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Abstract

We study the solvability of second boundary value problems of fourth-order
equations of Abreu type arising from approximation of convex functionals whose
Lagrangians depend on the gradient variable, subject to a convexity constraint.
These functionals arise in different scientific disciplines such as Newton’s prob-
lem of minimal resistance in physics and the monopolist’s problem in economics.
The right-hand sides of our Abreu-type equations are quasilinear expressions of
second order; they are highly singular and a priori just measures. However, our
analysis in particular shows that minimizers of the 2D Rochet-Choné model per-
turbed by a strictly convex lower-order term, under a convexity constraint, can
be approximated in the uniform norm by solutions of the second boundary value
problems of singular Abreu equations. © 2019 Wiley Periodicals, Inc.

1 Introduction

In this paper, we study the solvability and convergence properties of second
boundary value problems of fourth-order equations of Abreu type arising from ap-
proximation of several convex functionals whose Lagrangians depend on the gradi-
ent variable, subject to a convexity constraint. Our analysis in particular shows that
minimizers of the 2D Rochet-Choné model perturbed by a strictly convex lower-
order term, under a convexity constraint, can be approximated in the uniform norm
by solutions of the second boundary value problems of Abreu-type equations. An
intriguing feature of our Abreu-type equations is that their right-hand sides are
quasilinear expressions of second-order derivatives of a convex function. As such,
they are highly singular and a priori just measures. The main results consist of
Theorems 2.1, 2.3, 2.6, and 2.8 to be precisely stated in Section 2. In the follow-
ing paragraphs, we motivate the problems to be studied and recall some previous
results in the literature.

Let �0 be a bounded, open, smooth, and convex domain in Rn (n � 2). Let
F.x; ´; p/ W Rn � R � Rn ! R be a smooth function that is convex in each of
the variables ´ 2 R and p D .p1; : : : ; pn/ 2 R

n. Let ' be a convex and smooth
function defined in a neighborhood of �0. In several problems in different sci-
entific disciplines such as Newton’s problem of minimal resistance in physics and
the monopolist’s problem in economics (see, for example, [3, 6, 26]), one usually
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encounters the following variational problem with a convexity constraint:

(1.1) inf
u2xS�';�0�

Z
�0

F.x; u.x/;Du.x//dx

where

(1.2) xS�';�0� D fu W �0 ! R j u is convex,

u admits a convex extension ' in a neighborhood of �0g:

Due to the convexity constraint, it is in general difficult to write down a tractable
Euler-Lagrange equation for the minimizers of (1.1) [5, 7, 23]. Lions [23] showed
that, in the sense of distributions, the Euler-Lagrange equation for a minimizer u
of (1.1) in a limiting case of the constraint (1.2) is of the form

@F

@´
.x; u.x/;Du.x// �

nX
iD1

@

@xi

�
@F

@pi
.x; u.x/;Du.x//

�

D

nX
i;jD1

@2

@xi@xj
�ij

(1.3)

for some symmetric nonnegative matrix � D .�ij /1�i;j�n of Radon measures;
see also Carlier [5] for a new proof of this result and related extensions.

The structure of the matrix � in (1.3), to the best of the author’s knowledge,
is still mysterious up to now. Thus, for practical purposes such as implementing
numerical schemes to find minimizers of (1.1), it is desirable to find suitably ex-
plicit approximations of � in particular and minimizers of (1.1) in general. This
has been done by Carlier and Radice [8] when the Lagrangian F does not depend
on the gradient variable p; see Section 1.1 for a quick review. In this paper, we
tackle the more challenging case when F depends on the gradient variable. This
case is relevant to many realistic models in physics and economics such as the ones
described in [3, 26].

1.1 Fourth-Order Equations of Abreu Type

Approximating Convex Functionals with a Convexity Constraint

When ' is strictly convex in a neighborhood of �0, the Lagrangian F.x; ´; p/

does not depend on p, that is, F.x; ´; p/ D F 0.x; ´/, and uniform convex in
its second argument and @

@´
F 0.x; ´/ is bounded uniformly in x for each fixed ´,

Carlier and Radice [8] show that one can approximate the minimizer of

(1.4) inf
u2xS�';�0�

Z
�0

F 0.x; u.x//dx

by solutions of second boundary value problems of fourth-order equations of Abreu
type. More precisely, for each " > 0, consider the following second boundary value
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problem for a uniformly convex function u" on an open euclidean ballB containing
�0:

(1.5)

8����<
����:

"
Pn

i;jD1 U
ij
"

@2w"

@xi@xj
D g". � ; u"/ in B;

w" D .detD2u"/
�1 in B;

u" D ' on @B;

w" D  on @B;

where  WD .det.D2'//�1 on @B ,

g".x; u/ D

(
@F 0

@´
.x; u/; x 2 �0;

1
"
.u.x/ � '.x//; x 2 B n�0;

and U" D .U
ij
" / is the cofactor matrix of

D2u" D

�
@2u"

@xi@xj

�
1�i;j�n

� ..u"/ij /

of the uniformly convex function u", that is,

U" D
�
detD2u"

��
D2u"

��1
:

Carlier and Radice [8, theorems 4.2 and 5.3] show that (1.5) has a unique uniformly
convex solution u" 2 W 4;q.B/ (for all q < 1), which converges uniformly on
�0 to the unique minimizer of (1.4) when "! 0.

The first equation of (1.5) is a fourth-order equation of Abreu type. We will say
a few words about this fully nonlinear, geometric equation. Let

.U ij / D .detD2u/.D2u/�1 and uij WD
@2u

@xi@xj

for any function u. The Abreu equation [1] for a uniformly convex function u

nX
i;jD1

U ij �.detD2u/�1�ij D f

first arises in differential geometry [1,11,12], where one would like to find a Kähler
metric of constant scalar curvature. Its related and important cousin is the affine
maximal surface equation [30–32] in affine geometry:

nX
i;jD1

U ij
h
.detD2u/�

nC1
nC2

i
ij
D 0:

We call (1.5) the second boundary value problem because the values of the function
u" and its Hessian determinant detD2u" are prescribed on the boundary @B . This
is in contrast to the first boundary value problem, where one prescribes the values
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of the function u" and its gradient Du" on @B . The fourth-order equation in (1.5)
arises as the Euler-Lagrange equation of the functionalZ

�0

F 0.x; u.x//dx C
1

2"

Z
Bn�0

.u � '/2 dx � "

Z
B

log detD2udx:

At the functional level, the penalization "
R
B log detD2udx involving the loga-

rithm of the Hessian determinant acts as a good barrier for the convexity constraint
in problems like (1.4); see also [2] for related rigorous numerical results at a dis-
cretized level. At the equation level, the results of Carlier and Radice [8] show
that, when the Lagrangian F does not depend on p, the matrix � in (1.3) is well
approximated by ".D2u"/

�1 � ".u
ij
" / where u" is the solution of (1.5). To see

this, we just note that the cofactor matrix U" of D2u" is divergence-free, that is,Pn
jD1

@
@xj

U
ij
" D 0 for all i D 1; : : : ; n, and hence, noting that U ij

" w" D u
ij
" , we

can write the left-hand side of the first equation in (1.5) as

"

nX
i;jD1

U ij
"

@2w"

@xi@xj
D

nX
i;jD1

@2

@xi@xj

�
"U ij

" w"

�
D

nX
i;jD1

@2

@xi@xj
"uij" :

1.2 Gradient-Dependent Lagrangians and the Rochet-Choné Model

The analysis of Carlier-Radice [8] left open the question of whether one can
approximate minimizers of (1.1) by solutions of second boundary value problems
of fourth-order equations of Abreu type when the Lagrangian F depends on the
gradient variable p. This case is relevant to physics and economic applications.
We briefly describe here the Rochet-Choné model in economics. In the Rochet-
Choné model [26] of the monopolist problem in product line design where the cost
of producing product q is the quadratic function 1

2
jqj2, the monopolist’s profit as a

functional of the buyers’ indirect utility function u is

�.u/ D

Z
�0

�
x �Du.x/ �

1

2
jDu.x/j2 � u.x/

�

.x/dx:

Here �0 � R
n is the collection of types of agents and 
 is the relative frequency

of different types of agents in the population. For a consumer of type x 2 �0, the
indirect utility function u.x/ is computed via the formula

u.x/ D max
q2Q

fx � q � p.q/g

where Q � Rn is the product line and pWQ ! R is a price schedule that the mo-
nopolist needs to design to maximize her overall profit. Since u is the maximum of
a family of affine functions, it is convex. Maximizing �.u/ over convex functions
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u is equivalent to minimizing the following functional J0 over convex functions u:

J0.u/ D

Z
�0

FRC .x; u.x/;Du.x//dx

where FRC .x; ´; p/ D
1

2
jpj2
.x/ � x � p
.x/C ´
.x/:

As mentioned in [16], even in this simple-looking variational problem, the convex-
ity is not easy to handle from a numerical standpoint. Mérigot and Oudet [24] were
among the first to make interesting progress in this direction. Here we analyze this
problem and its generalization from an asymptotic analysis standpoint.

In this paper, we are interested in using the second boundary value problems
of fourth-order equations of Abreu type to approximate minimizer(s) of the varia-
tional problem

(1.6) inf
u2xS�';�0�

J.u/

where

(1.7) J.u/ D

Z
�0

F.x; u.x/;Du.x//dx

with F.x; ´; p/ D F 0.x; ´/C F 1.x; p/:

The choice of form of F in (1.7) simplifies some of our arguments and is clearly
motivated by the analysis of the Rochet-Choné model.

