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A variety of pulse sequences have been described for converting nuclear spin magnetisation into
long-lived singlet order for nuclear spin-1/2 pairs. Existing sequences operate well in two extreme
parameter regimes. The magnetisation-to-singlet (M2S) pulse sequence performs a robust conver-
sion of nuclear spin magnetisation into singlet order in the near-equivalent limit, meaning that the
difference in chemical shift frequencies of the two spins is much smaller than the spin-spin coupling.
Other pulse sequences operate in the strong-inequivalence regime, where the shift difference is much
larger than the spin-spin coupling. However both sets of pulse sequences fail in the intermediate
regime, where the chemical shift difference and the spin-spin coupling are roughly equal in magni-
tude. We describe a generalised version of M2S, called gM2S, which achieves robust singlet order
excitation for spin systems ranging from the near-equivalence limit well into the intermediate regime.
This closes an important gap left by existing pulse sequences.The efficiency of the gM2S sequence
is demonstrated numerically and experimentally for near-equivalent and intermediate-regime cases.

1 Introduction
Nuclear long-lived spin order refers to spin ensemble configura-
tions with exceptional relaxation time constants. Such configu-
rations are protected against many important relaxation mecha-
nisms and may exhibit life times that greatly exceed the longi-
tudinal spin-lattice relaxation time ∼ T1

1–6. In certain cases nu-
clear long-lived spin order may persist for tens of minutes7–10.
The long-lived behaviour of such spin configurations permits the
study of slow motion, diffusion processes, and for the storage of
hyperpolarisation11–20.

Many experiments in singlet NMR exploit near-equivalent spin-
1/2 pairs, meaning that the difference in chemically shifted res-
onance frequencies for the two spins ∆ is much smaller than the
scalar coupling constant J (both ∆ and J are defined in Hz). In
the near-equivalent regime, the eigenstates of the spin Hamilto-
nian are close to the singlet and triplet states, defined as follows:

|S0〉= (|αβ 〉− |βα〉)/
√

2, |T+1〉= |αα〉 ,

|T0〉= (|αβ 〉+ |βα〉)/
√

2, |T−1〉= |ββ 〉 .
(1)

Singlet spin order (SO) is defined as the difference between the
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singlet population and the mean triplet population

SO = |S0〉〈S0|−
1
3

+1

∑
m=−1

|Tm〉〈Tm| , (2)

In near-equivalent spin-pair systems, defined by the condition
|∆| � |J|, singlet order often exhibits a long lifetime without any
further intervention, due to strong correlations in the fluctuating
magnetic fields responsible for relaxation21. In the intermediate
coupling regime (|∆| ∼ |J|), or the strong inequivalence regime
(|∆| � |J|), on the other hand, singlet order only reveals its long-
lived nature when it is “locked" or “sustained" by applying reso-
nant radio-frequency fields2,5,22. To a good approximation, the
strong resonant radio-frequency field imposes magnetic equiva-
lence on the effective spin Hamiltonian, so that the Hamiltonian
eigenstates in the presence of the field are given, to a good ap-
proximation, by the singlet and triplet states defined in equa-
tion 1.

In this article we quantify the inequivalence of the spin system
by the singlet-triplet mixing angle θST, defined as follows:

θST = tan−1
(

∆

J

)
, (3)

Near-equivalent systems have θST ≈ 0. Strongly inequivalent sys-
tems (weakly coupled spin pairs) have θST ≈ π/2. The intermedi-
ate coupling regime is defined by θST ≈ π/4.

Singlet order is usually accessed by applying a radio-frequency
pulse sequence which converts nuclear magnetisation along the
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field (represented by the operator Iz) into the singlet order op-
erator of equation 2. Several radio-frequency (rf) pulse se-
quences have been developed for this purpose2,7,22–28. However,
most pulse sequences are designed for either the near-equivalent
regime (θST≈ 0), or the strongly inequivalent regime (θST≈ π/2).
The intermediate coupling regime (θST ≈ π/4) is a difficult case
which is not well-addressed by most existing sequences.

