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ABSTRACT

This study investigates the use of topology optimization as a method for discovering novel layouts of
material phases which enhance the energy dissipation capacity of bi-material polymeric composites. Mo-
tivated by the experimental and numerical results in Wang et al. (2011), a multi-material topology opti-
mization approach is developed to design composites consisting of a hard glassy polymer phase and soft
elastomer phase undergoing large deformations. Computational homogenization is carried out to simu-
late the composite behavior and the energy dissipated as plastic work in the glassy polymer phase is
maximized. The topology optimization examples investigated herein show the ability of the developed
framework to exploit the physical phenomena reported in Wang et al. (2011) to improve energy dissipa-
tion capacity. Different deformation modes are considered and the influence of symmetry, phase volume
fraction, and material rate effects on optimized composites is investigated. Additionally, the design of
composites with a soft phase providing energy dissipation capacity and hard phase providing stiffness
is carried out to show how vastly different phenomena are exploited to dissipate energy in optimized

composites of this type.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In natural materials, hard and soft phases are commonly used
in conjunction to enhance mechanical properties such as stiffness,
toughness and energy dissipation (Barthelat, 2015; Zhao et al.,
2014). A number of recent studies aimed at improving the perfor-
mance of engineered composites have used this observation as a
guiding principle, focusing on the use of polymeric materials for
both the hard and soft composite phases. The use of polymeric
materials is motivated by their numerous advantageous properties,
which include low cost, light weight, durability, scalability, and
multi-functionality (Landel and Nielsen, 1993; Mai and Yu, 2006).
Moreover, there has been profusion of additive manufacturing
technologies in recent years which can employ and combine a vast
range of polymeric materials with different mechanical properties
and functionalities, allowing for freeform design of advanced mul-
tifunctional polymeric composites (Khoo et al., 2015; Vaezi et al.,
2013).

The use of additively manufactured polymeric materials to de-
sign bi-material periodic composites consisting of hard glassy poly-
mer and soft elastomer phases was investigated numerically and
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experimentally in Wang et al. (2011). These composites were de-
signed based on level set structures associated with triply periodic
minimal surfaces with varying volume fractions of the hard and
soft phases. It was found that the inclusion of the soft elastomeric
phase constrains and provides support to the hard glassy phase,
redistributing stresses throughout the composite so that a more
uniform stress distribution can occur in the hard glassy phase. The
result is that the bi-material composites have more even stress
distributions and enhanced stiffness compared to corresponding
cellular materials using only the glassy polymer phase. Moreover,
plastic yielding in the hard glassy phase was found to occur for a
greater volume of material when supported by the soft elastomeric
material, resulting in enhanced energy dissipation capacity. These
findings suggest that such phenomena can be exploited so as to
improve the energy dissipation capacity of composites by spread-
ing plastic deformation throughout the energy dissipating glassy
phase, prompting the consideration of these types of composites
for use as energy dissipative elements in advanced structural
components and armors (David et al., 2009; Hogg, 2006).

A number of studies have been carried out to further inves-
tigate the properties of these bi-material polymeric composites,
with the stress transfer and strain sharing mechanisms reported
in Wang et al. (2011) also observed experimentally in Al-
Ketan et al. (2017) and Sabet et al. (2018). The influence of
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connectivity on the composite performance was investigated in
Cho et al. (2016) and Sabet et al. (2018), and it was shown that use
of a continuous hard phase results in enhanced stiffness compared
to disperse composites such as particle-reinforced, fiber-reinforced
and lamellar types. Additionally, the anisotropy of the connected
composites was found to be higher than that of disperse compos-
ites at low volume fractions, but the opposite trend was observed
at higher volume fractions (Cho et al., 2016). These types of com-
posites have also been investigated for use in acoustic bandgap
enhancement (Chen and Wang, 2014), where it was shown that
they can lead to a coupling of local resonance and Bragg scat-
tering phenomena by tailoring the topological arrangements of
the phases. All of these studies show the promise of bi-material
composites for enhancing properties such as stiffness, toughness
and energy dissipation. Moreover, they have emphasized how the
topological arrangement and volume fraction of constituent phases
plays a large role in the composite performance and how the use
of additive manufacturing techniques provides a high degree of
control over the layout of constituent phases even at small scales.
Hence, a computational design methodology such as topology op-
timization (Bendsge and Sigmund, 2003) - which provides precise
control over the topological arrangement of material phases -
is a natural fit for use in discovering novel material layouts for
performance-optimized composites with enhanced properties such
as energy dissipation capacity.

The use of topology optimization to discover composite mate-
rial designs can be traced back to the early works by Swan and
Kosaka (1997) and Swan and Arora (1997), where hybrid Voigt-
Reuss mixing rules were used to obtain composites optimized for
homogenized properties such as stiffness (Swan and Kosaka, 1997)
and a combination of stiffness and ultimate strength (Swan and
Arora, 1997). Notably, in Swan and Arora (1997) elastoplastic com-
posites consisting of a hard Boron phase and soft epoxy phase
are optimized for ultimate strength, which is closely related to
energy dissipation capacity. The optimized composite design ob-
tained therein has a well-connected hard phase and shows a sig-
nificant improvement in terms of ultimate strength compared to
a disperse aligned fiber composite. Subsequent studies have been
mostly limited in their focus to the design of composites for im-
proved stiffness properties. For example, in Gibiansky and Sig-
mund (2000) and (Sigmund, 2000) topology optimization was ap-
plied to obtain optimized elastic composites with extreme bulk
modulus values approaching theoretical bounds. In de Souza Neto
et al. (2010) and Amstutz et al. (2010), a level set approach
based on the topological derivative was used to design compos-
ites by maximizing bulk and shear moduli as well as maximizing
and minimizing Poisson’s ratios. Stiffness properties of viscoelas-
tic composites have also been improved by using topology opti-
mization; e.g. by optimizing homogenized loss and storage mod-
uli (Andreasen et al., 2014; Chen and Liu, 2014; Yi et al., 2000;
Yun and Youn, 2018), or maximizing acoustic loss factor in tar-
get frequency ranges when the composite behavior of viscoelas-
tic material and air are considered (Kook and Jensen, 2017). Inter-
estingly, in Andreasen et al. (2014) the resulting optimized com-
posites were able to achieve the theoretical upper bound for bulk
loss modulus if the hard phase was unconnected, but constrain-
ing the hard phase to be connected resulted in bulk loss mod-
uli unable to reach the upper bound. Additionally, topology opti-
mization of electroelastic composites for acoustic bandgaps under
actuation strains has been carried out (Bortot et al., 2018). All of
the above studies have ignored the effects of large deformations
by adopting small strain or linearized theories, whereas topology
optimization for material design using finite deformation theory
is limited to the design of single phase hyperelastic materials for
specified Poisson’s ratio values (Clausen et al., 2015; Wang et al.,
2014).

Motivated by the findings of recent studies (Al-Ketan et al.,
2017; Cho et al., 2016; Sabet et al., 2018; Wang et al., 2011), this
work is devoted to investigating the use of topology optimization
for discovering novel layouts of material phases which enhance
the energy dissipation capacity of bi-material polymeric compos-
ites. In contrast to previous topology optimization studies for com-
posite design, finite deformation kinematics are adopted to model
the experimental behavior reported in Refs. (Al-Ketan et al., 2017;
Cho et al, 2016; Sabet et al., 2018; Wang et al., 2011). Different
deformation modes are considered and the influence of symme-
try, phase volume fraction, and material rate effects on optimized
composites is investigated. The paper is organized as follows. In
Section 2 the topology optimization framework is detailed, includ-
ing the multiscale modeling approach used to simulate compos-
ite behavior, the material models used to capture the phenom-
ena discussed in Wang et al. (2011), the topology optimization
problem formulation, and details needed for sensitivity analysis. In
Sections 3 and 4, a number of different optimized composites are
obtained and discussed for cases involving different deformation
modes, symmetry enforcement, material volume fractions and ma-
terial rate effects. Section 5 then wraps up with conclusions.

2. Topology optimization framework

To characterize the mechanical behavior of bi-material com-
posites for topology optimization, a computational homogeniza-
tion approach is utilized. Homogenization is a multiscale method
which aims to replace the macroscopic constitutive behavior of a
heterogeneous microstructure with that of an effective homoge-
neous medium. For composites with regular periodic microstruc-
tures, heterogeneities can be identified with a representative unit
cell (RUC) whose periodic repetition results in a material sam-
ple. In this case, the representative unit cell (RUC) provides a mi-
croscale domain over which volume averages are taken to ob-
tain the effective homogeneous medium. As this study focuses on
the design of such periodic composites, the topology optimization
problem will be defined over an RUC domain and periodic repe-
tition of the optimized RUC domain will result in the optimized
composite material. The concept of an RUC is illustrated in Fig. 1
where two different microstructures and their corresponding RUCs
are shown.

