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A B S T R A C T

In this study, a bi-material topology optimization framework is developed for maximizing plastic energy dissi-
pation under a combination of material rate effects, inertia effects, and large deformations. In the developed
framework, rate effects are considered by employing a finite deformation viscoplastic model and finite element
analysis is carried out using F-bar elements for spatial discretization and the Hilber-Hughes-Taylor algorithm for
time integration. A bi-material interpolation strategy is proposed within the density-based design parameteri-
zation and used to combine material phases with different phenomenological behavior. Consistent design sen-
sitivities are obtained using a time-dependent adjoint method. Design examples reveal that a much higher
percentage of the total energy can be dissipated as plastic work when a soft energy dissipating elasto-viscoplastic
phase is combined in an optimized way with a stiffness providing hyperelastic phase than when the energy
dissipating phase is considered alone. Moreover, isolating the influence of material rate effects from inertia effects
provides insight into how optimized designs can exploit these phenomena.
1. Introduction

Since the seminal paper by Bendsøe and Kikuchi [1], topology opti-
mization has developed into one of the most successful computational
design tools employed in the field of mechanics, with approaches
formulated for a variety of design problems, see e.g. the reviews in Refs.
[2–5]. In many cases, topology optimization approaches have matured to
the point where they are included in commercial software packages
regularly used by engineers in practice [6,7]. Much of this progress has
been directed toward design objectives such as stiffness or related vari-
ants (natural frequency, etc.). However, for design applications involving
a large amount of energy entering a system in a short span of time, effort
is often focused on designing protective structures for the objective of
energy dissipation. The need for energy dissipating protective structures
permeates a number of engineering disciplines such as structural, aero-
space, automotive, and sports engineering, where impact mitigation is an
important design criterion. For instance, energy dissipating devices and
structures are used as impact resistant exteriors for spacecraft, buffers in
vehicles, sacrificial cladding in building systems, and protective layers in
personal safety equipment, among others [8]. Energy dissipation is
achieved by arranging materials to exploit irreversible phenomena such
as plasticity, as is the case with the majority of structures and structural
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components made from metals and polymers.
While it is a growing research area, there are at present only a handful

of studies that consider plasticity in topology optimization. Early works
have employed elastoplastic material models within topology optimiza-
tion formulations aimed at maximizing ductility in the form of internal
work [9–12], or maximizing structural stiffness in steel reinforced con-
crete structures [13]. Additionally, several recent studies have consid-
ered the objective of maximizing plastic energy dissipation using
different elastoplastic material models [14–16] and coupled
elastoplastic-damage models [17,18]. The types of impact mitigation
applications where improved energy dissipation is desired, however,
often involve structures subject to both large deformations and rapid
loading rates, which cannot be accounted for within the
rate-independent small strain formulations employed in the preceding
studies. Finite deformation elastoplastic models can account for large
deformations, and one suchmodel was employed in Ref. [19] to carry out
topology optimization for plastic energy dissipation. On the other hand,
material rate effects – e.g. the need for higher stresses to induce plastic
flow – may become prominent under rapid application of loading, and
can be simulated using viscoplastic material models wherein plastic flow
is rate dependent. Development of topology optimization approaches
which account for these phenomena remains an open research area.
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Under the rapid application of loading which can cause material rate
effects to become prominent, inertia effects also cannot be ignored. These
inertia effects can significantly affect how energy dissipation takes place
in structures, and require dynamic analyses taking place in the time
domain. The existing literature is scant regarding use of such dynamic
analyses within topology optimization. Transient dynamic analysis was
considered in Ref. [20] to account for the influence of inertia effects, but
restricted to small strain elasticity. Transient analysis for energy dissi-
pation using viscoelasticity has been considered in Refs. [21,22], but
design scenarios consider longer time periods and harmonic loading
instead of the short impulse loading present in impact mitigation appli-
cations where plastic energy dissipation is desired. In the study by
Nakshatrala and Tortorelli [23], a transient formulation making use of a
rate-independent plasticity model was employed to minimize the strain
energy at a given point in a design domain. This formulation used a
bi-material interpolation scheme to control energy propagation in the
form of a shock wave resulting from impulse loading, but again was
developed in the small strain regime and without accounting for material
rate effects. More recently, the study by Ivarsson et al. [24] accounts for
the relevant phenomena by employing a finite deformation viscoplastic
model along with transient dynamic analysis. The focus is on maximizing
the plastic work within a design domain subject to different applied rates
of loading, ranging from the quasi-static limit to high rates. While in-
fluence of this loading rate on the evolution of optimized topologies was
investigated, it is unclear whether certain topological features resulted
from the phenomena of rate dependent plastic flow or are to be attributed
to inertia effects, as these phenomena are not isolated.

In this study, a topology optimization formulation is developed for
maximizing energy dissipation while considering the phenomena of
material rate effects, inertia effects, and large deformations. The finite
deformation dynamic equations of motion are spatially discretized using
F-bar finite elements [25] to account for incompressibility constraints
and the resulting semi-discrete initial value problem is integrated in time
using the Hilber-Hughes-Taylor (HHT) algorithm [26]. Material rate ef-
fects are considered by employing a viscoplastic model developed in the
finite deformation regime and numerically implemented using the
exponential return mapping algorithm. Designs are parameterized using
the density-based approach and a bi-material interpolation strategy is
developed to combine material phases with entirely separate phenome-
nological behavior. To compute sensitivity values, the general
path-dependent adjoint formulation developed in Ref. [27] – which
readily accommodates the numerical procedures employed to carry out
finite deformation dynamic elastoplastic analysis – is followed. Design
examples reveal that energy dissipation can be increased when a soft
energy dissipating elasto-viscoplastic material phase is combined with a
hard hyperelastic phase providing stiffness, rather than used alone. These
examples also consider inertia and material rate effects in isolation and in
combination so that their influence on optimized topologies can be
discussed.

The study is organized as follows: Section 2 introduces the governing
dynamic equations of motion for deformable bodies undergoing finite
deformations and their numerical implementation, including the F-bar
finite element formulation and HHT time integration algorithm. Consti-
tutive models used for both material phases are also introduced in this
section. Section 3 then presents the topology optimization approach
used, including the developed bi-material interpolation scheme and
specification of the general adjoint sensitivity analysis. Numerical ex-
amples demonstrating the capability of the developed framework are
covered in Section 4 and then Section 5 offers concluding remarks.

2. Dynamic finite element analysis

In this section, the dynamic equations of motion for deformable
bodies undergoing finite deformations are laid out in Lagrangian form.
Numerical discretization in both space and time is covered, with F-bar
finite elements used in spatial discretization and the Hilber-Hughes-
19
Taylor algorithm employed for time integration. The constitutive re-
lations governing material behavior of the different phases is also
presented.

2.1. Equations of motion

The dynamic equations of motion presented herein are formulated
in a Lagrangian approach, where the Lagrangian displacement field
uðXÞ ¼ φðXÞ � X and corresponding Lagrangian velocity and acceler-

ation fields _uðX; tÞ ¼ _ϕðX; tÞ and €uðX; tÞ ¼ €ϕðX; tÞ are defined in terms of
the deformation ϕ : Ω0 → Ωt which maps the reference configuration
Ω0 to the current configuration Ωt . The boundary ∂Ω0 of the reference
configuration is considered to be split into the disjoint sets ∂Ω0u and ∂
Ω0σ such that ∂Ω0 ¼ ∂Ω0u[∂Ω0σ and ∂Ω0u\∂Ω0σ ¼ ∅. Dirichlet bound-
ary conditions in the form of displacements are applied to ∂Ω0u while
Neumann boundary conditions in the form of surface tractions are
applied to ∂Ω0σ . Motion is then governed by the following Lagrangian
initial boundary value problem.

Givenb0ðX; tÞ :Ω0�R→R3;upðX; tÞ : ∂Ω0u�R→R3;TpðX; tÞ : ∂Ω0σ �R→R3

FinduðX; tÞ :Ω0�R→R3 such that
r:Pþb0 ¼ ρ0€u inΩ0

u¼upðX; tÞ on∂Ω0u

T¼P:N¼TpðX; tÞ on∂Ω0σ

uðX; tÞjt¼0 ¼u0ðXÞ

_uðX; tÞjt¼0 ¼ _u0ðXÞ (1)

where Ω0 ¼Ω0[ ∂Ω0 is the closure of Ω0, ρ0 is the mass density per
unit reference volume, b0 is the body force per unit reference volume, and
up and Tp are the prescribed boundary displacement and traction values.
The initial conditions (1)4 and (1)5 supplement the second order (in time)
partial differential equation (1)1.

