.1. Letn = 2,0 < 0 < 1/n, and g > n. Assume that ¢ € W*4(Q)
and y € W24(Q) with infyq ¥ > 0. Assume that (2.3)—(2.5) are satisfied. Sup-
pose that either min{cg, o} is sufficiently small (depending only on infyq ¥, Qo,
and 2), or min{p, 81} is sufficiently large (depending only on min{cg, co}, Q¢, and
). Let u be a smooth, uniformly convex solution of the system (2.1)—(2.2). Then,
there is a universal constant C > 0 such that

lullwa.acqy < C.

We refer to Remark 2.10 for our convention on universal constants. We now
give the outline of the proof of Theorem 4.1:

e We first prove the 1.°° bound for u (Lemma 4.2).

e We next prove the lower bound for the Hessian determinant det D2y and
then the upper bound for the Hessian determinant det D2y (Lemma 4.6).

e Finally, we prove the W*4 estimate.

Weuse v = (v1,..., vy) to denote the unit outer normal vector field on d€2 and vy
on dQp.

For simplicity, we introduce the following size condition used in statements of
several lemmas:

(SC) Either min{cg, ¢o} is sufficiently small (depending only on infygo ¥, Qo,
and $2), or min{p, %} is sufficiently large (depending only on min{cg, ¢},
Qo, and ).
The following lemma establishes the universal L°° bound for solutions to the
second boundary value problem (2.1)—(2.2).

LEMMA 4.2. Letn > 2,0 < 60 < 1/n, and q > n. Let u be a smooth solution
of the system (2.1)—(2.2). Assume that ¢ € W*4(Q) and y € W?4(Q) with
infyo ¥ > 0. Assume that (2.3)—(2.5) are satisfied. Assume that either n > 3 or
that (SC) holds when n = 2. Then, there is a universal constant C > 0 such that

lllzoeg) + f u" < C.
K19

In the proof of Lemma 4.2, we will use the following basic geometric construc-
tion and estimates.

LEMMA 4.3 ([20, lemma 2.1 and inequality (2.7)]). Assume G:(0,00) — R is a
smooth, strictly increasing, and strictly concave function on (0, 00). Assume that
g >n > 2and ¢ € WH4(Q). There exist a convex function i € W*4(Q)
and constants C and C(G) depending only on n, g, Q, and ||¢ |y 4.qa(q) with the
following properties:

(1) 4 = @ on 02
(i) [1#llcacgy + 1#llwa.aq) < C and det D?i > C~' > 0.
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(iii) Letting @ = G’(det D2#) and denoting by (U the cofactor matrix of
(iij), then

H gy Wi HLQ(Q) = C(G).

(iv) If u € C*(Q) is a convex function with u = @ on 3K, then for u} =
max (0, uy ), we have

1/n
Huhwm)SC*%CmAD(AQWiW) |

PROOF OF LEMMA 4.2. The proof is similar to that for [20, lemma 2.2]. Let

u} = max(0,u,). Since u is convex with boundary value ¢ on 32, we have

“4.1) uy > —[Dollpo(@)-

Our goal is reduced to showing that

4.2) /’wb"sc
0

because the universal L°° bound for u follows from Lemma 4.3(iv).

Let G(t) = th_l for t > 0 (when 6 = 0, we set G(¢) = logt). Then G'(t) =
19 forallz > 0and w = G (det D2u) in Q.

Let i € W*4(2) be as in Lemma 4.3. The function G (d) := G(d") on (0, oc)
is strictly concave because

G (d) =n? d”‘z[G”(d”)d” + (1 - %) G’(d")] <0.
Using this, G’ > 0, and the concavity of the map M —— (det M )1/ " in the space
of symmetric matrices M > (, we obtain
G ((det D)™y — G ((det D2u)M/™)
< G ((det D*u)"/™)((det D2i)Y/™ — (det D2u)/™)
< Gl((detDzu)l/”)%(detDzu)l/”_lUi-i (il — u)ij.

Since G ((det D2u) /") = nG’(det D?u)(det D2u)%, we rewrite the above in-
equalities as

(4.3) G(detDzz'Z) — G(det Dzu) < wUY (i — u)ij.
Similarly, for i = G’ (det D), we have

(4.4) G(det D%u) — G(det D2@) < WU (u — W);;.
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Adding (4.3) and (4.4), integrating by parts twice, and using the fact that (U*/) is
divergence free, we obtain

0> / wUY (u — )i + TOY ({7 — u);j
Q
= / inj(uj —Uj)vi —i—/ Ui-jwij(u — 1)
Q2 Q
+/ ﬁﬁi‘i(ﬁj —U;j)vi + / ﬁij@ij(ﬁ—u)
a2 Q
4.5) =/’wuﬁ—wﬁﬁwj—%pf+/fMHmD%D%xw—m
Q2 Q
+/nﬁﬁwﬁm—wg
Q
Let us analyze the boundary terms in (4.5). Since ¥ — ¥ = 0 on 92, we have
(u —u); = (u—u)yv;, and hence
UV (u—i)jvi = UY vjviu— i)y = U (u — i)y
where
U" = det D2u
with x” L v denoting the tangential directions along d<2. Therefore,
@6) (YUY —@UY)u; —iij)vi = YU — BTy — ).
To simplify notation, we use fs to denote f5(-,u, Du, D>u) when there is no
confusion.