2.1. Multiscale model

To carry out computational homogenization, inhomogeneous
distributions of microstructural stress and strain fields within an
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Fig. 1. Solid body with periodic microstructures and corresponding RUCs. Periodic
regions of the boundary are shown for each RUC.
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RUC are obtained and averaged through the numerical solution
of a multiscale model chosen to represent the physical behavior
of the material. There are a number of approaches for deriving
multiscale models, but the model used for computational homog-
enization in this study is derived within a recently formulated
theoretical framework known as the Method of Multiscale Vir-
tual Power (MMVP). For the sake of brevity details of this deriva-
tion will be left out, but the interested reader is directed to Refs.
(Alberdi, et al., 2018; Blanco et al., 2016) for specifics.

The multiscale model utilized in this study has kinematics at
each scale defined by the displacement field and displacement gra-
dient. Hence, the set of macroscopic kinematical variables is given
as {i1, Vii}, where a bar is used to denote macroscopic quantities.
Likewise, the set of microscopic kinematical variables is {u, Vu} =
{uM +ii, Vul + Vii}, with the displacement field at the microscale
having been postulated as consisting of a homogeneous part u!
driven by the macroscopic deformation, and a fluctuation part i
resulting from microscale heterogeneities. By postulating the ho-
mogeneous part u" as a first order expansion about a macroscopic
point X located at the RUC centroid, kinematical constraints on the
behavior of a periodic microstructure are obtained as

uX)—u(X -L)=VuLondQf" and
u= 1/ u(X)dv (1)
Vv QU

where V is the total RUC volume. Here, the RUC boundary dQ2# is
divided into opposing regions 0Q2*~ and dQ2#* such that dQ* =
IQHT U IQRK~ and IQHT N IQRH~ =@, as shown in Fig. 1, and
L=X"— X for Xt ¢ 0QH** and X~ € dQ2H1~.

The constraints defined in Eq. (1) are then invoked in a
variational principle - the Principle of Multiscale Virtual Power
(PMVP) - to derive the governing RUC equations and constitu-
tive homogenization relations for volume averaging. The PMVP
is a variational extension of the classical Hill-Mandel principle
(Hill, 1972; Mandel, 1966) which equates power expenditures at
the macro- and microscales. For the model laid out above, this
variational statement is

P:Vsi—L

v P VéudV VY SueVy, VéueR> xR?® (2)
af

where P is the first Piola-Kirchhoff stress tensor and V;, is the
space of displacement variations du which satisfy the kinematical
constraints in Eq. (1). The variational statement in Eq. (2) can be
considered as a stationary principle for some unconstrained func-

tional T by employing Lagrange multipliers () instead of restric-
tion to the constrained space V;,. The stationary conditions for
this functional then result in the following multiscale model
Given V'
Find u(X) = VaL.X + #(X) and y such thatV du e H' ()
1
/ o{F (X.0)) : Vouay = — / ».(5u(X) — Su(X — L))ds
Q
’ aQu
u(X) —u(X —L)— Vu.L=0o0n dQ)*

1
v /szg u(X)dv=20
Obtain T’(Vﬁt) as

P=—_ (y ® L)dS (3)
V Jaqu
Here Vii! is the history of the macroscale displacement gradi-
ent Vil, and the tensor valued functional g represents prescribed
general microscale constitutive relations, i.e. P(X, t) = (F(Xt))

where Ff denotes the history of the deformation gradient F =

Vu+1=Vii+ Vii+1 at each point in the RUC domain. Eq. (3);
is the weak form of linear momentum balance over the RUC do-
main in the absence of body forces and Eq. (3); precludes rigid
body translations of the RUC (see Eq. (1),). The multiscale model
in Eq. (3) defines the constitutive relations P(Vii‘) for an effective
homogeneous medium which encapsulates the behavior of the het-
erogeneous material represented by the RUC.

2.2. Computational homogenization

The multiscale model in Eq. (3) is numerically evaluated us-
ing the finite element method, following the framework laid out
in (Alberdi, et al., 2018). The resulting set of nonlinear algebraic
equations used to approximate RUC equilibrium for a given macro-
scopic displacement gradient Vi (here the hat denotes that matrix
components are stored in vector form) is thus

Ry — [B® M) [Fu@ +ATY] [0 )
’ Ry (u) Au - DV 0

where the matrices A and D enforce the two kinematical con-

straints in Eq. (3) and Y is the discrete vector of Lagrange multi-

pliers. In order to account for incompressibility constraints in con-

stitutive behavior, the F-bar finite element formulation is utilized

(de Souza Neto, et al., 1996), resulting in the global internal force
vector having the following form

Nee

Ey = efl Flzt
Ey = f r*"'B; pdvV (5)
§2

Here, P is the first Piola-Kirchhoff stress obtained from evaluat-
ing the constitutive relations in terms of the modified deformation
gradient F. To avoid confusion with macroscopic quantities, a tilde
will be used throughout instead of a bar for F-bar quantities. This
modified deformation gradient is defined as F = r%F

detFo
"= detF 6)
where F;, is the deformation gradient evaluated at the element
centroid, and the exponent a is 1/2 for two dimensional problems
and 1/3 for three dimensional problems.
A displacement control Newton-Raphson algorithm is used to
solve the nonlinear system of equations Eq. (4). This requires the
Jacobian matrix

R, OR,
ou Iy K AT
I= =T )
R, 9R |~ A 0
ou 0y

where K7 is the global tangent stiffness matrix, defined for the F-
bar formulation as
nee
K = A K¢
e=1
[ Bl[Er —akr: (FoFT) +aPoF TBeav
Q

e
0

K¢

+ / B! [ar‘HKT FoFT-ar"'Pg FO*T]BSdV (8)

25
with Ay the algorithmic consistent tangent returned along with the
stress P by evaluating the constitutive algorithm in terms of F. Fol-
lowing the solution of Eq. (4), the macroscopic stress P is obtained
in terms of the Lagrange multipliers p using the discrete form of
Eq. (3) 4 as

1

2__7 T~
P=—Dy 9)
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Obtaining the macroscopic stress using Eq. (9) completes the
strain-driven computational homogenization procedure wherein
the macroscopic displacement gradient Vil is prescribed and
the macroscopic first Piola-Kirchhoff stress is P obtained. Ad-
ditionally, the same discrete system can be used to perform
stress-driven computational homogenization (wherein P is pre-
scribed and Vil obtained) and mixed computational homogeniza-
tion (wherein some components of both P and Vii are prescribed
and the remaining components obtained), see (Alberdi, et al., 2018)
for details.

Finally, the homogenized tangent moduli tensor A which relates
increments of the homogenized first Piola-Kirchhoff stress P to in-
crements of the homogenized deformation gradient F = Vil +1, i.e.
dP = A : dF, can be obtained by linearizing Eq. (9) following the
procedure laid out in Alberdi et al. (2018). It is given here as

- 1 T
A=-3Q's (10)

where Q =[0 D]T
following system

and the matrix § is computed by solving the

Is=Q (11)

in terms of the Jacobian matrix J defined in Eq. (7).

2.3. Design parameterization and problem formulation

A density-based parameterization is utilized for topology opti-
mization by assigning each element in the discretized domain a
continuous density variable p. (0 < pe < 1) which is used to rep-
resent whether the element contains one material phase (pe = 0)
or the other (p. = 1). Because this parameterization allows for the
existence of intermediate densities (0 < pe < 1) which do not rep-
resent either material phase fully, a material interpolation scheme
is needed. In addition to being able to interpolate between dif-
ferent phenomenological models in a consistent way, this scheme
should ensure that density values in the final design correspond to
distinct material phases. The bi-material interpolation scheme de-
veloped in (Alberdi and Khandelwal, 2019) to meet the above crite-
ria is thus adopted in the present study. This interpolation scheme
is inspired by classical mixing rules and defines the strain energy
Y within an element as

Y = xn(P)VH + Xs(Pe) Vs (12)

where ¥y and Y5 are strain energy functions for the harder and
softer material phases, respectively. These are scaled by the fac-
tors xy and xs which are functions of the volume fraction of
each material phase. In order to ensure that the final topology is
free of intermediate density values, penalization in the spirit of
the SIMP method (Bendsge and Sigmund, 1999) is utilized so that
the scaling factors xy and xs contain a penalization parameter

p, i.e.

XH(pe) = p?f
Xs(pe) =1-pf (13)

The intent of this study is to design composites which can dis-
sipate the maximum amount of energy through a given volume
fraction of hard glassy polymer phase (o, = 1) when the RUC
domain is subject to a prescribed macroscopic deformation mode
driven by Vil. For this purpose, the total plastic work in the RUC

domain is utilized as the objective function following the defini-
tion in Eq. (19), and a volume fraction constraint is applied to the
glassy polymer phase. This results in the following optimization
problem

min fo(x) = WP = — / WP dvde
X tJQk

Nele
st. i) =y Zpe(x)ve -Vr<0
(14)
=0 k=1,2,...,n

=0, k=1,2,....,n

Rk( {—1 k Ck 1 p(x))
Hk( {—1 k Ck 1 (X))
0<x<1

where V is the total volume of the RUC design domain, v, is the
volume of element e and V; is the prescribed volume fraction
of the glassy polymer phase. A density filtering procedure - ac-
counting for the periodicity of the domain - is used to ensure
mesh-independency and control the length scale of topological fea-
tures (Bourdin, 2001; Bruns and Tortorelli, 2001; Li and Khandel-
wal, 2015). In this case, the design variables x are linearly mapped
by the density filtering operator to the vector p of density vari-
ables, which are obtained as a weighted average of the design vari-
ables of neighboring elements.

