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1. Introduction and statement of the main result

In this paper, we establish global Holder estimates for solutions to inhomogeneous linearized Monge—
Ampeére equations in two dimensions with the right hand side being the divergence of a bounded vector
field; see Theorem 1.2. Theorem 1.2 is an affine invariant and degenerate version of global Holder estimates
by Murthy-Stampacchia [19] and Trudinger [25] for second order elliptic equations in divergence form with
coefficient matrices together with their inverses having highly integrable eigenvalues. Our global Holder
estimates hold under natural assumptions on the domain, boundary data and Monge-Ampére measure
being bounded away from zero and infinity. They are the global counterpart of the interior Holder estimates
recently established in [13] that we will recall in Theorem 1.1. A crucial tool for our global Hélder estimates
is the global W1 !*¢ estimates for the Green’s function of the linearized Monge-Ampeére operator in two
dimensions established in Theorem 2.1. An application of Theorem 1.2 to solvability of singular, fourth
order Abreu type equations will be presented in Theorem 1.3.

Let © C R™ (n > 2) be a bounded convex domain and let ¢ € C?(2) be a locally uniformly convex
function on €. The linearized Monge-Ampere equations corresponding to ¢ are of the form
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n

Lou:=— Y Pu;=f in Q (1.1)
i,j=1
where
@ = (2V),_, ., = (det D*¢) (D?¢)~"

is the cofactor matrix of the Hessian matrix D?¢ = (¢ij)1<i,j<n- The operator L, appears in several contexts
including affine differential geometry [26], complex geometry [7], and fluid mechanics [1,2,5,16,17]. In these
contexts, one usually encounters the linearized Monge-Ampére equations with the Monge-Ampére measure
det D% ¢ satisfying the pinching condition

A < det D?¢ < A. (1.2)

In this paper, we focus our attention to (1.1) under (1.2). Notice that since ® is positive semi-definite,
Ly is a linear elliptic partial differential operator, possibly both degenerate and singular. Caffarelli and
Gutiérrez initiated the study of the linearized Monge-Ampeére equations in the fundamental paper [4].
There they developed an interior Harnack inequality theory for nonnegative solutions of the homogeneous
equation Lyu = 0 in terms of the pinching of the Hessian determinant in (1.2). This theory is an affine
invariant version of the classical Harnack inequality for linear, uniformly elliptic equations with measurable
coefficients. As a consequence, they obtained interior Holder estimates for the homogeneous linearized
Monge-Ampere equation L4u = 0.

For the inhomogeneous equation (1.1) with L9 right hand side f where ¢ > 1, Nguyen and the author [15]
recently established an interior Harnack inequality, interior Holder estimates, and global Holder estimates
for solutions under natural conditions when ¢ > n/2, which is the optimal range of q. The interior and global
Holder estimates, respectively, in [15] rely heavily on the corresponding interior and global high integrability
of Green’s function of the linearized Monge-Ampere operator Ly established in [11,12].

Regarding Holder estimates, less is known about (1.1) when the right hand side f is the divergence of a
bounded vector field. This type of inhomogeneous linearized Monge-Ampeére equations arises in the semi-
geostrophic equations in meteorology [1,2,5,13,16,17]. They also appear in second boundary value problems
of fourth order equations of Abreu type arising from approximation of convex functionals whose Lagrangians
depend on the gradient variable, subject to a convexity constraint; see [14]. These functionals arise in different
scientific disciplines such as Newton’s problem of minimal resistance in physics and monopolist’s problem
in economics [3,20].

In the case of the semi-geostrophic equations in meteorology, when the Monge-Ampeére measures det D?¢
are continuous, interior Hélder estimates for solutions to (1.1) were obtained by Loeper [16]. However, when
the measures det D?¢ are only bounded away from zero and infinity, up to now, interior Holder estimates
have only been obtained in two dimensions [13] which we recall here:

Theorem 1.1 (Interior Holder estimates, [13]). Assumen = 2. Let ¢ € C?(Q) be a convex function satisfying
0<A<detD?¢ <A inQ. Let F: Q— R"™ be a bounded vector field. Given a section Sg(xo,4ho) CC Q.
Let p € (1,00). There exist a universal constant v > 0 depending only on X\ and A and a constant C > 0,
depending only on p, A\, A, hg and diam () with the following property. For every solution u to

®y;; = divF (1.3)
in Sg(zo,4ho), and for all x € Sy(xo, ho), we have the Hilder estimate:

[u(z) = u(xo)| < C(p, A, A, diam(2), ho) (I|F| Lo (5, (z0,200)) + 10l Lo (84 (o.200))) 17 = 07
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In Theorem 1.1, the section of a convex function ¢ € C1(Q2) at z € Q with height A is defined by

So(w.h) = {y € Q: 8(y) < 9(x) + Do() - (y— ) + h}.