The normalised amplitude for the conversion of Zeeman order
into singlet order is defined here as follows

ζ = (QSO
∣∣ÛQz

)
, (4)

where the normalised operators for z-polarisation and singlet or-
der are given by

Qz =
1√
2

Iz,

QSO =− 2√
3

I1 · I2 =

√
3

2
SO.

(5)

Here Û is the propagation superoperator for the spin dynam-
ics under the pulse sequence29,

(
A
∣∣B) = Tr{A†B} is the Liouville

bracket29, and the operators Qz and QSO are normalised such
that

(
Qz
∣∣Qz
)
=
(
QSO

∣∣QSO
)
= 1. The operator QSO is a normalised

version of the singlet order operator SO in equation 2. For the
case of unitary transformations, as generated by coherent radio-
frequency pulse sequences without relaxation, the transformation
amplitude in equation 4 is subject to strict bounds which may be
derived from the eigenvalue spectra of the relevant operators30.
In the current case, the relevant unitary bound is as follows30,31

|ζ | ≤ ζmax. (6)

where
ζmax =

√
2/3 (7)

This means that in the absence of relaxation, no pulse sequence
can convert more than

√
2/3 ' 81.6% of the normalised Zeeman

order Qz into normalised singlet order QSO. In most cases, relax-
ation leads to further losses.

The magnetisation-to-singlet conversion amplitudes ζ are plot-
ted against the singlet-triplet mixing angles for several different
pulse sequences in figure 1.

The magnetisation-to-singlet conversion amplitude of the M2S
sequence23,24 is shown by the orange line. This simulation uses
the optimum values for the M2S pulse sequence parameters given
in table 1 and described below.

The performance of M2S reaches the theoretical limit of ζ =

ζmax in the near-equivalence regime (small values of θST). How-
ever the performance of M2S starts to oscillates when θST exceeds
∼ 20◦ and collapses completely for θST & 40◦. Other sequences
for the near-equivalence regime, such as SLIC (spin-lock-induced
crossing)26, also fail outside the near-equivalence regime.

The pulse sequence proposed by Sarkar et al.32, on the other
hand, has a performance shown by the black curve in fig-
ure 1. This sequence achieves near-optimal magnetisation-to-
singlet conversion for θST & 60◦ (strong inequivalence) but its

Fig. 1 Transformation amplitudes ζ for Zeeman polarisation into sin-
glet order (equation 4), as a function of mixing angle θST. The near-
equivalent regime (θST ≈ 0) is shown on the left of the plot, with the
strong inequivalence (weak coupling) regime (θST ≈ π/2) on the right,
and the intermediate regime (θST ≈ π/4) in the middle. The transforma-
tion amplitudes ζ of the M2S23, Sarkar32 and gM2S pulse sequences,
are plotted. Relaxation is ignored in all cases. The pulse sequence pa-
rameters for the Sarkar sequence uses the analytic solutions in reference
32. The pulse sequence parameters for the M2S and gM2S sequences
use the analytic solutions in table 1. Circles indicate the mixing angles
θST for which the gM2S sequence provides optimal efficiency (ζ = ζmax).

performance declines steeply below θST . 55◦. Other proposed
sequences for the strong-inequivalence regime2,7 have similar be-
haviour.

There have been several proposals for filling in the lacuna
around θST ≈ 45◦.

One approach is to introduce multiple-pulse chemical-shift
scaling (CSS) into the magnetisation-to-singlet (M2S) pulse se-
quence33. The resulting method is rather complex and involves
the application of a large number of pulses. The sequence is prone
to error accumulation and may give rise to sample heating34.

An alternative method is the homonuclear ADAPT (Alternat-
ing Delays Achieve Polarization Transfer) technique35,36. This
sequence consists of a repetitive sequence of short pulses. Simu-
lations show that in ideal circumstances this sequence performs
well for mixing angles given by 0 < θST . 75◦. However, ADAPT
is not a robust method. As mentioned in reference 36, the ADAPT
sequence suffers from strong interference from off-resonance ef-
fects and radio-frequency field inhomogeneity. The performance
of ADAPT is explored in more detail in the ESI.

A different approach is to apply radio-frequency fields with
computer-optimised variations of amplitude and phase to induce
the required transformations. This includes the use of optimal
control theory37, and the set of techniques called APSOC (adia-
batic passage spin-order conversion)27,28. Although such tech-
niques are often efficient and robust, they have the disadvan-
tage that there are no analytical solutions; in many cases, specific
shapes must be derived for each set of spin system parameters.
We do not consider these schemes further in this paper.

In this work we present a generalised M2S sequence (gM2S)
which provides robust magnetisation-to-singlet transfer efficiency
for systems ranging from near-equivalence well into the interme-
diate regime (0 < θST . 67.5◦). The parameters of the gM2S se-
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quence are described by analytical equations for the case of in-
finitely short rf pulses. The performance of gM2S is shown by the
blue line in figure 1. It covers the gap in performance between
existing pulse sequences rather well, and, as discussed below, its
performance is very robust with respect to common experimental
imperfections.