The system represented in Eq. (14) is a PDE-constrained opti-
mization problem wherein constraint RX = 0 represents the global
RUC equilibrium equations and HX = 0 represents the local in-
tegration point constitutive equations. These constraints are en-
forced implicitly through FEA in a nested approach where the de-
sign variables x are updated by the optimizer and then used in
FEA. Once FEA has terminated, the objective and constraint func-
tions are evaluated. During FEA, initial value problems describing
the evolution of internal variables in path-dependent constitutive
models are evaluated by discretizing the deformation history into
n time steps. Thus, the implicit constraints R¥ = 0 and HX = 0 are
enforced at each time step k. At step k, internal variables are up-
dated using previous step and current step information and so the
implicit constraints are functionally dependent on this data, rep-
resented by a set of global variables il and local variables c. Fur-
thermore, these constraints are dependent on the density variables
p through material interpolation (Eq. (12)). Hence, they have the
functional form shown in Eq. (14).

2.4. Constitutive modeling

For the bi-material composites investigated in Wang et al.
(2011), inclusion of a soft elastomeric phase enhanced energy dissi-
pation in the hard glassy polymer phase by transferring stresses in
a way that caused a larger volume of material to experience plas-
tic deformation. This stress transfer mechanism also enhanced the
stiffness of the composite compared to a cellular material without
the elastomer phase. In order to explore novel bi-material com-
posite designs using topology optimization, the phenomena de-
scribed above must be captured by the constitutive models utilized
within computational homogenization. In Wang et al. (2011), FEA is
carried out using an elasto-viscoplastic model for the hard glassy
polymer phase and a nearly incompressible hyperelastic model for
the soft elastomeric phase. Likewise, in this study the following
constitutive models are used.

The elastomer phase is modeled using a nearly incompressible
hyperelastic model with strain energy i considered to be split into
isochoric ¥, and volumetric ¥, parts. The isochoric strain en-
ergy function is chosen as the regularized Ogden model, defined
in terms of the principal stretches A4, a = 1, 2, 3 (i.e. the eigenval-
ues of the right Cauchy-Green tensor C = F'.F) as
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le G - - -
Z*p[)‘lp +Ay 4y —3]
p=1 9P

_ ha
(MAar3)'?

where | =detF is the volumetric Jacobian, Np; is the num-
ber of terms considered in the strain energy function, G
are constant shear moduli, and o), are dimensionless constants
(Holzapfel, 2000). In Eq. (15),, (a, b, c) are cyclic permutations of
(1, 2, 3). For the examples used in this study, only one term is
considered in the Ogden strain energy function, i.e. the parameter
Nmt = 1. The shear modulus G, for this term is set to the shear
modulus G and the dimensionless constant ap = 2. This choice of
parameters causes the regularized Ogden strain energy function to
coincide with the regularized Neo-Hookean strain energy function.
The volumetric part of the strain energy is set as Y, = §(J - 1)?,
where « is the bulk modulus.

The glassy polymer phase is modeled using a finite deformation
isotropic elasto-viscoplastic model, based on the multiplicative de-
composition of the deformation gradient F = F¢.FP, where F* and
FP are the elastic and plastic parts, respectively, of the total defor-
mation gradient F. Following consequences of frame indifference
and isotropy, the free energy has the form v (b¢(F,F’),«c) where b®
is the elastic left Cauchy-Green deformation tensor whose eigen-
values are the elastic principal stretches A§, a=1,2,3 and « is the
accumulated plastic strain. The free energy v is further assumed
to allow the decomposition v (b®, @) = W(b°®) +H () into a hy-
perelastic strain energy function W = W, + W,, and hardening
potential #. Invoking thermodynamic restrictions, the Coleman-
Noll procedure (Holzapfel, 2000) then produces the following re-
lation for the Kirchhoff stress tensor

1pl’so ()‘1 b )\2, )\3)

ho =] Vg = — A Ophe)? (15)

Y .

T= ZW'b (16)
which is related to the first Piola-Kirchhoff stress P as P = t.FT.
The isochoric and volumetric parts of the strain energy function W
are set to those used for the hyperelastic model defined above, but
in terms of the elastic principal stretches ¢, a=1,2,3. A linear
isotropic strain hardening model is chosen, so the hardening po-
tential has the quadratic form # = 1K"a? defined in terms of the
hardening coefficient K". To complete the constitutive model, flow
rules describing the evolution of internal variables are prescribed
in an associative manner through the yield function ¢, chosen here
as the von Mises yield function, i.e.

¢=\/§||$||§(Ol) (17)

where s = T — 1/3tr(7)I is the deviatoric part of the Kirchhoff
stress tensor 7 and ¢ («) = oy + 0H/dc is the hardening function.
Rate effects are accounted for in a Perzyna-type approach, follow-
ing the model in (de Souza Neto, et al., 2011; Peric, 1993; Peric and
Dettmer, 2003) which defines the following flow rules

ag 00 _ . /3
A"’ar_”\/;"
a=y

=— -1, ¢=>0

<
Il
=
N
w~

(18)
0, <0

Here 1 is a viscosity parameter (in units of time) and 9 is
a dimensionless rate sensitivity parameter such that the rate-

independent von Mises model is recovered from Eq. (18) as $ — 0
or u — 0. To characterize the energy dissipated through plastic
deformation for this model, the expression for plastic work is ob-
tained as

WP — / WP dvde — / / T : Advdt (19)
tJQ tJQ

where W'P is the viscoplastic power density. Numerical implemen-
tation of this constitutive model is carried out following the ex-
ponential return mapping algorithm discussed in Appendix A. Fur-
ther details on constitutive modeling for finite deformation elasto-
plasticity can be found in (Armero, 2017; de Souza Neto, et al.,
2011).

Using these constitutive models, an RUC consisting of a hard
glassy polymer matrix with circular inclusion of volume fraction
Vf = 0.5 is analyzed under a uniaxial compression deformation
mode. This RUC can be seen as a cross-section of the square cu-
bic (SC) composite design investigated in (Wang et al., 2011), but
for the plane strain formulation utilized herein corresponds to an
extrusion of the cross-section, i.e. a cylindrical inclusion/void. The
material parameters for the elasto-viscoplastic model are set to
E = 3300, v = 033, 0y = 105 and K" = 300. For the hypere-
lastic model representing the elastomer phase, the shear modu-
lus G = 3.3 and bulk modulus ¥« = 1000. To simulate a uniax-
ial compression deformation mode, mixed computational homog-
enization is carried out using Vil = [(Vu);; 0 0 -0.1], with
(Vu);; a free component to be found by prescribing Pj; = 0. In or-
der to mimic the topology optimization process, a uniform mesh is
utilized and elements within the inclusion are considered either to
be filled with elastomeric material or empty. Void elements within
the empty inclusion are modeled using the strain energy function
for the elastomer phase but with the material parameters set to
G =412 x 1078 and x = 5.48 x 1078,

Fig. 2 reports the total plastic work WP for both cases and
shows the distributions of von Mises stress, accumulated plas-
tic strain «, and plastic work density within the deformed glassy
phase. These results reflect the trends reported in Wang et al.
(2011), namely that when reinforced with elastomer, stress in the
glassy phase is higher and plastic deformation occurs in a greater
volume of the glassy phase. Because of this, substantially more en-
ergy is dissipated as plastic work, with WP = 3.587 x 108 when
reinforced with elastomer as opposed to WP = 2.790 x 10% with
void. As these constitutive models are able to capture the phenom-
ena observed in Wang et al. (2011), they are suitable for use in a
topology optimization formulation which aims to optimize com-
posites of this type. Unless otherwise noted, the material param-
eters introduced in this section will be utilized for both material
phases in the ensuing optimization examples.

2.5. Initial density distribution

As discussed in (Alberdi and Khandelwal, 2019), a non-uniform
distribution of element density values must be used as the initial
RUC design in order to have non-uniform sensitivity values. For the
examples in this study, the initial density distribution is based on
the square cubic (SC) cross-section design analyzed in Section 2.4.
That is, the initial distribution consists of a hard elasto-viscoplastic
matrix with a circular soft elastomer inclusion. The area of this in-
clusion is set to satisfy the volume fraction constraint. By relating
the area of the circular inclusion to the prescribed volume fraction,
results obtained under different volume fraction constraints can be
straightforwardly compared. A similar initial density distribution is
utilized by Swan and Kosaka (1997), but with the soft phase taken
as the matrix and hard phase as the inclusion, so as to represent a
fiber reinforced composite.
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Fig. 2. Result of glassy polymer unit cell subject to uniaxial compression with circular inclusion filled with elastomer and empty.