When F = 0, Theorem 1.1 was established, in all dimensions, by Caffarelli and Gutiérrez in [4]. Because
® is divergence-free, that is, > ., 9;®% = 0 for all j, we can also write L, as a divergence form operator:

£¢u = — Z &(@”uj)

4,j=1

Thus, Theorem 1.1 can be viewed as an affine invariant version of related results by Murthy-Stampacchia
[19] and Trudinger [25] for second order elliptic equations in divergence form. These authors studied the
maximum principle, local and global estimates, local and global regularity for degenerate elliptic equations
in the divergence form

div (M (z)Vv(z)) = div F(z) in  C R, (1.4)

where M(z) = (M;;(x))i1<i j<n is nonnegative symmetric matrix, and F' is a bounded vector field in R™.
To obtain the Holder regularity for solutions to (1.4), Murthy-Stampacchia and Trudinger required the
high integrability of the eigenvalues of M (x) and their inverses. By Wang’s counterexamples [28] to W?2?
estimates for the Monge-Ampere equations, this condition fails for the matrix M = (®¥) in Theorem 1.1
(even in two dimensions) when the ratio A/\ is large.

A natural question regarding Theorem 1.1 is whether one can obtain the global Hélder estimates for so-
lutions to (1.3) under suitable boundary conditions. In this paper, we answer this question in the affirmative
in two dimensions. Precisely, we obtain:

Theorem 1.2 (Global Hélder estimates). Let & C R™ be a bounded conver domain. Assume that n = 2.
Assume that there exists a small constant p > 0 such that

Q2 C By/,(0) and for each y € 0Q there is a ball B,(z) C Q that is tangent to 0 at y. (1.5)
Let ¢ € C%H(Q) N C?(NQ) be a convex function satisfying
0<A<detD?*p <A in Q. (1.6)
Assume further that on 002, ¢ separates quadratically from its tangent planes, namely
ple —zo® < d(x) — ¢(x0) — Dd(x0) - (x — 20) < p~ " |z — ao|*, for all z,zo € ON. (1.7)

Let u: Q2 — R be a continuous function that solves the linearized Monge-Ampére equation

(1.8)

®Yy;; = divF in Q,
U= on 0%,

where ¢ is a C“ function defined on 0 (0 < o < 1) and F € L*(Q). Then, there are positive constants
a1 € (0,1) and K depending only on p,a, A\, A such that the following global Holder estimates hold:

ullcor @) < K (llellca@a) + |1 Fll e @))-
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The global Holder estimates in Theorem 1.2 are an affine invariant and degenerate version of global Holder
estimates by Murthy-Stampacchia [19] and Trudinger [25] for second order elliptic equations in divergence
form. Our proof of Theorem 1.2 relies heavily on the new global high integrability of the gradient of Green’s
function of the linearized Monge-Ampeére operator Ly (first studied in [24]) in two dimensions. It is an open
question whether our interior and global Holder estimates for (1.8) can be obtained in higher dimensions.

We note from [21, Proposition 3.2] that the quadratic separation (1.7) holds for solutions to the Monge-
Ampere equations with the right hand side bounded away from 0 and co on uniformly convex domains and
C? boundary data.

In the next theorem, we give an application of Theorem 1.2 to solvability of the second boundary value
problem of singular, fourth order, fully nonlinear equations of Abreu type; see [14] for a different approach
using global Holder estimates for linearized Monge-Ampere equation with right hand side having low inte-
grability.

Theorem 1.3. Let Q C R? be an open, smooth, bounded and uniformly convexr domain. Let o € C*=(Q) and
Y € C=(Q) with infaq ¢y > 0. Then there exists a unique smooth, uniformly convex solution u € C>(QQ) to
the following second boundary value problem:

22: Uw;; = —|Dul*Au —2 22: uguju; in 2,

i,5=1 1,5=1
w = (det D?u)™? in €, (1.9)
u = on 09,
w =1 on 0S).

Here (U%) is the cofactor matriz of D?u, that is, (U") = (det D*u)(D?u)~!.