By Lemma 4.3, the quantities i, i, U, and ||UY Wij || L1 ()are universally
bounded. These bounds combined with (4.5) and (4.6) give

wU%w§C+CWMmm+C/(WW+Wm
@7 90 a0

+L—ﬁm—mm.

On the other hand, from u — ¢ = 0 on 92, we have, with respect to a principal
coordinate system at any point y € 32 (see, e.g., [17, formula (14.95) in §14.6])

Dij(u—¢)=Wu—9)kidj, i.j=1,...,n—1,
where k1, ..., kp—1 denote the principal curvatures of d€2 at y.
Let K = k1 ---kn—1 be the Gauss curvature of Q2 at y € dL2. Then, atany y €

d%2, by noting that det D)%,u = det(D;ju)1<i,j<n—1 and taking the determinants
of

(4.8) Diju = uykiéij — @vkidi; + Dij@,
we obtain, using also (4.1),

(4.9) U = K(u,)" '+ E where |E| < C(1+|uv|”_2) = C(1+(u+)n_2).

v
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Now, it follows from (4.7), (4.9), and Lemma 4.3(iv) that

KW&SC+Cthm+CA$ﬁY”+L—Am—mm

(n—1)/n
SC—i—C(/aQ(u;r)”) +/Sz—f5(u—ﬁ)dx.

We will analyze the last term on the right-hand side of (4.10). By construction,
#l|Loo(@) < C and |l¢||L~(q) < C. Thus, we have

“.10) ° ¢

@) Swmow-n =" cw
. s =) —i) = ——

where C(8) > 0 is a universal constant. Using (2.3), we can estimate
A= f — O, u)(u — W)dx
Qo
= / — O, ) (u — )dx — p/ lu — 1| dx
Q0 Q()
< [ at@ie—adx—p [ -7 ax
Qo Qo

(4.12) §C/ |u|dx—|—C—p/ lu — 7|2 dx.
Qo Qo

Step 1. Estimate fQo — fs(u — )dx by expansion. By the convexity of u and
FY(x, p) in p, we have Fplipjuij > 0. Moreover, u < supyq ¢ < C and |u| < C.
Thus, recalling (2.4), we find that

(4.13) Fy, p uij(u — i) < CFy , uij < CCxAu.

On the other hand, forany i = 1,...,n, using (2.4) and the first inequality in (3.1),
we can bound Fpl,-x,- (x, Du(x))(u — u) in Q¢ by

| Fp e, (X, Du(x) (u(x) — i(x))] < (col Du(x)| + Ca)lu(x) — ii(x)]
< (coC(Ro, Q)u(x)| + C)(lu(x)| + C)
(4.14) < ¢oC(Qo. D)u(x)|> + Clu(x)| + C.

A

From (4.12), (4.13), and (4.14), together with the divergence theorem, we find that

—fs(u —)dx = f [~ 00 u(x)) + div(V, F ' (x, Du(x)))](u — #)dx

Qo Qo

= At [ (B . DuCo) + By = ) <
Qo
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<A +/ (coC (0. )|ul® + Clu| + C)dx
Qo
+ / CiCAudx
Q

(4.15) < Cllullpoo(@) + C +coC1(S20, Q) | |ul*dx
Qo

—,of |u—17|2dx+Cf (uy) ™.
Q0 aQ

Step 2. Estimate fQ() — fs(u — u)dx by integration by parts. Note that i and

| Dii| are universally bounded. Thus, using the convexity of F1(x, p) in p together
with (2.5) and (3.1), we have the following estimates in 2¢:

~V, F'(x, Du(x)) - (Du — D#i) < —V,F'(x, D#i) - (Du — D)
(| Du))(C (20, 2)|u(x)| + C)

(4.16) < Clu(x)| + C.

IATA

On the other hand, also by (2.5) and (3.1), we have the following estimates on d€2:

(u — W)V, FL(x, Du(x)) - vo
< (o|Du| + Cy)lu — |
(4.17) < 2C (R0, D)[[U]|7oo(qy + (0 + Cx)C (R0, Q)l[u Lo () + C.

Now, integrating by parts and using (4.12) together with (4.16)—(4.17), we obtain

fQO — fyu— 1)

= / — 00, u(x))(u — 1) + f div(V, F 1 (x, Du(x)))(u — i)
Qo Qo
= A+ (u — )V, Fl(x, Du(x)) - vo
IO
+ f —VpFl(x, Du(x)) - (Du(x) — Di(x))
Qo

418) = C + (@ + Co)C(S0. Dl + C / uldx
Qo

— ,on u — i[> dx + 20 Ca(Q0, Q)1 Foo q)-
0
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Step 3. n > 3. From (4.18) and (4.11), and recalling Lemma 4.3(iv), we have

[po-m= [ —juee-n [ pu-
€ + Clullzs@ + Cllulqey

2/n
C+ CZ(/&Q(M;F)”) .