Similar to the analysis of (1.5) carried out by Carlier-Radice [8], our analysis
leads us to two very natural questions concerning the following second boundary
value problem of a highly singular, fully nonlinear fourth-order equation of Abreu
type for a uniformly convex function u:

(1.8)

8���<
���:

Pn
i;jD1 U

ijwij D f�. � ; u;Du;D
2u/ in �;

w D .detD2u/�1 in �;

u D ' on @�;

w D  on @�:

Here .U ij /1�i;j�n is the cofactor matrix of the Hessian matrix D2u D .uij /,
� > 0, � is a bounded, open, smooth, uniformly convex domain containing �0

and

f�.x; u.x/;Du.x/;D
2u.x//

D

(
@
@´
F 0.x; u.x// �

Pn
iD1

@
@xi

�
@F 1

@pi
.x;Du.x//

�
x 2 �0;

1
�
.u.x/ � '.x// x 2 � n�0:

(1.9)

Question 1.

Given '; ; F 0, and F 1, can we solve the second boundary value problem
(1.8)–(1.9)?
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Question 2.

Are minimizers of (1.6)–(1.7) well approximated by solutions of (1.8)–(1.9) when
� ! 0?

We will answer Questions 1 and 2 in the affirmative in two dimensions under suit-
able conditions on F 0 and F 1—see Theorems 2.1 and 2.3, respectively—via anal-
ysis of singular Abreu equations.

1.3 Singular Abreu Equations

By now, the second boundary value problem for the Abreu equation is well
understood [9, 19–21, 32]. In particular, from the analysis in [20], we know that
if f 2 Lq.�/ where q > n, then we have a unique uniformly convex W 4;q.�/

solution to the second boundary value problem of a more general form of the Abreu
equation:

(1.10)

8���<
���:

Pn
i;jD1 U

ijwij D f in �;

w D G
0

.detD2u/ in �;

u D ' on @�;

w D  on @�

where ' 2 W 4;q.�/,  2 W 2;q.�/ with inf@�  > 0, and G belongs to a

class of concave functions that include G.t/ D t��1
�

where 0 < � < 1=n and
G.t/ D log t: On the other hand, if the right-hand side f is only in Lq.�/ with
q < n then solutions to (1.10) might not be in W 4;q.�/.

In [8], the authors established an a priori uniform bound for solutions of (1.5),
thus confirming the solvability of (1.5) in all dimensions, where g" is now bounded,
by using the solvability results for (1.10).

The second boundary value problem of Abreu type in (1.8) has highly singu-
lar right-hand side even in the simple but nontrivial setting of F 0.x; ´/ D 0 and
F 1.x; p/ D 1

2
jpj2. Among the simplest analogues of the first equation in (1.8) is

(1.11) U ij �.detD2u/�1�ij D ��u in �:

To the best of our knowledge, the Abreu-type equation of the form (1.11) has not
appeared before in the literature. There are several serious challenges in establish-
ing the solvability of its second boundary value problem. We highlight here two
aspects among these challenges:

(C1) It is not known a priori if we can establish the lower bound and upper
bound for detD2u. Thus, for a convex function u, �u can be only a
measure.

(C2) Even if we can establish the positive lower bound �1 and upper bound �2
for detD2u, that is, �1 � detD2u � �2 in �, we can only deduce from
the regularity results for the Monge-Ampère equation of De Philippis-
Figalli-Savin [10], Schmidt [29], and Savin [27] that �u 2 L1C"0.�/
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where "0 D "0.n; �1; �2/ > 0 can be arbitrarily small. In fact, from
Wang’s counterexample [33] to regularity of the Monge-Ampère equa-
tions, we know that "0.n; �1; �2/ ! 0 when �2=�1 ! 1. In other
words, the right-hand side of (1.11) has low integrability a priori, which
can be less than the dimension n. Thus, the results on the solvability of the
second boundary value problem of the Abreu equation in [9,19–21,32] do
not apply to the second boundary value problems of (1.11) and (1.8).

In this paper, we are able to overcome these difficulties for both (1.8) and
(1.11) in two dimensions under suitable conditions on the convex functions F 0

and F 1; see Theorem 2.1 which asserts the solvability of (1.8)–(1.9). This is
done via a priori fourth-order derivative estimates and degree theory. For the
a priori estimates, the structural conditions on F 0 and F 1 allow us to establish
that �1 � detD2u � �2 in � for some positive constants �1 and �2 and that
f�. � ; u;Du;D2u/, as explained in (C2) for ��u, belongs to L1C"0.�/ for some
possibly small "0 > 0. We briefly explain here how we can go beyond second-
order derivative estimates and why the dimension is restricted to 2.

Note that (1.8) consists of a Monge-Ampère equation for u in the form of
detD2u D w�1 and a linearized Monge-Ampère equation for w in the form of
U ijwij D f�. � ; u;Du;D2u/ because the coefficient matrix .U ij / comes from
linearization of the Monge-Ampère operator:

U D
@ detD2u

@uij
:

For the solvability of second boundary problems such as (1.8) and (1.11), as in [9,
19–21,32], a key ingredient is to establish global Hölder continuity of the linearized
Monge-Ampère equation with right-hand side having low integrability. In our case,
the integrability exponent is 1C "0 for a small "0 > 0.

To the best of our knowledge, the lowest integrability exponent q for the right-
hand side of the linearized Monge-Ampère equation (with Monge-Ampère mea-
sure just bounded away from 0 and1) for which one can establish a global Hölder
continuity estimate is q > n=2. This fact was proved in the author’s paper with
Nguyen [22]. The constraint 1 C "0 > n=2 for small "0 > 0 forces n to be 2.
It is exactly for this reason that we restrict ourselves in this paper to consider-

ing the case n D 2. Using the bounds on the Hessian determinant for u and the
global Hölder estimates in [22], we can show that w is globally Hölder continuous.
Once we have this, we can apply the global C 2;� estimates for the Monge-Ampère
equation in [28, 32] to conclude that u 2 C 2;�.S�/. We update this information
to U ijwij D f�. � ; u;Du;D2u/ to have a second-order uniformly elliptic equa-
tion for w with global Hölder continuous coefficients and bounded right-hand side.
This gives second-order derivative estimates for w. Now, fourth-order derivative
estimates for u easily follows.

Under suitable conditions on F 0 and F 1 we can show that solutions to (1.8)-
(1.9) converge uniformly on compact subsets of � to the unique minimizer of
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(1.6)–(1.7); see Theorem 2.3. It implies in particular that minimizers of the 2D
Rochet-Choné model perturbed by a highly convex lower-order term, under a con-
vexity constraint, can be approximated in the uniform norm by solutions of second
boundary value problems of singular Abreu equations.

Remark 1.1. Our analysis also covers the case when w D .detD2u/�1 in (1.8)
is replaced by w D .detD2u/��1 where 0 � � < 1=n. We will consider these
general cases in our main results.

Remark 1.2. As mentioned above, due to the possibly low integrability of the right-
hand side ��u of (1.11), our analysis is at the moment restricted to two dimen-
sions. However, for the solvability of the second boundary value problem, it is
quite unexpected that the structure of ��u in two dimensions, that is, ��u D
� trace.U ij /, allows us to replace the term .detD2u/�1 in (1.11) by H.detD2u/

for very general functions H including H.d/ D d ��1 for � 2 �0;1/ n f1g; see
Theorem 2.6. Note that it is an open question if (1.10) is solvable for f 2 Lq.�/

when q > n and G
0

.d/ D d ��1 where � 2 �1
n
;1/:

Remark 1.3. It should not come as a surprise when Abreu-type equations appear
in problems motivated from economics. On the one hand, in addition to [8] and
this paper, Abreu-type equations also appear in the continuum Nash’s bargaining
problem [34]. On the other hand, the monopolist’s problem can be treated in the
framework of optimal transport (see, for example, [15,16]), so it is not totally unex-
pected to have deep connections with the Monge-Ampère equation. The interesting
point here is that Abreu-type equations involve both the Monge-Ampère equation
and its linearization.

NOTATION. The following notations will be used throughout the paper. Points
inRn will be denoted by x D .x1; : : : ; xn/ 2 R

n or p D .p1; : : : ; pn/ 2 R
n. In is

the identity n� n matrix. We use � D .�1; : : : ; �n/ to denote the unit outer normal
vector field on @� and �0 on @�0. Unless otherwise stated, repeated indices are
summed such as U ijwij D

Pn
i;jD1 U

ijwij ;

f 0.x; ´/ D
@F 0.x; ´/

@´
IF 1

pi
.x; p/ D

@F 1.x; p/

@pi
I

rpF
1.x; p/ D .F 1

p1
.x; p/; : : : ; F 1

pn
.x; p//IF 1

pipj
.x; p/ D

@2F 1.x; p/

@pi@pj
I

F 1
pixj

.x; p/ D
@2F 1.x; p/

@pi@xj
I div

�
rpF

1.x; p/
�
D

nX
iD1

@

@xi

�
@F 1.x; p/

@pi

�
:

We use U D .U ij /1�i;j�n to denote the cofactor matrix of the Hessian matrix

D2u D

�
@2u

@xi@xj

�
� .uij /1�i;j�n
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of a function u 2 C 2.S�/. If u is uniformly convex in �, then we have U D
.detD2u/.D2u/�1:

The rest of the paper is organized as follows. We state our main results in Sec-
tion 2. In Section 3, we recall tools used in the proofs of our main theorems. In
Section 4, we establish a priori estimates. Section 5 proves the main results in
Theorems 2.1, 2.3, 2.6, and 2.8.