2 Theory

2.1 Singlet-triplet evolution

The rotating-frame Hamiltonian for a coupled two-spin-1/2 sys-
tem in solution may be expressed as follows38:

H0 =
1
2

ω∆(I1z− I2z)+ωJI1 · I2,

ωJ = 2πJ, ω∆ = ω
0
1 −ω

0
2 = 2π∆.

(8)

The reference frequency is centred between the resonance fre-
quencies ω0

j of the two spins, so that ω∆ describes their (rotating-
frame) resonance frequency difference and ωJ the mutual scalar
coupling. The eigenstates of the Hamiltonian for the case that
ω∆ = 0 are given by the singlet and triplet states in equation 1.

This suggests the following re-parametrisation of the Hamilto-
nian

H0 = ωe

(
1
2

sin(θST)(I1z− I2z)+ cos(θST)(I1 · I2 +
1
4
1)

)
, (9)

with
ωe = 2π

√
J2 +∆2. (10)

Equation 9 shows that the mixing angle θST is the important phys-
ical quantity and the effective frequency ωe simply re-scales the
time axis.

Define a basis B spanned by the following basis states

B =


|1〉
|2〉
|3〉
|4〉

=


|S0〉
|T0〉

1√
2
(|T+1〉+ |T−1〉)

1√
2
(|T+1〉− |T−1〉)

 , (11)

where the singlet and triplet states are defined in equation 1.
The Hamiltonian of equation 8 decouples into two orthogonal
subspaces

H0 = H12
0 +H34

0

= ωe({sin(θST)I12
x − cos(θST)I12

z }+{
1
2

cos(θST)1
34}),

(12)

where the operators Irs
µ represent single-transition operators

along the Cartesian axis µ 39,40. The free evolution propagator
of the system U0(τ) may be written as follows:

U0(τ) = Φ
34( 1

2 τ cos(θST)ωe)exp{−iτ ωωω
12 · I12},

ωωω
12 = ωe

[
sin(θST) 0 −cos(θST)

]
, Irs =

[
Irs
x Irs

y Irs
z

]
.

(13)
where the propagator Φrs(γ) describes pure phase evolution in

the subspace {|r〉 , |s〉} through the angle γ:

Φ
rs(γ) = exp{−iγ1rs}. (14)

2.2 Spin echoes

The sequences described below make extensive use of spin-echo
(SE) blocks, of the form τ−180y−τ, where τ denotes the duration
of a delay interval. The propagator for a spin echo block is given
by

USE(τ) =U0(τ)Ry(π)U0(τ). (15)

The rotation operators Rx(π/2), Ry(π/2) and Ry(π) may be ex-
pressed in terms of single-transition rotation operators as follows:

Rx(π/2) = R23
x (π),

Ry(π/2) = R24
y (−π),

Ry(π) = iR12
z (π)R34

z (π).

(16)

The total echo propagator USE(τ) may be written as the product of
independent propagators in the {|1〉 , |2〉} and {|3〉 , |4〉} subspaces,
as follows:

USE(τ) =U12
SE(τ)U

34
SE(τ), (17)

where the individual echo propagators are given by:

U12
SE(τ) = exp{−iτ ωωω

12 · I12}R12
z (π)exp{−iτ ωωω

12 · I12},

U34
SE(τ) = iΦ34(cos(θST)ωeτ)R34

z (π).

(18)

The group properties of SU(2)41 may be used to write the effec-
tive spin-echo propagator in {|1〉 , |2〉} space as follows:

U12
SE(τ) = exp{−iξ 12nnn12 · I12}, (19)

where the rotation axis nnn12 and rotation angle ξ 12 are given by
the following expressions:

nnn12 = csc(
1
2

ξ
12)


sin(2θST)sin2( 1

2 τωe)

0

cos2( 1
2 τωe)− cos(2θST)sin2( 1

2 τωe)

 ,
ξ

12 = 2cos−1(cos(θST)sin(τ1ωe)).

(20)

and the rotation axis is normalised such that nnn12 ·nnn12 = 1.