From n > 3, (4.10), (4.1), and the above estimates, we obtain

(n—1)/n
+\n < +\n _ _ =
AQwan _c+c(AJmJ) -yL fyu— )

(n—1)/n
SC+C([ (uj)”) .
0

From the Holder inequality, n > 3, and infyo K > 0, we obtain f aQ(uj‘ < C,
which is (4.2).

For the rest of the proof of this lemma, we focus on the more difficult case of
n = 2. We will now use the condition (SC).

A

A

Step 4. When min{cq, co} is sufficiently small (depending only on infyq ¥, Q29,
and ). From (4.15), (4.18), and recalling (4.11), we obtain for ¢o = min{cg. o}

[ =A== Clule@y + € +ECa(R0. Dl ey
+ 1 ~
rof wyr+ [ w-pw-w

99 o\, ¢

(4.19) SCthm+C+%Q®mmWﬁmm+CAJ%V-

From (4.10), (4.19), and n = 2, we deduce from Lemma 4.3(iv) that

1/2
Kyuy < C + c(/ (uj)z) +/ —fs(u — i)
Q2 191 Q
1/2
(4.20) < c(/ (uj)z) +C+ 6004(90,9)/ ().
Q2 Q2

Suppose that ¢ is small, say

c0Ca(Q0, Q) < (1/2)(inf ¥)(inf K).

0Ca(R0. ) < (1/2)(infy)(inf K)
Then it follows from (4.20), the Holder inequality, and infyg ¥ > O that

| iy =c.

Thus (4.2) is proved.
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Step 5. When min{p, %} is sufficiently large (depending only on min{cg, o},
Qo, and Q).

Case 1. co < cgp. In this case, we use (4.15). Suppose that

o> 4¢9C1(Rp, Q) +1>0.

Then,
—,0/ w— i dx < —3/ u2dx + C(p)
Qo 2 Qo
(4.21) < —2¢9C1(Qo. Q)/Q lu|?>dx + C.
(0]

Combining (4.15) and (4.21) with (4.11) and Lemma 4.3(iv), we get
~ ~ 1 ~
[~na-n=[ ~pu-w+ [ —w-ou-
Q Qo Q\Qo

1/n
(4.22) <C+ C(/ (uj)") .
Q2

Thus, for n = 2, we deduce from (4.10) and (4.22) that

1/2
2 - +42 _ _5
/SQKwuv_c+c(/aQ(uu)) +/Q fs(u — )

1/2
(4.23) <C+ c( / (uj)2) .
o2

From (4.23), the Holder inequality, and infzg ¥ > 0, we easily obtain
| airsc
Q2

Case 2. ¢y < cg. From (4.18) and Lemma 3.3(i), and recalling (4.11), we obtain

/—Jﬂu—m
Q
< Cllullp + € + @ Cs(R0, Dl

- 1 -
—p/ m—m%u+/’ Lo
Qo Q\QO 8

and (4.2) follows.

@2) = Clulim@ +C +aCs@0. ) [ lPdx—5 [ uPax
Q Q

0
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Thus, if min{p, %} > 4cgCa(R20, 2), then (4.24) gives

4.25) fQ ~fiu— ) < Cllullpecay + C.

Now, for n = 2, we deduce from (4.10), (4.25), and Lemma 4.3(iv) that
1)/2
Kyu2 < C +C(f (uj)z) +f —fs(u — i)
02 0 Q

1/2
(4.26) <C+ c( / (uj)2) .
19}

From (4.26), the Holder inequality, and infzg ¥ > 0, we easily obtain

/ ) <C.
aQ
This completes the proof of (4.2) in all cases. U

In the following lemma, we establish universal a priori estimates for solutions
to (2.6)—(2.7). These estimates do not depend on €.

LEMMA 4.4, Letn = 2, g > n, and 0 < 6 < 1/n. Assume that (2.3)—(2.5)
are satisfied and p > 0. Assume that ¢ € W*4(Q) with infg det D%¢ > 0, and
v e W24(Q) with infyq ¥ > 0. Assume that one of the following conditions
holds:

(i) @ = Cx = 0.
(ii) p is large and ¢ is small (depending only on ¢y + Cx, 20, and ).

Let u, € WH4(Q) be a uniformly convex solution to the system (2.6)—(2.7). Then,
there is a universal constant C > 0 (depending also on infg det D% but indepen-
dent of ¢) such that

1
4.27) / s(u,s)]%—i-p/ |u8—(p|2dx+/ —ug —@?dx < C.
Q2 Qo Q\Q €

PROOF. Let Cy := co + Cx. Lett = ¢ and f = ﬁi-iwij where w =
(det D2)?~1 and U = (TY) is the cofactor matrix of D?#. Since ¢ > n and
i € WH4(Q) with infq det D25 > 0, we have

(4.28) Il < C.