2 Statements of the Main Results

Let � > 0 and let�0; � be open, smooth, bounded, convex domains in Rn such
that �0 b �. We study the solvability of the following second boundary value
problem of a fully nonlinear, fourth-order equation of Abreu type for a uniformly
convex function u:

(2.1)

8���<
���:

Pn
i;jD1 U

ijwij D f�. � ; u;Du;D
2u/ in �;

w D .detD2u/��1 in �;

u D ' on @�;

w D  on @�:

Here U D .U ij /1�i;j�n is the cofactor matrix of the Hessian matrixD2u D .uij /

and

f�.x; u.x/;Du.x/;D
2u.x//

D

(
f 0.x; u.x// � div.rpF 1.x;Du.x///; x 2 �0;
1
�
.u.x/ � '.x//; x 2 � n�0:

(2.2)

We consider the following sets of assumptions for nonnegative constants �, c0,
C�, xc0, xC�:

(2.3) .f 0.x; ´/ � f 0.x; ź//.´ � ź/ � �j´ � źj2I jf 0.x; ´/j � �.j´j/

for all x 2 �0 and all ´; ź 2 R

where � W �0;1/! �0;1/ is a continuous and increasing function;

(2.4) 0 � F 1
pipj

.x; p/ � C�InI
��F 1

pixi
.x; p/

�� � c0jpj C C�

for all x 2 �0 and for each i I

(2.5)

��F 1
pi
.x; p/

�� � xc0jpj C xC� for x 2 @�0 and for each i I

jrpF
1.x; p/j � �.jpj/ for all x 2 �0:

Our first main theorem is concerned with the solvability of (2.1)–(2.2) in two
dimensions.

THEOREM 2.1 (Solvability of highly singular second boundary value problems
of Abreu type). Let n D 2 and 0 � � < 1=n. Let � > 0 and let �0; � be

open, smooth, bounded, and convex domains in Rn such that �0 b �. Assume
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moreover that� is uniformly convex. Assume that ' 2 C 3;1.S�/ and  2 C 1;1.S�/
with inf@�  > 0. Assume that (2.3)–(2.5) are satisfied.

(i) If either minfc0; xc0g is sufficiently small (depending only on inf@�  , �0

and �), or minf�; 1
�
g is sufficiently large (depending only on minfc0; xc0g,

�0, and �), then there is a uniformly convex solution u 2 W 4;q.�/ to the

system (2.1)–(2.2) for all q 2 .n;1/.

(ii) If xc0 D xC� D 0, then there is a unique uniformly convex solution u 2
W 4;q.�/ to the system (2.1)–(2.2) for all q 2 .n;1/.

Theorem 2.1 will be proved in Section 5. The existence proof uses a priori
estimates in Theorem 4.1 and degree theory. For the a priori estimates, the technical
size conditions in (i) guarantee the uniform bound for u and the L2 bound for its
gradient Du in terms of the data of the problem.

Remark 2.2. Consider the perturbed Rochet-Choné model

F.x; ´; p/ D F 0.x; ´/C F 1.x; p/

where

F 0.x; ´/ D 
.x/´C
�

2
j´j2; F 1.x; p/ D

1

2

.x/jpj2 � x � p
.x/

where � � 0 is a constant and 
 is a Lipschitz function satisfying 0 < 
 �
C1; jD
 j � C2 in �0: Then (2.3)–(2.5) are satisfied with suitable constants c0, xc0,
C�, and xC�. If 
 D 0 on @�0, then xc0 D xC� D 0: More generally, if max@� 
.x/
is small, then xc0 is small. If kD
kL1.�0/ is small, then c0 is small.

Our second main theorem asserts the convergence of solutions to (2.1)–(2.2)
in two dimensions to the unique minimizer of (1.6)–(1.7) when the Lagrangian
F.x; ´; p/ D F 0.x; ´/C F 1.x; p/ is highly convex in the second variable.

THEOREM 2.3 (Convergence of solutions of the approximate second boundary
value problems of Abreu type to the minimizer of the convex functional). Let

n D 2 and 0 � � < 1=n. Let�0; � be open, smooth, bounded, convex domains in

R
n such that �0 b �. Moreover, assume that � is uniformly convex. Assume that

' 2 C 3;1.S�/ is uniformly convex with inf� detD2' > 0 and  2 C 1;1.S�/ with

inf@�  > 0. Assume that (2.3)–(2.5) are satisfied, and � > 0. For each " > 0,

consider the following second boundary value problem:

(2.6)

8���<
���:
"
Pn

i;jD1 U
ij
" .w"/ij D f". � ; u";Du";D

2u"/ in �;

w" D .detD2u"/
��1 in �;

u" D ' on @�;

w" D  on @�:
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Here U" D .U
ij
" /1�i;j�n is the cofactor matrix of the Hessian matrix D2u" D

..u"/ij / and

(2.7) f".x; u".x/;Du".x/;D
2u".x//

D

(
f 0.x; u".x// � div

�
rpF

1.x;Du".x//
�
; x 2 �0;

1
"
.u".x/ � '.x//; x 2 � n�0:

Assume that either xc0 D xC� D 0 or � is sufficiently large (depending only on

xc0 C xC�, �0 and �). Let u" be a uniformly convex solution u" 2 W
4;q.�/ to the

system (2.6)–(2.7) for all q 2 .n;1/. Then, u" converges uniformly on compact

subsets of� to the unique minimizer u 2 xS�';�0� (defined in (1.2)) of the problem

(1.6) where J is defined by (1.7).

Theorem 2.3 will be proved in Section 5.

Remark 2.4. For the convergence result in Theorem 2.3, we need to establish a
uniform bound for u" independent of "; see Lemma 4.4. For this, the uniform
convexity of ' plays an important role. On the other hand, in Theorem 2.1, we
basically use the boundary value of ' on @�, and therefore ' need not be uniformly
convex.

Remark 2.5. Several pertinent remarks on Theorem 2.3 are in order.

(i) Theorem 2.3 is applicable to the perturbed Rochet-Choné model consid-
ered in Remark 2.2. Theorem 2.3 implies that minimizers of the 2D Rochet-
Choné model perturbed by a highly convex lower-order term, under a con-
vexity constraint, can be approximated in the uniform norm by solutions of
second boundary value problems of Abreu-type equations.

(ii) The minimization problem (1.6)–(1.7) when F 1.x; p/ D 1
2

.x/jpj2 � x �

p
.x/ with 
.x/ D 0 on @�0 (that is, xc0 D xC� D 0) was studied by
Carlier in [4].

(iii) In Theorem 2.3, when � > 0 is large and xc0 C xC� > 0, we are unable
to prove the uniqueness of uniformly convex solutions u" to (2.6)–(2.7).
Despite this lack of uniqueness, Theorem 2.3 says that we have the full
convergence of all solutions u" to the unique minimizer u 2 xS�';�0� of
the problem (1.6)–(1.7). This is surprising to us.

In Theorem 2.1, the function F 1.x; p/ grows at most quadratically in p. The
following extension deals with a more general Lagrangian F .

THEOREM 2.6. Let � � R2 be an open, smooth, bounded, and uniformly convex

domain. Assume that ' 2 C1.S�/ and  2 C1.S�/ with inf@�  > 0. Let

F.p/WR2 ! R and H W .0;1/ ! .0;1/ be smooth. Consider the following

second boundary value problem of a fourth-order equation of Abreu type for a
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uniformly convex function u:

(2.8)

8���<
���:

P2
i;jD1 U

ijwij D � div.rpF.Du// in �;

w D H.detD2u/ in �;

u D ' on @�;

w D  on @�:

(i) Assume that F is convex and that Fpipj .p/ is bounded for p bounded.

Assume that H is strictly decreasing, H.d/ ! 0 when d ! 1, and

H.d/ ! 1 when d ! 0. Then there exists a smooth, uniformly convex

solution u 2 C1.S�/ to (2.8). If H.d/ D d ��1 where 0 � � < 1
2

, then

the solution is unique.

(ii) Assume that 0 � Fpipj .p/ � C�I2. Assume that H is strictly monotone

and that H�1 maps compact subsets of .0;1/ into compact subsets of

.0;1/. Then there exists a smooth, uniformly convex solution u 2 C1.S�/
to (2.8).

Theorem 2.6 will be proved in Section 5.

Remark 2.7. Examples of Lagrangians F in Theorem 2.6(i) include

F.p/ D
1

s
jpjs .s � 2; s integer/; or F.p/ D e

1
2
jpj2 :

The existence results in Theorem 2.1 and 2.6 can be extended to certain noncon-
vex Lagrangians F . To illustrate the scope of our method, we consider the case of
Lagrangian

F.x; ´; p/ D
1

4
.´2 � 1/2 C

1

2
jpj2

arising from the study of Allen-Cahn functionals. Our existence result for the
singular Abreu equation with Allen-Cahn Lagrangian states as follows.

THEOREM 2.8. Let � � R2 be an open, smooth, bounded, and uniformly convex

domain. Assume that ' 2 C1.S�/ and  2 C1.S�/ with inf@�  > 0. Then there

exists a smooth, uniformly convex solution u 2 C1.S�/ to the following second

boundary value problem:

(2.9)

8���<
���:

P2
i;jD1 U

ijwij D u3 � u ��u in �;

w D .detD2u/�1 in �;

u D ' on @�;

w D  on @�:

Theorem 2.8 will be proved in Section 5.

Remark 2.9. It would be interesting to establish the higher-dimensional versions
of Theorems 2.1, 2.3, 2.6, and 2.8.
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Remark 2.10 (Universal constants). In Sections 4 and 5, we will work with a fixed
exponent q > n, and we call a positive constant universal if it depends only on
n; �; �, q; �; c0, xc0, C�, xC�, �, �, �0, k'kW 4;q.�/, k kW 2;q.�/, and inf@�  . We
use C , C1, C2, : : : to denote universal constants, and their values may change from
line to line.