Constructing the weak form of Eq. (1) and applying the standard
Galerkin procedure results in the following semidiscrete equation of
motion

FintðuÞ�Fext þM€u ¼ 0 (2)

with

Fint ¼A e¼1

nele
Fe

int and Fext ¼ A e¼1

nele
Fe

ext M ¼ A e¼1

nele
Me (3)

where u and €u are the nodal displacement and acceleration values,
respectively, A denotes the finite element assembly operator, and nele is
the total number of finite elements in the domain. In order to account for
incompressibility constraints such as those imposed by pressure inde-
pendent plastic flow, the F-bar finite element formulation is utilized [28].
Within a given elemente, the deformation gradient F ¼ ∂ϕ=∂X is
computed in discrete form using the element shape function derivative
matrix Be and element displacement vector ue as F ¼ Beue þ I. In stan-
dard displacement-based finite element formulations, the deformation
gradient is used directly in constitutive algorithms. In the F-bar formu-
lation, however, constitutive algorithms are evaluated using a quantity F
which provides constant pressure throughout the element [28] and is
defined as

F‾ ¼ raF r ¼ det F0

det F
(4)

Here F0 ¼ B0
eue þ I, B0

e is the shape function derivative matrix eval-
uated at the element centroid and the exponent a is 1/2 for two dimen-
sional problems and 1/3 for three dimensional problems. The element
external force vector and Fe

ext and mass matrixMe are not affected by the
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F-bar formulation, and are given as

Fe
extðtÞ¼

Z
Ωe
0

NT
e b0dV þ

Z
∂Ωe

0σ

NT
e T

pdS Me ¼
Z
Ωe
0

ρ0N
T
eNedV (5)

where Ωe
0 is the reference domain of element e and Ne is the element

shape function matrix in the reference configuration. Using F in the
constitutive algorithm returns the stress tensor PðFÞ, but the element
internal force vector Fe

int is defined in terms of the first Piola-Kirchhoff
stress tensor PðFÞ. Hence, for the F-bar formulation, Fe

int is

Fe
int ¼Fe

intðue; tÞ ¼
Z
Ωe
0

ra�1BT
e PdV (6)

where use is made of the relation P ¼ ra�1P. The tangent stiffness matrix
needed for global Newton-Raphson iterations is also altered by the F-bar
formulation, and is obtained by linearizing Eq. (6) as

KT ¼A e¼1

nele
Ke

T

Ke
T ¼

Z
Ωe
0

BT
e

�
AT � aAT :

�
F� F

�T�þ aP� F
�T�

BedV

þ
Z
Ωe
0

BT
e

�
ara�1AT : F� F�T

0 � ara�1P� F�T
0

�
B0

edV

(7)

where AT is the algorithmic consistent tangent returned from the
constitutive algorithm. The semidiscrete equation of motion Eq. (2) –

combined with initial conditions ujt¼0 ¼ u0 and _ujt¼0 ¼ _u0 – forms an
initial value problem that fully determines the motion of a body at a
given time and requires a time integration scheme to solve.

Integration is carried out using the Hilber, Highes and Taylor method
[26] which allows for the use of numerical damping to filter out un-
wanted high frequency components. This method approximates the
initial value problem as

ð1þ αÞFintðukþ1Þ � αFintðukÞ � Fextðtkþ1Þ þMakþ1 ¼ 0

ukþ1 ¼ uk þ Δtvk þ Δt2

2
ð1� 2β Þak þ βΔt2akþ1

vkþ1 ¼ vk þ ð1� γÞΔtak þ γΔtakþ1

(8)

where Δt¼ tkþ1 � tk is the time step and α, γ, and β are parameters that
determine the amount of numerical damping, accuracy, and stability of
the algorithm, respectively. The standard Newmark method can be
recovered by setting α ¼ 0. Equation (8) forms a set of algebraic equa-
tions for the unknown displacement, velocity and acceleration vectors
ukþ1, vkþ1 and akþ1, respectively. There are a number of ways to solve this
system, but the u-form is employed in this study, resulting in one
nonlinear equation in terms of the unknown ukþ1

Rðukþ1Þ¼ ð1þ αÞFintðukþ1Þ � αFintðukÞ � Fextðtkþ1Þ þ 1
βΔt2

Mðukþ1 � ~ukþ1Þ
¼ 0

(9)

This equation is solved using the Newton-Raphson method with
tangent

dRðukþ1Þ
dukþ1

¼ð1þ αÞKT þ 1
βΔt2

M (10)

where KT is the tangent stiffness matrix given in Eq. (7). Once ukþ1 is
known it is used to update the other unknowns as

akþ1 ¼ 1
βΔt2

ðukþ1 � ~ukþ1Þ

vkþ1 ¼ ~vkþ1 þ γ

βΔt
ðukþ1 � ~ukþ1Þ

(11)
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Predictors ~ukþ1 and ~vkþ1 are defined in terms of the previous step
values as

~ukþ1 ¼ uk þ Δtvk þ Δt2

2
ð1� 2β Þak

~vkþ1 ¼ vk þ ð1� γÞΔtak
(12)

More information on this algorithm can be found in Ref. [26].
2.2. Constitutive models

In this study, different constitutive models are used to represent the
two material phases combined during topology optimization. The first is
a hyperelastic model with free energy ψ considered to be split into iso-
choric ψ iso and volumetric ψvol parts. The isochoric function is chosen as
the regularized Ogden model, defined in terms of the principal stretches
λa; a ¼ 1; 2; 3 (i.e. the eigenvalues of the right Cauchy-Green tensor C ¼
FT :F) as

ψ isoðλ1; λ2; λ3Þ ¼
XNmt

p¼1

Gp

αp
½λαp1 þ λ

αp
2 þ λ

αp
3 � 3�

λa ¼ J�1=3λa ¼ λa

ðλ1λ2λ3Þ1=3
¼ λ

2
3
aðλbλcÞ�

1
3

(13)

where J ¼ detF is the volumetric Jacobian, Nmt is the number of terms
considered in the strain energy function, Gp are constant shear moduli,
and αp are dimensionless constants [29]. In Eq. (13)2, ða; b; cÞ are cyclic
permutations of ð1;2;3Þ. For the examples used in this study, only one
term is considered in the Ogden strain energy function, i.e. the parameter
Nmt ¼ 1. The shear modulus Gp for this term is set to the shear modulus G
and the dimensionless constant αp ¼ 2. This choice of parameters causes
the regularized Ogden strain energy function to coincide with the regu-
larized Neo-Hookean strain energy function. The volumetric function is
set to ψvol ¼ κ

2ðJ � 1Þ2, where κ is the bulk modulus.
The other constitutive model is an isotropic elasto-viscoplastic model,

based on a multiplicative decomposition of the deformation gradient F ¼
Fe:Fp, where Fe and Fp are the elastic and plastic parts, respectively, of
the total deformation gradient F. Following consequences of frame
indifference and isotropy, the free energy has the form ψðbeðF;FpÞ; αÞ
where be is the elastic left Cauchy-Green deformation tensor whose ei-
genvalues are the elastic principal stretches λea; a ¼ 1; 2; 3 and α is the
accumulated plastic strain. Following the Coleman-Noll procedure gives
the Kirchhoff stress tensor τ as

τ ¼ 2
∂ψ
∂be:b

e (14)

which is related to the first Piola-Kirchhoff stress P as P ¼ τ:F�T . The free
energy ψ follows the decomposition ψðbe; αÞ¼ W ðbeÞ þ H ðαÞ into a
hyperelastic strain energy function W ¼ W iso þW vol and hardening
potential H . The isochoric and volumetric parts of the strain energy
function W are set to those used for the hyperelastic model defined
above, but in terms of the elastic principal stretches λea;a ¼ 1;2;3. Linear
isotropic strain hardening is assumed, with the hardening potential H ¼
1
2K

hα2 in terms of the hardening coefficient Kh. To complete the consti-
tutive model, flow rules describing the evolution of internal variables are
prescribed in an associative manner by defining a yield function ϕ,
chosen as the von Mises yield function, i.e.

ϕ¼
ffiffiffi
3
2

r
s� ζðαÞ (15)

where s¼ τ � 1=3trðτÞI is the deviatoric part of the Kirchhoff stress
tensor τ and ζðαÞ¼ σy þ ∂H =∂α is the hardening function. Rate effects
are accounted for in a Perzyna-type approach, following the model in
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Refs. [28,30,31], which defines the following flow rules

A¼ _γ
∂ϕ
∂τ ¼ _γ

ffiffiffi
3
2

r
n

_α ¼ _γ

_γ ¼

8>>>>>>>>>><>>>>>>>>>>:

1
μ

2664
 ffiffiffi

3
2

r
s
ζ

!1
ϑ

� 1

3775 ; ϕ � 0

0; ϕ < 0

(16)

where μ is a viscosity parameter (in units of time) and ϑ is a dimen-
sionless rate sensitivity parameter such that the rate-independent von
Mises model is recovered from Eq. (16) as ϑ → 0 or μ → 0 [28]. The
tensor A is defined in terms of L v½be� – the objective Lie derivative of the
elastic left Cauchy-Green deformation tensor – as

A¼ � 1
2
L v½be�:be�1 (17)

Numerical implementation of this constitutive model is carried out
following the exponential return mapping algorithm discussed in Ap-
pendix A. Details on constitutive modeling of finite deformation elasto-
plasticity can be found in Refs. [28,32].