2.3 The M2S sequence

The M2S pulse sequence is shown in figure 2. The sequence
consists of 5 elements which operate as follows in the near-
equivalence limit23,24: (i) an initial 90y pulse converts longitu-
dinal magnetisation into transverse magnetisation, correspond-
ing to single-quantum coherences within the triplet manifold;
(ii) a set of 2n consecutive spin echoes converts the single-
quantum triplet-triplet coherences into coherences between the
outer triplet states and the singlet state; (iii) a central 90x pulse
generates a zero-quantum coherence between the central triplet
state and the singlet state; (iv) a delay interval adjusts the phase
of the zero-quantum coherence; (v) a final echo train converts the
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Table 1 Spin system parameters, optimal delays τ∗1 , τ∗2 , and optimal echo number n∗ for the M2S and gM2S sequences.

M2S gM2S

θST tan−1(∆/J) tan−1(∆/J)

ωe 2π
√

J2 +∆2 2π
√

J2 +∆2

ξ 12 2sin−1(∆/J) 2sin−1(
√

2∆/(J+∆))

n∗ round(π/(2ξ 12)) round(π/ξ 12)

τ∗1 2ω−1
e tan−1(

√
(J2 +∆2)/(J2−∆2)) ω−1

e cos−1(∆(J−∆)/(J(J+∆))

τ∗2 ω−1
e tan−1(cos(θST)cot(2n∗τ∗1 ωe cos(θST)))

ω−1
e (| tan−1(cot(2n∗τ∗1 ωe cos(θST))sec(θST))|+2π) for n∗ = 1

ω−1
e | tan−1(cot(2n∗τ∗1 ωe cos(θST))sec(θST))| for n∗ > 1

zero-quantum coherence into a population difference between
the central triplet state and the singlet state. If all these elements
work perfectly, the theoretical limit of ζmax =

√
2/3 is achieved

for the magnetisation-to-singlet transformation amplitude (equa-
tion 4).

The S2M sequence is the chronological reverse of M2S (fig-
ure 4(b). As defined here, M2S includes a final 90y pulse and
converts singlet order back into z-magnetisation. The overall am-
plitude for converting z-magnetisation into singlet order by M2S,
and back again into z-magnetisation by S2M, is given by ζ 2

max,
which has the maximum achievable value of 2/3, for the case of
unitary transformations.

As originally described23, the M2S delays τ1 and τ2, and the
loop number n, are specified as follows:

τ1 = τ2 = (4J)−1

n = round(πJ/4∆).

(21)

Tayler et al.24 proposed modified timings, given by:

τ1 = τ2 = π/(2ωe)

n = round(π/2arctan(θST)),

(22)

where ωe is given by equation 10. Equations 21 and 22 converge
to the same values for τ and n in the near-equivalence limit (θST≈
0).

The M2S sequence includes two spin echo trains, before and
after the central 90x pulse (see figure 2(a). Ideally, these spin
echo trains generate a rotation around the x-axis in the {|1〉 , |2〉}
subspace, through the angles of π (for the first spin echo train,
consisting of 2n echoes) and π/2 (for the second spin echo train,
consisting of n echoes). In both cases the rotation axis is ideally
given by

nnn12 =

 1
0
0

 (for M2S). (23)

The parameter choices of equations 21 and 22 both lead to the

rotation axis in equation 23 in the near-equivalence limit (θST ≈
0). The same condition may be imposed for a wide range of θST

values by choosing the echo delay τ1 to satisfy

τ
∗
1 = 2ω

−1
e tan−1(1/

√
cos(2θST)), (24)

This leads to the following effective rotation angle for each spin
echo

ξ
12 = 2sec−1

(
cos(θST)√
cos(2θST)

)
. (25)

In the limit of near equivalence the echo delay reduces to τ∗1 ≈
1/(4J) recovering the parameters in equation 21.

The total rotation angle of the second spin echo train ideally
satisfies the condition

nξ
12 = π/2, (26)

which implies that the total rotation angle of the first spin echo
train (which is twice as long as the second) is equal to π, as re-
quired. Clearly, equation 26 can only be satisfied when the angle
ξ 12 happens to be an integer sub-multiple of π/2. This is not al-
ways true. In the general case, the best one can do is to to set the
optimal echo number n∗ as follows

n∗ = round(π/(2ξ
12)), (27)

so that equation 26 is approximately satisfied.

The two echo trains of the M2S sequence are separated by a 90x

pulse followed by a free evolution interval of duration τ2. This
evolution interval allows the singlet and central triplet states to
come into phase24. The derivation of the optimal evolution delay
τ∗2 is straightforward but rather lengthy and is given in the ESI.
The result is

τ
∗
2 = ω

−1
e tan−1(cos(θST)cot(2n∗τ∗1 ωe cos(θST))). (28)

The optimal interval τ∗2 for M2S reduces to 1/(4J) in the limit of
near-equivalence, agreeing with equation 21.