3 Tools Used in the Proofs of Main Theorems

In this section, we recall the statements of two main tools used in the proofs of
our main theorems.

The first tool is the global Hölder estimates for the linearized Monge-Ampère
equation with right-hand side having low integrability. These estimates were estab-
lished by Nguyen and the author in [22, theorem 1.7 and lemma 1.5]. They extend
in particular the previous result in [19, theorem 1.4] (see also [21, theorem 1.13])
where the case of Ln right-hand side was treated.

THEOREM 3.1 (Global Hölder estimates for the linearized Monge-Ampère equa-
tion). Let � be a bounded, uniformly convex domain in Rn with @� 2 C 3. Let

�W S�! R, � 2 C 0;1.S�/ \ C 2.�/ be a convex function satisfying

0 < � � detD2� � � <1 and �
��
@�
2 C 3:

Denote by .�ij / D .detD2�/.D2�/�1 the cofactor matrix of D2�. Let v 2

C.S�/ \W
2;n

loc .�/ be the solution to the linearized Monge-Ampère equation(
�ij vij D f in �;

v D ' on @�;

where ' 2 C �.@�/ for some � 2 .0; 1/ and f 2 Lq.�/ with q > n=2. Then,

v 2 C � .S�/ with the estimate

kvkC�.S�/ � C
�
k'kC�.@�/ C kf kLq.�/

�
where � depends only on �, �, n, q, �, and C depends only on �;�; n; q; �,

diam.�/, k�kC3.@�/, k@�kC3 , and the uniform convexity of �:

The second tool we need is concerned with the global W 2;1C"0 estimates for
the Monge-Ampère equation. They follow from the interior W 2;1C"0 estimates
in De Philippis–Figalli–Savin [10] and Schmidt [29] and the global estimates in
Savin [27] (see also [14, theorem 5.3]).

THEOREM 3.2 (Global W 2;1C"0 estimates for the Monge-Ampère equation). Let

� � R
n .n � 2/ be a bounded, uniformly convex domain. Let �W S� ! R,

� 2 C 0;1.�/ \ C 2.�/ be a convex function satisfying

0 < � � detD2� � � in �:
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Assume that '
��
@�

and @� are of class C 3. Then, there is a positive constant

"0 2 .0; 1/ depending only n, �, �, and a positive constant K depending only on

n, �, �, �, k'kC3.@�/, k@�kC3 , and the uniform convexity of @� such that

kD2'kL1C"0 .�/ � K:

We will frequently use the following estimates for convex functions.

LEMMA 3.3. Let u be a convex function on S� where � � Rn is an open, bounded,

and convex set.

(i) We have the following L1 estimate for u in terms of its boundary value

and L2 norm:

kuk2L1.�/ � C.n;�;max
@�

u/C C.n;�/

Z
�

juj2 dx:

(ii) If �0 b �, then for any x 2 �0, we have

(3.1) jDu.x/j �
max@� u � u.x/

dist.x; @�/
�

1

dist.�0; @�/
.max
@�

uC kukL1.�//:

PROOF OF LEMMA 3.3.

(i) The proof is by comparison with a cone. We show that if u � 0 on @�,
then

(3.2) kukL1.�/ �
nC 1

j�j

Z
�

jujdx:

Applying this inequality to the convex function u �max@� u, we obtain

kuk2L1.�/ �

�
C.n;�/

Z
�

jujdx C C.n;�;max
@�

u/

�2

� C.n;�/

Z
�

juj2 dx C C.n;�;max
@�

u/:

It remains to prove (3.2) when u � 0 on @�. Suppose that juj attains
its maximum at x0 2 �. Let yC be the cone with base @� and vertex at
.x0; u.x0//. Then (3.2) follows from the following estimates:

1

nC 1
kukL1.�/j�j D

1

nC 1
ju.x0/jj�j D Volume of yC �

Z
�

jujdx:

(ii) The estimate (3.1) just follows from the convexity of u; see, for example
[21, lemma 3.11]. �

4 A Priori Estimates for Singular Abreu Equations

In this section, � > 0 and �0; � are open, smooth, bounded, convex domains in
R
n such that �0 b �. We assume moreover that � is uniformly convex.
The main result of this section is the following global a priori estimates for the

second boundary value problem (2.1)–(2.2).
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THEOREM 4.1. Let n D 2, 0 � � < 1=n, and q > n. Assume that ' 2 W 4;q.�/

and  2 W 2;q.�/ with inf@�  > 0. Assume that (2.3)–(2.5) are satisfied. Sup-

pose that either minfc0; xc0g is sufficiently small (depending only on inf@�  , �0,

and �), or minf�; 1
�
g is sufficiently large (depending only on minfc0; xc0g, �0, and

�). Let u be a smooth, uniformly convex solution of the system (2.1)–(2.2). Then,

there is a universal constant C > 0 such that

kukW 4;q.�/ � C:

We refer to Remark 2.10 for our convention on universal constants. We now
give the outline of the proof of Theorem 4.1:

� We first prove the L1 bound for u (Lemma 4.2).

� We next prove the lower bound for the Hessian determinant detD2u and
then the upper bound for the Hessian determinant detD2u (Lemma 4.6).

� Finally, we prove the W 4;q estimate.

We use � D .�1; : : : ; �n/ to denote the unit outer normal vector field on @� and �0
on @�0.

For simplicity, we introduce the following size condition used in statements of
several lemmas:

(SC) Either minfc0; xc0g is sufficiently small (depending only on inf@�  , �0,
and �), or minf�; 1

�
g is sufficiently large (depending only on minfc0; xc0g,

�0, and �).

The following lemma establishes the universal L1 bound for solutions to the
second boundary value problem (2.1)–(2.2).

LEMMA 4.2. Let n � 2, 0 � � < 1=n, and q > n. Let u be a smooth solution

of the system (2.1)–(2.2). Assume that ' 2 W 4;q.�/ and  2 W 2;q.�/ with

inf@�  > 0. Assume that (2.3)–(2.5) are satisfied. Assume that either n � 3 or

that (SC) holds when n D 2. Then, there is a universal constant C > 0 such that

kukL1.�/ C

Z
@�

un� � C:

In the proof of Lemma 4.2, we will use the following basic geometric construc-
tion and estimates.

LEMMA 4.3 ([20, lemma 2.1 and inequality (2.7)]). Assume GW .0;1/ ! R is a

smooth, strictly increasing, and strictly concave function on .0;1/. Assume that

q > n � 2 and ' 2 W 4;q.�/. There exist a convex function zu 2 W 4;q.�/

and constants C and C.G/ depending only on n, q, �, and k'kW 4;q.�/ with the

following properties:

(i) zu D ' on @�.

(ii) kzukC3.�/ C kzukW 4;q.�/ � C and detD2zu � C�1 > 0:
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(iii) Letting zw D G0.detD2zu/ and denoting by . zU ij / the cofactor matrix of

.zuij /, then 

 zU ij zwij




Lq.�/

� C.G/:

(iv) If u 2 C 2.S�/ is a convex function with u D ' on @�, then for uC� D
max.0; u�/, we have

kukL1.�/ � C C C.n;�/

�Z
@�

.uC� /
n

�1=n

:

PROOF OF LEMMA 4.2. The proof is similar to that for [20, lemma 2.2]. Let
uC� D max.0; u�/. Since u is convex with boundary value ' on @�, we have

(4.1) u� � �kD'kL1.�/:

Our goal is reduced to showing that

(4.2)
Z
@�

.uC� /
n � C

because the universal L1 bound for u follows from Lemma 4.3(iv).
Let G.t/ D t��1

�
for t > 0 (when � D 0, we set G.t/ D log t). Then G0.t/ D

t��1 for all t > 0 and w D G
0

.detD2u/ in �.
Let zu 2 W 4;q.�/ be as in Lemma 4.3. The function zG.d/ WD G.dn/ on .0;1/

is strictly concave because

zG
00

.d/ D n2 dn�2

�
G
00

.dn/dn C

�
1 �

1

n

�
G
0

.dn/

�
< 0:

Using this, G0 > 0, and the concavity of the map M 7�! .detM/1=n in the space
of symmetric matrices M � 0, we obtain

zG..detD2zu/1=n/ � zG..detD2u/1=n/

� zG
0

..detD2u/1=n/..detD2zu/1=n � .detD2u/1=n/

� zG
0

..detD2u/1=n/
1

n
.detD2u/1=n�1U ij .zu � u/ij :

Since zG
0

..detD2u/1=n/ D nG
0

.detD2u/.detD2u/
n�1
n , we rewrite the above in-

equalities as

(4.3) G.detD2zu/ �G.detD2u/ � wU ij .zu � u/ij :

Similarly, for zw D G
0

.detD2zu/, we have

(4.4) G.detD2u/ �G.detD2zu/ � zw zU ij .u � zu/ij :
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Adding (4.3) and (4.4), integrating by parts twice, and using the fact that .U ij / is
divergence free, we obtain

0 �

Z
�

wU ij .u � zu/ij C zw zU ij .zu � u/ij

D

Z
@�

wU ij .uj � zuj /�i C

Z
�

U ijwij .u � zu/

C

Z
@�

zw zU ij .zuj � uj /�i C

Z
�

zU ij zwij .zu � u/

D

Z
@�

. U ij � zw zU ij /.uj � zuj /�i C

Z
�

f�. � ; u;Du;D
2u/.u � zu/(4.5)

C

Z
�

zU ij zwij .zu � u/:

Let us analyze the boundary terms in (4.5). Since u � zu D 0 on @�, we have
.u � zu/j D .u � zu/��j , and hence

U ij .u � zu/j �i D U ij �j �i .u � zu/� D U ��.u � zu/�

where
U �� D detD2

x0u

with x0 ? � denoting the tangential directions along @�. Therefore,

(4.6) . U ij � zw zU ij /.uj � zuj /�i D . U �� � zw zU ��/.u� � zu�/:

To simplify notation, we use f� to denote f�. � ; u;Du;D
2u/ when there is no

confusion.