3. Topology optimization

The optimization problem formulation is now presented along with
details on the density-based bi-material design parameterization and
sensitivity information needed for use with the gradient based optimizer.
3.1. Problem formulation

The intent of this study is to find the optimal layout of a hard stiffness
providing phase and soft energy dissipating phase within a given domain
so as to dissipate the maximum amount of energy through plastic work.
The distribution of material is determined using a density-based
parameterization, wherein each element in a discretized domain is
assigned a density variable ρe representing whether the element contains
the energy-dissipating elasto-viscoplastic phase (ρe ¼ 0) or the stiffness
providing hyperelastic phase (ρe ¼ 1). This density variable is relaxed to
be continuous, i.e. 0� ρe � 1, so that a computationally intensive integer
programming problem is transformed to a more amenable nonlinear
programming problem. The plastic work within a design domain over the
duration of loading is

Wp ¼
Z
t

Z
Ω0

_wvpdVdt (18)

where the viscoplastic power density _wvp is provided by the elasto-
viscoplastic phase and is given by making use of Eq. (16)1 as

_wvp ¼ τVP : A ¼ _γ

ffiffiffi
3
2

r
τVP : n (19)

Here τVP and n are the Kirchhoff stress and flow vector in the visco-
plastic phase. Maximizing Wp as the objective function, while con-
straining the volume of energy dissipating elasto-viscoplastic phase to be
below a prescribed volume fraction Vf results in the following optimi-
zation problem
21
minx f0ðxÞ ¼ �Wp

Xnele

s:t: f1ðxÞ ¼ 1� 1

V e¼1

ρeðxÞve � Vf � 0

Rk
�buk

; buk�1
; ck ; ck�1; ρðxÞ� ¼ 0; k ¼ 1; 2;…; n

Hk
�buk

; buk�1
; ck ; ck�1; ρðxÞ� ¼ 0; k ¼ 1; 2;…; n

0 � x � 1

(20)

where V is the total volume of the design domain, and ve is the volume of
element e. A density filtering procedure is used to ensure mesh-
independency and control the length scale of topological features
[33–35]. In this case, the design variables x are linearly mapped by the
density filtering operator to the vector ρ of density variables containing
the weighted average of the design variables of neighboring elements.

The system represented in Eq. (20) is a PDE-constrained optimization
problem wherein constraint Rk ¼ 0 represents the global equations of
motion and Hk ¼ 0 represents the local integration point constitutive
equations. These constraints are enforced implicitly through finite
element analysis (FEA) in a nested approach where the design variables x
are updated by the optimizer and then used in FEA [36]. As such, con-
straints Rk ¼ 0 andHk ¼ 0 in Eq. (20) are enforced for each time step k of
the dynamic FEA. Once FEA has terminated, the objective and constraint
functions are evaluated. At step k, primary and internal variables are
updated using previous step and current step information and so the
implicit constraints are functionally dependent on this data, represented
by a set of global variables bu and local variables c. Furthermore, these
constraints are dependent on the density variables ρ through material
interpolation, as discussed in the following section. Hence, they have the
functional form shown in Eq. (20).

3.2. Bi-material interpolation scheme

To optimize placement of the desired material phases using a density-
based parameterization, a material interpolation scheme is needed for
representing intermediate behavior between different phenomenological
models in a consistent way. Moreover, this scheme should be able to
ensure that density values in the final design correspond to distinct ma-
terial phases. Extensions of the SIMP [37] approach to consider multiple
material phases assume that a single constitutive relation represents the
behavior of each phase so that interpolation is carried out between values
of the material parameters, see e.g. Refs. [23,38]. However, when
considering material phases with distinct phenomenological behavior
(i.e. elastic and elastoplastic) each phase relies on a different set of in-
ternal variables whose evolution is controlled by certain material pa-
rameters. Hence, there is no one-to-one correspondence between sets of
material parameters. Material mixing rules, on the other hand, allow for
every material point to consider a distinct set of constitutive relations for
each phase and utilize assumptions on overall stress and strain behavior
to provide the composite response. Classic mixing rules are the Voigt [39]
and Reuss [40] approaches, which have been employed in hybridized
form to carry out multimaterial topology optimization by Swan and
Kosaka [9] and Swan and Aurora [41]. In the small strain regime, Voigt
mixing rules provide an upper bound on the stiffness behavior of com-
posites by assuming that the material phases are arranged in parallel,
resulting –when loaded axially – in a uniform strain state throughout the
composite but differing stress states within the individual phases.
Alternatively, Reuss mixing rules provide a lower bound by assuming
materials are arranged in series, which results in a uniform composite
stress state but differing strain states. The finite deformation analogue to
the Voigt assumption is Taylor's assumption [42]. This also provides an
upper bound by postulating material phases as being in parallel, with the
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resulting uniform composite strain state and differing individual stress
states.

Taylor's assumption is taken as the basis for formulating the bi-
material interpolation scheme utilized in this work. It states that for a
uniform strain state (defined by F), the first Piola-Kirchhoff stress in the
composite material with m constituient phases is

P ¼
Xm
i

ϕiPiðFÞ (21)

where ϕi is the volume fraction of phase i. As the first Piola-Kirchhoff
stress is derived in terms of a free energy function ψ (P ¼ ∂ψ= ∂F),
this relation is equivalent to

ψ ¼
Xm
i

ϕiψ iðFÞ (22)

Taking Eq. (22) as inspiration, the free energy for an element with
density variable ρe 2 ½0; 1� is defined by mixing the scaled free energies of
each phase, with the scaling factors reflecting the material volume
fraction as a function of ρe. Hence

ψ e ¼ χHðρeÞψHE þ χSðρeÞψVP (23)

where ψVP and ψHE are the free energy functions of the elasto-viscoplastic
phase and hyperelastic phase, respectively, which are scaled by the fac-
tors χH and χS.

Taylor's assumption provides physically motivated estimates of mixed
material behavior, but violates stress equilibrium. Hence, it does not
provide physically realizable material behavior for mixed phases
(0 < ρe < 1). In order to ensure that the final topology is free of inter-
mediate density values which correspond to these physically unrealizable
materials, penalization in the spirit of the SIMPmethod is utilized, so that
the scaling factors χH and χS include a penalization parameter p, i.e.

χHðρeÞ¼ ρpe
χSðρeÞ ¼ 1� ρpe

(24)

This penalization provides the proper scaling of the stress-strain
behavior between the two phases, which can be seen in Fig. 1a –

where the stress-strain behavior resulting from a one element uniform
extension test using Eqns. (23) and (24) with p ¼ 3 and different values of
ρe is shown. However, Fig. 1b shows that intermediate density values
result in essentially the same plastic work as the purely elasto-
viscoplastic phase. Hence, while the Kirchhoff stress τVP is scaled by χS
due to its definition in terms of the strain energy ψVP (Eqn. (23) and (14))
this scaling clearly is not enough to encourage the optimizer to push
element density variables ρe to 0 (elasto-viscoplastic phase) or 1
(hyperelastic phase). In order to ensure that the plastic work in elements
with intermediate density values is appropriately penalized, the tensor A
in Eq. (19) is scaled such that the viscoplastic power density becomes

_wvp ¼ τVP : ðχAAÞ ¼ χA _γ

ffiffiffi
3
2

r
τVP : n (25)

where χA ¼ 1� ρpAe and pA is an extra penalization parameter. Inserting
this into Eq. (18) and using the trapezoid rule gives the discrete
expression used to evaluate the plastic work objective function

Wp �
Xn
k¼1

 Xnele
e¼1

 Xnipt
r¼1

 
wrχA

ffiffiffi
3
2

r
Δγker τ

VPk
er

: nk
er

!!!
(26)

Fig. 1c and d show the stress-strain behavior and plastic work history
when the viscoplastic power density is defined as in Eq. (25) with pA ¼
1. Clearly, the inclusion of the scaling factor χA results in a significant
reduction in the plastic work when intermediate densities are considered.

Finally, as inertia effects depend on the mass density of the different
22
materials, the reference mass density ρ0 in the definition of the element
mass matrix (Eq. (5)) is set to 1 and the resulting normalized mass matrix
is scaled by the density scaling factor

χρ ¼ ρeρ
HE
0 þ ð1� ρeÞρVP0 (27)

which is simply defined in terms of the volume fraction of the two phases.
Here, ρHE0 is the reference mass density of the hard hyperelastic phase and
ρVP0 is the reference mass density of the soft elasto-viscoplastic phase.
3.3. Sensitivity analysis

Accurate sensitivity information is paramount to the ability of
gradient-based optimizers to consistently and robustly find optimal so-
lutions. In the context of PDE constrained optimization problem in Eq.
(20), sensitivity calculations are complicated by the fact that they must
account for the implicit constraintsRk ¼ 0 andHk ¼ 0 at each time step k.
The formulation of a general adjoint sensitivity analysis framework for
problems governed by such PDEs is covered in detail in Ref. [27]. For a
given response function f with the general functional formf ðxÞ ¼ Fðbu1;…

;bun;c1;…;cn;ρðxÞÞ, the derivative with respect to the design variables x is
sought. As application of the density filter is straightforwardly accounted
for by applying the chain rule, the derivative df =dρ must be calculated.
Following the approach in Ref. [27], adjoint sensitivity analysis proceeds
by solving the following system for the adjoint variables λk and μk

nth step :

8>>>>>>><>>>>>>>:

∂F
∂bun þ λn

T ∂Rn

∂bun þ μn
T ∂Hn

∂bun ¼ 0

∂F
∂cn þ λn

T ∂Rn

∂cn þ μn
T ∂Hn

∂cn ¼ 0

kth step :