We redo the estimates in Lemma 4.2 for u, where we replace i by i. First, (4.5)
becomes

(4.29) / weUY ((ug)j — j)v; + f UY (we)ij (ue — i)
Q2 Q
+/ WU (it; — (ue);)vi +/ UV iv;j (i — ug) < 0.
IQ Q

To simplify notation, we use f; to denote f;(-,ug, Dug, D?uy).
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From Ugij (we)ij = ¢! f;, Lemma 4.3(iv), (4.28), and the uniform boundedness
of u, w, and Du, (4.29) becomes

1/2
2 o 2 -1 =
(4.30) /m(ue)v < C(/(m(ug)v) +/Q e fo(up — w)dx + C.

This estimate is similar to (4.10), where now we also use infyg ¥ > 0 and the
uniform convexity of d€2 to absorb infyg ¥ > 0 and the curvature of dQ2 to the
right-hand side of (4.10). From Young’s inequality, we can absorb the first term on
the right-hand side of (4.30) to its left-hand side. Then, multiplying both sides by
g, we get

(4.31) / e(ug)? < C + c/ — folug — ).
1519] Q

As in the estimates for 4 in (4.12), we have

Ay = / (e () (e — W)dx
Qo

< C—l—C/ |u8|dx—p/ lug — |2 dx.
Q() Q0

From Lemma 3.3(i) and the inequality |u¢|?> < 2(Jue — ¢|? + |@|?), we have
432)  JuelF ooy < C(Q)[Q 2 dx + C < C(sz)/Q e — o2 dx + C.

Applying (4.18) to ue, fe, and U and taking into account (4.32), p > 0, and Cy =
co + Cx, we have

— fe(ug — )

Qo

<co [ fuddx—p [ oo -Pax
(4.33) 2 "
+ CC5(0. ) (1 + lus 2 o)

<C- 2 [ ue—wPdx+ CuCols0. ) [ lue o dx.
2 Ja, Q
It follows from (4.31), (4.33), % = ¢ in Q, and f; = L(us — ) on Q \ Qg that
(4.34) f s(us)% <C —i—f —fe(uy —)dx
Q Q

—ct [ —fotwe—m)+ /Q ~ folue — )dx <

Qo Qo
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P 2 1 2
<C-= lug — | dx + —— (e —@)“dx
2 Ja, Q\Q ¢

-%a£49m9{/h@—¢ﬁdx
Q

Case 1. p > O and ¢y = Cx = 0. In this case, 6* = 0in (4.34) and (4.27)
follows from this inequality.

Case 2. p is sufficiently large and ¢ is sufficiently small (depending only on
co + Cx, Q¢ and 2). When

1 ~
min{—,p} > 4C4C6(20.Q2) + 2,
g
then clearly (4.34) gives (4.27). Il

We prove the uniqueness part of Theorem 2.1 in the following lemma.

LEMMA 4.5. Letn > 2, q > n, and 0 < 6 < 1/n. Assume that ¢ € W*4(Q)
and € W>4(Q) with infyg ¥ > 0. Assume that (2.3)—(2.5) are satisfied with
Co = Cx = 0. Then the problem (2.1)—(2.2) has at most one uniformly convex
solutionu € WH4(Q).

PROOF. Suppose that u € W*4(Q) and 7 € W*4(Q) are two uniformly con-
vex solutions of (2.1)—(2.2). Let U = (17 i ) be the cofactor matrix of D27 and
let ® = G'(det D271). Here, G(t) = th_l for t > 0 (when # = 0, we set
G(t) = logt). We use the same notation as in the proof of Lemma 4.2. Then, we
obtain as in (4.5) the estimate

435 0= f wUY (u — ) + D07 (G —u)y;
Q
= [ v -0, - apm,
1Q
+ / (fs(-.u, Du, D*u) — f3(-.%, Dii, D*%))(u — 1)dx
Q
= [ @ -0 -a)
o
+ [ 10 - £ A - Ddx
+ / div(VpFl(x, Dii(x)) — VpFl(x, Du(x)))(u —)dx
Qo

1
+ = (u — ) dx.
8 Q\Qo
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By (2.3), the integral concerning f° in the above expression is nonnegative. Hence,
integrating by parts and using cg = Cx = 0, we find that

0> f YUY — U (uy — i)
Q2
(4.36)
+ / (Vo Fl(x, Dii(x)) — Vo F' (x, Du(x)))(D#i — Du)dx.
Qo

It is clear from (4.8) that if u, > #,, then U"Y > UV, Therefore, from the
convexity of F(x, p) in p, which follows from (2.4), we deduce that u, = ii,
on d2 and that (4.36) must be an equality. This implies that (4.35) must be an
equality. From the derivation of (4.35), using the strict concavity of G as in (4.3)
and (4.4) but applied to det D?y and det D21, and the fact that (4.35) is now an
equality, we deduce that det D?u = det D27 in Q2. Hence u = ii on Q. O

In the next lemma, we establish the universal bounds from below and above for
the Hessian determinant of solutions to (2.1)—(2.2).

LEMMA 4.6. Letn =2,q > n, and 0 < 0 < 1/n. Assume that o € W*4(Q) and
v e W24(Q) with infyq ¢ > 0. Assume that (2.3)—(2.5) are satisfied. Suppose
that (SC) holds. Let u be a smooth, uniformly convex solution of the system (2.1)—
(2.2). There is a universal constant C > 0 such that

C'<detD?’u<C inQ.
PROOF. To simplify notation, we use f; to denote f5(-,u, Du, D?u).