The rest of the paper is devoted to proving Theorems 1.2 and 1.3. We use a priori estimates and degree
theory to prove Theorem 1.3. Note that the right hand side of the first equation in (1.9) is the p-Laplacian
with p = 4:

—|Dul*Au — 2uuju;; = —div (|Dul? Du).

We can assume that all functions ¢, u in this paper are smooth. However, our estimates do not depend on
the assumed smoothness but only on the given structural constants.

The analysis in this paper will be involved with © and ¢ satisfying either the global conditions (1.5)-(1.7)
or the following local conditions (1.10)-(1.13).

Let  C R™ be a bounded convex set with

B,(pen) C Q C {z,, >0} N B1(0), (1.10)
)
for some small p > 0 where we denote e, := (0,...,0,1) € R™. Assume that
for each y € 002 N B,(0), there is a ball B,(z) C {2 that is tangent to 02 at y. (1.11)

Let ¢ € C%1(Q) N C2(2) be a convex function satisfying

0<A<detD*¢ <A inQ. (1.12)



N.Q. Le / J. Math. Anal. Appl. 485 (2020) 123865 5

We assume that on 02 N B,(0), ¢ separates quadratically from its tangent planes on 0, that is, if zo €
002N B,(0) then

ple —zol® < d(x) — ¢(z0) — Dd(xo) - (. — 0) < p~ 'z —ao|>  for all z € QN {z, < p}. (1.13)

We will use the letters ¢, c1, C,Cy, C’, ete., to denote universal constants that depend only on the struc-
tural constants n, p, A, A and/or a. They may change from line to line.

In Section 2, we establish global W!:'*# estimates for the Green’s function of the linearized Monge-
Ampere operator L4 under (1.2). In Section 3, we establish L> bounds and Holder estimates at the boundary
for solutions to (1.8). The proofs of Theorems 1.2 and 1.3 will be given in Section 4.

2. Global W11t~ estimates for the Green’s function

Let Gy (x,y) be the Green’s function of L4 in V with pole y € V N Q where V C Q; that is Gy (-,y) is a
positive solution of

LsGv (- y) =0y in VnNQ,
Gyv(,y) =0 on IV

with d, denoting the Dirac measure giving unit mass to the point y.

Let ¢x = c«(n, A\, A, p) be a small universal constant appearing in the global high integrability estimate
[15, inequality (5.12)] for the Green’s function of L.

Our main tools in this paper are following global estimates for the gradient of the Green’s function of
the linearized Monge-Ampére operator &% 0;; when the Monge-Ampere measure det D?¢ is only bounded
away from zero and infinity. These estimates are the global version of those in [11] in two dimensions; see
also [18] for related interior results in higher dimensions.

Theorem 2.1 (Global WY1~ estimates for the Green’s function). There exists a universal constant k =
K(n, A\, A) > 32n__"2 with the following property.

(i) Assume that Q and ¢ satisfy (1.5)-(1.7). Then,

/|V1Gg(z,y)|1+"‘ de < C(n,\, A, p) for ally € Q.
o

(ii) Assume Q and ¢ satisfy (1.10)—(1.13). If A = QN Bs(0) where 6 < c,, then

/|VIGA(:E,y)|1+“ dx < C(n,\, A, p) for all y € A.
A
(iii) LetV be either Q as in (i) or A as in (ii). Let & € (0, =25 ). Then there is a positive number y(n, &) > 0
such that if
[A/A=1] <~y
then

/|Vva(x,y)|1+R dx < C(n,\, Ak, p) for ally € V. (2.14)
%
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Remark 2.2.

(i) In two dimensions, Theorem 2.1 establishes the global W11+~ estimates (k > 0) for the Green’s
function of the linearized Monge-Ampere operator ®9;; when the Monge-Ampére measure det D?¢
is only bounded away from zero and infinity.

(ii) On the other hand, in any dimension n > 2, Theorem 2.1 establishes the global W11T* estimates
for any 1+ k close to -5 for the Green’s function of the linearized Monge-Ampére operator ®%d;;
when the Monge-Ampére measure det D?¢ is close to a constant. In other words, if the Monge-Ampére
measure det D?¢ is continuous then the Green’s function of the linearized Monge-Ampére operator
o 0;; has the same global integrability, up to the first order derivatives, as the Green’s function of
the Laplace operator.