8>>>>>>><>>>>>>>:

∂F
∂buk þ λkþ1T ∂Rkþ1

∂buk þ μkþ1T ∂Hkþ1

∂buk þ λk
T ∂Rk

∂buk þ μk
T ∂Hk

∂buk ¼ 0

∂F
∂ck

þ λkþ1T ∂Rkþ1

∂ck
þ μkþ1T ∂Hkþ1

∂ck
þ λk

T ∂Rk

∂ck
þ μk

T ∂Hk

∂ck
¼ 0

k ¼ n� 1; …; 2; 1

(28)

This system is solved by starting at step n and ending at step 1 and
after its solution, the sensitivity df =dρ is given as

df
dρ

¼ ∂F
∂ρ þ

Xn
k¼1

�
λk

T∂Rk

∂ρ þ μk
T∂Hk

∂ρ

�
(29)

Thus, the following derivatives are needed to evaluate Eqns. (28) and
(29):

For Rk :

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

∂Rk

∂ρ

∂Rk

∂buk

∂Rk

∂buk�1

∂Rk

∂ck

∂Rk

∂ck�1

; For Hk :

8>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>:

∂Hk

∂ρ

∂Hk

∂buk

∂Hk

∂buk�1

∂Hk

∂ck

∂Hk

∂ck�1

; For F :

8>>>>>>>>><>>>>>>>>>:

∂F
∂ρ
∂F
∂buk

∂F
∂ck

(30)

These are obtained by specifying the set of global bu and local c state
variables and their corresponding constraint equations. For the problems
considered in this study, the global state variables and constraints are the
displacement, velocity and acceleration degrees of freedom for the HHT



Fig. 1. Stress-strain behavior and plastic work history for one element uniform extension test using bi-material interpolation scheme with only scaling of viscoplastic
stress and with scaling of both viscoplastic stress τVP and tensor A.
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time integration algorithm discussed in Section 2.1. Hence, buk ¼
½uk; vk; ak�T , and the corresponding global constraints are the residual
equation Eq. (9) and the update equations Eq. (11) rewritten here as

Rk ¼

2666664
Rk

u

Rk
v

Rk
a

3777775 ¼

26666666666664

A
nele

e¼1

	
~F
ek

int � Fek
ext



vk � ~vk � γ

βΔt
�
uk � ~uk�

ak � 1
βΔt2

�
uk � ~uk�

37777777777775
~F
ek

int ¼ ð1þ αÞFek
int � αFek�1

int þ χρ
βΔt2

Me

�
uk
e � ~uk

e

�
~uk ¼ uk�1 þ Δtvk�1 þ Δt2

2
ð1� 2βÞak�1

~vk ¼ vk�1 þ ð1� γÞΔtak�1

(31)

where the element internal force vector is Fek
int ¼

Pnipt
r¼1

wrrk
a�1

er BT
erP

k
er

following Eq. (6). Here, rker is the deformation gradient ratio defined in
Eq. (4) for integration point r, a ¼ 1=2 for the plane strain case and wr is
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the weight of the rth integration point. For the four node plane strain F-
bar elements with nipt ¼ 4 integration points and unit thickness
employed in this study, the chosen local variables ck are represented in
vector form as

ck ¼

2664 ck1
⋮
cknele

3775with cke ¼
266664
cke1
cke2
cke3
cke4

377775 and cker ¼

2664 be
k

er

αk
er

Δγker

3775 (32)

The local constraint equations corresponding to these variables thus
have the form

Hk ¼

2664 Hk
1
⋮

Hk
nele

3775 ¼ 0 with Hk
e ¼

2666664
Hk

e1

Hk
e2

Hk
e3

Hk
e4

3777775 and Hk
er
¼

2664h
k
er1

hker2
hker3

3775 (33)

and the residual equations Hk
er at each integration point r follow from

the constitutive algorithm discussed in Appendix A. For a given inte-
gration point at the elastic step, these equations are



Fig. 2. Design domain and element numbering of half-beam bending problem
for sensitivity verification.
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k

8>><hk
er1

¼ be
k

er
� be;trer

¼ 0

Her ¼ >>: hker2 ¼ αk

er
� αk�1

er
¼ 0

hker3 ¼ Δγker ¼ 0
(34)
Fig. 3. Comparison of sensitivity values obtained using the adjoint method and CDM
problem with and without rate effects.
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and for a given integration point at the viscoplastic step, they are

Hk
er ¼

8>>>>>>>><>>>>>>>>:

hk
er1

¼ be
k

er
� be;trer

:exp
�� 2ΔtAk

er

� ¼ 0

hker2 ¼ αk
er
� αk�1

er
� Δγker ¼ 0

hker3 ¼
ffiffiffi
3
2

r
sVP

k

er

 
Δt

μΔγker þ Δt

!ϑ

� ζ
�
αk
er

� ¼ 0

(35)

where Δt ¼ tk � tk�1. The derivatives in Eq. (30) needed to complete the
sensitivity analysis based on these definitions are given in Appendix B.

4. Design examples

Design examples are now carried out to demonstrate the capability of
the developed topology optimization framework and present insights
into how the arrangement of different material phases can lead to im-
provements in energy dissipation capacity. In all of the following ex-
amples, the material parameters of the soft elasto-viscoplastic phase are
set to E ¼ 3300 MPa, ν ¼ 0:33, σy ¼ 105 MPa and Kh ¼ 300 MPa. The
bulk and shear moduli of the hard hyperelastic phase are set to κ ¼
55;000 MPa and G ¼ 1;100 MPa, resulting in nearly incompressible
behavior (E� 3:278� 103 MPa, ν � 0:49). Design domains are dis-
with Δh ¼ 10�5 for quasi-static and dynamic analyses using half-beam bending



Fig. 4. Energy balance and distribution for dynamic analysis of half-beam bending problem with and without rate effects.

Fig. 5. Clamped beam problem configuration.
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cretized using four node plane strain F-bar elements with unit thickness.
The Hilber-Hughes-Taylor algorithm detailed in Section 2.1 is used to
carry out time integration, with adaptive time stepping following the
strategy in Ref. [43] and convergence criterion based on the global en-
ergy residual, absðRTΔbuÞ � 10�10. As a change in the time step can
introduce numerical high frequency vibrations into the model, the
damping parameter α for the HHT algorithm is set to a low value of α ¼
� 0:05. The other algorithmic parameters β and γ are defined in terms of
this damping parameter as β ¼ 1=4ð1� αÞ2 and γ ¼ 1= 2� α, following
[26]. Using this numerical scheme, finite element analysis was stable
throughout the optimization process for all design examples. Optimiza-
tion is carried out using the Method of Moving Asymptotes (MMA) [44]
25
with default algorithmic parameters and terminated after 150 total it-
erations. Initial designs consist of a uniform distribution of design vari-
ables xe set to the prescribed volume fraction. The filter radius utilized is
rmin ¼ 3�ms where ms is the size of each element in the uniform mesh
and in all of the figures showing optimized composite topologies, the soft
elasto-viscoplastic phase is shown in red while the hard hyperelastic
phase is shown in blue. The in-house Matlab based finite element library
CPSSL-FEA developed at the University of Notre Dame is used to perform
both the optimization and FEA.
4.1. Sensitivity verification

To ensure correct implementation of the sensitivity analysis discussed
in Section 3.3, a verification study is performed. Analytical values ob-
tained using the adjoint method are compared to the values obtained
numerically using the central difference method (CDM), which computes
the sensitivity of the plastic workWp with respect to design variable xe as
follows

dWpðxÞ
dxe

� Wpðxþ ΔhÞ �Wpðx� ΔhÞ
2Δh

(36)

Here Δh is a vector containing all zeros except at the component
corresponding to xe, which has the perturbation value Δh, here taken as
10�5. Sensitivity verification is performed for each elemental design
variable of the half-beam bending example discretized in a 20� 10 mesh



Fig. 6. Snapshots of energy density distributions in deformed configuration at different times during dynamic analysis of clamped beam problem using a uniform
distribution of elasto-viscoplastic phase with hyperelastic buffer layer and no rate effects.

Fig. 7. Energy balance and distribution for dynamic analysis of clamped beam problem using a uniform distribution of elasto-viscoplastic phase with hyperelastic
buffer layer and no rate effects.

Fig. 8. Optimized topologies for clamped beam problem under quasi-static and dynamic analysis with volume fraction Vf ¼ 0:3 and no rate effects.

Fig. 9. Distribution of plastic work density (MPa) in deformed configuration at t¼ 3� 10�6 s for optimized topologies obtained under quasi-static and dynamic
analysis with volume fraction Vf ¼ 0:3 and no rate effects.
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Fig. 10. Energy balance and distribution for optimized topology obtained using dynamic analysis with volume fraction Vf ¼ 0:3 and no rate effects.
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with elements numbered as shown in Fig. 2 and length L ¼ 2000 mm. All
design variables xe are assigned a value of 0.5 and no density filter is
considered so that ρ ¼ x. The sensitivity of the total plastic work WP is
calculated using the adjoint method and CDM for two cases. In the first
case no rate effects are considered in the elasto-viscoplastic phase (i.e.
the viscoplastic model parameter ϑ is set to 0 to return the rate-
independent von Mises model) while the second case considers rate ef-
fects using a ratio between the viscosity parameter and total deformation
time μ =tn ¼ 500, corresponding to a high effective rate.