By Lemma 4.3, the quantities zu, zu� , zU �� , and k zU ij zwij kL1.�/are universally
bounded. These bounds combined with (4.5) and (4.6) giveZ

@�

 U ��u� � C C CkukL1.�/ C C

Z
@�

.jU ��j C ju�j/

C

Z
�

�f�.u � zu/dx:

(4.7)

On the other hand, from u � ' D 0 on @�, we have, with respect to a principal
coordinate system at any point y 2 @� (see, e.g., [17, formula (14.95) in §14.6])

Dij .u � '/ D .u � '/��i�ij ; i; j D 1; : : : ; n � 1;

where �1; : : : ; �n�1 denote the principal curvatures of @� at y.
Let K D �1 � � � �n�1 be the Gauss curvature of @� at y 2 @�. Then, at any y 2

@�, by noting that detD2
x0u D det.Diju/1�i;j�n�1 and taking the determinants

of

(4.8) Diju D u��i�ij � '��i�ij CDij';

we obtain, using also (4.1),

(4.9) U �� D K.u�/
n�1CE where jEj � C

�
1Cju�j

n�2
�
D C

�
1C

�
uC�

�n�2�
:
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Now, it follows from (4.7), (4.9), and Lemma 4.3(iv) thatZ
@�

K un� � C C CkukL1.�/ C C

Z
@�

.uC� /
n�1 C

Z
�

�f�.u � zu/dx

� C C C

�Z
@�

.uC� /
n

�.n�1/=n

C

Z
�

�f�.u � zu/dx:

(4.10)

We will analyze the last term on the right-hand side of (4.10). By construction,
kzukL1.�/ � C and k'kL1.�/ � C . Thus, we have

(4.11) �
1

�
.u � '/.u � zu/ � �

juj2

2�
C C.�/

where C.�/ > 0 is a universal constant. Using (2.3), we can estimate

A WD

Z
�0

�f 0.x; u/.u � zu/dx

�

Z
�0

�f 0.x; zu/.u � zu/dx � �

Z
�0

ju � zuj2 dx

�

Z
�0

�.jzuj/ju � zujdx � �

Z
�0

ju � zuj2 dx

� C

Z
�0

jujdx C C � �

Z
�0

ju � zuj2 dx:(4.12)

Step 1. Estimate
R
�0

�f�.u � zu/dx by expansion. By the convexity of u and

F 1.x; p/ in p, we have F 1
pipj

uij � 0. Moreover, u � sup@� ' � C and jzuj � C .
Thus, recalling (2.4), we find that

(4.13) F 1
pipj

uij .u � zu/ � CF 1
pipj

uij � CC��u:

On the other hand, for any i D 1; : : : ; n, using (2.4) and the first inequality in (3.1),
we can bound F 1

pixi
.x;Du.x//.u � zu/ in �0 by��F 1

pixi
.x;Du.x//.u.x/ � zu.x//

�� � .c0jDu.x/j C C�/ju.x/ � zu.x/j

� .c0C.�0; �/ju.x/j C C/.ju.x/j C C/

� c0C.�0; �/ju.x/j
2 C C ju.x/j C C:(4.14)

From (4.12), (4.13), and (4.14), together with the divergence theorem, we find thatZ
�0

�f�.u � zu/dx D

Z
�0

�
�f 0.x; u.x//C div

�
rpF

1.x;Du.x//
��
.u � zu/dx

D AC

Z
�0

�
F 1
pixi

.x;Du.x//C F 1
pipj

uij
�
.u � zu/dx �
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� AC

Z
�0

�
c0C.�0; �/juj

2 C C juj C C
�
dx

C

Z
�

C�C�udx

� CkukL1.�/ C C C c0C1.�0; �/

Z
�0

juj2 dx(4.15)

� �

Z
�0

ju � zuj2 dx C C

Z
@�

.u�/
C:

Step 2. Estimate
R
�0

�f�.u � zu/dx by integration by parts. Note that zu and

jDzuj are universally bounded. Thus, using the convexity of F 1.x; p/ in p together
with (2.5) and (3.1), we have the following estimates in �0:

�rpF
1.x;Du.x// � .Du �Dzu/ � �rpF

1.x;Dzu/ � .Du �Dzu/

� �.jDzuj/.C.�0; �/ju.x/j C C/

� C ju.x/j C C:(4.16)

On the other hand, also by (2.5) and (3.1), we have the following estimates on @�0:

.u � zu/rpF
1.x;Du.x// � �0

� .xc0jDuj C xC�/ju � zuj

� xc0C.�0; �/kuk
2
L1.�/ C .xc0 C xC�/C.�0; �/kukL1.�/ C C:(4.17)

Now, integrating by parts and using (4.12) together with (4.16)–(4.17), we obtain

Z
�0

�f�.u � zu/

D

Z
�0

�f 0.x; u.x//.u � zu/C

Z
�0

div
�
rpF

1.x;Du.x//
�
.u � zu/

D AC

Z
@�0

.u � zu/rpF
1.x;Du.x// � �0

C

Z
�0

�rpF
1.x;Du.x// � .Du.x/ �Dzu.x//

� C C .xc0 C xC�/C.�0; �/kukL1.�/ C C

Z
�0

jujdx(4.18)

� �

Z
�0

ju � zuj2 dx C xc0C2.�0; �/kuk
2
L1.�/:
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Step 3. n � 3. From (4.18) and (4.11), and recalling Lemma 4.3(iv), we haveZ
�

�f�.u � zu/ D

Z
�n�0

�
1

�
.u � '/.u � zu/C

Z
�0

�f�.u � zu/

� C C C jukL1.�/ C Ckuk2L1.�/

� C C C2

�Z
@�

.uC� /
n

�2=n

:

From n � 3, (4.10), (4.1), and the above estimates, we obtainZ
@�

K .uC� /
n � C C C

�Z
@�

.uC� /
n

�.n�1/=n

C

Z
�

�f�.u � zu/

� C C C

�Z
@�

.uC� /
n

�.n�1/=n

:

From the Hölder inequality, n � 3, and inf@�K > 0, we obtain
R
@�.u

C
� /

n � C ,
which is (4.2).

For the rest of the proof of this lemma, we focus on the more difficult case of

n D 2. We will now use the condition (SC).

Step 4. When minfc0; xc0g is sufficiently small (depending only on inf@�  , �0,

and �). From (4.15), (4.18), and recalling (4.11), we obtain for yc0 D minfc0; xc0gZ
�

�f�.u � zu/ � CkukL1.�/ C C C yc0C3.�0; �/kuk
2
L1.�/

CC

Z
@�

.u�/
C C

Z
�n�0

�
1

�
.u � '/.u � zu/

� CkukL1.�/ C C C yc0C3.�0; �/kuk
2
L1.�/ C C

Z
@�

.u�/
C:(4.19)

From (4.10), (4.19), and n D 2, we deduce from Lemma 4.3(iv) thatZ
@�

K u2� � C C C

�Z
@�

.uC� /
2

�1=2

C

Z
�

�f�.u � zu/

� C

�Z
@�

.uC� /
2

�1=2

C C C yc0C4.�0; �/

Z
@�

.uC� /
2:(4.20)

Suppose that yc0 is small, say

yc0C4.�0; �/ < .1=2/.inf
@�
 /.inf

@�
K/:

Then it follows from (4.20), the Hölder inequality, and inf@�  > 0 thatZ
@�

�
uC�

�2
� C:

Thus (4.2) is proved.
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Step 5. When minf�; 1
�
g is sufficiently large (depending only on minfc0; xc0g;

�0, and �).

Case 1. c0 � xc0: In this case, we use (4.15). Suppose that

� > 4c0C1.�0; �/C 1 > 0:

Then,

��

Z
�0

ju � zuj2 dx � �
�

2

Z
�0

juj2 dx C C.�/

� �2c0C1.�0; �/

Z
�0

juj2 dx C C:(4.21)

Combining (4.15) and (4.21) with (4.11) and Lemma 4.3(iv), we getZ
�

�f�.u � zu/ D

Z
�0

�f�.u � zu/C

Z
�n�0

�
1

�
.u � '/.u � zu/

� C C C

�Z
@�

.uC� /
n

�1=n
:(4.22)

Thus, for n D 2, we deduce from (4.10) and (4.22) thatZ
@�

K u2� � C C C

�Z
@�

.uC� /
2

�1=2
C

Z
�

�f�.u � zu/

� C C C

�Z
@�

.uC� /
2

�1=2
:(4.23)

From (4.23), the Hölder inequality, and inf@�  > 0, we easily obtainZ
@�

.uC� /
n � C

and (4.2) follows.

Case 2. xc0 � c0. From (4.18) and Lemma 3.3(i), and recalling (4.11), we obtainZ
�

�f�.u � zu/

� CkukL1.�/ C C C xc0C3.�0; �/kuk
2
L1.�/

� �

Z
�0

ju � zuj2 dx C

Z
�n�0

�
1

�
.u � '/.u � zu/

� CkukL1.�/ C C C xc0C4.�0; �/

Z
�

juj2 dx �
�

2

Z
�0

juj2 dx(4.24)

C

Z
�n�0

�
juj2

2�
:
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Thus, if minf�; 1
�
g > 4xc0C4.�0; �/, then (4.24) gives

(4.25)
Z
�

�f�.u � zu/ � CkukL1.�/ C C:

Now, for n D 2, we deduce from (4.10), (4.25), and Lemma 4.3(iv) thatZ
@�

K u2� � C C C

�Z
@�

.uC� /
2

�1/=2

C

Z
�

�f�.u � zu/

� C C C

�Z
@�

.uC� /
2

�1=2

:(4.26)

From (4.26), the Hölder inequality, and inf@�  > 0, we easily obtainZ
@�

.uC� /
2 � C:

This completes the proof of (4.2) in all cases. �

In the following lemma, we establish universal a priori estimates for solutions
to (2.6)–(2.7). These estimates do not depend on ".