In order to reduce the bias of the optimizer to the initial den-
sity distribution, the density values in the matrix and inclusion
are not set to purely elasto-viscoplastic (pe = 1) or hyperelastic
(pe = 0), but intermediate values which approach the values of ei-
ther material phase. In this case, certain combinations of density
values for the matrix and inclusion phases can result in the opti-
mizer converging within a few iterations to a uniform distribution
of intermediate density values. Similar undesirable behavior was
also observed in Guest and Prevost (2006). To prevent this, the ma-
terial interpolation scheme should be defined in such a way that a
uniform distribution of intermediate density values is less optimal
than any given topology. In order to ensure that the plastic work in
elements with intermediate density values is appropriately penal-
ized, the tensor A (Eq. (18);) in the viscoplastic power density W'P
used to evaluate the total plastic work W” in the objective function
is scaled by a factor g, i.e.

WP =1 (juA) = XA)'/\/ETVP n (20)

where use is made of Eq. (18); and V¥ and n are the Kirchhoff
stress and flow vector from the elasto-viscoplastic model. Note
that the Kirchhoff stress tensor in this expression remains inter-
polated through the element strain energy function in Eq. (12).
The scaling factor is set to x, = pf4 with p, being an ex-
tra penalization parameter. With the appropriate choice of p,, a
uniform distribution of intermediate density values will be pe-
nalized such that optimizer will be able to determine discrete
topologies.

2.6. Sensitivity analysis

In order to exploit the use of gradient-based nonlinear pro-
gramming algorithms to solve the topology optimization prob-
lem in Eq. (14), accurate sensitivity information is needed, which
can only be obtained by accounting for the implicit constraints
R = 0 and H* = 0 at each time step k. The general adjoint sen-
sitivity analysis framework formulated in Alberdi et al. (2018) for
such path-dependent PDE constrained optimization problems is
thus utilized herein. Given a response function f with the general
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functional form f(x) =F(@d',..., i, cl, ..., c",x), the sensitivity
df/dx is obtained by first solving the following system of equations
for the adjoint variables A¥ and u*

OF . rOR" o OH
it step: 1 08 0w T Har =0
| oF | ,1OR" ;OH"
W+X acn TH e =0
oF T ORkH1 T QHk+1
0 X’Hl k+1
g t aw * PTG
OR¥ T OH¥
AkT KT o
P B T I
k™ step :
ﬁ + )‘kHT 8Rk+l
ack ack
poq T OHKH T OR¥ T OHK
S r b P e
k=n-1,...,2,1 (21)

As application of the density filter mapping design variables x
to density variables p is straightforwardly accounted for by ap-
plying the chain rule, the derivative df/dp is sought. After solving
Eq. (21) by starting at step n and ending at step 1, the sensitivity
dfldp is evaluated as

df  OF <~ (,4TORC 1 aHk>
= =— At —— 22
dp 0dp g( ap * ap (22)

The following derivatives are thus needed for Eqs. (21) and
(22):

ORk oH*
ap ap
OR® OH* OF
ik FI3 ap
Kk k
For Rt: ] OR , For H*: oH , For F: 8{’ (23)
oi-1 oik1 oaF
R dH* OF
dck Fra dck
OR* dH*
ack—l ack—l

These are obtained by specifying the set of global # and local
¢ state variables and their corresponding constraint equations. For
the problems considered in this study, the global state variables
and constraints are based on the discrete governing RUC equations
Eq. (4), i.e.

k k Nefe ~

u R e T3k
o R s e

Y R; Au* — DVu

For the F-bar elements used to discretize the RUC go-
main in this study, the element internal force vector is Fi =
Mipt _ -

2:1 w, k"' BT Pk Here rk is the deformation gradient ratio defined
in Eq. (6) for integration point 1, a = 1/2 for the plane strain case
and w; is the weight of the rt integration point. Considering four
node plane strain F-bar elements with n;,, = 4 integration points,

the chosen local variables ¢¥ are represented in vector form as

k C
[ € ek
1
Ck ber
k=1 : with ¢f=| ®| and ¢k =| of (25)
=1 : e = | & er = er
k e, Aypk
c”ele Ck yET

The local constraint equations corresponding to these variables
thus have the form

k
Hf Hel hk
k 3 k Hé{z k Zﬂ
H*=| : | =0 with H; = ' and H; = | hg, (26)
e3 k
’lfele Hk érs
€4

and the residual equations Hfr at each integration point r follow
from the constitutive algorithm discussed in Appendix A. For a
given integration point at the elastic step, these equations are

hle(rl = bg’: - bg;tr =0

HY = {hk —af —ak1=0 (27)

era

h = Ayk=0

€r3

and for a given integration point at the viscoplastic step, they are
k
h’gn =bi - bﬁ;”. exp [—ZAtA’e‘r] =0

k k k-1 k
Hk _ herZ = aer - aer - Ayer =0
e —

9
3 yp At
k _ |2 VP _ kY —
fe _\/;se’ (/LAye’j—i—At) ¢(oe) =0

where At = t;, — t; _ ;. The derivatives in Eq. (23) needed to com-
plete the sensitivity analysis based on these definitions are given
in Appendix B, and an example verifying correct implementation
of this sensitivity analysis is presented in Appendix C.

(28)

3. Optimized composite designs

In this section, the topology optimization framework laid out
in Section 2 is applied to explore performance-optimized mate-
rial layouts which exploit the stress transfer mechanisms discussed
in Wang et al. (2011) and illustrated in Section 2.4 to enhance
the energy dissipation capacity of composites. For all of the opti-
mization problems carried out in this section, a displacement con-
trol scheme is utilized with an adaptive step-size Newton-Raphson
strategy (Crisfield, 1991) to solve the strain-driven microscale sys-
tem in Eq. (4), with convergence criterion based on the global en-
ergy residual, abs(RT Ail) < 1012, Optimization is carried out us-
ing the Method of Moving Asymptotes (MMA) (Svanberg, 1987)
with default algorithmic parameters and terminated after 300 total
iterations. The penalization parameters p and p4 are both set to 3
and the filter radius utilized is r,;;; = 3 x ms where ms is the size
of each element in the uniform mesh. In all of the figures show-
ing optimized composite topologies, the elasto-viscoplastic phase
is shown in red while the hyperelastic phase is shown in blue. The
in-house Matlab based finite element solver CPSSL-FEA developed
at the University of Notre Dame is used to perform both the opti-
mization and FEA.

Fig. 3. Initial density distribution for topology optimization when inclusion has a
volume fraction Vy = 0.5.
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Fig. 4. Optimized composites obtained under different deformation modes and symmetry cases using V; = 0.5.

3.1. Deformation modes and symmetry

In this section, a square RUC domain of dimensions 1000 by
1000 is discretized into an 80 x 80 mesh of plane strain F-bar el-
ements and optimized under a number of different macroscopic
deformation modes. The deformation modes considered include:
(i) uniaxial compression under 20% strain (Vii=[0 0 0 -0.2]);
(ii) simple shear under 25% strain (V@i=[0 0.25 025 0]);

and two cases of combined shear and compression, (iii) (Vi =
[-0.1 0.2 0 0]), and (iv) (Vﬁ:[o 0 0.2 -0.1]). Geometric
symmetry lines which correspond to macroscale elastic orthotropy
and square symmetry in the linear elastic regime are prescribed
(see discussion in (Neves et al., 2000)), and optimization for each
deformation mode is carried out using these two symmetry cases
in addition to the case where no symmetry is enforced. The pre-
scribed volume fraction of the hard glassy polymer phase is set
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Fig. 5. Plastic work density distributions in glassy phase of deformed optimized RUC under uniaxial compression and combined shear and compression (case 2) for different

symmetry cases subject to on-axis and off-axis deformation.

to V; = 0.5 and Fig. 3 gives the initial density distribution. In this
distribution, density values for the hard glassy polymer matrix are
py = 0.7 while density values for the soft elastomer inclusion are
Ps = 0.3.

The optimized composites obtained under each deformation
mode and symmetry case are shown in Fig. 4 with the RUC out-
lined in black dashed lines. The total plastic work in the RUC
domain (WP) is also reported in this figure. It can be seen that
when no symmetry is enforced the optimized composites for all
but the simple shear deformation mode resemble lamellar com-
posites. Through the investigations carried out on bi-material poly-
meric composites in Cho et al. (2016) and Sabet et al. (2018) it
was concluded that the stiffness is enhanced in composites with
a connected hard phase rather than a disperse lamellar structure.
However, these results suggest that for certain deformation modes
the use of lamellar composites leads to improved energy dissi-
pation capacity. This trend is similar to the results reported in
Andreasen et al. (2014) for the design of viscoelastic composites.
A downside of this type of composite topology is that the high de-
gree of anisotropy means being subject to an off-axis deformation
mode can result in drastically decreased performance. Indeed, in
Wang et al. (2011) it is mentioned that composite designs with a
lower degree of anisotropy can provide an advantage in terms of
performance under arbitrary deformation modes.