Step 1. Lower bound for det D?>u. Let # = w + C«|x|>. Let yq, be the
characteristic function of g, that is, yq,(x) = 1if x € Qg and yq,(x) = 0 if
otherwise. Then, using (2.2), (2.4), and the universal bound for u in Lemma 4.2,
we find that in Q2 the following hold:

UY;; = f5 +2C«Au
—C — |F,. .. (x, Du) |y, (x) — Fpll,pj (x, Du)uij + 2CxAu
> —C — C«|Dulyq, = —f.

By combining the universal bound for ¥ in Lemma 4.2 and Lemma 3.3(ii), we

obtain that ||f||Loo(Q) < C for a universal constant C. Thus, ||f||L2(Q) <C.]In
two dimensions, we have

det(Uij) = (det D?u)"! = det D?u = wﬁ,

where we have used the second equation of (2.1) for the last equality. Now, we
apply the ABP estimate [18, theorem 2.21] to w on €2 to obtain

S
(detUi)1/2

v

||| ooy < sup @ + Cordiam(£2)
I L2(RQ)
1

sup(¥ + Cx|x|?) + CllwZT D f120)-
191

IA
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Clearly, w > w > 0. Therefore, the above estimates and 0 < 8 < % give

1 -~
[wllpec@) < C + Cllw2@T fll120)

1

N s
< C + Clw2™D || ool fll2@) = € + Clwl o gy

Because 0 < 0 < L we have < 1. It follows that w is bounded from

1 _1
2° 2(1-9)

above. Since det D?u = w 9711, we conclude that det D2y is bounded from below

by a universal constant C > 0.

Step 2. Upper bound for det D?u. Since det D%y = w7=T where 0 <0< %,
to prove the universal upper bound for det D?u, we only need to obtain a positive
lower bound for w. For this, we use the ABP maximum principle; see [9,31] for a
slightly different argument.

First, we will use the following splitting of fs:

(4.37) Uwjj = fs =yiAu+g inQ,
where :
F,,l.,,.(x,Du)u,'j
y) =" & *Eo
0, x e \ Qo,
and
0 1
5(u(x) — p(x)), x € 2\ Qo.

From (2.4), we have
(4.39) [Villzo@) < Cx.
We claim that
(4.40) lgllLee@) < C.

Indeed, from (2.3) and (2.4), we easily find that for all x € 2

n(lullLe()) + colDu(x)| + Cx,  x € Qo,
s(lullLoo(@) + l@lLoeg)). x € Q\ Qo.
Now, we use the universal bound for # in Lemma 4.2 and Lemma 3.3(ii) to derive
(4.40) from (4.41).

Recall from (i) that det D?u > C;. Thus,

wdet D?u = (detDzu)G > Cle =c¢ > 0.

From (4.37) and y1 < 0, we find that f5 < g. By (4.40), we find that f;" < |g|
is bounded by a universal constant. Let
| f5 lLse@) + 1

2c

(4.41) lg(x)] = ;

M = <oo and v° =log(w + &) — Mu € W24(Q)
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where & > 0. Then, in 2, we have

" P s
. G Wi w; w ut w;
uvf = u”( ] S Mu,-j) < — nM

)

wHe (w+e)? w+ e
= /s —2M
(w + &) det D2u
J’_
- I /5" oo () oM <o,

c
By the ABP estimate (see [18, theorem 2.21]) for —v¢ in 2, we have

v® > infv® > log(inf¥) — M¢ > —C in Q.
> infv® > g(aQW) ¢ >

From v® = log{w + &) — Mu and the universal bound for ¥ in Lemma 4.2, we
obtain log{w + &) > —C. Thus, letting ¢ — 0, we get w > ¢~ C as desired. O

Now, we are in a position to prove Theorem 4.1.

PROOF OF THEOREM 4.1. To simplify notation, we denote fs(-,u, Du, D*u)
by fs. From Lemma 4.6, we can find a universal constant C > 0 such that

(4.42) Cl<detD?u<C inQ.

From ¢ € W*4(Q) with ¢ > n, we have ¢ € C3(Q) by the Sobolev embedding
theorem. By assumption, 2 is bounded, smooth, and uniformly convex. From
u = ¢ on dQ and (4.42), we can apply the global W?2:17¢0 estimates for the
Monge-Ampere equation in Theorem 3.2 to conclude that

(4.43) | D2ull1+e0 () < C

for some universal constants g > 0 and C; > 0. Recall the following splitting
of f5in (4.37):

(4.44) Js = viAu + g.