The orange curve in figure 1 shows the predicted performance
of M2S as a function of the singlet-triplet mixing angle θST, using
the optimised M2S parameters summarized in table 1. Simula-
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Fig. 2 a) Magnetisation-to-Singlet (M2S) pulse sequence. b) Singlet-
to-Magnetisation (S2M) pulse sequence. The S2M sequence is defined
here as the chronological reverse of the M2S sequence, including the final
pulse. c) generalised Magnetisation-to-Singlet (gM2S) pulse sequence.
d) generalised Singlet-to-Magnetisation (gS2M) pulse sequence. The
gS2M sequence is defined as the chronological reverse of the gM2S se-
quence, including the final pulse.

tions have also been performed for the literature solutions given
in equations 21 and equations 22, and are not substantially dif-
ferent.

Figure 1 shows that as θST increases from a low value, the per-
formance of M2S oscillates in a saw-tooth fashion, with peaks at
those values of mixing angles θST for which equation 26 is satis-
fied exactly. Dips in performance are between these special values
of θST.

Equation 24 does not admit any physical solutions at all for
θST ≥ π/4. This indicates a fundamental limitation of the M2S
approach. In reality, as shown in figure 1, the performance of
M2S declines steeply, well before the absolute cutoff at θST = π/4.

2.4 The gM2S sequence

The gM2S sequence is shown in figure 2(c). It is very similar to
the M2S sequence, but with the initial 2n-fold echo block split
into two n-fold echo blocks separated by a single 180y pulse. The
optimal values of the delays τ∗1 and τ∗2 and the echo number n∗ are
given in terms of the spin system parameters ∆ and J in table 1.

For the M2S sequence, each spin echo element is designed to
generate a rotation around the x-axis in the {|1〉 , |2〉} subspace
(equation 23). For the gM2S sequence, on the other hand, each
spin echo element (τ1−180y− τ1) is designed to generate a rota-
tion around a tilted axis in the {|1〉 , |2〉} subspace of the form

nnn12 =
1√
2

 1
0
1

 (for gM2S). (29)

This implies that the rotation axis is in the xz-plane of the {|1〉 , |2〉}
subspace, subtending an angle of π/4 with the x and z-axes.

Equation 29 is satisfied by choosing the following value for the
optimal echo delay τ∗1

τ
∗
1 =2ω

−1
e tan−1(1/

√
cos(2θST)+ sin(2θST))

=ω
−1
e cos−1

(
1− tan(θST)

1+ cot(θST)

)
,

(30)

where the effective rotation frequency ωe is defined in equa-
tion 10. The optimal gM2S delay τ∗1 is well-defined as long
as (J + (1−

√
2)∆ ≥ 0). This condition allows physically real-

isable solutions for gM2S for a wide range of mixing angles
0 < θST < 3π/8. The upper limit of θST = 3π/8 = 67.5◦ is much
larger than the M2S limit of θST = π/4 = 45◦.

The effective rotation angle in the {|1〉 , |2〉} subspace for the
spin echo element (τ∗1 −180y− τ∗1 ) is given by

ξ
12 = 2sec−1

(
cos(θST)+ sin(θST)√
cos(2θST)+ sin(2θST)

)
. (31)

The rotation angle for n repetitions of the spin echo element (τ∗1 −
180y − τ∗1 ) is equal to nξ 12. In the case that ξ 12 is an integer
submultiple of π, an optimal loop number n∗ may be found such
that

n∗ξ 12 = π (32)

In the general case where ξ 12 is not an integer submultiple of π,
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Fig. 3 Chemical structures of the 13C2-labelled polyalkoxy-substituted
naphthalene derivative (I) and the tert-butyl propyl maleate diester (II).
The spin pair used for the singlet NMR experiments is indicated by a
lasso.

Table 2 NMR parameters for compounds I and II.

compound I II

nucleus 13C 1H

J [Hz] 54.10 12.30

∆δ [ppm] 0.061 0.024

θST 6.47◦ (@9.4 T) 38.0◦ (@9.4 T)

T1 [s] 17.43±0.20 8.69±0.01

the best solution for the loop number n is given by

n∗ = round(π/ξ
12). (33)

If equation 32 is satisfied exactly, the propagation operator in
the {|1〉 , |2〉} subspace for a sequence of n∗ spin echoes is given
by

Un∗
SE(τ

∗
1 ) = exp{−iπnnn12 · I12}

= R12
y (π/4)R12

z (π)R12
y (−π/4)

= R12
y (π/2)R12

z (π).