The anisotropy of composites can of course be reduced by in-
creasing the degree of geometric symmetry and this is borne out
in the optimized composites shown in Fig. 4 under different sym-
metry cases. Here it can be seen that enforcing symmetry results
in optimized composites with a well-connected glassy phase, more
closely resembling those in Wang et al. (2011). While increasing
the degree of symmetry reduces optimality in terms of total plas-
tic work values under the prescribed deformation mode, it offers
an improvement in performance under deformation modes aligned
along other axes. This is illustrated in Fig. 5, where the distribution
of plastic work density within the glassy phase of the deformed
optimized RUCs obtained under uniaxial compression and com-

bined shear and compression (case 2) with different symmetries
is shown for both on-axis and off-axis deformation. The total plas-
tic work in the RUC domain (WP) is also provided. Here, on-axis
refers to the deformation modes prescribed during optimization
(ie. ViI=[0 0 0 -02] and Vii=[0 0 0.2 -0.1], respec-
tively) and off-axis to the same deformation modes but with the
axes of application flipped (i.e. Vii=[-0.2 0 0 0] and Vii=
[-0.1 0.2 0 0], respectively). For the case of uniaxial compres-
sion, plastic work density distributions are shown for the cases
of no symmetry and square symmetry. For the case of combined
shear and compression, plastic work density distributions are only
provided for the case of orthotropic symmetry since this deforma-
tion mode is the same as that used for case 1 of combined shear
and compression and the optimized composites obtained under
the other symmetry cases match.

When the degree of symmetry is reduced, the plastic work val-
ues under off-axis deformation decrease due to the glassy polymer
phase being utilized in an inefficient manner. This inefficient us-
age is especially clear for uniaxial compression, as the reduction
in plastic work is 87.6%. However, when square symmetry is en-
forced the plastic work values match under on-axis and off-axis
deformation. This can be seen in Fig. 4 for the combined shear
and compression deformation mode by comparing the two cases.
Thus, the tradeoff in terms of optimal design performance under a
given deformation mode and more robust performance under gen-
eral deformations can be controlled by enforcing different degrees
of geometric symmetry.

Finally, to demonstrate the advantages of using topology opti-
mization to design composites of this type, Fig. 6a shows the con-
vergence curve for the shear deformation mode with square sym-
metry enforced. Keeping in mind that the initial density distribu-
tion used is a cross-section of an SC topology (albeit under plane
strain conditions), this convergence shows the level of improve-
ment that can be achieved by optimizing the RUC topology. Fur-
thermore, Fig. 6b compares the evolution of macroscopic von Mises
stress for this optimized RUC to that of the SC RUC with discrete
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Fig. 6. Convergence curve and comparison of macroscopic stress-strain behavior of optimized composite RUC obtained under simple shear with square symmetry.

glassy polymer and soft elastomer phases (i.e. py = 1 and ps = 0)
under the same shear deformation mode. These results show that
a topology optimization-based approach for designing bi-material
composites can lead to significant improvement in design perfor-
mance.

3.2. Volume fraction

Next, the influence of phase volume fraction on optimized
composite designs is investigated by considering case (iv) from
Section 3.1, i.e. the combined shear and compression deforma-
tion mode (Vil = [0 0 0.2 -0.1]). Two new volume fractions
are considered for the hard glassy polymer phase, i.e. V; = 0.35
and V; = 0.65. The initial density distribution again has the den-
sity values for the hard glassy polymer matrix set to py = 0.7 and
density values for the elastomer inclusion set to ps = 0.3 but the
area of the inclusion differs based on the prescribed volume frac-
tion. Fig. 7 shows the optimized composites obtained when enforc-
ing square symmetry for these two volume fractions as well as that

obtained in Section 3.1 using V; = 0.5. It can be seen that the opti-
mized composites are the same topologically, but the thickness of
the glassy polymer members varies with volume fraction. Accord-
ingly, as the volume fraction of the glassy phase is increased, the
energy dissipation capacity of the composite (i.e. the plastic work)
increases. Also shown in Fig. 7 is the distribution of plastic work
density within the glassy phase of the deformed optimized RUCs
for each volume fraction. It can be seen that for the different vol-
ume fractions, the composites make use of the same deformation
mechanisms to maximize the plastic work, resulting in very simi-
lar distributions. Hence, the topology of material phases appears to
have a greater influence on energy dissipation capacity than does
volume fraction.

The volume fraction of constituent phases influences not only
the energy dissipation capacity of the composite but also the
degree of anisotropy. In Cho et al. (2016) the influence of vol-
ume fraction of the hard phase on the degree of anisotropy in
connected and disperse composite topologies was investigated. It
was found that in composites with a connected hard phase the

V; =035 vV, =05 V; = 0.65
= 2.468 x 10° =3.926 x 10° = 5.456 x 10°

Optlmlzed composite

40

30
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Fig. 7. Optimized composites and plastic work density distributions in glassy phase of deformed optimized RUC under combined shear and compression and square sym-

metry using different volume fractions of glassy phase.
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Fig. 8. Optimized composites under simple shear and orthotropic symmetry with different viscoplastic rate effects in glassy phase.

degree of anisotropy decreases as the volume fraction is increased,
while in composites with a disperse hard phase the anisotropy in-
creases with increasing volume fraction. In composites with cubic
symmetry (square symmetry for the plane strain case), there are
three independent elastic constants and the degree of anisotropy
can be determined in terms of these constants as
20y
Ci1 —Cp2

where the constant Cq; is a measure of the stiffness under longi-
tudinal compression, C;, is a measure of the stiffness under trans-
verse expansion and C44 is a measure of the stiffness under shear-
ing. The anisotropy ratio a thus contains information on how the
composite stiffness changes with orientation of the RUC, and a = 1
corresponds to isotropic behavior. This ratio can be calculated for
optimized composites in terms of the components of the homoge-
nized tangent moduli in Eq. (10), but calculated for the initial lin-
ear elastic response (see discussion on calculation of initial tangent
moduli in (Alberdi and Khandelwal, 2019)) when square symme-
try is enforced. The anisotropy ratios for the optimized composites
shown in Fig. 7 are a = 9.717 when V; = 0.35, a = 4.061 when
V¢ = 0.5 and a = 2.032 when V; = 0.65. Hence, the anisotropy de-
creases with increasing volume fraction, mirroring the trends ob-
served in (Cho et al., 2016) for composites with a connected hard
phase.

a (29)

3.3. Rate effects

In the previous optimization examples, the elasto-viscoplastic
model parameters are set so that the behavior is rate-independent
(i.e. the rate sensitivity parameter $ = 0). This mimics the type
of loading considered in Wang et al. (2011) where the defor-
mation is applied slowly so that rate effects are negligible. As
glassy polymer materials show rate-dependent plastic behavior,
however, the influence of this behavior on the optimized compos-
ite topologies is now investigated. Note that elastomeric materi-
als may have non-negligible rate dependent viscoelastic behavior
at high rates, but this behavior is not captured in the hyperelas-
tic model used for this phase. The simple shear deformation mode
from Section 3.1 (ie. Vil = [0 0.25 0.25 0]) is considered with
orthotropic symmetry enforced and optimization is carried out for
two different cases considering rate effects with a volume fraction
constraint Vy = 0.5 on the glassy phase. The rate effects for these
two cases are enabled by setting 3 = 1 and controlled by setting
the ratio between the viscosity parameter and total time of de-
formation (u/ty) to 5 and 500, which correspond low-to-moderate
and high rates of deformation, respectively. Fig. 8 compares the
optimized composites obtained for these two cases to that from
Section 3.1 where no rate effects are considered. It can be seen
that the consideration of rate effects results in different compos-

No Rate Effects

Rate Effects: u/t, =5

Rate Effects: u/t, = 500

1200 1200 1200
1000 1000 1000
800 800 800
600 600 600
400 400 400
200 200 200
0 0 0

Distribution of von Mises stress in glassy polymer matrix

& ' 0.4

1.

W

0.4 0.4
“‘\
v 0.3 0.3
y
0.2 0.2
0.1 0.1
0 0

Distribution of accumulated plastic strain (@) in glassy polymer matrix

Fig. 9. Distributions of von Mises stress and accumulated plastic strain in glassy phase of deformed optimized RUC obtained with different viscoplastic rate effects.
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ite topologies. The optimized composites obtained under the two
different rate cases are the same topologically, but have slight dif-
ferences in their shapes.

Of note is that the total plastic work in the optimized compos-
ite obtained using u/t, = 5 is the highest of the three cases, while
that in the optimized composite obtained using w/t; = 500 is the
lowest. This can be explained by looking at the distributions of von
Mises stress and accumulated plastic strain in the glassy polymer
phase of the deformed topologies, as shown in Fig. 9. Here it can
be seen that increasing the rate of deformation results in higher
stress values, but lowers the amount of plastic flow. At the low-
to-moderate rate captured by u/t, = 5, the stress is much higher
compared to the rate-independent case while significant plastic
flow still occurs. As the plastic work depends on both the stress
level and the amount of plastic flow, this case results in the highest
amount of plastic work. At the high rate captured by w/t, = 500
the stress is much higher than in the other two cases, but the to-
tal plastic work is much reduced due to the negligible plastic flow.
As such rate effects influence how the material phases should be
arranged to increase energy dissipation capacity, they must be con-
sidered for design scenarios where composites are subject to rapid
loading times.