Thus, from (4.43), (4.39), and (4.40), we find that

I /5 ||L1+60(Q) <G

for a universal constant C, > 0. From ¢ € W?24(Q) with ¢ > n, we have
¥ € CY(Q) by the Sobolev embedding theorem. Now, we apply the global Holder
estimates for the linearized Monge-Ampére equation in Theorem 3.1 to U% w;j =
f5 in Q with boundary value w = ¢ € C'(9Q) on 9 to conclude that w ¢
C%(Q) with

(4.45) lwlca = CI¥lcroe) + 1 fllL+e0) < Cs

for universal constants & € (0,1) and C3 > 0. Now, we note that u solves the
Monge-Ampere equation

2 _1
det Dy = wo-1
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with the right-hand side being in C*(2) and boundary value ¢ € C3(3Q) on 9.
Therefore, by the global C 2:% estimates for the Monge-Ampere equation [28, 32],
we have u € C>%(Q2) with universal estimates

(4.46) Il c2ug < Ca and  Cy'Iz < D*u < Cala.

As a consequence, the second-order operator U¥ 9; ; 1s uniformly elliptic with
Holder continuous coefficients.
Recalling (4.44) and using (4.39) together with (4.40), we obtain

(4.47) | fsllLoo(@) < Cs.

Thus, from the equation U¥ w;; = fs with boundary value w =  where ¥ €
W?24(Q), we conclude that w € W?9(Q) and therefore u € W*4(Q) with uni-
versal estimate

[ullw4.a) < Ce. O

5 Proofs of the Main Theorems
In this section, we prove Theorems 2.1, 2.3, 2.6, and 2.8.

PROOF OF THEOREM 2.1. The existence and uniqueness result in (ii) follows
from the existence in (i) and the uniqueness result in Lemma 4.5. It remains to
prove (i).

The proof of (i) uses the a priori estimates in Theorem 4.1 and degree theory
as in [9,31] (see also [21]). Since the proof is short, we include it here. Assume
q > n.

Fix a € (0, 1). For a large constant R > 1 to be determined, define a bounded
set D(R) in C%() as follows:

D(R) = {v € C*@) |v= R, [vllcagg, < R.

For € [0, 1], we will define an operator ®;: D(R) — C“ (Q) as follows. Given
w € D(R), define u € C>*(Q) to be the unique uniformly convex solution to

1 .
det D2y = wo—1  in Q,

5.1
©-1) Uu=g on 0%2.

The existence of u follows from the boundary regularity result of the Monge-
Ampere equation established by Trudinger and Wang [32]. Next, let w, € W24(Q)
be the unique solution to the equation

UV (wy)ij = tf3(-,u, Du, D*u) inQ,

(5:2) w; =ty +(1—1) on 0%2.

Because ¢ > 1, wy lies in C*(Q2). We define ®; to be the map sending w to wy.
We note that:

(1) Do(D(R)) = {1}, and in particular, Oy has a unique fixed point.
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(ii) The map [0, 1I]xD(R) — C%(Q) given by (¢, w) — ®;(w) is continuous.
(iii) ®; is compact for each ¢ € [0, 1].
(iv) Forevery ¢t € [0,1],if w € D(R) is a fixed point of ®;, then w ¢ dD(R).

Indeed, part (iii) follows from the standard a priori estimates for the two separate
equations (5.1) and (5.2). For part (iv), let w > 0 be a fixed point of ®;. Then
w € W24(Q) and hence u € W*4(Q). Next we apply Theorem 4.1 to obtain
w > R™! and lwllca(gy < R for some R sufficiently large, depending only on
the initial data but independent of ¢ € [0, 1].

Then the Leray-Schauder degree of ®; is well-defined for each ¢ and is constant
on [0, 1] (see [25, theorem 2.2.4], for example). ¢ has a fixed point and hence
®; must also have a fixed point w, giving rise to a uniformly convex solution
u € WH4(Q) of our second boundary value problem (2.1)—(2.2). O

PROOF OF THEOREM 2.3. If ¢ = Cx = 0, then the existence of a unique
uniformly convex solution u, € W*9(Q) to the system (2.6)—(2.7) for all ¢ €
(n, 00) follows from Theorem 2.1(ii). If p is sufficiently large (depending only
on ¢p + Cy, Qo and 2), then the existence of a uniformly convex solution u, €
W44 () to the system (2.6)—(2.7) for all ¢ € (n, oo) follows from Theorem 2.1(i);
moreover, since we are interested in the limit of {u,} when ¢ — 0, we can assume
that ¢ is sufficiently small (depending only on g + Cx, ¢, and £2) so that Lemma
4.4 applies.

In all cases, by Lemma 4.4, there is a universal constant C independent of &
such that

1
(5.3) / e(us)%+p/ |Ms—<P|2dx+/ ~[ue —p|*dx < C.
19] Qo Q\Qo €

Step 1. A subsequence of {uz} converges. First, we show that, up to extraction
of a subsequence, 1, converges uniformly on compact subsets of €2 to a convex
function u € S|y, Qo] where S[p, Qo] is defined as in (1.2). Indeed, by Lemma
3.3(1), ug = @ on 082 and (5.3) where p > 0, we have

el s gy < COn. 2. maxue) + C(n,Q)f g2 dx < C
02 Q

for a universal constant C > 0. It follows that the sequence {u.} is uniformly
bounded. By Lemma 3.3(ii), | Du,| is uniformly bounded on compact subsets
of 2. Thus, by the Arzela-Ascoli theorem, up to extraction of a subsequence,
ue converges uniformly on compact subsets of €2 to a convex function u. More-
over, we can assume that u#, converges to ¥ on WL2(Qo). Using (5.3), we get
u € S, Qol.

