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1. Introduction and statement of the main result

In this paper, we establish global Hölder estimates for solutions to inhomogeneous linearized Monge–

Ampère equations in two dimensions with the right hand side being the divergence of a bounded vector 

field; see Theorem 1.2. Theorem 1.2 is an affine invariant and degenerate version of global Hölder estimates 

by Murthy-Stampacchia [19] and Trudinger [25] for second order elliptic equations in divergence form with 

coefficient matrices together with their inverses having highly integrable eigenvalues. Our global Hölder 

estimates hold under natural assumptions on the domain, boundary data and Monge-Ampère measure 

being bounded away from zero and infinity. They are the global counterpart of the interior Hölder estimates 

recently established in [13] that we will recall in Theorem 1.1. A crucial tool for our global Hölder estimates 

is the global W 1,1+ε estimates for the Green’s function of the linearized Monge-Ampère operator in two 

dimensions established in Theorem 2.1. An application of Theorem 1.2 to solvability of singular, fourth 

order Abreu type equations will be presented in Theorem 1.3.

Let Ω ⊂ R
n (n ≥ 2) be a bounded convex domain and let φ ∈ C2(Ω) be a locally uniformly convex 

function on Ω. The linearized Monge-Ampère equations corresponding to φ are of the form
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Lφu := −
n

∑

i,j=1

Φijuij = f in Ω, (1.1)

where

Φ =
(

Φij
)

1≤i,j≤n
:= (det D2φ) (D2φ)−1

is the cofactor matrix of the Hessian matrix D2φ = (φij)1≤i,j≤n. The operator Lφ appears in several contexts 

including affine differential geometry [26], complex geometry [7], and fluid mechanics [1,2,5,16,17]. In these 

contexts, one usually encounters the linearized Monge-Ampère equations with the Monge-Ampère measure 

det D2φ satisfying the pinching condition

λ ≤ det D2φ ≤ Λ. (1.2)

In this paper, we focus our attention to (1.1) under (1.2). Notice that since Φ is positive semi-definite, 

Lφ is a linear elliptic partial differential operator, possibly both degenerate and singular. Caffarelli and 

Gutiérrez initiated the study of the linearized Monge-Ampère equations in the fundamental paper [4]. 

There they developed an interior Harnack inequality theory for nonnegative solutions of the homogeneous 

equation Lφu = 0 in terms of the pinching of the Hessian determinant in (1.2). This theory is an affine 

invariant version of the classical Harnack inequality for linear, uniformly elliptic equations with measurable 

coefficients. As a consequence, they obtained interior Hölder estimates for the homogeneous linearized 

Monge-Ampère equation Lφu = 0.

For the inhomogeneous equation (1.1) with Lq right hand side f where q ≥ 1, Nguyen and the author [15]

recently established an interior Harnack inequality, interior Hölder estimates, and global Hölder estimates 

for solutions under natural conditions when q > n/2, which is the optimal range of q. The interior and global 

Hölder estimates, respectively, in [15] rely heavily on the corresponding interior and global high integrability 

of Green’s function of the linearized Monge–Ampère operator Lφ established in [11,12].

Regarding Hölder estimates, less is known about (1.1) when the right hand side f is the divergence of a 

bounded vector field. This type of inhomogeneous linearized Monge-Ampère equations arises in the semi-

geostrophic equations in meteorology [1,2,5,13,16,17]. They also appear in second boundary value problems 

of fourth order equations of Abreu type arising from approximation of convex functionals whose Lagrangians 

depend on the gradient variable, subject to a convexity constraint; see [14]. These functionals arise in different 

scientific disciplines such as Newton’s problem of minimal resistance in physics and monopolist’s problem 

in economics [3,20].