4. Soft energy dissipating phase

For the glassy polymer and elastomer materials investigated
in Wang et al. (2011) and modeled in the previous sections, the
hard material phase provides both the stiffness and energy dis-
sipation capacity. The role of the soft phase is thus to provide
the stress transfer mechanisms which allow a greater volume of
the hard phase to be exploited to enhance these properties. This
phenomenon is reflected in optimized composite topologies where
the glassy polymer phase forms a connected frame which is rein-
forced by the elastomer phase. As nonlinear problems are highly
dependent on material parameters, it is worth investigating how
changing these parameters can affect the response and optimiza-

tion of bi-material composites. Specifically, an alternative way to
combine hard and soft phases in a composite is to have the hard
phase provide stiffness while the soft phase provides energy dis-
sipation capacity. This approach is now investigated by using the
hyperelastic model as the hard phase and the elasto-viscoplastic
model as the soft phase. The parameters of the hyperelastic phase
are set to G = 1241 and ¥ = 3235 while the parameters of the
elasto-viscoplastic phase are set to E = 2500, v = 0.38, f, = 20
and K" = 125. The scaling factors xy and xs remain defined as
in Eq. (13), but will be swapped for this case in the sensitivity
derivative expressions presented in Appendix B. Hence p. = 1 cor-
responds to the hyperelastic hard phase while p. = 0 corresponds
to the elasto-viscoplastic soft phase. To carry out topology opti-
mization with these materials, the scaling factor y, in Eq. (20) is
set to 1 - as the optimizer can find discrete topologies without ex-
tra penalization - and the penalization parameter is kept as p = 3.
Analysis and optimization are carried out as discussed at the be-
ginning of Section 3.

4.1. Square RUC domain

The square RUC domain utilized in Section 3 is again consid-
ered. The initial density distribution is set to the SC cross-section
with inclusion scaled by the prescribed volume fraction, but the
matrix material is now initialized as the hard hyperelastic phase
while the inclusion is initialized as the soft elasto-viscoplastic
phase. Initial density values for the hard and soft phases are set
to py = 0.9 and ps = 0.1, respectively, and the volume fraction
constraint on the soft energy dissipating elasto-viscoplastic phase
uses V; = 0.5. Again, a filter radius of ry;; = 3 x ms is utilized. In
the optimized composites shown below the colors remain set so
that red represents the elasto-viscoplastic (soft) phase while blue
represents the hyperelastic (hard) phase.

The optimized composites and distributions of plastic work
density within each deformed optimized RUC are shown in
Fig. 10 for three different deformation modes: uniaxial compres-
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Fig. 10. Optimized composites and plastic work density distributions in deformed configuration of optimized square RUC under different deformation modes with hard

hyperelastic phase and soft elasto-viscoplastic phase.
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Fig. 11. Distributions of shear strain components and von Mises stress in deformed configuration of optimized square RUC under different deformation modes with hard

hyperelastic phase and soft elasto-viscoplastic phase.

sion under 20% strain (Vﬁ =[0 0 0 -0.2]), simple shear under
10% strain (Vi = [0 0.1 0.1 0]), and combined shear and com-
pression (Vﬁ =[-0.1 0.2 0 O0]). Also shown is the plastic work
capacity wP, i.e. the plastic work WP divided by the RUC volume V.
For all three deformation modes, the optimized composites consist
of hard phase inclusions within a matrix of the soft phase. Hence,
these optimized composites are disperse, having an unconnected
hard phase which is in stark contrast to the well-connected opti-
mized composites obtained previously. In fact, for this combination
of hard and soft phases the volume fraction constraint on the soft
energy dissipating phase is not even active. The percentage of soft
phase utilized is 30.0% for the uniaxial compression case, 12.7% for
the simple shear case and 15.7% for the combined shear and com-
pression case. This suggests that using a smaller percentage of the
soft energy dissipating phase results in superior energy dissipation
capacity than if a greater volume of this phase was utilized.
Looking at the distributions of plastic work density in the opti-
mized composites (Fig. 10), it can be seen that a large amount of
energy dissipation occurs throughout the entire soft phase. In fact,
this arrangement of material phases appears to have been deter-
mined so as to purposefully induce localized strain concentrations
wherein a large amount of energy can be dissipated. This is car-
ried out by allowing the hard inclusions to deform relative to each
other such that shear strains are localized within the thin layers
of the soft phase, leading to high shear stress values and result-
ing plastic work. For example, Fig. 11 shows the distribution of the
shear components of the microscale displacement gradient Vu(X)
throughout the RUC, and it can be clearly seen that shear strains
are localized in the soft phase. Also shown in Fig. 11 is the dis-

Fig. 12. Initial density distribution for hexagonal RUC domain when inclusion has
a volume fraction V; = 0.5.

tribution of the von Mises stress throughout the RUC, where the
higher stress values in the hard inclusions indicate that this phase
is providing stiffness to the composite. This localization of strains
leading to high energy dissipation thus explains why utilizing a
lower volume of soft phase is considered more optimal. Designs
of this type mimic natural materials which exploit similar phe-
nomena in their arrangement of material phases (Barthelat, 2015).
Hence, radically different phenomena are exploited to optimize
composites when the hard phase provides stiffness and the soft
phase energy dissipation capacity than when the hard phase pro-
vides both.
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Fig. 13. Optimized composites and plastic work density distributions in deformed configuration of optimized hexagonal RUC under different deformation modes with hard

hyperelastic phase and soft elasto-viscoplastic phase.

4.2. Hexagonal RUC domain

Next, the same material phases and deformation modes are
considered, but using a hexagonal RUC domain (RUC 2 in Fig. 1)
instead of a square RUC domain. Each side of this domain has a
dimension of 1000 and 6400 non-uniform plane strain F-bar ele-
ments are used for discretization. The filter radius used for topol-
ogy optimization with this domain is set to 80 and the initial den-
sity distribution is shown in Fig. 12, where the hexagonal inclusion
of elasto-viscoplastic phase is sized so as to meet the prescribed
volume fraction Vy = 0.5. Initial density values for the hard and
soft phases are again set to py = 0.9 and pg = 0.1, respectively.

Optimized topologies obtained under each of the three defor-
mation modes from Section 4.1 are shown in Fig. 13 along with the
plastic work density distributions within the deformed RUC config-
urations and the plastic work capacity wP. It can be seen that dis-
tinct topologies are obtained as compared to those with the square
RUC in Fig. 10, despite the same deformation modes and similar
initial density distributions. This is due to the fact that the hexag-
onal RUC represents a different type of periodicity and causes the
RUC to deform in a different manner (as shown in the deformed
RUC domain in Fig. 13). However, the optimized topologies follow
the same trends as when the square RUC is utilized, i.e. the soft
energy dissipating elasto-viscoplastic phase is arranged so as to in-
duce areas of highly localized plastic work. Again, in these exam-
ples the volume fraction constraint is not active as using a small
amount of the elasto-viscoplastic phase results in greater energy
dissipation capacity.

5. Conclusions

A topology optimization framework for the purpose of discov-
ering novel performance-optimized designs of bi-material compos-
ites with enhanced energy dissipation is explored in this study.
This work is motivated by the numerical and experimental stud-
ies in Refs. (Al-Ketan et al., 2017; Cho et al., 2016; Sabet et al.,
2018; Wang et al., 2011) which combine a hard glassy polymer
phase with a soft elastomer phase to enhance the stiffness, tough-
ness and energy dissipation capacity of composites. The topol-

ogy optimization examples investigated herein show the ability
of the framework to exploit the physical phenomena reported in
Wang et al. (2011) to improve energy dissipation capacity. Using
an initial topology corresponding to an extruded cross-section of
the square cubic composite investigated in Wang et al. (2011), sig-
nificant improvements in energy dissipation capacity are obtained
under different prescribed deformation modes. These results sug-
gest that a topology optimization-based approach for designing bi-
material composites can lead to significantly improved designs.

A key takeaway concerns the tradeoff between the use of
highly specialized anisotropic composite topologies and more ro-
bust topologies with a lower degree of anisotropy. The former re-
sult in very high energy dissipation capacity for a specific deforma-
tion mode while the latter can perform more optimally under gen-
eral deformations. Enforcing geometric symmetry leads to compos-
ites with a lower degree of anisotropy and a well-connected hard
glassy polymer phase, and the dependence of the anisotropy on
the volume fraction of this hard phase is illustrated. Additionally,
varying the volume fractions assigned to different material phases
during optimization illustrates the outsized role that the topolog-
ical arrangement of these phases plays in increasing energy dissi-
pation capacity as compared to phase volume fraction. The effects
of material rate dependence on optimized composite behavior are
also shown. These effects follow similar trends as those observed
in the design of multi-material structures with material rate effects
(Alberdi and Khandelwal, 2019). The design of composites with a
soft phase providing energy dissipation capacity and hard phase
providing stiffness is also carried out. Optimized designs highlight
how vastly different phenomena are exploited to dissipate energy
in optimized composites of this type. Namely, the hard hyperelas-
tic phase is arranged in a disperse manner so as to induce localized
strain concentrations in the soft elasto-viscoplastic phase.