Let G(t) = teT_l fort > 0 (when 8 = 0, we set G(¢) = log?).
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Next, consider the following functional J. over the set of convex functions v
on 2:

Jo(v) =/Q [FO(x,v(x)) + F'(x, Dv(x))]dx

1
— (v—¢)?dx — 8/ G(det D?v)dx.
2e Ja\Qo Q

By the Rademacher theorem (see [13, theorem 2, p. 81]), v is differentiable a.e.
By the Alexandrov theorem (see [13, theorem 1, p. 242]), v is twice differentiable
a.e. and at those points of twice differentiability, we denote, with a slight abuse of
notation, D?v its Hessian matrix. Thus, the functional J, is well-defined with this
convention. y

Let UYY = U v; v;j be as in the proof of Lemma 4.2. Let 7 be the tangential
direction along d€2. Let K be the curvature of d€2. Since u; = ¢ on J€2, in two
dimensions, we have as in (4.8)

(5.5) Ugw = (Ue)rr = K(ue)y — K@y + @1z,

Step 2. Almost minimality property of ug. We show that if v is a convex function
in Q with v = ¢ in a neighborhood of 9€2, then

Je(v) — Je(ue) = 8/39 ngwav(ue - @)

5.4

(5.6)
+ / (v— ug)VpFl(x, Dug(x))-vodS.

Q0
The proof of (5.6) uses mollification to deal with general convex functions v. For

h >0, let
Qp = {x € Q| dist(x, 9Q2) > h}

and

vp(x) = h_”/gqﬁ(x ;y)v(y)dy for x € Qy,

where ¢ > 0, ¢ € C§°(R"), supp¢ C B1(0), and [, ¢ dx = 1. Clearly, v, — v
uniformly on compact subsets of Q. Since v = ¢ near Q2 and ¢ € C>1(Q)
is uniformly convex in 2, we can extend vj to be a uniformly convex C3(R)
function, still denoted by vy, such that

5.7) Dkvh — D*vina neighborhood of d€2 for all k < 2,
By [30, lemma 6.3], we have

lim G(detDzvh):/ G(det D?v).
h—0JQ, Q

This together with (5.7) implies that
(5.8) lim Jg(vp) = Je(v).
h—0

Now, we estimate Jg(vp) — Je (ug).
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As in the proof of Lemma 4.2, we have
—G(det D?vy) + G(det D?ug) > wSUsij (ug — vp)ij.

Integrating by parts twice, recalling U (wg)ij = e~ fo(-. ug, Dug, D?ug), and
(4.6), we get

/ (—G(det D%vp) + G(det D?u,))dx
Q
> / weUY (ug — vp)ij
Q
(5.9) =/ 8_1f8(-,u8,Du8,D2u8)(u8 —vp)dx
Q

[ s = vy [ U200 =)
From the convexity of F°, F!, and (v — ¢)?, we have

(5.10)  To(vp) — Jo(ug) = / [0k (X)) (vh — 1)

Qo

+ Vp F1(x, Dug(x))(Dvp — Dug)]dx

1

41 [ (e — ) (vp — ue)dx
e Ja\Qo

+e/ (—G(det D?vp) + G(det D?ug))dx.
Q

In view of (2.7) and (5.9), we can integrate by parts the right-hand side of (5.10) to
get, after a simple cancellation,

(5.1D Je(vp) — Je(ue)

> ¢ / (we)i U (s — vp)vj + ¢ / WU Dy (e — vp)
I {191

+ / (vg, — ug)VpFl(x, Du.(x)) - vg.
Q0

By (5.7), the right-hand side of (5.11) tends to the right-hand side of (5.6) when
h — 0. On the other hand, in view of (5.8), the left-hand side of (5.11) tends to the
left-hand side of (5.6) when & — 0. Therefore, (5.6) is proved by letting 7 — 0 in
(5.11).

Step 3. Minimality of u. We show that u (in Step 1) is a minimizer of the func-
tional J defined by (1.7) over S[p, Q]. For all v € S[gp, Qo] (extended by ¢ on
Q\ Qp), we use (5.6) to conclude that

Je(ve) — Jolug) > & /a VUil =) = 0()
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where 3
Ve = (1 —&)v 4+ ep € S|, Qo).
Since limg—q J(vg) = J(v), it follows that

(512)  J(v) = liminf J (ug) + 1in}sinfa[/ G (det D%v;) — G(detDzus):|
Q
+ lim inf8/ YUYy (Ug — ).
& Q
From (5.3), we have

/ |(Ue)v| < Cg_l/z
o2

and hence, invoking (5.5), one finds that
61y e [ wUrb =0 = ~Co [ 1+ [l = el
02 02
Observe from 0 < 8§ < % that G(d) < C(1 + d*/?) for all d > 0. It follows that

/ G(detDzus) < C/ (1 + (detDzug)l/z)dx
Q Q

A

C / (1 + Aug)dx
Q

(5.14) = c(|sz| +/ (ug)v) < C(1+¢Y?),
1191

Note that D%v, > eDZgo. Therefore det D2v, > &2 detDz(p > (162 in Q for
C1 > 0, and hence