These two cases are first considered without inertia effects – i.e. the
reference mass density of both material phases is set to 0 – and with the
prescribed displacement u ¼ 250 mm applied monotonically. Fig. 3a
shows the sensitivity values obtained for this quasi-static analysis using
the adjoint method and CDM, and it can be seen that these values match
closely. Next, the two cases are considered using a dynamic analysis with
the reference mass density of the elasto-viscoplastic phase set to ρVP0 ¼
Fig. 11. Optimized topologies and distributions of plastic work density in deformed c
fraction Vf ¼ 0:3 and different viscoplastic rate effects.
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900 kg/m3 and the reference mass density of the hyperelastic phase set to
ρHE0 ¼ 1;200 kg/m3. The prescribed displacement u is applied in a half-
period sinusoidal pulse, i.e. uðtÞ ¼ umax sinð2πt=TÞ with the period T ¼
2� tn, final analysis time tn ¼ 3� 10�4 s, and maximum displacement
amplitude umax ¼ 100 mm. The sensitivity values obtained for this dy-
namic analysis using the adjoint method and CDM are shown in Fig. 3b,
where they again are seen to match very closely, thus verifying correct
implementation of the sensitivity analysis.

Fig. 4 shows the total external work and sum of the internal and ki-
netic energies throughout the dynamic analysis along with the distribu-
tion of energy into kinetic energy, strain energy and plastic work, for
both cases. It can be seen from the distribution of energies that the
consideration of rate effects changes how energy is distributed within the
system. It can also be seen that the external work (i.e. the total energy
input into the system) matches the sum of internal and kinetic energies
for both cases, which serves to verify correct implementation of the HHT
onfiguration for clamped beam problem under quasi-static analysis with volume



Fig. 12. Convergence curves for clamped beam problem under quasi-static
analysis with volume fraction Vf ¼ 0:3 and different viscoplastic rate effects.

Fig. 14. Convergence curves for clamped beam problem under dynamic anal-
ysis with volume fraction Vf ¼ 0:3 and different viscoplastic rate effects.
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time integration scheme.
4.2. Inertia effects

The influence of inertia effects on optimized designs is first investi-
gated by considering the clamped beam domain used in Ref. [24] and
shown in Fig. 5, where L ¼ 20 mm and a 160� 40 mesh is used for
discretization. The prescribed displacement u is applied monotonically
over a time period of t0 and then held constant for another time period of
t0, with t0 ¼ 1:5� 10�6 s, so that the final analysis time tn ¼ 3� 10�6 s.
This domain is first subject to dynamic analysis using a uniform distri-
bution of the soft elasto-viscoplastic phase with ϑ ¼ 0 to suppress rate
effects. In order to avoid localization of plastic flow near the nodes where
displacement is applied, a buffer layer of hyperelastic phase five elements
thick is placed at the top of the design domain (indicated by the blue
region in Fig. 5). The prescribed displacement u is set to 0.25mm and the
reference mass densities of the material phases are ρVP0 ¼ 900 kg/m3 and
ρHE0 ¼ 1;200 kg/m3. Snapshots of the resulting kinetic energy and plastic
work density distributions at t¼ 1:5� 10�6 s and t¼ 3� 10�6 s are
Fig. 13. Optimized topologies and distributions of plastic work density in deformed
fraction Vf ¼ 0:3 and different viscoplastic rate effects.
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shown in Fig. 6.
The kinetic energy density snapshots reveal that applying the pre-

scribed displacement at this rate causes a shock wave to propagate
through the domain when inertia effects are included. This wave con-
tinues to propagate as the prescribed displacement is held constant,
causing more material to yield and spreading the plastic work further
into the domain, as observed in the plastic work density snapshots. The
total external work and sum of the internal and kinetic energies as well as
the distribution into kinetic energy, strain energy and plastic work is
shown in Fig. 7. Here it can be seen that there are oscillations as the shock
wave passes through the hyperelastic buffer layer and into the elasto-
viscoplastic domain since there is a mechanical impedance mismatch
between these two phases. Some of the high frequency reflections are
damped out numerically through the parameter α in the HHT algorithm,
causing the external work to be slightly greater than the sum of the in-
ternal and kinetic energies, with the difference equal to this numerical
configuration for clamped beam problem under dynamic analysis with volume



Fig. 15. Energy balance and distribution for optimized topologies obtained using dynamic analysis with volume fraction Vf ¼ 0:3 and different viscoplastic
rate effects.

R. Alberdi, K. Khandelwal Finite Elements in Analysis and Design 164 (2019) 18–41
damping. The energy distribution reveals that after the point when the
applied displacement ceases to increase (t¼ 1:5� 10�6 s), the kinetic
and strain energies begin to drop. This is because there is no more energy
entering the system (as seen by the plateaued external work) while the
propagating shock wave continues to cause energy to be dissipated as
plastic work (as seen by the increasing plastic work after this point).
29
With the behavior of this problem better understood, optimization is
now carried out under quasi-static and dynamic analysis with the pre-
scribed displacement u kept at 0.25mm and rate effects suppressed by
setting the rate sensitivity parameter ϑ ¼ 0. A volume fraction Vf ¼ 0:3
of the energy dissipating elasto-viscoplastic phase is prescribed. The
optimized topologies obtained are shown in Fig. 8 and it can be seen that
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they are vastly different, reflecting the different physics being modeled.
In the quasi-static case, a load path develops as the material carries stress
resulting from the displacement applied at the center of the domain to the
supports at the edges of the domain. When inertia effects are considered,
the stresses resulting from the applied displacement propagate through
thematerial in the form of a shock wave, since the time period considered
during analysis is not long enough to allow the load path to fully develop.
As the optimized topologies evolve so as to place the limited energy
dissipating elasto-viscoplastic phase in regions where stress is high, they
are very different.

This is also reflected in the distributions of plastic work density within
the deformed configurations of the optimized topologies shown at the
end of the analysis (i.e. at t¼ 3� 10�6 s) in Fig. 9. In the topology ob-
tained under quasi-static analysis, almost the entire volume of the elasto-
viscoplastic phase has a similar density of plastic work, whereas in the
topology obtained under dynamic analysis, the plastic work density is
concentrated closer to where the propagating shock wave enters the
domain. However, the total amount of energy dissipated as plastic work
is much greater in the dynamic case since more total energy enters the
system as external work to overcome inertia effects and reach the pre-
scribed displacement.

The total external work and sum of the internal and kinetic energies
are shown in Fig. 10 for the optimized topology obtained under dynamic
loading. Comparison with Fig. 7 reveals that the total external work in-
creases as more work is needed to obtain the same prescribed displace-
ment when 70% of the domain now contains the stiffer hyperelastic
phase. Also shown in Fig. 10 is the distribution into kinetic energy, strain
energy and plastic work, where it can be seen that by the end of the time
period considered during analysis, the plastic work is greater than both
the kinetic and strain energies. In fact, for this optimized topology the
ratio of the plastic work to the external work at the end of the analysis
time period is 0.422, meaning that 42.2% of the total energy entering the
system is dissipated as plastic work. When the entire volume of the
domain excluding the buffer layer consists of the energy dissipating
elasto-viscoplastic phase (82.5% of the domain), only 32.0% of the en-
ergy is dissipated as plastic work. Thus, using a volume of energy dissi-
pating elasto-viscoplastic phase equal to only 30% of the domain volume
Fig. 16. Optimized topologies and distributions of plastic work density in deformed
fraction Vf ¼ 0:3 and different viscoplastic rate effects when u is increased to 1mm
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and combining this in an optimized way with a stiffer hyperelastic phase
leads to an increase of more than 12% in terms of the energy that can be
dissipated, as comparted to using a volume of elasto-viscoplastic phase
equal to 82.5% of the domain volume.
4.3. Rate effects

Next, the influence of rate effects on optimized topologies is investi-
gated by setting the rate sensitivity parameter ϑ ¼ 1 and considering
different ratios between the viscosity parameter and total deformation
time, i.e. μ =tn ¼ 5, 50, and 500. The optimized topologies obtained under
quasi-static analysis are shown in Fig. 11 along with plastic work density
distributions in the deformed configuration at the end of the analysis and
the total plastic work WP. It can be seen that distinct topologies are ob-
tained for each value of μ =tn. Additionally, convergence curves for these
topologies are presented in Fig. 12 along with the convergence curve for
the topology obtained without rate effects (Fig. 8a). It can be seen that
convergence is smooth for all cases.