LEMMA 4.4. Let n D 2, q > n, and 0 � � < 1=n. Assume that (2.3)–(2.5)
are satisfied and � > 0. Assume that ' 2 W 4;q.�/ with inf� detD2' > 0, and

 2 W 2;q.�/ with inf@�  > 0. Assume that one of the following conditions

holds:

(i) xc0 D xC� D 0.

(ii) � is large and " is small (depending only on xc0 C xC�, �0, and �).

Let u" 2 W
4;q.�/ be a uniformly convex solution to the system (2.6)–(2.7). Then,

there is a universal constant C > 0 (depending also on inf� detD2' but indepen-

dent of ") such thatZ
@�

".u"/
2
� C �

Z
�0

ju" � 'j
2 dx C

Z
�n�0

1

"
ju" � 'j

2 dx � C:(4.27)

PROOF. Let yC� WD xc0 C xC�. Let xu D ' and xf D xU ij xwij where xw D

.detD2xu/��1 and xU D . xU ij / is the cofactor matrix of D2xu. Since q > n and
xu 2 W 4;q.�/ with inf� detD2xu > 0, we have

(4.28) k xf kL1.�/ � C:

We redo the estimates in Lemma 4.2 for u" where we replace zu by xu. First, (4.5)
becomes Z

@�

w"U
ij
" ..u"/j � xuj /�i C

Z
�

U ij
" .w"/ij .u" � xu/(4.29)

C

Z
@�

xw xU ij .xuj � .u"/j /�i C

Z
�

xU ij xwij .xu � u"/ � 0:

To simplify notation, we use f" to denote f". � ; u";Du";D2u"/.
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FromU
ij
" .w"/ij D "�1f", Lemma 4.3(iv), (4.28), and the uniform boundedness

of xu, xw, and Dxu, (4.29) becomesZ
@�

.u"/
2
� � C

�Z
@�

.u"/
2
�

�1=2

C

Z
�

�"�1f".u" � xu/dx C C:(4.30)

This estimate is similar to (4.10), where now we also use inf@�  > 0 and the
uniform convexity of @� to absorb inf@�  > 0 and the curvature of @� to the
right-hand side of (4.10). From Young’s inequality, we can absorb the first term on
the right-hand side of (4.30) to its left-hand side. Then, multiplying both sides by
", we get Z

@�

".u"/
2
� � C C C

Z
�

�f".u" � xu/:(4.31)

As in the estimates for A in (4.12), we have

A" WD

Z
�0

�f 0.x; u".x//.u" � xu/dx

� C C C

Z
�0

ju"jdx � �

Z
�0

ju" � xuj2 dx:

From Lemma 3.3(i) and the inequality ju"j2 � 2.ju" � 'j
2 C j'j2/, we have

(4.32) ku"k
2
L1.�/ � C.�/

Z
�

ju"j
2 dx C C � C.�/

Z
�

ju" � 'j
2 dx C C:

Applying (4.18) to u", f", and xu and taking into account (4.32), � > 0, and yC� WD
xc0 C xC�, we haveZ

�0

�f".u" � xu/

� C C C

Z
�0

ju"jdx � �

Z
�0

ju" � xuj2 dx

C yC�C5.�0; �/
�
1C ku"k

2
L1.�/

�
� C �

�

2

Z
�0

ju" � xuj2 dx C yC�C6.�0; �/

Z
�

ju" � 'j
2 dx:

(4.33)

It follows from (4.31), (4.33), xu D ' in �, and f" D
1
"
.u" � '/ on � n�0 thatZ

@�

".u"/
2
� � C C

Z
�

�f".u" � xu/dx(4.34)

D C C

Z
�0

�f".u" � xu/C

Z
�n�0

�f".u" � xu/dx �
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� C �
�

2

Z
�0

ju" � 'j
2 dx C

Z
�n�0

�
1

"
.u" � '/

2 dx

C yC�C6.�0; �/

Z
�

ju" � 'j
2 dx:

Case 1. � > 0 and xc0 D xC� D 0. In this case, yC� D 0 in (4.34) and (4.27)
follows from this inequality.

Case 2. � is sufficiently large and " is sufficiently small (depending only on

xc0 C xC�, �0 and �). When

min

�
1

"
; �

�
> 4 yC�C6.�0; �/C 2;

then clearly (4.34) gives (4.27). �

We prove the uniqueness part of Theorem 2.1 in the following lemma.

LEMMA 4.5. Let n � 2, q > n, and 0 � � < 1=n. Assume that ' 2 W 4;q.�/

and  2 W 2;q.�/ with inf@�  > 0. Assume that (2.3)–(2.5) are satisfied with

xc0 D xC� D 0. Then the problem (2.1)–(2.2) has at most one uniformly convex

solution u 2 W 4;q.�/.

PROOF. Suppose that u 2 W 4;q.�/ and yu 2 W 4;q.�/ are two uniformly con-
vex solutions of (2.1)–(2.2). Let yU D . yU ij / be the cofactor matrix of D2yu and

let yw D G
0

.detD2yu/. Here, G.t/ D t��1
�

for t > 0 (when � D 0, we set
G.t/ D log t). We use the same notation as in the proof of Lemma 4.2. Then, we
obtain as in (4.5) the estimate

0 �

Z
�

wU ij .u � yu/ij C yw yU ij .yu � u/ij(4.35)

D

Z
@�

 .U ij � yU ij /.uj � yuj /�i

C

Z
�

.f�. � ; u;Du;D
2u/ � f�. � ; yu;Dyu;D2yu//.u � yu/dx

D

Z
@�

 .U �� � yU ��/.u� � yu�/

C

Z
�0

�f 0.x; u.x// � f 0.x; yu.x//�.u � yu/dx

C

Z
�0

div
�
rpF

1.x;Dyu.x// � rpF
1.x;Du.x//

�
.u � yu/dx

C
1

�

Z
�n�0

.u � yu/2 dx:
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By (2.3), the integral concerning f 0 in the above expression is nonnegative. Hence,
integrating by parts and using xc0 D xC� D 0, we find that

0 �

Z
@�

 .U �� � yU ��/.u� � yu�/

C

Z
�0

�
rpF

1.x;Dyu.x// � rpF
1.x;Du.x//

�
.Dyu �Du/dx:

(4.36)

It is clear from (4.8) that if u� > yu� , then U �� > yU �� . Therefore, from the
convexity of F 1.x; p/ in p, which follows from (2.4), we deduce that u� D yu�
on @� and that (4.36) must be an equality. This implies that (4.35) must be an
equality. From the derivation of (4.35), using the strict concavity of G as in (4.3)
and (4.4) but applied to detD2u and detD2yu, and the fact that (4.35) is now an
equality, we deduce that detD2u D detD2yu in �. Hence u D yu on S�. �

In the next lemma, we establish the universal bounds from below and above for
the Hessian determinant of solutions to (2.1)–(2.2).

LEMMA 4.6. Let n D 2, q > n, and 0 � � < 1=n. Assume that ' 2 W 4;q.�/ and

 2 W 2;q.�/ with inf@�  > 0. Assume that (2.3)–(2.5) are satisfied. Suppose

that (SC) holds. Let u be a smooth, uniformly convex solution of the system (2.1)–
(2.2). There is a universal constant C > 0 such that

C�1 � detD2u � C in �:

PROOF. To simplify notation, we use f� to denote f�. � ; u;Du;D
2u/.

Step 1. Lower bound for detD2u. Let xw D w C C�jxj
2. Let ��0

be the
characteristic function of �0, that is, ��0

.x/ D 1 if x 2 �0 and ��0
.x/ D 0 if

otherwise. Then, using (2.2), (2.4), and the universal bound for u in Lemma 4.2,
we find that in � the following hold:

U ij xwij D f� C 2C��u

� �C � jF 1
pixi

.x;Du/j��0
.x/ � F 1

pipj
.x;Du/uij C 2C��u

� �C � C�jDuj��0
WD � yf :

By combining the universal bound for u in Lemma 4.2 and Lemma 3.3(ii), we
obtain that k yf kL1.�/ � C for a universal constant C . Thus, k yf kL2.�/ � C . In
two dimensions, we have

det.U ij / D .detD2u/n�1 D detD2u D w
1

��1 ;

where we have used the second equation of (2.1) for the last equality. Now, we
apply the ABP estimate [18, theorem 2.21] to xw on � to obtain

k xwkL1.�/ � sup
@�

xw C C2diam.�/





 yf

.detU ij /1=2






L2.�/

� sup
@�

. C C�jxj
2/C Ckw

1
2.1��/ yf kL2.�/:
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Clearly, xw � w > 0. Therefore, the above estimates and 0 � � < 1
2

give

kwkL1.�/ � C C Ckw
1

2.1��/ yf kL2.�/

� C C Ckw
1

2.1��/ kL1.�/k yf kL2.�/ � C C Ckwk
1

2.1��/

L1.�/
:

Because 0 � � < 1
2

, we have 1
2.1��/

< 1. It follows that w is bounded from

above. Since detD2u D w
1

��1 , we conclude that detD2u is bounded from below

by a universal constant C > 0.