(5.15) s/ G(det D?vy) > g/ G(C1e?) - 0 whene — 0.
Q Q

From (5.12)—(5.15), we easily obtain
(5.16) J(v) = liminf J (u;).
&
Since u, converges uniformly to 1 on ¢, by Fatou’s lemma, we have
(5.17) liminf/ FOCx, ug(x))dx 3/ FO(x,u(x))dx.
€ Qo Qo

From the convexity of F1(x, p) in p and from the fact that u, converges to u on
W12(Qy), by lower semicontinuity we have

(5.18) liminf/ Fl(x,Dus(x))dxz/ Fl(x, Du(x))dx.
€ Qo Qo

Therefore, by combining (5.16)—(5.18), we obtain
J(v) > liminf J(ug) = J(u) forallv e S[p, Qo]
€

showing that u is a minimizer of the functional J defined by (1.7) over S[g, Q0.
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Step 4. Full convergence of ug to the unique minimizer of J. Since p > 0,
functional J defined by (1.7) over S[¢, Qo] has a unique minimizer in S[gp, Qq].
Thus, Steps 1 and 3 actually show that the whole sequence {u.} converges to the
unique minimizer of J. The proof of the theorem is completed. g

PROOF OF THEOREM 2.6. When H(d) = d%~! where 0 < 6 < 3, the proof
of the uniqueness of solutions in (i) is similar to that of Lemma 4.5, so we omit
it. The existence proof uses a priori estimates and degree theory as in Theorem
2.1. Here, we only focus on proving the a priori estimates. The key is to obtain the
positive bound from below and above for det D?u:

(5.19) C'<detD’u<C inQ.

Once (5.19) is established, we can apply the global W ?2:11€0(Q) estimates in The-
orem 3.2 for u and argue as in the proof of Theorem 4.1 that u € C>*(Q). A
bootstrap argument concludes the proof.

It remains to prove (5.19).

(i) First, by the convexity of F and u, we have
UYwij = —div(Vp F(Du)) = —Fp, p, (Du)u;;
= —trace(D2F(Du)D?u) <0 inQ.

By the maximum principle, the function w attains its minimum value on 9<2. It
follows that

w>infy :=C >0 inQ.
Q2
From the assumptions on [ and w = H(det D?u), we deduce that

det D?u <C <o inf.

From det D?u < C in Q, u = ¢ on 32, and the uniform convexity of 2, we can
construct an explicit barrier to show that | Du| < C in 2 for a universal constant C.
This together with the boundedness assumption on Fp, »; (p) gives

Fp.p; (Du(x)) < Ci I inQ.
We compute, in €2,
U (w + C1|x|2)ij = —Fp,; p; (Du)u;j + 2Ctrace (U
> —Cj trace(u;j) +2C1Au = CiAu > 0.

By the maximum principle, w(x) 4 Cy|x|? attains it maximum value on the bound-
ary 02. Recall that w = v on d<2. Thus, for all x € €2, we have

(5.20) w(x) < wx) + Ci|x|? < na%x(w + Ci|x?|) < C.
From this universal upper bound for w, we can use w = H(det D?u) and the

assumptions on H to obtain det D>y > C~! > 0in Q. Therefore, (5.19) is
proved.
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(i) Assume O < Fj, p;(p) < Cx12. As above, using the convexity of F' and u,
we can prove that w > C > 0 in 2 for a universal constant C > 0. From

U (w + Calx|?)ij = —Fp, p; (Du)usj + 2Cx trace(U™)
> —Cytrace(u;j) +2C+Au = C4Au >0 inQ

and the maximum principle, we also have, as in (5.20), w < Cp in Q. Conse-
quently,

O0<C<w=<C(C; <o in€.

From w = H(det D?u) and the fact that H~! maps compact subsets of (0, c0)
into compact subsets of (0, 00), we find that C; < det D?u < C, in Q. Therefore,
(5.19) is also proved. Il

PROOF OF THEOREM 2.8. The proof is very similar to that of Theorem 2.1.
We focus here on the a priori estimates. The key point is to establish the universal
bound for u as in Lemma 4.2. We do this via proving the estimate of the type (4.2).
We use the same notation as in the proof of Lemma 4.2 with 8 = 0. The estimate
(4.10) with n = 2 now becomes

1)/2
Kyu2<C+C (/aQ(uj)Z)

(5.21) %2
+ f [—(u> —u) + Au](u — T)dx.
Q

Since # is universally bounded, there is a universal constant C > 0 such that
—u —u)u—1) <C.

Moreover, from u < supyq ¢ < C by the convexity of u, we have

/Au(u—ﬁ)fC/ Audsz/ Uy.
Q Q2 02
Thus (5.21) gives

/2
/ K¢u§§C+C([ (uj)z) +Cf Uy
02 o 191

A simple application of Young’s inequality to the above inequality together with
the fact that infyo (K1) > 0 shows that [yo u2 < C, which is exactly what we
need to prove. O
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