As rate effects become more prominent the stress needed to initiate
yielding increases, resulting in a more uniform distribution of stress
throughout the domain but reducing the plastic flow.Moreover, the more
even distribution of higher stress leads to an increase in the total plastic
work even as the plastic flow is reduced. These phenomena are exploited
in the way the hard hyperelastic phase is combined with the soft energy
dissipating elasto-viscoplastic phase in optimized topologies. For
instance, when μ =tn ¼ 5 it is more efficient to use thinner regions of the
elasto-viscoplastic phase so as to cause localization of plastic yielding due
to the high stresses transferred between regions of the surrounding hard
hyperelastic phase. In fact, the volume constraint is not even active for
this case, which only utilizes 19.0% of the energy dissipating elasto-
viscoplastic phase. The same explanation can be given for the topology
obtained without rate effects (Fig. 8), but the lower yield stress for that
case allows yielding in a larger volume of this phase near the top of the
domain where the displacement is applied. When rate effects are
increased, however, decreasing plastic flow necessitates inducing
yielding in a greater volume of the energy dissipating elasto-viscoplastic
phase to increase the plastic work. Finally, rate effects are increased to a
configuration for clamped beam problem under dynamic analysis with volume
.



Fig. 17. Energy balance and distribution for optimized topologies obtained using dynamic analysis with volume fraction Vf ¼ 0:3 and different viscoplastic rate effects
when u is increased to 1mm.
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point where even the higher stresses cannot make up for the lack of
plastic flow and the plastic work drops, as when μ =tn ¼ 500. These
trends can be seen in the plastic work density distributions of Fig. 11.

Fig. 13 shows the optimized topologies obtained under dynamic
analysis along with the plastic work density distributions in the deformed
configuration and the total plastic work WP. Additionally, Fig. 14 shows
convergence curves for the optimized topologies obtained under
31
dynamic analysis with different rate effects, and it can be seen that
convergence progresses smoothly. These results reflect similar trends as
in the quasi-static case. That is, with lower rate effects it is more efficient
to arrange the elasto-viscoplastic phase so that plastic yielding is more
localized, as seen in the optimized topologies and plastic work density
distributions when no rate effects are considered and when μ =tn ¼ 5. As
rate effects become more prominent, it is no longer efficient to rely on



Fig. 18. Simply supported beam problem configuration.
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localizing regions of this phase since there will be less resulting plastic
flow. Instead, it is best to use large continuous regions of the energy
dissipating elasto-viscoplastic phase since yielding can occur more uni-
formly. When rate effects are very high (μ =tn ¼ 500) a drop in the total
plastic work is unavoidable as the plastic flow decreases significantly.
Again, the plastic work density distributions bear out these trends.

In Fig. 15 the total external work and sum of the internal and kinetic
energies is shown along with the distribution of energy into kinetic en-
ergy, strain energy and plastic work for all three cases of rate effects
under dynamic analysis. It can be seen that the external work is similar
when μ =tn ¼ 5 and μ =tn ¼ 50, but is increased when μ =tn ¼ 500 due to
the fact that there is less plastic flow so more work must be done to reach
the prescribed displacement. Indeed, when μ =tn ¼ 5 and μ =tn ¼ 50, the
Fig. 19. Optimized topologies for simply supported beam problem under quasi-sta
viscoplastic rate effects.
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percentage of the total energy which is dissipated as plastic work is
50.5% and 52.8%, respectively When μ =tn ¼ 500, however, only 30.1%
of the energy which enters the system is dissipated as plastic work. Again,
this shows how high rate effects can be detrimental.

Finally, Fig. 16 shows the optimized topologies along with the plastic
work density distributions in the deformed configuration and the total
plastic work WP obtained under dynamic analysis when the prescribed
displacement u is increased to 1mm (20% of the domain height) and rate
effects are considered. It can be seen that similar trends are followed in
the optimized topologies as the rate is increased, but that an increasing
rate leads to decreasing plastic work even when μ =tn ¼ 50. Hence, the
larger applied displacement leads to higher stresses which exacerbate
material rate effects. This can be seen also in the plastic work density
distributions, where the values drop significantly as rates are increased
and there is less distortion at the top of the domain. The total external
work and sum of the internal and kinetic energies is shown in Fig. 17
along with the distribution into kinetic energy, strain energy and plastic
work for these topologies. It can be seen that when the prescribed
displacement u is increased to 1, the total energy entering the system is
highest for μ =tn ¼ 5, whereas the total energy entering the system is
highest for μ =tn ¼ 500 when u is 0.25mm. In terms of the percentage of
total energy dissipated through plastic work, the optimized topologies
obtained when u is increased to 1mm follow the same trend as when u is
0.25mm. That is, this percentage is 44.9% for μ =tn ¼ 5, 48.5% when
μ =tn ¼ 50 and 24.3% when μ =tn ¼ 500.
tic analysis and dynamic analysis with volume fraction Vf ¼ 0:3 and different
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4.4. Boundary conditions

The final example concerns the influence of boundary conditions on
optimized topologies. To explore this, the simply supported beam prob-
lem shown in Fig. 18 is considered. This problem consists of the same
domain as the clamped beam problem (Fig. 5) but with a change in
boundary conditions. The prescribed displacement u ¼ 0:25 mm is
applied as described in Section 4.2 and the volume fraction of elasto-
viscoplastic phase is again set to Vf ¼ 0:3. Optimization is carried out
using both quasi-static and dynamic analysis for cases considering no rate
effects (ϑ ¼ 0) and rate effects with μ =tn ¼ 5, 50, and 500.

Fig. 19 shows the optimized topologies for each case and also reports
the total plastic workWp. Comparison with Figs. 8 and 11 reveals that the
topologies obtained under quasi-static analysis differ significantly from
those obtained for the clamped beam problem, which should be expected
due to the change in boundary conditions. However, the topologies ob-
tained under dynamic analysis closely resemble those in Figs. 8 and 13,
despite this change in boundary conditions. As discussed in Section 4.2,
stresses propagate through the domain as a shock wave when inertia
effects are considered and do not reach the supports within the time
period used for analysis. Hence, if inertia effects are considered within a
short enough time period, the boundary conditions do not influence
optimized topologies.

5. Conclusions

This study develops a topology optimization formulation for maxi-
mizing energy dissipation while considering the phenomena of material
rate effects, inertia effects, and large deformations. Simulation of finite
deformation dynamics with elasto-viscoplastic material behavior neces-
sitates the use of sophisticated numerical techniques, which are directly
accommodated within the adjoint sensitivity formulation so that design
updates are driven directly by the simulated physics. A bi-material
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interpolation scheme is developed within the density-based design
parameterization and used to obtain optimized distributions of a hard
hyperelastic phase providing stiffness and a soft elasto-viscoplastic phase
providing energy dissipation capacity. Optimized designs are shown to
exploit the physics of these two phases under both quasi-static and dy-
namic analyses, resulting in discrete topologies. A much higher per-
centage of the total energy can be dissipated as plastic work when the
energy dissipating phase is combined in an optimized waywith a stiffness
providing phase than when the energy dissipating phase is considered
alone. Moreover, isolating the influence of material rate effects from
inertia effects reveals that optimized designs exploit similar phenomena
with or without inertia effects. These results provide insight into how to
lay out material phases so as to increase energy dissipation for applica-
tions such as impact mitigation where large deformations occur along
with prominent inertia and material rate effects.

The bi-material interpolation scheme developed in this study can be
extended to consider different phenomenological constitutive relations.
For example, to delay material failure in optimized designs coupled
elasto-viscoplastic damage models can be considered, as described in
Refs. [17,18]. Additionally, solid-void and multimaterial topology opti-
mization can be carried out by treating voids as an additional material
phase modeled with the ersatz material (fictitious domain) approach.
However, this approach presents additional challenges regarding exces-
sive mesh distortions [45] and large plastic strains in intermediate den-
sity elements. This work is currently being carried out by the authors.
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Appendix A. Exponential Return Mapping Algorithm

This appendix presents the exponential return mapping algorithm used to numerically implement the viscoplastic material model discussed in
Section 2.2. For time stepmþ 1 at integration point r of element e, given information includes the current and previous step deformation (characterized

by Fmþ1
er and Fm

er ) and the previous step internal variables (J m
er ¼ fbemer ;αmerg). The purpose of the constitutive algorithm is to calculate the current step

stress Pmþ1
er , internal variables J mþ1

er and the consistent tangent modulus AT needed to evaluate the tangent matrix in Eq. (7). The exponential return
mapping algorithm detailed in this appendix is presented with the superscript removed from variables at the current time step mþ 1 and no reference
made to element or integration point number. Likewise, the bar is removed from any of the F-bar quantities so that the algorithm is presented inde-
pendently from the type of element used.