In the case of the semi-geostrophic equations in meteorology, when the Monge-Ampère measures det D2φ

are continuous, interior Hölder estimates for solutions to (1.1) were obtained by Loeper [16]. However, when 

the measures det D2φ are only bounded away from zero and infinity, up to now, interior Hölder estimates 

have only been obtained in two dimensions [13] which we recall here:

Theorem 1.1 (Interior Hölder estimates, [13]). Assume n = 2. Let φ ∈ C2(Ω) be a convex function satisfying 

0 < λ ≤ det D2φ ≤ Λ in Ω. Let F : Ω → R
n be a bounded vector field. Given a section Sφ(x0, 4h0) ⊂⊂ Ω. 

Let p ∈ (1, ∞). There exist a universal constant γ > 0 depending only on λ and Λ and a constant C > 0, 

depending only on p, λ, Λ, h0 and diam (Ω) with the following property. For every solution u to

Φijuij = divF (1.3)

in Sφ(x0, 4h0), and for all x ∈ Sφ(x0, h0), we have the Hölder estimate:

|u(x) − u(x0)| ≤ C(p, λ, Λ, diam(Ω), h0)
(

‖F‖L∞(Sφ(x0,2h0)) + ‖u‖Lp(Sφ(x0,2h0))

)

|x − x0|γ .
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In Theorem 1.1, the section of a convex function φ ∈ C1(Ω) at x ∈ Ω with height h is defined by

Sφ(x, h) =
{

y ∈ Ω : φ(y) < φ(x) + Dφ(x) · (y − x) + h
}

.

When F ≡ 0, Theorem 1.1 was established, in all dimensions, by Caffarelli and Gutiérrez in [4]. Because 

Φ is divergence-free, that is, 
∑n

i=1 ∂iΦ
ij = 0 for all j, we can also write Lφ as a divergence form operator:

Lφu = −
n

∑

i,j=1

∂i(Φ
ijuj).

Thus, Theorem 1.1 can be viewed as an affine invariant version of related results by Murthy-Stampacchia 

[19] and Trudinger [25] for second order elliptic equations in divergence form. These authors studied the 

maximum principle, local and global estimates, local and global regularity for degenerate elliptic equations 

in the divergence form

div (M(x)∇v(x)) = div F (x) in Ω ⊂ R
n, (1.4)

where M(x) = (Mij(x))1≤i,j≤n is nonnegative symmetric matrix, and F is a bounded vector field in Rn. 

To obtain the Hölder regularity for solutions to (1.4), Murthy-Stampacchia and Trudinger required the 

high integrability of the eigenvalues of M(x) and their inverses. By Wang’s counterexamples [28] to W 2,p

estimates for the Monge-Ampère equations, this condition fails for the matrix M = (Φij) in Theorem 1.1

(even in two dimensions) when the ratio Λ/λ is large.

A natural question regarding Theorem 1.1 is whether one can obtain the global Hölder estimates for so-

lutions to (1.3) under suitable boundary conditions. In this paper, we answer this question in the affirmative 

in two dimensions. Precisely, we obtain:

Theorem 1.2 (Global Hölder estimates). Let Ω ⊂ R
n be a bounded convex domain. Assume that n = 2. 

Assume that there exists a small constant ρ > 0 such that

Ω ⊂ B1/ρ(0) and for each y ∈ ∂Ω there is a ball Bρ(z) ⊂ Ω that is tangent to ∂Ω at y. (1.5)

Let φ ∈ C0,1(Ω) ∩ C2(Ω) be a convex function satisfying

0 < λ ≤ det D2φ ≤ Λ in Ω. (1.6)

Assume further that on ∂Ω, φ separates quadratically from its tangent planes, namely

ρ |x − x0|
2

≤ φ(x) − φ(x0) − Dφ(x0) · (x − x0) ≤ ρ−1 |x − x0|
2

, for all x, x0 ∈ ∂Ω. (1.7)

Let u : Ω → R be a continuous function that solves the linearized Monge-Ampère equation

{

Φijuij = div F in Ω,

u = ϕ on ∂Ω,
(1.8)

where ϕ is a Cα function defined on ∂Ω (0 < α ≤ 1) and F ∈ L∞(Ω). Then, there are positive constants 

α1 ∈ (0, 1) and K depending only on ρ, α, λ, Λ such that the following global Hölder estimates hold:

‖u‖Cα1 (Ω) ≤ K
(

‖ϕ‖Cα(∂Ω) + ‖F‖L∞(Ω)

)

.
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The global Hölder estimates in Theorem 1.2 are an affine invariant and degenerate version of global Hölder 

estimates by Murthy-Stampacchia [19] and Trudinger [25] for second order elliptic equations in divergence 

form. Our proof of Theorem 1.2 relies heavily on the new global high integrability of the gradient of Green’s 

function of the linearized Monge-Ampère operator Lφ (first studied in [24]) in two dimensions. It is an open 

question whether our interior and global Hölder estimates for (1.8) can be obtained in higher dimensions.

We note from [21, Proposition 3.2] that the quadratic separation (1.7) holds for solutions to the Monge-

Ampère equations with the right hand side bounded away from 0 and ∞ on uniformly convex domains and 

C3 boundary data.

In the next theorem, we give an application of Theorem 1.2 to solvability of the second boundary value 

problem of singular, fourth order, fully nonlinear equations of Abreu type; see [14] for a different approach 

using global Hölder estimates for linearized Monge-Ampère equation with right hand side having low inte-

grability.

Theorem 1.3. Let Ω ⊂ R
2 be an open, smooth, bounded and uniformly convex domain. Let ϕ ∈ C∞(Ω) and 

ψ ∈ C∞(Ω) with inf∂Ω ψ > 0. Then there exists a unique smooth, uniformly convex solution u ∈ C∞(Ω) to 

the following second boundary value problem:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2
∑

i,j=1

U ijwij = −|Du|2∆u − 2

2
∑

i,j=1

uiujuij in Ω,

w = (det D2u)−1 in Ω,

u = ϕ on ∂Ω,

w = ψ on ∂Ω.

(1.9)

Here (U ij) is the cofactor matrix of D2u, that is, (U ij) = (det D2u)(D2u)−1.

The rest of the paper is devoted to proving Theorems 1.2 and 1.3. We use a priori estimates and degree 

theory to prove Theorem 1.3. Note that the right hand side of the first equation in (1.9) is the p-Laplacian 

with p = 4:

−|Du|2∆u − 2uiujuij = −div (|Du|2Du).

We can assume that all functions φ, u in this paper are smooth. However, our estimates do not depend on 

the assumed smoothness but only on the given structural constants.

The analysis in this paper will be involved with Ω and φ satisfying either the global conditions (1.5)-(1.7)

or the following local conditions (1.10)-(1.13).

Let Ω ⊂ R
n be a bounded convex set with

Bρ(ρen) ⊂ Ω ⊂ {xn ≥ 0} ∩ B 1
ρ
(0), (1.10)

for some small ρ > 0 where we denote en := (0, . . . , 0, 1) ∈ R
n. Assume that

for each y ∈ ∂Ω ∩ Bρ(0), there is a ball Bρ(z) ⊂ Ω that is tangent to ∂Ω at y. (1.11)

Let φ ∈ C0,1(Ω) ∩ C2(Ω) be a convex function satisfying

0 < λ ≤ det D2φ ≤ Λ in Ω. (1.12)
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We assume that on ∂Ω ∩ Bρ(0), φ separates quadratically from its tangent planes on ∂Ω, that is, if x0 ∈

∂Ω ∩ Bρ(0) then

ρ |x − x0|
2

≤ φ(x) − φ(x0) − Dφ(x0) · (x − x0) ≤ ρ−1 |x − x0|
2

for all x ∈ ∂Ω ∩ {xn ≤ ρ}. (1.13)

We will use the letters c, c1, C, C1, C ′, etc., to denote universal constants that depend only on the struc-

tural constants n, ρ, λ, Λ and/or α. They may change from line to line.

In Section 2, we establish global W 1,1+κ estimates for the Green’s function of the linearized Monge-

Ampère operator Lφ under (1.2). In Section 3, we establish L∞ bounds and Hölder estimates at the boundary 

for solutions to (1.8). The proofs of Theorems 1.2 and 1.3 will be given in Section 4.