Step 2. Upper bound for detD2u. Since detD2u D w
1

��1 where 0 � � < 1
2

,
to prove the universal upper bound for detD2u, we only need to obtain a positive
lower bound for w. For this, we use the ABP maximum principle; see [9, 31] for a
slightly different argument.

First, we will use the following splitting of f� :

(4.37) U ijwij D f� D 
1�uC g in �;

where


1.x/ D

(
�
F 1
pipj

.x;Du/uij

�u
; x 2 �0;

0; x 2 � n�0;

and

(4.38) g.x/ D

(
f 0.x; u.x// � F 1

pixi
.x;Du.x//; x 2 �0;

1
�
.u.x/ � '.x//; x 2 � n�0:

From (2.4), we have

(4.39) k
1kL1.�/ � C�:

We claim that

(4.40) kgkL1.�/ � C:

Indeed, from (2.3) and (2.4), we easily find that for all x 2 �

(4.41) jg.x/j �

(
�.kukL1.�//C c0jDu.x/j C C�; x 2 �0;
1
�
.kukL1.�/ C k'kL1.�//; x 2 � n�0:

Now, we use the universal bound for u in Lemma 4.2 and Lemma 3.3(ii) to derive
(4.40) from (4.41).

Recall from (i) that detD2u � C1. Thus,

w detD2u D .detD2u/� � C �
1 WD c > 0:

From (4.37) and 
1 � 0, we find that f� � g. By (4.40), we find that f C
�
� jgj

is bounded by a universal constant. Let

M D
jf C
�
jL1.�/ C 1

2c
<1 and v" D log.w C "/ �Mu 2 W 2;q.�/
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where " > 0. Then, in �, we have

uij v"ij D uij
�
wij

w C "
�

wiwj

.w C "/2
�Muij

�
�
uijwij

w C "
� nM

D
f�

.w C "/ detD2u
� 2M

�
kf C

�
kL1.�/

c
� 2M < 0:

By the ABP estimate (see [18, theorem 2.21]) for �v" in �, we have

v" � inf
@�
v" � log.inf

@�
 / �M' � �C in �:

From v" D log.w C "/ �Mu and the universal bound for u in Lemma 4.2, we
obtain log.w C "/ � �C . Thus, letting "! 0, we get w � e�C as desired. �

Now, we are in a position to prove Theorem 4.1.

PROOF OF THEOREM 4.1. To simplify notation, we denote f�. � ; u;Du;D
2u/

by f� . From Lemma 4.6, we can find a universal constant C > 0 such that

(4.42) C�1 � detD2u � C in �:

From ' 2 W 4;q.�/ with q > n, we have ' 2 C 3.S�/ by the Sobolev embedding
theorem. By assumption, � is bounded, smooth, and uniformly convex. From
u D ' on @� and (4.42), we can apply the global W 2;1C"0 estimates for the
Monge-Ampère equation in Theorem 3.2 to conclude that

(4.43) kD2ukL1C"0 .�/ � C1

for some universal constants "0 > 0 and C1 > 0. Recall the following splitting
of f� in (4.37):

(4.44) f� D 
1�uC g:

Thus, from (4.43), (4.39), and (4.40), we find that

kf�kL1C"0 .�/ � C2

for a universal constant C2 > 0. From  2 W 2;q.�/ with q > n, we have
 2 C 1.S�/ by the Sobolev embedding theorem. Now, we apply the global Hölder
estimates for the linearized Monge-Ampère equation in Theorem 3.1 to U ijwij D

f� in � with boundary value w D  2 C 1.@�/ on @� to conclude that w 2
C �.S�/ with

(4.45) kwkC�.S�/ � C
�
k kC1.@�/ C kf�kL1C"0 .�/

�
� C3

for universal constants � 2 .0; 1/ and C3 > 0. Now, we note that u solves the
Monge-Ampère equation

detD2u D w
1

��1
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with the right-hand side being in C �.S�/ and boundary value ' 2 C 3.@�/ on @�.
Therefore, by the global C 2;� estimates for the Monge-Ampère equation [28, 32],
we have u 2 C 2;�.S�/ with universal estimates

(4.46) kukC2;�.S�/ � C4 and C�14 I2 � D2u � C4I2:

As a consequence, the second-order operator U ij @ij is uniformly elliptic with
Hölder continuous coefficients.

Recalling (4.44) and using (4.39) together with (4.40), we obtain

(4.47) kf�kL1.�/ � C5:

Thus, from the equation U ijwij D f� with boundary value w D  where  2

W 2;q.�/, we conclude that w 2 W 2;q.�/ and therefore u 2 W 4;q.�/ with uni-
versal estimate

kukW 4;q.�/ � C6: �

5 Proofs of the Main Theorems

In this section, we prove Theorems 2.1, 2.3, 2.6, and 2.8.

PROOF OF THEOREM 2.1. The existence and uniqueness result in (ii) follows
from the existence in (i) and the uniqueness result in Lemma 4.5. It remains to
prove (i).

The proof of (i) uses the a priori estimates in Theorem 4.1 and degree theory
as in [9, 31] (see also [21]). Since the proof is short, we include it here. Assume
q > n.

Fix � 2 .0; 1/. For a large constant R > 1 to be determined, define a bounded
set D.R/ in C �.�/ as follows:

D.R/ D fv 2 C �.�/ j v � R�1; kvkC�.�/ � Rg:

For t 2 �0; 1�, we will define an operator�t WD.R/! C �.�/ as follows. Given
w 2 D.R/, define u 2 C 2;�.�/ to be the unique uniformly convex solution to

(5.1)

(
detD2u D w

1
��1 in �;

u D ' on @�:

The existence of u follows from the boundary regularity result of the Monge-
Ampère equation established by Trudinger and Wang [32]. Next, letwt 2 W

2;q.�/

be the unique solution to the equation

(5.2)

(
U ij .wt /ij D tf�. � ; u;Du;D

2u/ in �;

wt D t C .1 � t / on @�:

Because q > n, wt lies in C �.�/. We define �t to be the map sending w to wt .
We note that:

(i) �0.D.R// D f1g, and in particular, �0 has a unique fixed point.
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(ii) The map �0; 1��D.R/! C �.�/ given by .t; w/ 7! �t .w/ is continuous.

(iii) �t is compact for each t 2 �0; 1�.

(iv) For every t 2 �0; 1�, if w 2 D.R/ is a fixed point of �t , then w � @D.R/.

Indeed, part (iii) follows from the standard a priori estimates for the two separate
equations (5.1) and (5.2). For part (iv), let w > 0 be a fixed point of �t . Then
w 2 W 2;q.�/ and hence u 2 W 4;q.�/. Next we apply Theorem 4.1 to obtain
w > R�1 and kwkC�.�/ < R for some R sufficiently large, depending only on
the initial data but independent of t 2 �0; 1�.

Then the Leray-Schauder degree of �t is well-defined for each t and is constant
on �0; 1� (see [25, theorem 2.2.4], for example). �0 has a fixed point and hence
�1 must also have a fixed point w, giving rise to a uniformly convex solution
u 2 W 4;q.�/ of our second boundary value problem (2.1)–(2.2). �

PROOF OF THEOREM 2.3. If xc0 D xC� D 0, then the existence of a unique
uniformly convex solution u" 2 W 4;q.�/ to the system (2.6)–(2.7) for all q 2
.n;1/ follows from Theorem 2.1(ii). If � is sufficiently large (depending only
on xc0 C xC�, �0 and �), then the existence of a uniformly convex solution u" 2
W 4;q.�/ to the system (2.6)–(2.7) for all q 2 .n;1/ follows from Theorem 2.1(i);
moreover, since we are interested in the limit of fu"g when "! 0, we can assume
that " is sufficiently small (depending only on xc0C xC�, �0, and �) so that Lemma
4.4 applies.

In all cases, by Lemma 4.4, there is a universal constant C independent of "
such that

(5.3)
Z
@�

".u"/
2
� C �

Z
�0

ju" � 'j2 dx C

Z
�n�0

1

"
ju" � 'j2 dx � C:

Step 1. A subsequence of fu"g converges. First, we show that, up to extraction
of a subsequence, u" converges uniformly on compact subsets of � to a convex
function u 2 xS�';�0� where xS�';�0� is defined as in (1.2). Indeed, by Lemma
3.3(i), u" D ' on @� and (5.3) where � > 0, we have

ku"k
2
L1.�/ � C.n;�;max

@�
u"/C C.n;�/

Z
�

ju"j
2 dx � C

for a universal constant C > 0. It follows that the sequence fu"g is uniformly
bounded. By Lemma 3.3(ii), jDu"j is uniformly bounded on compact subsets
of �. Thus, by the Arzelà-Ascoli theorem, up to extraction of a subsequence,
u" converges uniformly on compact subsets of � to a convex function u. More-
over, we can assume that u" converges to u on W 1;2.�0/. Using (5.3), we get
u 2 xS�';�0�.

Let G.t/ D t��1
�

for t > 0 (when � D 0, we set G.t/ D log t).
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Next, consider the following functional J" over the set of convex functions v
on S�:

(5.4)

J".v/ D

Z
�0

�F 0.x; v.x//C F 1.x;Dv.x//�dx

C
1

2"

Z
�n�0

.v � '/2 dx � "

Z
�

G.detD2v/dx:

By the Rademacher theorem (see [13, theorem 2, p. 81]), v is differentiable a.e.
By the Alexandrov theorem (see [13, theorem 1, p. 242]), v is twice differentiable
a.e. and at those points of twice differentiability, we denote, with a slight abuse of
notation, D2v its Hessian matrix. Thus, the functional J" is well-defined with this
convention.