There are numerous ways that the work presented herein can
be extended. First, elasto-viscoplastic models which consider dam-
age accumulation can be incorporated into the optimization frame-
work in an approach similar to Li et al. (2018). This is especially
relevant for problems considering a soft elasto-viscoplastic phase,
as the optimized topologies obtained in Section 4 exploit highly lo-
calized plastic work which can lead to damage accumulation and
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eventual material failure. Second, as composite strength is often
dictated by interface properties, homogenization and optimization
techniques which take the material interface into account should
be considered, see for example, the works (Firooz and Javili, 2019;
Saeb et al.,, 2019; Saeb et al., 2019). The authors are currently pur-
suing these avenues.
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Appendix A. Exponential return mapping algorithm

This appendix presents the exponential return mapping algo-
rithm used to numerically implement the elasto-viscoplastic ma-
terial model discussed in Section 2.3. For time step m + 1 at inte-
gration point r of element e, given information includes the current
and previous step deformation (characterized by Fe’f“ and ﬁg?) and
the previous step internal variables (75" = {bg'f, a'}). The purpose
of the constitutive algorithm is to calculate the current step stress
P™+1 internal variables ;™! and the consistent tangent modulus
Ar needed to evaluate the tangent matrix in Eq. (8). The expo-
nential return mapping algorithm detailed in this appendix is pre-
sented with the superscript removed from variables at the current
time step m + 1 and no reference made to element or integration
point number. Likewise, the bar is removed from any of the F-bar
quantities so that the algorithm is presented independently from
the type of element used.

Making use of the relations for the plastic distortion-rate tensor
LP = FP.FP~! — Fe-1 Ip Fe and the polar decomposition F¢ = VE.Re,
the rate equation for the plastic part of the deformation gradient
FP can be written as

F =R AR F? (A1)

This rate equation is numerically approximated using the expo-
nential mapping integrator, giving

FP = exp [AtRT AR®].F} = R" _exp[AtA]R° F} (A2)

The exponential map integrator is used as it preserves the in-
compressibility of plastic flow, i.e. it ensures that det FP = 1. Using
Eq. (A.2) along with the definitions F¢ = EFP~1 and b® = V¢2 re-
sults in the following discrete flow rule for b®

b° = exp[-2AtA].F.F- b F-TFT = b*" exp[-2AtA]  (A3)

where the trial elastic left Cauchy-Green deformation tensor is de-
fined as b®" = AF.bS.AFT with AF = F.F;! and can be seen to
depend on the given previous step information b and F; and
current step information F. The discrete flow rule Eq. (A.3) can
be greatly simplified by considering its evaluation in the space
spanned by the elastic left principal directions I, a = 1, 2, 3. In this
space,

3
b= AL
a
3
b — Z )\Z,trzlg,tr ® lg.tr

a

(A4)

Given the coaxiality between b® and t resulting from the as-
sumption of isotropy, together with the coaxiality between b® and
A resulting from the assumption of associativity, the principal di-
rections I¢ coincide with 15", Thus, in principal space, Eq. (A.3) is

1S =exp —2Ay\/§na At a=1,2,3 (A.5)

where n, are the principal components of the flow vector n. Tak-
ing the natural logarithm of this expression results finally in the
discrete flow rule for the logarithmic elastic principal stretches
g =1InAg, ie.

3
g8 =gl — Ay\/;na, a=1,2,3

which can be seen to coincide with the discrete flow rule for the
elastic strains in the small strain case (de Souza Neto et al.,, 2011).

Complementing the discrete flow rule in Eq. (A.6) with the dis-
crete flow rule for the accumulated plastic strain « obtained by
utilizing a backward Euler integration thus provides the necessary
equations for carrying out the return mapping algorithm. The first
step of this algorithm is the elastic trial step which is performed
as follows

(A.6)

Given: F, b*" =FF 'B.FTF, o' =ap

Evaluate t/" using the trial elastic principal stretch values A&t
in Eq. (15). Compute

str — IPZ!ethr

qtr — Khatr

¢tr(.[tr’ qtr) — \/3”3"” _ (Uy + qtr)
‘L'3"]T, st — [stlr sgr sgr]T, and ”str” —
st2 452 4 st2. The matrix Py, =I—1/3 where 1 is a matrix
whose entries are all 1.
If ¢ < 0 then the current step is an elastic step and the fol-
lowing elastic updates are made

(A7)

i tr _ tr tr
with 7% = [t] 75

be — be[l‘ a:atr 7= T[T

Ar = A (A.8)
where A is the matrix form of the tangent moduli tensor A =
024 /OFOF for the strain energy function defined in Eq. (15).

Else, if ¢ > 0 then plastic flow is occurring in this step and
the algorithm proceeds to Step 2, the viscoplastic return map-
ping step. In this step, the initial value problem defined by the
flow rules given in Eq. (18) must be evaluated numerically. Making
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use of Eq. (A.6), the discrete update equations for the time step
At =t — ty are

3
gl = gbtr — Ay\/;na, a=1,2,3

o =an+ Ay
¥
1 3 |Isll
Ay = — 2P0 —1 At
L < 2 ¢
def Sa

Ng = w0 A.9)
= sl (

Combining Eqs. (A.9), and (A.9); thus results in the nonlinear

algebraic system
€€_€elr+Ay\/§n
o
1 =
At 3 sl \° 0
Ay — — = -1
YT ( 22(Ap)

which is solved for the unknowns X = [e®
Newton-Raphson method with tangent matrix

(A.10)
Ay]" using the

Ay |3 3
I+ -~ |=(P%, —n®@n)B ~n
dR IIsll 2 (Fae ) 2

B.1: Derivatives of global constraints

The derivative of the global constraint R¥ with respect to the
element density variable vector p is

ax = At ' E T ] At \ oulsl e
WAy + At 2 2\ uAy + At )] pAy + At

Here, B is a matrix containing the terms dzq/dej, a,b=1,2,3.
The converged values of &f are used to obtain the elastic principal
stretches A and by extension b¢. The converged values 7, are used
to obtain T and the first Piola-Kirchhoff stress tensor is calculated
as P = t.FT. The algorithmic consistent tangent modulus Ar can
then be calculated in component form as

Ajjia = JaipirEy ! (A12)
where the spatial moduli tensor a is given as

ot
Ja= gt (IRDT b EN) — T (A13)

and the products X and & between two second order tensors
are defined as (AIZ’B)ijkl = Aikle and (ADB)ijkl = AilBjk- The term
dt/0b%" is computed in principal space using data from the con-
stitutive Newton-Raphson routine as

aT

%ef’tr} = BDy
L% dab=123

with

- -1
dR | |Dy Dy
dX| ~|Da Dxn

and then brought to physical space for use in Eq. (A.13). This com-

pletes the exponential return mapping algorithm.

(A14)

Appendix B. Derivatives for sensitivity analysis

Based on the definition of global and local state variables de-
fined in Section 2.6, the derivatives needed for sensitivity analy-
sis (Eq. (23)) are presented in this appendix. In the expressions
below, use is made of the products X and [ between two sec-
ond order tensors, defined in Appendix A as (AXB);;; = AyBj; and
(AXB)j; = AyBjt.

k
aRk ’194'6 al:iflt
W = | e=1 8,0e (B-l)
0

with
OFe ., 9Pk

int _ w rk" BT er
3 e ; Ter T gp,
Bﬁl‘ dXH ~Vpk ~kT 0 Xs ~Ek

L = : PHE B.2
0 0e 0 0e Te Fe 0pe & (B-2)

The derivatives with respect to the global variables i are

o ((OFS
aRk . 8Rk_ r.'/i ( u;{t) AT B3
gt O gw |\ 0w (53)
A 0
and the term BFI.Z';/ ouk is given as
(A1)

) N ) O L

int _ er“]BT er+ a—1 er“ ZBTPk® er
8u’é rg]: e Per aug ( )Zl: rle, Dele, Bu’g
OP% ( THEX Sup o mer) L OF

L= xshgo — xuP OF; ): :
ouk ¢ ¢ é ouk

I

ar’g; — rk Fk’T : 8Foi’r _F’(J . aFeIf (B4)
duk o\ 0% T quk T uk

Finally, the derivatives with respect to the local variables ¢ are

k
ORk ore | " (2
——— =0, — = | e=1 ock (BS)
ack-1 ack e
0
with
OFe,  [OF O9F OF  OF
int _ int int int inti| (B.6)
ock | ock  ock  ock ok
The derivatives 81-‘,2’; /9ck are
k r ~ T
% — Wrrk[H T aPé(y O 0
ack | " obe’
and
Pk ~kT
a")“k 8 XHTer 'Fe,
= (B.7)
obg abe,
In Eq. (B.7), the term aﬁg/abg’; has the component form
BT
atlpFPj _ a‘cip F—T (B 8)
obe,  obe P )

and 97VP/0b¢ can be computed in the constitutive algorithm.
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B.2: Derivatives of local constraints