2. Global W 1,1+κ estimates for the Green’s function

Let GV (x, y) be the Green’s function of Lφ in V with pole y ∈ V ∩ Ω where V ⊂ Ω; that is GV (·, y) is a 

positive solution of

{

LφGV (·, y) = δy in V ∩ Ω,

GV (·, y) = 0 on ∂V

with δy denoting the Dirac measure giving unit mass to the point y.

Let c∗ = c∗(n, λ, Λ, ρ) be a small universal constant appearing in the global high integrability estimate 

[15, inequality (5.12)] for the Green’s function of Lφ.

Our main tools in this paper are following global estimates for the gradient of the Green’s function of 

the linearized Monge-Ampère operator Φij∂ij when the Monge-Ampère measure det D2φ is only bounded 

away from zero and infinity. These estimates are the global version of those in [11] in two dimensions; see 

also [18] for related interior results in higher dimensions.

Theorem 2.1 (Global W 1,1+κ estimates for the Green’s function). There exists a universal constant κ =

κ(n, λ, Λ) > 2−n
3n−2 with the following property.

(i) Assume that Ω and φ satisfy (1.5)-(1.7). Then,

∫

Ω

|∇xGΩ(x, y)|1+κ dx ≤ C(n, λ, Λ, ρ) for all y ∈ Ω.

(ii) Assume Ω and φ satisfy (1.10)–(1.13). If A = Ω ∩ Bδ(0) where δ ≤ c∗, then

∫

A

|∇xGA(x, y)|1+κ dx ≤ C(n, λ, Λ, ρ) for all y ∈ A.

(iii) Let V be either Ω as in (i) or A as in (ii). Let κ̄ ∈ (0, 1
n−1 ). Then there is a positive number γ(n, ̄κ) > 0

such that if

|Λ/λ − 1| < γ

then
∫

V

|∇xGV (x, y)|1+κ̄ dx ≤ C(n, λ, Λ, κ̄, ρ) for all y ∈ V. (2.14)
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Remark 2.2.

(i) In two dimensions, Theorem 2.1 establishes the global W 1,1+κ estimates (κ > 0) for the Green’s 

function of the linearized Monge-Ampère operator Φij∂ij when the Monge-Ampère measure det D2φ

is only bounded away from zero and infinity.

(ii) On the other hand, in any dimension n ≥ 2, Theorem 2.1 establishes the global W 1,1+κ estimates 

for any 1 + κ close to n
n−1 for the Green’s function of the linearized Monge-Ampère operator Φij∂ij

when the Monge-Ampère measure det D2φ is close to a constant. In other words, if the Monge-Ampère 

measure det D2φ is continuous then the Green’s function of the linearized Monge-Ampère operator 

Φij∂ij has the same global integrability, up to the first order derivatives, as the Green’s function of 

the Laplace operator.

Proof of Theorem 2.1. We first prove (i) and (ii). Let V be either Ω as in (i) or A as in (ii) of the theorem. 

We need to show that
∫

V

|∇xGV (x, y)|1+κ dx ≤ C(n, λ, Λ, ρ) for all y ∈ V and for some κ(n, λ, Λ) >
2 − n

3n − 2
. (2.15)

Step 1: We first assert that for some ε∗(n, Λλ ) > 0,

∫

V

|D2φ|1+ε∗dx ≤ C(n, λ, Λ, ρ). (2.16)

Indeed, by De Philippis-Figalli-Savin’s and Schmidt’s W 2,1+ε estimates for the Monge-Ampère equation 

[6,23] (see also [8, Theorem 4.36]), there exists ε∗(n, Λλ ) > 0 such that D2φ ∈ L1+ε∗

loc (Ω). Using Savin’s 

technique in his proof of the global W 2,p estimates [22] for the Monge-Ampère equation, we can show that 

(see also [8, Theorem 5.3]): If Ω and φ satisfy (1.5)-(1.7), then

∫

Ω

|D2φ|1+ε∗dx ≤ C(n, λ, Λ, ρ);

and if Ω and φ satisfy (1.10)–(1.13), then

∫

A

|D2φ|1+ε∗dx ≤ C(n, λ, Λ, ρ).