(34)

From equation 16, the propagator in {|1〉 , |2〉} space for a single
180y pulse is given by R12

z (π). Providing that equation 32 is sat-
isfied exactly, the propagator for two n∗-fold gM2S echo trains,
separated by a single 180y pulse, is given by

Un∗
SE(τ

∗
1 )Ry(π)Un∗

SE(τ
∗
1 ) = R12

y (π/2)R12
z (π) ·R12

z (π) ·R12
y (π/2)R12

z (π)

= R12
y (π/2)R12

z (3π)R12
y (−π/2)

=−R12
y (π/2)R12

z (π)R12
y (−π/2)

=−R12
x (π).

(35)

This implies that the sequence of two n∗-fold gM2S echo trains,

separated by a single 180y pulse, induces a π rotation in {|1〉 , |2〉}
space, which is the same result as the single echo train used in
the M2S sequence. The advantage of the gM2S strategy is that
solutions may be found for a much wider range of singlet-triplet
mixing angles θST than for the M2S.

The rest of the gM2S sequence operates in the same way as the
M2S sequence23,24. However, the correct choice of the τ2 delay
requires some detailed analysis, which is presented in the ESI.
The optimal value of the τ2 delay is given by

τ
∗
2 = ω

−1
e | tan−1(cot(2n∗τ∗1 ωe cos(θST))sec(θST))|+2πω

−1
e δ1n∗ ,

(36)
where δmn is the Kronecker delta

δmn =

{
0 for m 6= n
1 for m = n

(37)

and |x| represents the absolute value of x.

The blue curve in figure 1 shows the performance of the gM2S
sequence as a function of θST, with timing parameters specified in
table 1. The circles indicate singlet-triplet mixing angles at which
equation 32 is exactly satisfied for integer loop numbers n∗. The
gM2S sequence achieves the theoretical maximum transforma-
tion amplitude of ζmax =

√
2/3 at those points, which include the

centre of the intermediate regime at θST = π/4. There are dips in
performance between these special values of θST, but the loss in
amplitude is not severe. The gM2S sequence fills the gap between
the M2S and Sarkar sequences by providing excitation efficiencies
which are reasonably close to the theoretical maximum.

Since the gM2S sequence is based on spin echo sequences, it is
very robust with respect to static field inhomogeneity, radiofre-
quency field inhomogeneity, and resonance offsets - especially
when composite pulses are used. The performance of gM2S with
respect to resonance offsets and rf field variations is explored in
the ESI, where it is contrasted with the ADAPT scheme36.

3 Experiments
Singlet NMR experiments were performed on solutions of two
different compounds, in order to compare the performance of the
gM2S and M2S sequences. Compound I is the 13C2-labelled naph-
thalene derivative shown in figure 3. This substance contains a
near-equivalent 13C spin pair which supports singlet order with
an exceptional lifetime in low magnetic field43. Compound II
is an asymmetric tert-butyl propyl maleate diester containing a
magnetically inequivalent pair of 1H nuclei. In both cases, nearby
1H nuclei are replaced by deuterons, to reduce dipole-dipole re-
laxation contributions3,5. The NMR parameters for the spin pairs
in both compounds are summarised in table 2.

The synthesis of compound I is described in reference 44. The
experiments used a 0.1 M solution of compound I in deuterated
acetone, contained in a 5 mm Wilmad LPV tube with the sample
volume limited to 0.35 ml. The sample was degassed by several
freeze-thaw-cycles. The synthesis of compound II is described in
reference 34. The experiments were performed on a degassed
1.7 mM solution in deuterated chloroform, with the sample vol-
ume restricted to 0.3 ml within a 5 mm Shigemi LPV tube to limit
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Fig. 4 (a) General singlet NMR pulse sequence consisting of an
M2S/gM2S block, a singlet order filtration element (T00), an evolution
interval τev during which a continuous-wave (CW) rf field may be applied,
an S2M/gS2M block, a read-out sequence for generating transverse mag-
netisation, and signal detection. (b) The singlet filter sequence consists
of a set of radio-frequency pulses and field gradient pulses. The phase
angle "ma" indicates the magic angle ' 54.7◦ 42. (c) The read out excita-
tion sequence consists of a field gradient pulse for suppressing undesirable
antiphase signal components, followed by excitation of transverse mag-
netisation by a 90y pulse.

convection effects. The degassing procedure also consisted of sev-
eral freeze-thaw-cycles.