Proof of Theorem 2.1. We first prove (i) and (ii). Let V' be either Q as in (i) or A as in (ii) of the theorem.
We need to show that

2—n

/|Vva(x,y)|1+“ dx < C(n,\, A, p) for all y € V and for some x(n, A\, A) > et (2.15)
%
Step 1: We first assert that for some £, (n, %) >0,
/\D2¢|1+5*dx < C(n, M\ A, p). (2.16)

v

Indeed, by De Philippis-Figalli-Savin’s and Schmidt’s W?2!*¢ estimates for the Monge-Ampére equation
[6,23] (see also [8, Theorem 4.36]), there exists £,(n, %) > 0 such that D¢ € L} Te(Q). Using Savin’s

loc
technique in his proof of the global W?P? estimates [22] for the Monge-Ampeére equation, we can show that

(see also [8, Theorem 5.3]): If © and ¢ satisfy (1.5)-(1.7), then
J102ol=do < Cln A A
Q

and if Q and ¢ satisfy (1.10)—(1.13), then

/ 26| dz < C(n, A, A, p).
A

In all cases, we have (2.16) as asserted.
Let 0 < € < &, be any positive number depending on n and % and let

_ 24 2¢e

p=5_-¢012 (2.17)

Fix y € V. Let v(z) := Gy (x,y). Let k > 0. We use v; to denote the partial derivative dv/dx;.
Step 2: We have the following integral estimate

/ dYvv;dr = k. (2.18)
{zeV:v(z)<k}

To prove (2.18), we use the truncation function w = —(v — k)~ 4+ k to avoid the singularity of v at y. By
the assumption on the smoothness of ¢, v is smooth away y. Thus v € Wllo’cq(V \ {y}) for all ¢q. Note that
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w=von{zeV:v(x)<k}whiew==kon {zeV:uv(x)>k} Thus, w e Wy (V) for all ¢. Moreover,
from the definition of v(z) = Gy (z,y), we find that

/@ijviwjdx =w(y) = k.
v
Using that w; = v; on {z € V : v(z) < k} while w; =0 on {z € V : v(z) > k}, we obtain (2.18).
Step 3: We next claim that
|Dv[Pdz < C(n, A\, A, p)kP/2. (2.19)
{zeVw(z)<k}

To prove (2.19), we use (2.18) together with the arguments in [11,13]. For completeness, we include its
short proof here. Let

S={zeV:v<k}

We will use the following inequality ®v;(z)v;(z) > %ﬁw

Lemma 2.1]. It follows from (2.18) and det D?¢ > X that
‘VU‘Q -1
dr <\ k.
[ o<
S

Now, since 1 < p < 2, using the Holder inequality to |Vu|P = % ((Aqﬁ)%) with exponents % and %,

whose simple proof can be found in [4,

we have

2p

[Vol? / 72 —1/2.1 3
o) < d A¢)T7d <AV A7 L 2.20
Vol < | [ Fogde| | faosar) < Ao} ., (2.20)
5
Applying (2.20) to p defined in (2.17), noting that ﬁ =1+ ¢, and recalling (2.16), we obtain
1 1 ex—¢
IVollzoisy < ATV2EY2 (A F11e(5) S ATV2RAG] . () 1S|TTF00F < K200, A, A, p).
The proof of (2.19) is complete.
Step 4: For any 1 < ¢ < "5, we have
||UHL‘1(S) < HUHL‘I(V) < C(nv)‘vAvpv Q)' (2'21)

Indeed, let ¢’ := _15. If Q and ¢ satisfy (1.10)~(1.13) and if A = QN B;(0) where § < c. then estimate
(5.12) in [15] gives

[ 6i@ndo= [ )iz < oA p. 0 EE) < ClnA A g,
A A
On the other hand, if Q and ¢ satisfy (1.5)-(1.7), then by Corollary 2.6 in [12], we have

/ G (2, y)da = / G2 (y, 2)dz < C(n, A, A, prq).
Q Q
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From the preceding estimates, we obtain (2.21).
As a consequence of (2.21) and Chebyshev’s inequality, we have

A A
{z eV :v(x) >k} < W (2.22)
Step 5: Now, we pass from the truncation of level k to global estimates. For any n > 0, we have
{r eV :|Vu(x)|>2n} C{reV:iv>ktU{z eV |Vu(r)| >nv(x) <k}
By using (2.22) and (2.19), we obtain
C, |VolP C, = C,kr/?
eV Vol znl < 7i+ [ s < o S8
{zeV:v(z)<k}
We choose k such that P = k2+9 or k = 7]1%2#_%0. Then
Cy c!
{zeV:|Vo@)| 20} < of = —=r
kq 77P+2q
It follows from the layer cake representation that |Dv| € L***(V) for any k € R with 1 + &k < p+2q The
proof of (2.15) will be complete if we can choose a suitable 1 < ¢ < "5 to make 2%5(1 > "2 so as to
choose k > 32n__"2 in the above inequality. This is possible, since