In all cases, we have (2.16) as asserted.

Let 0 < ε < ε∗ be any positive number depending on n and Λ
λ and let

p =
2 + 2ε

2 + ε
∈ (1, 2). (2.17)

Fix y ∈ V . Let v(x) := GV (x, y). Let k > 0. We use vj to denote the partial derivative ∂v/∂xj .

Step 2: We have the following integral estimate

∫

{x∈V :v(x)≤k}

Φijvivjdx = k. (2.18)

To prove (2.18), we use the truncation function w = −(v − k)− + k to avoid the singularity of v at y. By 

the assumption on the smoothness of φ, v is smooth away y. Thus v ∈ W 1,q
loc (V \ {y}) for all q. Note that 
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w = v on {x ∈ V : v(x) ≤ k} while w = k on {x ∈ V : v(x) ≥ k}. Thus, w ∈ W 1,q
0 (V ) for all q. Moreover, 

from the definition of v(x) = GV (x, y), we find that

∫

V

Φijviwjdx = w(y) = k.

Using that wj = vj on {x ∈ V : v(x) ≤ k} while wj = 0 on {x ∈ V : v(x) ≥ k}, we obtain (2.18).

Step 3: We next claim that

∫

{x∈V :v(x)≤k}

|Dv|pdx ≤ C(n, λ, Λ, ρ)kp/2. (2.19)

To prove (2.19), we use (2.18) together with the arguments in [11,13]. For completeness, we include its 

short proof here. Let

S = {x ∈ V : v ≤ k}.

We will use the following inequality Φijvi(x)vj(x) ≥ det D2φ|∇v|2

∆φ whose simple proof can be found in [4, 

Lemma 2.1]. It follows from (2.18) and det D2φ ≥ λ that

∫

S

|∇v|2

∆φ
dx ≤ λ−1k.

Now, since 1 < p < 2, using the Hölder inequality to |∇v|p = |∇v|p

(∆φ)
p
2

(

(∆φ)
p
2

)

with exponents 2
p and 2

2−p , 

we have

‖∇v‖Lp(S) ≤

⎡

⎣

∫

S

|∇v|2

∆φ
dx

⎤

⎦

1
2

⎛

⎝

∫

S

(∆φ)
p

2−p dx

⎞

⎠

2−p
2p

≤ λ−1/2k1/2‖(∆φ)‖
1
2

L
p

2−p (S)
. (2.20)

Applying (2.20) to p defined in (2.17), noting that p
2−p = 1 + ε, and recalling (2.16), we obtain

‖∇v‖Lp(S) ≤ λ−1/2k1/2‖(∆φ)‖
1
2

L1+ε(S) ≤ λ−1/2k1/2‖∆φ‖
1
2

L1+ε∗ (S)|S|
ε∗−ε

2(1+ε∗)(1+ε) ≤ k1/2C(n, λ, Λ, ρ).

The proof of (2.19) is complete.

Step 4: For any 1 < q < n
n−2 , we have

‖v‖Lq(S) ≤ ‖v‖Lq(V ) ≤ C(n, λ, Λ, ρ, q). (2.21)

Indeed, let q′ := q
q−1 . If Ω and φ satisfy (1.10)–(1.13) and if A = Ω ∩ Bδ(0) where δ ≤ c∗ then estimate 

(5.12) in [15] gives

∫

A

Gq
A(x, y)dx =

∫

A

Gq
A(y, x)dx ≤ C(n, λ, Λ, ρ, q)|A|

3
4 ( 2

n
− 1

q′
) ≤ C(n, λ, Λ, ρ, q).

On the other hand, if Ω and φ satisfy (1.5)-(1.7), then by Corollary 2.6 in [12], we have

∫

Ω

Gq
Ω(x, y)dx =

∫

Ω

Gq
Ω(y, x)dx ≤ C(n, λ, Λ, ρ, q).
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From the preceding estimates, we obtain (2.21).