All spectra were acquired at a magnetic field of 9.4 T. All
pulses in figure 2 were replaced by their composite pulse coun-
terparts to compensate for possible static and radio-frequency
field inhomogeneities45,46. Each 180y pulse was replaced by a
composite inversion pulse of the form 90x180y90x

45. All 90φ

pulses were replaced by the constant-rotation composite pulse
18097.2+φ 360291.5+φ 18097.2+φ 90φ given in reference 46. Individ-
ual data sets employed a basic two-step phase cycle and were av-
eraged over two transients before post-processing using 0.25 Hz
line broadening.

The general procedure for the singlet NMR experiments is
shown in figure 4(a). Singlet order is generated using either a
M2S or a gM2S sequence. This is followed by a singlet filtration
step, denoted T00, which is implemented by a sequence of radio-
frequency pulses and field gradients. This suppresses all signals
not passing through singlet order42. For singlet lifetime measure-
ments an additional evolution interval τev is inserted, which may
include the application of a spin-locking field. The singlet order
is reconverted into z-magnetisation by applying a S2M or a gS2M
pulse sequence (including the final 90y pulse, see figure 2(b,d).
The z-magnetisation is allowed to rest for a further delay which
may include another field gradient pulse. This implements a z-
filter which cleans up the final signal by removing undesirable
signal components. A final 90y pulse induces transverse magneti-
sation and the NMR signal is detected.

The gM2S and M2S parameters were set by fixing the echo
numbers to the values specified in table 1 and optimising the de-

lays τ1 and τ2 empirically in a small interval centred around the
analytic solutions.
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Fig. 5 a) Singlet-filtered 13C NMR spectra for compound I, using the
M2S and gM2S sequences. A single pulse-acquire spectrum is shown for
comparison. The spectra for M2S and gM2S are almost superimposed.
b) Singlet order decay as a function of the evolution interval τev, ap-
plying a spin-locking field with nutation frequency ∼ 2 kHz during the
evolution interval. The plotted signal amplitude is normalised against
the single-pulse-acquire spectrum. The solid line shows the best fit to a
bi-exponential decay. The theoretical maximum of ζ 2

max = 2/3 is indicated
by the horizontal dashed line.

4 Results and discussion

4.1 Compound I
Singlet-filtered NMR signals for compound I are shown in fig-
ure 5(a), using the optimised M2S/S2M and gM2S/gS2M se-
quences. A simple pulse-acquire spectrum is also shown for ref-
erence. The pulse sequence parameters for the M2S and gM2S
sequences are summarised in table 3.

The M2S and gM2S sequences display very similar perfor-
mance, as expected for the near-equivalence regime. Integration
of the resulting spectra and comparison with the pulse-acquire
reference indicates that both sequences pass approximately 60%
of the initial magnetisation through singlet order and back to
magnetisation (ζ 2 ' 60% for M2S and 59% for gM2S). This is re-
spectably close to the theoretical maximum of ζ 2

max = 2/3' 66.7%.
The remaining loss may be attributed to relaxation during the
pulse sequences and residual pulse imperfections.

Figure 5(b) shows the decay of singlet order for compound I
using the gM2S/gS2M sequence with 2 kHz continuous-wave ir-
radiation during the evolution interval. The decay curve displays
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Table 3 M2S and gM2S parameters used for compound I. The values of τ∗1
and τ∗2 are given by the analytical solutions in Table 1. The experimental
delays after empirical optimisation are given by τ

exp
1 and τ

exp
2 . The radio-

frequency field amplitude for the strong rf pulses is given as a nutation
frequency ωnut/2π.

M2S gM2S

n∗ = nexp 7 11

τ∗1 [ms] 4.64 4.33

τ
exp
1 [ms] 4.63 4.33

τ∗2 [ms] 4.48 1.86

τ
exp
2 [ms] 4.63 2.37

ωnut/2π [kHz] 30.0 30.0

a bi-exponential behaviour of the form: s(τev) =A1 exp(−τev/T1)+

AS exp(−τev/TS) with fit parameters A1 = 0.12± 1.6, AS = 0.49±
0.02, T1 = 12.2± 4.1 s and TS = 186± 9 s. The major compo-
nent may be identified as long-lived singlet order with a relax-
ation time constant of TS ' 186 s, which is approximately 10
times longer than the longitudinal relaxation time constant T1 =

17.4±0.2 s. Comparable results have been reported previously at
this magnetic field, albeit using the M2S sequence instead of the
gM2S sequence43.

