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a b s t r a c t 

This study investigates the use of topology optimization as a method for discovering novel layouts of

material phases which enhance the energy dissipation capacity of bi-material polymeric composites. Mo- 

tivated by the experimental and numerical results in Wang et al. (2011), a multi-material topology opti- 

mization approach is developed to design composites consisting of a hard glassy polymer phase and soft

elastomer phase undergoing large deformations. Computational homogenization is carried out to simu- 

late the composite behavior and the energy dissipated as plastic work in the glassy polymer phase is

maximized. The topology optimization examples investigated herein show the ability of the developed

framework to exploit the physical phenomena reported in Wang et al. (2011) to improve energy dissipa- 

tion capacity. Different deformation modes are considered and the influence of symmetry, phase volume

fraction, and material rate effects on optimized composites is investigated. Additionally, the design of

composites with a soft phase providing energy dissipation capacity and hard phase providing stiffness

is carried out to show how vastly different phenomena are exploited to dissipate energy in optimized

composites of this type.

© 2020 Elsevier Ltd. All rights reserved.
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1. Introduction

In natural materials, hard and soft phases are commonly used

in conjunction to enhance mechanical properties such as stiffness,

toughness and energy dissipation ( Barthelat, 2015 ; Zhao et al.,

2014 ). A number of recent studies aimed at improving the perfor-

mance of engineered composites have used this observation as a

guiding principle, focusing on the use of polymeric materials for

both the hard and soft composite phases. The use of polymeric

materials is motivated by their numerous advantageous properties,

which include low cost, light weight, durability, scalability, and

multi-functionality ( Landel and Nielsen, 1993 ; Mai and Yu, 2006 ).

Moreover, there has been profusion of additive manufacturing

technologies in recent years which can employ and combine a vast

range of polymeric materials with different mechanical properties

and functionalities, allowing for freeform design of advanced mul-

tifunctional polymeric composites ( Khoo et al., 2015 ; Vaezi et al.,

2013 ). 

The use of additively manufactured polymeric materials to de-

sign bi-material periodic composites consisting of hard glassy poly-

mer and soft elastomer phases was investigated numerically and
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xperimentally in Wang et al. (2011) . These composites were de-

igned based on level set structures associated with triply periodic

inimal surfaces with varying volume fractions of the hard and

oft phases. It was found that the inclusion of the soft elastomeric

hase constrains and provides support to the hard glassy phase,

edistributing stresses throughout the composite so that a more

niform stress distribution can occur in the hard glassy phase. The

esult is that the bi-material composites have more even stress

istributions and enhanced stiffness compared to corresponding

ellular materials using only the glassy polymer phase. Moreover,

lastic yielding in the hard glassy phase was found to occur for a

reater volume of material when supported by the soft elastomeric

aterial, resulting in enhanced energy dissipation capacity. These

ndings suggest that such phenomena can be exploited so as to

mprove the energy dissipation capacity of composites by spread-

ng plastic deformation throughout the energy dissipating glassy

hase, prompting the consideration of these types of composites

or use as energy dissipative elements in advanced structural

omponents and armors ( David et al., 2009 ; Hogg, 2006 ). 

A number of studies have been carried out to further inves-

igate the properties of these bi-material polymeric composites,

ith the stress transfer and strain sharing mechanisms reported

n Wang et al. (2011) also observed experimentally in Al-

etan et al. (2017) and Sabet et al. (2018) . The influence of

https://doi.org/10.1016/j.ijsolstr.2020.02.006
http://www.ScienceDirect.com
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Fig. 1. Solid body with periodic microstructures and corresponding RUCs. Periodic 

regions of the boundary are shown for each RUC. 
onnectivity on the composite performance was investigated in