As a consequence of (2.21) and Chebyshev’s inequality, we have

|{x ∈ V : v(x) ≥ k}| ≤
Cq(n, λ, Λ, ρ)

kq
. (2.22)

Step 5: Now, we pass from the truncation of level k to global estimates. For any η > 0, we have

{x ∈ V : |∇v(x)| ≥ η} ⊂ {x ∈ V : v ≥ k} ∪ {x ∈ V : |∇v(x)| ≥ η; v(x) ≤ k}.

By using (2.22) and (2.19), we obtain

|{x ∈ V : |∇v(x)| ≥ η}| ≤
Cq

kq
+

∫

{x∈V :v(x)≤k}

|∇v|p

ηp
dx ≤

Cq

kq
+

Cpkp/2

ηp
.

We choose k such that ηp = k
p
2 +q or k = η

2p
p+2q . Then

|{x ∈ V : |∇v(x)| ≥ η}| ≤
C ′

q

kq
=

C ′
q

η
2pq

p+2q

.

It follows from the layer cake representation that |Dv| ∈ L1+κ(V ) for any κ ∈ R with 1 + κ < 2pq
p+2q . The 

proof of (2.15) will be complete if we can choose a suitable 1 < q < n
n−2 to make 2pq

p+2q > 2n
3n−2 so as to 

choose κ > 2−n
3n−2 in the above inequality. This is possible, since

lim
q→ n

n−2

2pq

p + 2q
=

2pn

(n − 2)p + 2n
>

2n

3n − 2

where the last inequality follows from p > 1. In conclusion, we can find κ(n, λ, Λ) > 2−n
3n−2 such that

∫

V

|∇xGV (x, y)|1+κ dx ≤ C(n, λ, Λ, ρ).

The proof of (2.15) is complete.

Finally, we prove (iii). Let κ̄ ∈ (0, 1
n−1 ). From Step 5 above, we find that, in order to have (2.14), it 

suffices to choose λ and Λ such that

2pn

(n − 2)p + 2n
> 1 + κ̄ (2.23)

for some

p =
2 + 2ε

2 + ε
(so that ε =

2p − 2

2 − p
)

where 0 < ε < ε∗(n, Λλ ) with ε∗ as in Step 1.

A direct calculation shows that (2.23) holds as long as 2 > p > p0 where

p0 :=
2n(1 + κ̄)

2n − (1 + κ̄)(n − 2)
< 2.

The last inequality is due to the fact that κ̄ ∈ (0, 1
n−1 ). Thus, we need to choose λ and Λ such that
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ε∗ >
2p0 − 2

2 − p0
.

This is always possible if |Λ/λ − 1| < γ for some small positive number γ = γ(p0, n) = γ(n, ̄κ); see [8, 

Theorem 5.3]. �

3. L
∞ bounds and Hölder estimates at the boundary

In this section we establish L∞ bounds in Lemma 3.1 and Hölder estimates at the boundary in Proposi-

tion 3.2 for solutions to (1.8). Let c∗ = c∗(λ, Λ, ρ) > 0 be as in Section 2.

As a consequence of Theorem 2.1, we first have the following global estimates for solutions to inhomoge-

neous linearized Monge–Ampère equations (1.8) in two dimensions.

Lemma 3.1. Assume that n = 2. Consider the following settings:

(i) Assume that Ω and φ satisfy (1.5)-(1.7).

(ii) Assume Ω and φ satisfy (1.10)–(1.13). Let A = Ω ∩ Bδ(0) where δ ≤ c∗.

Let V be either Ω as in (i) or A as in (ii). Assume that F ∈ L∞(V ) and u ∈ W 2,n
loc (V ) ∩ C(V ) satisfies

Lφu ≤ div F almost everywhere in V.

Then there exist positive constants κ2(λ, Λ) and C(λ, Λ, ρ) such that

sup
V

u ≤ sup
∂V

u+ + C|V |κ2‖F‖L∞(V ).