At this stage the bi-exponential decay behaviour of singlet or-
der in compound I is not fully understood. A possible explana-
tion may involve the weak scalar couplings to nearby deuterons.
These are known to induce scalar relaxation of the second kind
(SR2K) resulting in a non-mono-exponential decay47. Since
the sample volume of compound I was not restricted, convec-
tion effects could also contribute to the bi-exponential decay be-
haviour48.

Table 4 M2S and gM2S parameters used for compound II. The values
of τ∗1 and τ∗2 are given by the analytical solutions in Table 1. The ex-
perimental delays after empirical optimisation are given by τ

exp
1 and τ

exp
2 .

The radio-frequency field amplitude for the strong rf pulses is given as a
nutation frequency ωnut/2π.

M2S gM2S

n∗ = nexp 1 2

τ∗1 [ms] 23.46 14.30

τ
exp
1 [ms] 21.80 15.40

τ∗2 [ms] 11.16 1.20

τ
exp
2 [ms] 12.50 1.24

ωnut/2π [kHz] 25.0 25.0

4.2 Compound II
The spectra for compound II after singlet order excitation via M2S
and gM2S are shown in figure 6(a). The experimentally opti-
mised M2S and gM2S parameters are given in table 4.

The proton spin system of compound II has a singlet-triplet
mixing angle of θST = 38.0◦, which places it firmly in the
intermediate-coupling regime. In this case a large differences in
performance is observed for the M2S and gM2S sequences.
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Fig. 6 a) Singlet-filtered 1H NMR spectra for compound II, using the
M2S and gM2S sequences. A single pulse-acquire spectrum is shown for
comparison. b) Singlet order decay as a function of the evolution interval
τev, applying a spin-locking field with nutation frequency ∼ 2 kHz dur-
ing the evolution interval. The plotted signal amplitudes are normalised
against the single-pulse-acquire spectrum. The solid line shows the best
fit to an exponential decay. The theoretical maximum of ζ 2

max = 2/3 is
indicated by the horizontal dashed line.

The signal amplitude observed for the M2S sequence is weak
for this system, with an integrated amplitude of only ∼ 19% of the
pulse-acquire spectrum.

The gM2S sequence gives a much stronger singlet-filtered NMR
signal. The integrated amplitude of the singlet-filtered NMR
spectrum is ∼ 50% of the pulse-acquire spectrum, which is a
respectable fraction of the theoretical maximum, ζ 2

max = 2/3 '
66.7%.

The decay of singlet order for compound II under 2 kHz con-
tinuous wave irradiation is shown in figure 6(b). The decay curve
is well approximated by a mono-exponential decay of the form:
s(τev) = AS exp(−τev/TS) with fit parameters AS = 0.52±0.02 and
TS = 77.6± 1.0 s. The singlet order decay constant for com-
pound II is therefore approximately ten times longer than the
time constant for thermalisation of longitudinal magnetisation,
T1 = 8.69±0.01 s.

5 Conclusions
To summarise, we have described a generalisation of the singlet-
to-magnetisation (M2S) sequence. The proposed generalised-
M2S sequence (gM2S) performs near-optimal singlet order ex-
citation for spin-pair systems ranging from the near-equivalence
limit, through the intermediate regime, to the boundary of strong
inequivalence. We have given analytical solutions for the delays
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and loop numbers in the short-pulse limit. Small adjustments for
finite pulse durations are readily implemented by empirical opti-
misation on the spectrometer.

The perfomance of M2S and gM2S was evaluated experimen-
tally in two model systems, containing spin-1/2 pairs in the near-
equivalence and intermediate coupling regimes. In the near-
equivalence regime, both M2S and gM2S achieve near-optimal
efficiency for the passage of transverse magnetisation through
singlet order and back to transverse magnetisation. In the inter-
mediate coupling regime, on the other hand, the gM2S sequence
greatly outperforms the M2S sequence.

Although the implementation of gM2S is somewhat more com-
plex than M2S we anticipate that its extended range of applica-
bility will lead to wide use in the NMR of long-lived states. Exten-
sions are feasible for the case of heteronuclear spin systems, for
example in the context of parahydrogen-enhanced NMR49–51.
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