. 2pq 2pn n
lim = >
=25 p+2¢ (m—2)p+2n" 3n—2

where the last inequality follows from p > 1. In conclusion, we can find £(n, A, A) > 2=

/|VIGv(x,y)|1+“ dx < C(n,\ A, p).
1%

The proof of (2.15) is complete.
Finally, we prove (iii). Let & € (0,15). From Step 5 above, we find that, in order to have (2.14), i
suffices to choose A and A such that

2pn
—— > 1+k 2.23
(n—2)p+2n e (2.23)
for some
2+2 20 — 2
_ 2t E(sothatzs: P )
24¢€ 2—p

where 0 < € < g,(n, %) with €, as in Step 1.
A direct calculation shows that (2.23) holds as long as 2 > p > py where

Po =

The last inequality is due to the fact that % € (0, —5). Thus, we need to choose A and A such that
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2pg — 2
S o= 2
2—po

*

This is always possible if |[A/A — 1] < 7 for some small positive number v = y(pg,n) = y(n,&); see [8,
Theorem 5.3]. O

3. L*° bounds and Holder estimates at the boundary

In this section we establish L*° bounds in Lemma 3.1 and Hoélder estimates at the boundary in Proposi-
tion 3.2 for solutions to (1.8). Let ¢, = cx(\, A, p) > 0 be as in Section 2.

As a consequence of Theorem 2.1, we first have the following global estimates for solutions to inhomoge-
neous linearized Monge-Ampére equations (1.8) in two dimensions.

Lemma 3.1. Assume that n = 2. Consider the following settings:

(i) Assume that Q and ¢ satisfy (1.5)-(1.7).
(ii) Assume Q and ¢ satisfy (1.10)—(1.13). Let A = QN Bs(0) where § < c,.

Let V be either Q as in (i) or A as in (ii). Assume that F € L™(V) and u € W2(V) N C(V) satisfies
Lou < divF  almost everywhere in V.
Then there exist positive constants ka(X, A) and C(X\, A, p) such that
supu < supu™t 4+ C|V[*2||F|| Lo (vy-
% ov

Proof. Let k = k(\,A) > 0 be as in Theorem 2.1. Set
Ky :=1———>0.
K
Using Holder inequality to the estimates in Theorem 2.1, we find C'(A, A, p) > 0 such that

/ VaGy(z,y)| dz < C(A A, p)|V]™. (3.24)
\%

Let Gy (z,y) be the Green’s function of L4 in V' with pole y € V. Define
v(x) == /Gv(x,y)div Fy)dy for zeV.
%

Then v is a solution of
Lev=divF in V, and v =0 on 9V.

Since L4(u—v) < 01in V, we obtain from the Aleksandrov-Bakelman-Pucci (ABP) maximum principle (see
[9, Theorem 9.1]) that

u(z) <suput +v(z) in V. (3.25)
oV
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As the operator £, can be written in the divergence form with symmetric coefficient, we infer from [10,
Theorem 1.3] that Gy (z,y) = Gv(y, z) for all ,y € V. Thus, using (3.24), we can estimate for all z € V'

o(x) = / G ( y)div F(y) dy = / Gy (y, x)div F(y) dy
1% 1%

=~ [ Vvt F ) dy < CON DIVl (3.26)
1%

The desired estimate follows from (3.25) and (3.26). O

Next, we obtain the following Holder estimates at the boundary for solutions to inhomogeneous linearized
Monge-Ampére equations (1.8) in two dimensions.

Proposition 3.2. Assume Q and ¢ satisfy (1.10)—(1.13). Assume that n = 2. Let ko be as in Lemma 5.1. Let
ue C(B,(0)NQ) N W2™(B,(0) N Q) be a solution to

loc

®Yu;; = divF in B,(0)NQ,
u=¢p on 0QN B,(0),

where ¢ € C*(002 N B,(0)) for some a € (0,1) and F € L>(QN B,(0)). Let
Qp = min {a, 52}.