The derivative of the local constraints H* with respect to the
element density variable vector p is given by the block diagonal
matrix

" OHX 0 o | T OHK 7]
8101 3,0e
OHX o OH{

L 902 with 2HE _ | 9P | g gy

p : D : 9pe OHE
: oo T
0 0o ... % OH,

L apnye _ L 9,0e

and the entries 8H£,‘r/8pe are only nonzero at a viscoplastic step,
having the form

T
OHX |:8h§ﬂ 0 ahgra]

9 e 9 pe 0 0e
oh, _ _be’tr.aexp[—ZAtA’gr]
0 0e er 0 Pe

(B.10)

g
ohg, _ \/E At nk - X VP
9 e 2\ pAyk+ac) "\ dpe

The term 8exp[—2AtA§r]/8 pe is computed in the principal
space, where for each principal value the derivative is

dexp [—ZAy\/gna]

dpe
3 3 ong (I xu
= —2Ay\/gexp |:—2Ay\/;na:| Bra( 300 ), a=1,2,3
(B.11)
The derivatives with respect to the global variables i are
OH* OH" OH* OH
ok = oJuk | and gkt = ouk-1 (B.12)
0 0
and the nonzero submatrix dH¥/du* has the structure
dHY
k
o | g OHE ng (OHPY
= : — = ,j=1,2,...,n
duk : W Bue =4\ Guk )Y cle
aH'(‘(ele
ouk
(B.13)

Here, BHJ’F/au’g =0 if j + e. The nonzero entries, dHX/du¥, are

T
BH!’C_[aHg] OHY  OHE BHé;] (B.14)

ouk ouk  out  out  Quk

with
;
OH;, obg"
=[-—— 00
ouk ouk
abs" BT OFk

ouk AEX "~ Juk

opetr ~k T o~y g ~k o o~k=17T
e _IRAF, b3 " E' + AF, b, Ol (B.15)
OF,,
for an elastic step, and
OHS [ obg" , '
Suk = [— Tk .exp[-2AtAL] 0 0 (B.16)

for a plastic step. The nonzero submatrix dH¥/duk~1 in Eq.
(B.12) has the same structure as in Eqns. (B.13) and (B.14), and the
nonzero entries JHX /out~! are

aHk abe,tr T
o7 = |:_ w7 00
ous oug
by _ obs"  FF!
oul~!  9F T quk!
opetr ~k ko k=1T
~lfl1 = —AF, X AFer‘bgl: 1 Fe,
OF,,
kg k1T .
—AF, .b; F, OAF; (B17)
for an elastic step and
8"5 |: 8be,tr ] T
= [ - exp[-2AtA! 0 0i| (B.18)
ouk-1 ouk-1 [ :]

for a plastic step.
The nonzero derivatives 9H*/dck and 9H¥/dck —1, have the
block diagonal matrix form

_Lﬂf . _
dck
OH}
. Ak 0
JH 2
Fra :
oOHX
0 0 . a kele
L cnele -
- oH! _
dck1 0
OHX
8HI< 3(.‘]2“1 0
dck-1 ~ . . . . (B19)
k
0 0 .. aHnele
i der,! |

due to the fact that ¢k and czf are independent of each other and
that H¥ and H]’F are uncoupled for j # e. The submatrices dHYX/dck
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have this structure for the same reasons, i.e.

- oHL _
! 0 0
ock
oHk
e 0 0
dHK ace,
ek dH ’
0 0 %
ack,
0 0 OHY,
L dcg, |
- OHE -
L0 0 0
acg,
OHX
0 pat 0
OH; _ o6 (B.20)
gk H\ '
0 0 . 2
ack!
OHkK
0 0 k841
L dee, " |
The nonzero entries JHX /dck. are
I, 0 0
OHX
r—|0 1 0 (B.21)
dck
0 0 1
for an elastic step, and
- B 3exp[—2kAtA’e‘r] 0 e aexp[—ZkAtA’gr]
obg AVer
OHE o 1 -1
ack
Ce, \/; At z?"k _8T¥rpk a¢ .
2\ pavkac) T gpgk Bk 0
14 k
3 At O pllsg Il
0= \/;<;LA)/" +At> Ay Tar (B.22)
er er

for a plastic step. Again, the derivatives of the term exp[—ZAtA’e‘r]
are computed in the principal space as

8exp[—2Ay\/§na]

3 3
B¢ = —2Ay\/;exp|:—2Ay\/;na:|

ong 071, B
X 9t (X”ab;-;)’ a,bc=1,2,3

= —2\/gexp |:—2Ay\/§na:|na (B.23)

Finally, the nonzero entries of the derivative matrix 0H¥/dck — 1
are

dexp [—ZAy\/gna]

Ay

abe,tr
. —% 0 0
oH; obg’
acg—l - 0 -1 0
0 0 O
8be,tr
er

1 ~k ~Kk - -
BT = 2 (AFer X AF, + AF¥ O AFJj) (B.24)
er

for an elastic step and

obg'"
OH —W.exp[—ZAtAﬁr] 0 o0
ST 0 10 (B:25)
0 0 0
b exp[—2AtA,; et
where —2 eXp[kq Dol _ — =1 €Xp[—2AtA,;] for a plastic step.
8bi‘l ab;

B.3: Derivatives of objective function

Discretizing the plastic work used to evaluate the objective
function (Eq. (20)) using the trapezoid rule gives

p - & & 3 k _vpk k
RN D3] D3I (NI
k=1

e=1 \r=1

(B.26)

From this, it can be seen that the nonzero derivatives are
OWP[3p and OWP[dck, which are given as

owe  [owe awp  awe
dp [ dp1 0o 9 g

k=1 r=1

3 8TVPk
+ XAWT\/;Ayeli age 3"’5,

owr [ (9 3
-5 (5 (B

k

81,’;/") _ 8XH 28va be (B 27)
0 pe 0 0e obe - '
and

owr  [owP awr  awr

ack | ok dck ok,

wr [awv awr  awe awv}

ack | ock  ock  dck  dck,

awe 3 dTr .o !
e XAWr\/;[AV§,< 3;;x R M Bb:;) 0 " "’e{|

er er er
(B.28)

where the derivatives 37" /9bg and dnk /db% are evaluated in
principal space and then transformed to physical space.

Appendix C. Verification of sensitivity analysis
In this Appendix, implementation of the adjoint sensitivity

analysis is verified by comparing the values obtained using the ad-
joint method to those obtained using the central difference method

109 31201
20| 19| <13 (1211
10099 |-+ 193192191

a) Element numbering

b) Density distribution

Fig. C.1. Square RUC domain for sensitivity verification with element numbering
and density distribution.
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2 j — Adjoint Method j
ot - - CDM |

dW? [dx,

-14 : : : :
0 20 40 60 80 100
Element number e
a) No Rate Effects

2 j — Adjoint Method j
- - CDM

0
5 2f ]
=
~
=
= 4t W |

8 L " " L
0 20 40 60 80 100

Element number e
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Fig. C.2. Comparison of sensitivity values obtained using the adjoint method and CDM

phase under simple shear.

(CDM). The sensitivity of the total plastic work W with respect to
design variable x, is calculated using the CDM as follows

dWP(x) WP(x+ Ah) —WP(x — Ah)
dx. 2Ah

where Ah is a vector containing all zeros except at the compo-
nent corresponding to Xx., which has the perturbation value Ah,
here taken as 10~>. The example used for sensitivity verification is
a square RUC domain of dimensions 1000 by 1000 discretized into
a 10 x 10 mesh of plane strain F-bar elements with a thickness of
1. The density distribution is set to correspond to that discussed in
Section 2.5, i.e. a matrix of glassy polymer phase and circular in-
clusion of soft elastomer phase with the radius set so that the area
of the inclusion corresponds to a volume fraction of 0.5. For this
example the density values used in the hard glassy polymer matrix
are py = 0.7 while the density values used in the soft elastomer
inclusion are ps = 0.3. Fig. C.1a shows the discretized domain and
element numbering while Fig. C.1b shows the initial density distri-
bution. The material parameters discussed in Section 2.4 are uti-
lized and no filter is considered (i.e. dW’[dx = dWP[d p).

This RUC is subject to a simple shear deformation mode under
30% strain (Vii=[0 0.3 0.3 0]) for two cases. In the first
case no rate effects are considered in the elasto-viscoplastic glassy
polymer phase (i.e. § = 0 in the viscoplastic model) while the sec-
ond case considers rate effects using 9 = 1 and a ratio between
the viscosity parameter and total deformation time u/t; = 500,
corresponding to a high rate of deformation. The sensitivity val-
ues obtained using the adjoint method and CDM for both cases
are shown in Fig. C.2, where it can be seen that the sensitivity
values match closely, verifying the correct implementation of the
path-dependent adjoint sensitivity analysis.

(C1)
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