Proof. Let κ = κ(λ, Λ) > 0 be as in Theorem 2.1. Set

κ2 := 1 −
1

1 + κ
> 0.

Using Hölder inequality to the estimates in Theorem 2.1, we find C(λ, Λ, ρ) > 0 such that

∫

V

|∇xGV (x, y)| dx ≤ C(λ, Λ, ρ)|V |κ2 . (3.24)

Let GV (x, y) be the Green’s function of Lφ in V with pole y ∈ V . Define

v(x) :=

∫

V

GV (x, y)div F (y) dy for x ∈ V.

Then v is a solution of

Lφv = div F in V, and v = 0 on ∂V.

Since Lφ(u − v) ≤ 0 in V , we obtain from the Aleksandrov-Bakelman-Pucci (ABP) maximum principle (see 

[9, Theorem 9.1]) that

u(x) ≤ sup
∂V

u+ + v(x) in V. (3.25)
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As the operator Lφ can be written in the divergence form with symmetric coefficient, we infer from [10, 

Theorem 1.3] that GV (x, y) = GV (y, x) for all x, y ∈ V . Thus, using (3.24), we can estimate for all x ∈ V

v(x) =

∫

V

GV (x, y)div F (y) dy =

∫

V

GV (y, x)div F (y) dy

= −

∫

V

∇yGV (y, x)F (y) dy ≤ C(λ, Λ, ρ)|V |κ2‖F‖L∞(V ). (3.26)

The desired estimate follows from (3.25) and (3.26). �

Next, we obtain the following Hölder estimates at the boundary for solutions to inhomogeneous linearized 

Monge–Ampère equations (1.8) in two dimensions.

Proposition 3.2. Assume Ω and φ satisfy (1.10)–(1.13). Assume that n = 2. Let κ2 be as in Lemma 3.1. Let 

u ∈ C
(

Bρ(0) ∩ Ω
)

∩ W 2,n
loc (Bρ(0) ∩ Ω) be a solution to

{

Φijuij = div F in Bρ(0) ∩ Ω,

u = ϕ on ∂Ω ∩ Bρ(0),

where ϕ ∈ Cα(∂Ω ∩ Bρ(0)) for some α ∈ (0, 1) and F ∈ L∞(Ω ∩ Bρ(0)). Let

α0 := min
{

α, κ2

}

.

Then, there exist positive constants δ and C depending only λ, Λ, α, ρ such that, for any x0 ∈ ∂Ω ∩ Bρ/2(0)

and for all x ∈ Ω ∩ Bδ(x0), we have

|u(x) − u(x0)| ≤ C|x − x0|
α0

α0+3n

(

‖u‖L∞(Ω∩Bρ(0)) + ‖ϕ‖Cα(∂Ω∩Bρ(0)) + ‖F‖L∞(Ω∩Bρ(0))

)

.

Proof. Our proof relies on Lemma 3.1 and a construction of suitable barriers as in the proof of Proposition 

5.1 in [15]. We omit the details. �

4. Global Hölder estimates and singular Abreu equations

In this section, we prove Theorems 1.2 and 1.3. Theorem 1.2 follows from Theorem 1.1, Lemma 3.1 and 

Theorem 4.1 below.

Theorem 4.1. Assume Ω and φ satisfy (1.10)–(1.13). Assume that n = 2. Let u ∈ C
(

Bρ(0) ∩ Ω
)

∩

W 2,n
loc (Bρ(0) ∩ Ω) be a solution to

{

Φijuij = div F in Bρ(0) ∩ Ω,

u = ϕ on ∂Ω ∩ Bρ(0),

where ϕ ∈ Cα(∂Ω ∩ Bρ(0)) for some α ∈ (0, 1) and F ∈ L∞(Ω ∩ Bρ(0)). Then, there exist positive constants 

β and C depending only on λ, Λ, α, ρ such that

|u(x) − u(y)| ≤ C|x − y|β
(

‖u‖L∞(Ω∩Bρ(0)) + ‖ϕ‖Cα(∂Ω∩Bρ(0)) + ‖F‖L∞(Ω∩Bρ(0))