Let U ��
" D U

ij
" �i�j be as in the proof of Lemma 4.2. Let � be the tangential

direction along @�. Let K be the curvature of @�. Since u" D ' on @�, in two
dimensions, we have as in (4.8)

(5.5) U ��
" D .u"/�� D K.u"/� �K'� C '�� :

Step 2. Almost minimality property of u". We show that if v is a convex function
in S� with v D ' in a neighborhood of @�, then

J".v/ � J".u"/ � "

Z
@�

 U ��
" @�.u" � '/

C

Z
@�0

.v � u"/rpF
1.x;Du".x// � �0 dS:

(5.6)

The proof of (5.6) uses mollification to deal with general convex functions v. For
h > 0, let

�h D fx 2 � j dist.x; @�/ > hg

and

vh.x/ D h�n
Z
�

�

�
x � y

h

�
v.y/dy for x 2 �h

where � � 0; � 2 C10 .Rn/, supp� � B1.0/, and
R
Rn
� dx D 1:Clearly, vh ! v

uniformly on compact subsets of �. Since v D ' near @� and ' 2 C 3;1.S�/
is uniformly convex in S�, we can extend vh to be a uniformly convex C 3.S�/
function, still denoted by vh, such that

(5.7) Dkvh ! Dkv in a neighborhood of @� for all k � 2:

By [30, lemma 6.3], we have

lim
h!0

Z
�h

G.detD2vh/ D

Z
�

G.detD2v/:

This together with (5.7) implies that

(5.8) lim
h!0

J".vh/ D J".v/:

Now, we estimate J".vh/ � J".u"/.
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As in the proof of Lemma 4.2, we have

�G.detD2vh/CG.detD2u"/ � w"U
ij
" .u" � vh/ij :

Integrating by parts twice, recalling U ij
" .w"/ij D "�1f". � ; u";Du";D

2u"/; and
(4.6), we getZ

�

.�G.detD2vh/CG.detD2u"//dx

�

Z
�

w"U
ij
" .u" � vh/ij

D

Z
�

"�1f". � ; u";Du";D
2u"/.u" � vh/dx(5.9)

�

Z
@�

.w"/iU
ij
" .u" � vh/�j C

Z
@�

 U ��
" @�.u" � vh/:

From the convexity of F 0, F 1, and .v � '/2, we have

J".vh/ � J".u"/ �

Z
�0

�
f 0.x; u".x//.vh � u"/(5.10)

CrpF
1.x;Du".x//.Dvh �Du"/

�
dx

C
1

"

Z
�n�0

.u" � '/.vh � u"/dx

C"

Z
�

.�G.detD2vh/CG.detD2u"//dx:

In view of (2.7) and (5.9), we can integrate by parts the right-hand side of (5.10) to
get, after a simple cancellation,

J".vh/ � J".u"/(5.11)

� �"

Z
@�

.w"/iU
ij
" .u" � vh/�j C "

Z
@�

 U ��
" @�.u" � vh/

C

Z
@�0

.vh � u"/rpF
1.x;Du".x// � �0:

By (5.7), the right-hand side of (5.11) tends to the right-hand side of (5.6) when
h! 0. On the other hand, in view of (5.8), the left-hand side of (5.11) tends to the
left-hand side of (5.6) when h! 0. Therefore, (5.6) is proved by letting h! 0 in
(5.11).

Step 3. Minimality of u. We show that u (in Step 1) is a minimizer of the func-
tional J defined by (1.7) over xS�';�0�. For all v 2 xS�';�0� (extended by ' on
� n�0), we use (5.6) to conclude that

J".v"/ � J".u"/ � "

Z
@�

 U ��
" @�.u" � '/ �O."/
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where
v" D .1 � "/v C "' 2 xS�';�0�:

Since lim"!0 J.v"/ D J.v/, it follows that

J.v/ � lim inf
"

J.u"/C lim inf
"

"

�Z
�

G
�
detD2v"

�
�G

�
detD2u"

��
(5.12)

C lim inf
"

"

Z
@�

 U ��
" @�.u" � '/:

From (5.3), we have Z
@�

j.u"/�j � C"
�1=2

and hence, invoking (5.5), one finds that

(5.13) "

Z
@�

 U ��
" @�.u" � '/ � �C"

Z
@�

�1C j.u"/�j� � �C"
1=2:

Observe from 0 � � < 1
2

that G.d/ � C.1C d1=2/ for all d > 0: It follows thatZ
�

G
�
detD2u"

�
� C

Z
�

�
1C

�
detD2u"

�1=2�
dx

� C

Z
�

.1C�u"/dx

D C

�
j�j C

Z
@�

.u"/�

�
� C.1C "�1=2/:(5.14)

Note that D2v" � "D2'. Therefore detD2v" � "2 detD2' � C1"
2 in � for

C1 > 0, and hence

(5.15) "

Z
�

G.detD2v"/ � "

Z
�

G.C1"
2/! 0 when "! 0:

From (5.12)–(5.15), we easily obtain

(5.16) J.v/ � lim inf
"

J.u"/:

Since u" converges uniformly to u on �0, by Fatou’s lemma, we have

(5.17) lim inf
"

Z
�0

F 0.x; u".x//dx �

Z
�0

F 0.x; u.x//dx:

From the convexity of F 1.x; p/ in p and from the fact that u" converges to u on
W 1;2.�0/, by lower semicontinuity we have

(5.18) lim inf
"

Z
�0

F 1.x;Du".x//dx �

Z
�0

F 1.x;Du.x//dx:

Therefore, by combining (5.16)–(5.18), we obtain

J.v/ � lim inf
"

J.u"/ � J.u/ for all v 2 xS�';�0�;

showing that u is a minimizer of the functional J defined by (1.7) over xS�';�0�.
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Step 4. Full convergence of u" to the unique minimizer of J . Since � > 0,
functional J defined by (1.7) over xS�';�0� has a unique minimizer in xS�';�0�.
Thus, Steps 1 and 3 actually show that the whole sequence fu"g converges to the
unique minimizer of J . The proof of the theorem is completed. �

PROOF OF THEOREM 2.6. When H.d/ D d ��1 where 0 � � < 1
2

, the proof
of the uniqueness of solutions in (i) is similar to that of Lemma 4.5, so we omit
it. The existence proof uses a priori estimates and degree theory as in Theorem
2.1. Here, we only focus on proving the a priori estimates. The key is to obtain the
positive bound from below and above for detD2u:

(5.19) C�1 � detD2u � C in �:

Once (5.19) is established, we can apply the global W 2;1C"0.�/ estimates in The-
orem 3.2 for u and argue as in the proof of Theorem 4.1 that u 2 C 2;�.S�/. A
bootstrap argument concludes the proof.

It remains to prove (5.19).

(i) First, by the convexity of F and u, we have

U ijwij D � div.rpF.Du// D �Fpipj .Du/uij

D �trace.D2F.Du/D2u/ � 0 in �:

By the maximum principle, the function w attains its minimum value on @�. It
follows that

w � inf
@�
 WD C > 0 in �:

From the assumptions on H and w D H.detD2u/, we deduce that

detD2u � C <1 in �:

From detD2u � C in �, u D ' on @�, and the uniform convexity of �, we can
construct an explicit barrier to show that jDuj � C in� for a universal constantC .
This together with the boundedness assumption on Fpipj .p/ gives

Fpipj .Du.x// � C1I2 in �:

We compute, in �,

U ij .w C C1jxj
2/ij D �Fpipj .Du/uij C 2C1trace .U ij /

� �C1 trace.uij /C 2C1�u D C1�u � 0:

By the maximum principle,w.x/CC1jxj2 attains it maximum value on the bound-
ary @�. Recall that w D  on @�. Thus, for all x 2 �, we have

(5.20) w.x/ � w.x/C C1jxj
2 � max

@�

�
 C C1jx

2j
�
� C:

From this universal upper bound for w, we can use w D H.detD2u/ and the
assumptions on H to obtain detD2u � C�1 > 0 in �. Therefore, (5.19) is
proved.
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(ii) Assume 0 � Fpipj .p/ � C�I2. As above, using the convexity of F and u,
we can prove that w � C > 0 in � for a universal constant C > 0. From

U ij .w C C�jxj
2/ij D �Fpipj .Du/uij C 2C� trace.U ij /

� �C� trace.uij /C 2C��u D C��u � 0 in �

and the maximum principle, we also have, as in (5.20), w � C1 in �. Conse-
quently,

0 < C � w � C1 <1 in �:

From w D H.detD2u/ and the fact that H�1 maps compact subsets of .0;1/
into compact subsets of .0;1/, we find that C1 � detD2u � C2 in �. Therefore,
(5.19) is also proved. �

PROOF OF THEOREM 2.8. The proof is very similar to that of Theorem 2.1.
We focus here on the a priori estimates. The key point is to establish the universal
bound for u as in Lemma 4.2. We do this via proving the estimate of the type (4.2).
We use the same notation as in the proof of Lemma 4.2 with � D 0. The estimate
(4.10) with n D 2 now becomesZ

@�

K u2� � C C C

�Z
@�

.uC� /
2

�1/=2

C

Z
�

��.u3 � u/C�u�.u � zu/dx:

(5.21)

Since zu is universally bounded, there is a universal constant C > 0 such that

�.u3 � u/.u � zu/ � C:

Moreover, from u � sup@� ' � C by the convexity of u, we haveZ
�

�u.u � zu/ � C

Z
@�

�udx D C

Z
@�

u� :

Thus (5.21) gives

Z
@�

K u2� � C C C

�Z
@�

�
uC�

�2�1/=2

C C

Z
@�

u� :

A simple application of Young’s inequality to the above inequality together with
the fact that inf@�.K / > 0 shows that

R
@� u

2
� � C , which is exactly what we

need to prove. �
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