Making use of the relations for the plastic distortion-rate tensor Lp ¼ _Fp:Fp�1 ¼ Fe�1:lp:Fe and the polar decomposition Fe ¼ Ve:Re as well as Eq.
(17), the rate equation for the plastic part of the deformation gradient Fp can be written as

_Fp ¼ ReT :A:Re:Fp (A.1)

This rate equation is numerically approximated using the exponential mapping integrator, giving

Fp ¼ exp
�
ΔtReT :A:Re

�
:Fp

n ¼ ReT :exp½ΔtA�:Re:Fp
n (A.2)

The exponential map integrator is used as it preserves the incompressibility of plastic flow, i.e. it ensures that det Fp ¼ 1. Using Eq. (A.2) along with
the definitions Fe ¼ F:Fp�1 and be ¼ Ve2 results in the following discrete flow rule for be

be ¼ exp½�2ΔtA�:F:F�1
n :ben:F

�T
n :FT ¼ be;tr :exp½�2ΔtA� (A.3)

where the trial elastic left Cauchy-Green deformation tensor is defined as be;tr ¼ ΔF:ben:ΔF
T with ΔF ¼ F:F�1

n and can be seen to depend on the given
previous step information ben and Fn and current step information F. The discrete flow rule Eq. (A.3) can be greatly simplified by considering its
evaluation in the space spanned by the elastic left principal directions lea;a ¼ 1; 2; 3. In this space,
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be ¼
X3

λea
2lea � lea
a

be;tr ¼
X3
a

λe;tra
2le;tra � le;tra

(A.4)

Given the coaxiality between be and τ resulting from the assumption of isotropy, together with the coaxiality between be and A resulting from the
assumption of associativity, the principal directions lea coincide with le;tra . Thus, in principal space, Eq. (A.3) is

λe
2

a ¼ exp

"
� 2Δγ

ffiffiffi
3
2

r
na

#
λe;tr

2

a ; a ¼ 1; 2; 3 (A.5)

where na are the principal components of the flow vector n. Taking the natural logarithm of this expression results finally in the discrete flow rule for the
logarithmic elastic principal stretches εea ¼ ln λea, i.e.

εea ¼ εe;tra � Δγ

ffiffiffi
3
2

r
na; a ¼ 1; 2; 3 (A.6)

which can be seen to coincide with the discrete flow rule for the elastic strains in the small strain case [28].
Complementing the discrete flow rule in Eq. (A.6) with the discrete flow rule for the accumulated plastic strain α obtained by utilizing a backward

Euler integration thus provides the necessary equations for carrying out the return mapping algorithm. The first step of this algorithm is the elastic trial
step which is performed as follows

Given: F; be;tr ¼ F:F�1
n :ben:F

�T
n :FT ; αtr ¼ αm

Evaluate using the trial elastic principal stretch values in Eq:ð13Þ: Compute

str ¼ ℙs
devτ

tr

qtr ¼ Khαtr

φtrðτ tr; qtrÞ ¼
ffiffiffi
3
2

r
kstrk � �σy þ qtr

�
(A.7)

with τtr ¼
�
τtr1 τtr2 τtr3

�T
, str ¼

�
str1 str2 str3

�T
, and kstrk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
str1

2 þ str2
2 þ str3

2
q

. The matrix ℙs
dev ¼ I � 1=3 where 1 is a matrix whose entries are all 1.

If ϕtr � 0 then the current step is an elastic step and the following elastic updates are made

be ¼ betr; α ¼ αtr; τ ¼ τtr

AT ¼ A
(A.8)

where A is the matrix form of the tangent moduli tensor A ¼ ∂2ψ=∂F∂F for the strain energy function defined in Eq. (13).
Else, if ϕtr > 0 then plastic flow is occurring in this step and the algorithm proceeds to Step 2, the viscoplastic return mapping step. In this step, the

initial value problem defined by the flow rules given in Eq. (16) must be evaluated numerically. Making use of Eq. (A.6), the discrete update equations
for the time step Δt¼ t � tm are

εea ¼ εe;tra � Δγ

ffiffiffi
3
2

r
na; a ¼ 1; 2; 3

α ¼ αm þ Δγ

Δγ ¼ 1
μ

" ffiffiffiffi
3
2

r
ksk
ζ

!1
ϑ

� 1

#
Δt

na ¼ ‾
sa
s

(A.9)

Combining Eqn. (A.9)2 and (A.9)3 thus results in the nonlinear algebraic system

R¼
24R1

R2

35 ¼

26666666664

εe � εe
tr þ Δγ

ffiffiffi
3
2

r
n

Δγ � Δt
μ

2664
 ffiffiffi

3
2

r
s

ζðΔγÞ

!1
ε

� 1

3775

37777777775
¼
24 0
0

35 (A.10)

which is solved for the unknowns X ¼
�
εe Δγ

�T
using the Newton-Raphson method with tangent matrix
34
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26 I þ Δγ
ffiffiffi
3

r �
Ps � n� n

�
B

ffiffiffi
3

r
n

37

dR
dX

¼
666664

s 2 dev 2	 Δt
μΔγ þ Δt


ϑ ffiffiffi
3
2

r
nTB �

 ffiffiffi
3
2

r 	 Δt
μΔγ þ Δt


ϑ ϑμksk
μΔγ þ Δt

þ Kh

!777775 (A.11)

Here, B is a matrix containing the terms ∂τa =∂εeb;a;b ¼ 1; 2;3. The converged values of εea are used to obtain the elastic principal stretches λea and by
extension be. The converged values τa are used to obtain τ and the first Piola-Kirchhoff stress tensor is calculated as P ¼ τ:F�T . The algorithmic
consistent tangent modulus AT can then be calculated in component form as

Aijkl ¼ JаipkrF�1
jp F�1

lr (A.12)

where the spatial moduli tensor a is given as

Jа¼ ∂τ
∂be;tr :

	
I ⊠ be;tr

T þ be;tr ⊡ I


� τ ⊡ I (A.13)

and the products ⊠ and ⊡ between 2nd order tensors are defined as ðA⊠ BÞijkl ¼ AikBjl and ðA⊡BÞijkl ¼ AilBjk. The term ∂τ =∂be;tr is computed in
principal space using data from the constitutive Newton-Raphson routine as�

∂τa
∂be;trb

�
a;b¼1;2;3

¼ BD11

with

dR
dX

�1

¼

2664D11 D12

D21 D22

3775
(A.14)

and then brought to physical space for use in Eq. (A.13). This completes the exponential return mapping algorithm.

Appendix B. Derivatives for Sensitivity Analysis

Based on the definition of global and local state variables defined in Section 3.3, the derivatives needed for sensitivity analysis (Eq. (30)) are
presented in this appendix. In the expressions below, use is made of the products ⊠ and ⊡ between 2nd order tensors, defined in Appendix A as
ðA⊠ BÞijkl ¼ AikBjl and ðA⊡BÞijkl ¼ AilBjk.
B.1: Derivatives of global constraints

The derivative of the global constraint Rk with respect to the element density variable vector ρ is

∂Rk

∂ρ ¼

266666666664

∂Rk
u

∂ρ

∂Rk
v

∂ρ

∂Rk
a

∂ρ

377777777775
¼

2666666664
A
nele

e¼1

 
∂~Fek

int

∂ρe

!
0

0

3777777775
(B.1)

with

∂~Fek

int

∂ρe
¼ ð1þ αÞ ∂F

ek
int

∂ρe
� α

∂Fek�1

int

∂ρe
þ 1
βΔt2

∂χρ
∂ρe

Me

�
uk
e � ~uk

e

�
∂Fek

int

∂ρe
¼
Xnipt
r¼1

wrrk
a�1

er BT
er

∂Pk
er

∂ρe

∂Fek�1

int

∂ρe
¼
Xnipt
r¼1

wrrk�1a�1

er BT
er

∂Pk�1
er

∂ρe

∂Pk
er

∂ρe
¼ P

k�1
er

∂ρe
¼ ∂χH

∂ρe
P
HEk

er
þ ∂χS

∂ρe
τVP

k

er
:F

k�T

er

(B.2)

Next, the derivative with respect to the global variables, ∂Rk =∂buk, is expanded as
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26 ∂Rk
u ∂Rk

u ∂Rk
u

37 26 nele
 
∂~Fek

int

! 37

∂Rk

∂buk ¼

6666666664

∂uk ∂vk ∂ak

∂Rk
v

∂uk

∂Rk
v

∂vk
∂Rk

v

∂ak

∂Rk
a

∂uk

∂Rk
a

∂vk
∂Rk

a

∂ak

7777777775
¼

6666666664

A e¼1 ∂uk
e

0 0

� γ

βΔt
I I 0

� 1
βΔt2

I 0 I

7777777775
(B.3)

where I is the identity matrix of appropriate size and

∂~Fek

int

∂uk
e

¼ ð1þ αÞ ∂F
ek
int

∂uk
e

þ χρ
βΔt2

Me

with

∂Fek
int

∂uk
e

¼
Xnipt
r¼1

wrrk
a�1

er
BT

er

∂Pk
er

∂uk
e

þ ða� 1Þ
Xnipt
r¼1

wrrk
a�2

er
BT

er
P
k
er
� ∂rker

∂uk
e

∂Pk
er

∂uk
e

¼
	
χHA

HEk

er
� χSP

VPk

er
⊡F

k�1

er



:
∂Fk

er

∂uk
e

∂rker
∂uk

e

¼ rker

 
Fk�T

0er
:
∂Fk

0er

∂uk
e

� Fk�T

er
:
∂Fk

er

∂uk
e

!
(B.4)