)

for all x, y ∈ Ω ∩ B ρ
2
(0).
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Proof of Theorem 4.1. The proof of the global Hölder estimates in this theorem is similar to the proof of 

[15, Theorem 1.7]. It combines the boundary Hölder estimates in Proposition 3.2 and the interior Hölder 

continuity estimates in Theorem 1.1 using Savin’s Localization Theorem [21]. Thus we omit the details. �

We are now in a position to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. From Lemma 3.1, we find that

‖u‖L∞(Ω) ≤ ‖ϕ‖L∞(∂Ω) + C(λ, Λ, ρ)‖F‖L∞(Ω).

The desired global Hölder estimates in Theorem 1.2 follow from combining Theorems 1.1 and 4.1. �

Finally, we give a proof of Theorem 1.3.

Proof of Theorem 1.3. The proof of the uniqueness of solutions is similar to that of Lemma 4.5 in [14] so 

we omit it. The existence proof uses a priori estimates and degree theory as in Theorem 2.1 in [14]. Here, 

we only focus on proving the a priori estimates for u in Ck(Ω) for any k ≥ 2.

Step 1: positive bound from below and above for det D2u.

First, by the convexity of u, we have

U ijwij = −|Du|2∆u − 2uiujuij ≤ 0 in Ω.

By the maximum principle, the function w attains its minimum value on ∂Ω. It follows that

w ≥ inf
∂Ω

ψ := c > 0 in Ω.

Therefore,

det D2u = w−1 ≤ C1 := c−1 in Ω. (4.27)

Now, we can construct an explicit barrier using the uniform convexity of Ω and the upper bound for det D2u

to show that

|Du| ≤ C2 in Ω (4.28)

for a constant C2 depending only on Ω, ϕ and inf∂Ω ψ.

Noting that we are in two dimensions so trace (U ij) = ∆u. We compute in Ω

U ij(w + 2C2
2 |x|2)ij = −|Du|2∆u − 2uiujuij + 4C2

2 ∆u ≥ 0.

By the maximum principle, w(x) + 2C2
2 |x|2 attains it maximum value on the boundary ∂Ω. Recall that 

w = ψ on ∂Ω. Thus, for all x ∈ Ω, we have

w(x) ≤ w(x) + 2C2
2 |x|2 ≤ max

∂Ω
(ψ + 2C2

2 |x2|) ≤ C3. (4.29)

It follows from (4.27) and (4.29) that

C−1 ≤ w = (det D2u)−1 ≤ C (4.30)

where C depends only on Ω, ϕ and inf∂Ω ψ.
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Step 2: higher order derivative estimates for u. From (4.30) and (4.28), we apply the global Hölder 

estimates for the linearized Monge-Ampère equation in Theorem 1.2 to

U ijwij = −|Du|2∆u − 2uiujuij = −div (|Du|2Du) in Ω

with boundary value w = ψ ∈ C∞(∂Ω) on ∂Ω to conclude that w ∈ Cα(Ω) with

‖w‖Cα(Ω) ≤ C
(

‖ψ‖C1(∂Ω) + ‖Du‖3
L∞(Ω)

)

≤ C4 (4.31)

for universal constants α ∈ (0, 1) and C4 > 0. Now, we note that u solves the Monge-Ampère equation

det D2u = w−1

with right hand side being in Cα(Ω) and boundary value ϕ ∈ C3(∂Ω) on ∂Ω. Therefore, by the global C2,α

estimates for the Monge-Ampère equation [27], we have u ∈ C2,α(Ω) with universal estimates

‖u‖C2,α(Ω) ≤ C5 and C−1
5 I2 ≤ D2u ≤ C5I2. (4.32)

As a consequence, the second order operator U ij∂ij is uniformly elliptic with Hölder continuous coefficients. 

A bootstrap argument for the equation

U ijwij = −|Du|2∆u − 2uiujuij

concludes the proof of the a priori estimates for u in Ck(Ω) for any k ≥ 2. �
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