Then, there exist positive constants 6 and C depending only X\, A, v, p such that, for any xo € 922N B, /5(0)
and for all x € QN Bs(xo), we have

@Q
lu(z) — u(zg)| < Cla — x| =0+3n (HUHL“(QQBQ(O)) + [lellceaenB, o) + ||F||L°°(QOBP(O)))-

Proof. Our proof relies on Lemma 3.1 and a construction of suitable barriers as in the proof of Proposition
5.1 in [15]. We omit the details. O

4. Global Holder estimates and singular Abreu equations

In this section, we prove Theorems 1.2 and 1.3. Theorem 1.2 follows from Theorem 1.1, Lemma 3.1 and
Theorem 4.1 below.

Theorem 4.1. Assume Q and ¢ satisfy (1.10)~(1.13). Assume that n = 2. Let u € C(B,(0) N Q) N
W2(B,(0) N Q) be a solution to

®Yu;; = divF in B,(0)NQ,
U= on 02N B,(0),

where ¢ € C*(ONQN B,(0)) for some a € (0,1) and F € L= (QNB,(0)). Then, there exist positive constants
B and C depending only on A\, A, o, p such that

[u(@) = u(y)| < Cla = 9l (Jull s~ @nm, o) + I¢llca@ans, o) + 1Fl=@ns, o) for all 2,y € 2N By (0).
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Proof of Theorem 4.1. The proof of the global Holder estimates in this theorem is similar to the proof of
[15, Theorem 1.7]. It combines the boundary Holder estimates in Proposition 3.2 and the interior Holder
continuity estimates in Theorem 1.1 using Savin’s Localization Theorem [21]. Thus we omit the details. O

We are now in a position to complete the proof of Theorem 1.2.
Proof of Theorem 1.2. From Lemma 3.1, we find that
[ull Lo (@) < [lellL=(a0) + CA A, p)||Fll L= (0)-
The desired global Holder estimates in Theorem 1.2 follow from combining Theorems 1.1 and 4.1. O
Finally, we give a proof of Theorem 1.3.

Proof of Theorem 1.3. The proof of the uniqueness of solutions is similar to that of Lemma 4.5 in [14] so
we omit it. The existence proof uses a priori estimates and degree theory as in Theorem 2.1 in [14]. Here,
we only focus on proving the a priori estimates for u in C*¥(Q) for any k > 2.

Step 1: positive bound from below and above for det D?u.

First, by the convexity of u, we have

Uijwl-j = 7|Du|2Au — 2uujuy; < 0in .
By the maximum principle, the function w attains its minimum value on 9. It follows that
w > infy :=¢ > 0in Q.
0

Therefore,

det D*u=w"'<C;:=c'in Q. (4.27)

Now, we can construct an explicit barrier using the uniform convexity of 2 and the upper bound for det D?u
to show that

|Du| < Cs in Q (4.28)

for a constant Cy depending only on 2, ¢ and infyq 1.
Noting that we are in two dimensions so trace (U%) = Au. We compute in (2

U (w+ 203 |7)?);; = —|Dul*Au — 2u;uju;; + 4C5 Au > 0.

By the maximum principle, w(x) 4+ 2C2|z|? attains it maximum value on the boundary 9. Recall that
w =1 on JN). Thus, for all x € ), we have

w(z) < w(z) +2C3)z|? < I%%X(’l/J +203|2%|) < Cs. (4.29)
It follows from (4.27) and (4.29) that
C™' <w=(det D*u)"* < C (4.30)

where C' depends only on €2, ¢ and infaq .
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Step 2: higher order derivative estimates for u. From (4.30) and (4.28), we apply the global Holder
estimates for the linearized Monge-Ampeére equation in Theorem 1.2 to

Uw;j = —|Dul* Au — 2uuju;j = —div (|Du*Du) in Q

with boundary value w = ¢ € C>(99) on I to conclude that w € C*(Q) with

lwlleay < € (I8llcron + I1Dula)) < Cs (4.31)
for universal constants « € (0,1) and Cy > 0. Now, we note that u solves the Monge-Ampére equation
det D?u = w™!

with right hand side being in C*(Q2) and boundary value ¢ € C3(92) on 99Q. Therefore, by the global C%
estimates for the Monge-Ampére equation [27], we have u € C%%(Q) with universal estimates

||u||C2’°‘(ﬁ) S C5 and CETlIQ S D2’LL S C5I2. (432)

As a consequence, the second order operator U% 0;; is uniformly elliptic with Hélder continuous coefficients.
A bootstrap argument for the equation

Uij’wij = —|Du|2Au — QUiU,]’uij
concludes the proof of the a priori estimates for u in C*(Q) for any k > 2. O
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