ho et al. (2016) and Sabet et al. (2018) , and it was shown that use

f a continuous hard phase results in enhanced stiffness compared

o disperse composites such as particle-reinforced, fiber-reinforced

nd lamellar types. Additionally, the anisotropy of the connected

omposites was found to be higher than that of disperse compos-

tes at low volume fractions, but the opposite trend was observed

t higher volume fractions ( Cho et al., 2016 ). These types of com-

osites have also been investigated for use in acoustic bandgap

nhancement ( Chen and Wang, 2014 ), where it was shown that

hey can lead to a coupling of local resonance and Bragg scat-

ering phenomena by tailoring the topological arrangements of

he phases. All of these studies show the promise of bi-material

omposites for enhancing properties such as stiffness, toughness

nd energy dissipation. Moreover, they have emphasized how the

opological arrangement and volume fraction of constituent phases

lays a large role in the composite performance and how the use

f additive manufacturing techniques provides a high degree of

ontrol over the layout of constituent phases even at small scales.

ence, a computational design methodology such as topology op-

imization ( Bendsøe and Sigmund, 2003 ) – which provides precise

ontrol over the topological arrangement of material phases –

s a natural fit for use in discovering novel material layouts for

erformance-optimized composites with enhanced properties such 

s energy dissipation capacity. 

The use of topology optimization to discover composite mate-

ial designs can be traced back to the early works by Swan and

osaka (1997) and Swan and Arora (1997) , where hybrid Voigt-

euss mixing rules were used to obtain composites optimized for

omogenized properties such as stiffness ( Swan and Kosaka, 1997 )

nd a combination of stiffness and ultimate strength ( Swan and

rora, 1997 ). Notably, in Swan and Arora (1997) elastoplastic com-

osites consisting of a hard Boron phase and soft epoxy phase

re optimized for ultimate strength, which is closely related to

nergy dissipation capacity. The optimized composite design ob-

ained therein has a well-connected hard phase and shows a sig-

ificant improvement in terms of ultimate strength compared to

 disperse aligned fiber composite. Subsequent studies have been

ostly limited in their focus to the design of composites for im-

roved stiffness properties. For example, in Gibiansky and Sig-

und (20 0 0) and ( Sigmund, 20 0 0 ) topology optimization was ap-

lied to obtain optimized elastic composites with extreme bulk

odulus values approaching theoretical bounds. In de Souza Neto

t al. (2010) and Amstutz et al. (2010) , a level set approach

ased on the topological derivative was used to design compos-

tes by maximizing bulk and shear moduli as well as maximizing

nd minimizing Poisson’s ratios. Stiffness properties of viscoelas-

ic composites have also been improved by using topology opti-

ization; e.g. by optimizing homogenized loss and storage mod-

li ( Andreasen et al., 2014 ; Chen and Liu, 2014 ; Yi et al., 20 0 0 ;

un and Youn, 2018 ), or maximizing acoustic loss factor in tar-

et frequency ranges when the composite behavior of viscoelas-

ic material and air are considered ( Kook and Jensen, 2017 ). Inter-

stingly, in Andreasen et al. (2014) the resulting optimized com-

osites were able to achieve the theoretical upper bound for bulk

oss modulus if the hard phase was unconnected, but constrain-

ng the hard phase to be connected resulted in bulk loss mod-

li unable to reach the upper bound. Additionally, topology opti-

ization of electroelastic composites for acoustic bandgaps under

ctuation strains has been carried out ( Bortot et al., 2018 ). All of

he above studies have ignored the effects of large deformations

y adopting small strain or linearized theories, whereas topology

ptimization for material design using finite deformation theory

s limited to the design of single phase hyperelastic materials for

pecified Poisson’s ratio values ( Clausen et al., 2015 ; Wang et al.,

014 ). 
Motivated by the findings of recent studies ( Al-Ketan et al.,

017 ; Cho et al., 2016 ; Sabet et al., 2018 ; Wang et al., 2011 ), this

ork is devoted to investigating the use of topology optimization

or discovering novel layouts of material phases which enhance

he energy dissipation capacity of bi-material polymeric compos-

tes. In contrast to previous topology optimization studies for com-

osite design, finite deformation kinematics are adopted to model

he experimental behavior reported in Refs. ( Al-Ketan et al., 2017 ;