Expanding the derivative ∂Rk =∂buk�1 then gives

∂Rk

∂buk�1 ¼

266666666664

∂Rk
u

∂uk�1

∂Rk
u

∂vk�1

∂Rk
u

∂ak�1

∂Rk
v

∂uk�1

∂Rk
v

∂vk�1

∂Rk
v

∂ak�1

∂Rk
a

∂uk�1

∂Rk
a

∂vk�1

∂Rk
a

∂ak�1

377777777775
¼¼

2666666666664

A
nele

e¼1

 
∂~Fek

int

∂uk�1
e

!
A
nele

e¼1

 
∂~Fek

int

∂vk�1
e

!
A
nele

e¼1

 
∂~Fek

int

∂ak�1
e

!
γ

βΔt
I

	γ
β
� 1


I

	Δtγ
2β

ð1� 2βÞ � ð1� γÞΔt


I

1
βΔt2

I
1

βΔt
I

1
2β

ð1� 2βÞI

3777777777775
(B.5)

and the derivatives of ~F
ek

int are

∂~Fek

int

∂uk�1
e

¼ �α
∂Fek�1

int

∂uk�1
e

� χρ
βΔt2

Me

∂~Fek

int

∂vk�1
e

¼ � χρ
βΔt

Me

∂~Fek

int

∂ak�1
e

¼ �χρð1� 2βÞ
2β

Me

(B.6)

with

∂Fek�1

int

∂uk�1
e

¼
Xnipt
r¼1

wrrk�1a�1

er
BT

er

∂Pk�1
er

∂uk�1
e

þ ða� 1Þ
Xnipt
r¼1

wrrk�1a�2

er
BT

er
P
k�1
er

� ∂rk�1
er

∂uk�1
e

∂Pk�1
er

∂uk�1
e

¼
	
χHA

HEk�1

er
� χSP

VPk�1

er
⊡F

k�1�1

er



:
∂Fk�1

er

∂uk�1
e

∂rk�1
er

∂uk�1
e

¼ rk�1
er

 
Fk�1�T

0er
:
∂Fk�1

0er

∂uk�1
e

� Fk�1�T

er :
∂Fk�1

er

∂uk�1
e

!
(B.7)

For the derivatives with respect to the local variables c, the term ∂Rk =∂ck is expanded as266666666664

∂Rk
u

∂ck

∂Rk
v

∂ck

∂Rk
a

∂ck

377777777775
¼

2666666664
A
nele

e¼1

 
∂~Fek

int

∂ck

!
0

0

3777777775
(B.8)

with
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∂~Fek

int

26 ∂Fek
int ∂Fek

int

37

∂ck

¼ ð1þ αÞ4
∂ck1

…

∂cknele
5

∂Fek
int

∂cke
¼

264 ∂Fek
int

∂cke1

∂Fek
int

∂cke2

∂Fek
int

∂cke3

∂Fek
int

∂cke4

375
(B.9)

The derivatives ∂Fek
int =∂cker are

∂Fek
int

∂cker
¼

264wrrk
a�1

er
BT

er

∂Pk
er

∂beker
0 0

375
T

with

∂Pk
er

∂beker
¼

∂
	
χSτ

VPk

er
:F

k�T

er



∂beker

(B.10)

Finally, the term ∂Rk =∂ck�1 has the same form as in Eqn. (B.8) but with

∂~Fek�1

int

∂ck�1 ¼ �α

2664 ∂Fek�1

int

∂ck�1
1

…

∂Fek�1

int

∂ck�1
nele

3775

∂Fek�1

int

∂ck�1
e

¼

2664 ∂Fek�1

int

∂ck�1
e1

∂Fek�1

int

∂ck�1
e2

∂Fek�1

int

∂ck�1
e3

∂Fek�1

int

∂ck�1
e4

3775
∂Fek�1

int

∂ck�1
er

¼

264wrrk�1a�1

er BT
er

∂Pk�1
er

∂bek�1

er

0 0

375
T

∂Pk�1
er

∂bek�1

er

¼ χS
∂
	
τVP

k�1

er :F
k�1�T

er



∂bek�1

er

(B.11)

In Eqn. (B.10) and (B.11), the terms ∂Pk
er =∂b

ek
er and ∂Pk�1

er =∂bek�1

er have the component form

∂τipF�T
pj

∂bekl
¼ ∂τip

∂bekl
F�T
pj (B.12)

and ∂τVP =∂be can be computed in the constitutive algorithm.
B.2: Derivatives of local constraints

The derivative of the local constraints Hk with respect to the element density variable vector ρ is given by the block diagonal matrix

∂Hk

∂ρ ¼

266666666666664

∂Hk
1

∂ρ1
0 … 0

0
∂Hk

2

∂ρ2
⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯
∂Hk

nele

∂ρnele

377777777777775
with

∂Hk
e

∂ρe
¼

2666666666666666664

∂Hk
e1

∂ρe
∂Hk

e2

∂ρe
∂Hk

e3

∂ρe
∂Hk

e4

∂ρe

3777777777777777775

(B.13)

and the entries ∂Hk
er =∂ρe are only nonzero at a viscoplastic step, having the form
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∂Hk
er

26 ∂hk
e ∂hke

37T
∂ρe
¼ 4 r1

∂ρe
0 r3

∂ρe
5

∂hk
er1

∂ρe
¼ �be;trer

:
∂exp

�� 2ΔtAk
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�
∂ρe

∂hker3
∂ρe

¼
ffiffiffi
3
2

r  
Δt

μΔγker þ Δt

!ϑ

nk
er
:

�
∂χS
∂ρe

τVP
k

er

�
(B.14)

The term ∂exp½�2ΔtAk
er � =∂ρe is computed in the principal space, where for each principal value the derivative is

∂exp
"
� 2Δγ

ffiffi
3
2

q
na

#
∂ρe

¼ � 2Δγ

ffiffiffi
3
2

r
exp

"
� 2Δγ

ffiffiffi
3
2

r
na

#
∂na
∂τa

�
∂χS
∂ρe

τa

�
; a ¼ 1; 2; 3 (B.15)

The derivatives with respect to the global variables bu are

∂Hk

∂buk ¼

266666666664

∂Hk

∂uk

∂Hk

∂vk

∂Hk

∂ak

377777777775
¼

266666664
∂Hk

∂uk

0

0

377777775 and
∂Hk

∂buk�1 ¼

266666666664

∂Hk

∂uk�1

∂Hk

∂vk�1

∂Hk

∂ak�1

377777777775
¼

266666664
∂Hk

∂uk�1

0

0

377777775 (B.16)

and the nonzero submatrix ∂Hk =∂uk has the structure

∂Hk

∂uk
¼

266666664
∂Hk

1

∂uk

⋮

∂Hk
nele

∂uk

377777775with
∂Hk

j

∂uk
¼ A

nele

e¼1

 
∂Hk

j

∂uk
e

!
; j ¼ 1; 2;…; nele (B.17)

Here, ∂Hk
j =∂uk

e ¼ 0 if j 6¼ e. The nonzero entries, ∂Hk
e =∂uk

e , are

∂Hk
e

∂uk
e

¼
24 ∂Hk

e1

∂uk
e

∂Hk
e2

∂uke

∂Hk
e3

∂uke

∂Hk
e4

∂uke

35T

(B.18)

with

∂Hk
er

∂uk
e

¼

264�∂be;trer

∂uk
e

0 0

375
T

∂be;trer

∂uk
e

¼ ∂be;trer

∂Fk
er

:
∂Fk

er

∂uk
e

∂be;trer

∂Fk
er

¼ I⊠ ΔFk
er
:be

k�1�T

er
:F

k�1�T
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þ ΔFk

er
:be

k�1

er
:F

k�1�T

er
⊡I

(B.19)

for an elastic step, and

∂Hk
er

∂uk
e

¼
24�∂be;trer

∂uk
e

:exp
�� 2ΔtAk

er

�
0 0

35T

(B.20)

for a plastic step. The nonzero submatrix ∂Hk =∂uk�1 in Eq. (B.16) has the same structure as in Eqn. (B.17) and (B.18), and the nonzero entries
∂Hk

er =∂u
k�1
e are
38



R. Alberdi, K. Khandelwal Finite Elements in Analysis and Design 164 (2019) 18–41
∂Hk
er
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(B.21)

for an elastic step and

∂Hk
er

∂uk�1
e

¼
24�∂be;trer

∂uk�1
e

:exp
�� 2ΔtAk

er

�
0 0

35T

(B.22)

for a plastic step.
The derivatives ∂Hk =∂ck and ∂Hk =∂ck�1, have the block diagonal matrix form

∂Hk

∂ck ¼

266666666666664

∂Hk
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∂ck1
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(B.23)

due to the fact that cke and ckj are independent of each other and that Hk
e and Hk

j are uncoupled for j 6¼ e. The submatrices ∂Hk
e =∂cke have this structure

for the same reasons, i.e.
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(B.24)

The nonzero entries ∂Hk
er =∂c

k
er are

∂Hk
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¼
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0 1 0
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for an elastic step, and
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(B.26)
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for a plastic step. Again, the derivatives of the term exp½�2ΔtAk
er � are computed in the principal space as
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Finally, the nonzero entries of the derivative matrix ∂Hk =∂ck�1 are
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0 0
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for an elastic step and
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for a plastic step.
B.3: Derivatives of objective function

From Eq. (26) it can be seen that the nonzero derivatives of the plastic work objective function are ∂WP =∂ρ and ∂WP =∂ck, which are given as
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and

∂Wp
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where the derivatives ∂τVPker =∂beker and ∂nk
er =∂b

ek
er are evaluated in principal space and then transformed to physical space.
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