ho et al., 2016 ; Sabet et al., 2018 ; Wang et al., 2011 ). Different

eformation modes are considered and the influence of symme-

ry, phase volume fraction, and material rate effects on optimized

omposites is investigated. The paper is organized as follows. In

ection 2 the topology optimization framework is detailed, includ-

ng the multiscale modeling approach used to simulate compos-

te behavior, the material models used to capture the phenom-

na discussed in Wang et al. (2011) , the topology optimization

roblem formulation, and details needed for sensitivity analysis. In

ections 3 and 4 , a number of different optimized composites are

btained and discussed for cases involving different deformation

odes, symmetry enforcement, material volume fractions and ma-

erial rate effects. Section 5 then wraps up with conclusions. 

. Topology optimization framework 

To characterize the mechanical behavior of bi-material com-

osites for topology optimization, a computational homogeniza-

ion approach is utilized. Homogenization is a multiscale method

hich aims to replace the macroscopic constitutive behavior of a

eterogeneous microstructure with that of an effective homoge-

eous medium. For composites with regular periodic microstruc-

ures, heterogeneities can be identified with a representative unit

ell (RUC) whose periodic repetition results in a material sam-

le. In this case, the representative unit cell (RUC) provides a mi-

roscale domain over which volume averages are taken to ob-

ain the effective homogeneous medium. As this study focuses on

he design of such periodic composites, the topology optimization

roblem will be defined over an RUC domain and periodic repe-

ition of the optimized RUC domain will result in the optimized

omposite material. The concept of an RUC is illustrated in Fig. 1

here two different microstructures and their corresponding RUCs

re shown. 

.1. Multiscale model 

To carry out computational homogenization, inhomogeneous

istributions of microstructural stress and strain fields within an
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P̂  
RUC are obtained and averaged through the numerical solution

of a multiscale model chosen to represent the physical behavior

of the material. There are a number of approaches for deriving

multiscale models, but the model used for computational homog-

enization in this study is derived within a recently formulated

theoretical framework known as the Method of Multiscale Vir-

tual Power (MMVP). For the sake of brevity details of this deriva-

tion will be left out, but the interested reader is directed to Refs.

( Alberdi, et al., 2018 ; Blanco et al., 2016 ) for specifics. 

The multiscale model utilized in this study has kinematics at

each scale defined by the displacement field and displacement gra-

dient. Hence, the set of macroscopic kinematical variables is given

as { ̄u , ∇ ̄u } , where a bar is used to denote macroscopic quantities.

Likewise, the set of microscopic kinematical variables is { u , ∇u } =
{ u 

H + ˜ u , ∇ u 

H + ∇ ̃  u } , with the displacement field at the microscale

having been postulated as consisting of a homogeneous part u 

H 

driven by the macroscopic deformation, and a fluctuation part ũ

resulting from microscale heterogeneities. By postulating the ho-

mogeneous part u 

H as a first order expansion about a macroscopic

point X̄ located at the RUC centroid, kinematical constraints on the

behavior of a periodic microstructure are obtained as 

u ( X ) − u ( X − L ) = ∇ u . L on ∂�μ+ 
0 

and 

u = 

1 

V 

∫ 
�μ

0 

u ( X ) dV (1)

where V is the total RUC volume. Here, the RUC boundary ∂�μ is

divided into opposing regions ∂�μ− and ∂�μ+ such that ∂�μ =
∂ �μ+ ∪ ∂ �μ− and ∂ �μ+ ∩ ∂ �μ− = ∅ , as shown in Fig. 1 , and

L = X 

+ − X 

− for X 

+ ∈ ∂�μ+ and X 

− ∈ ∂�μ−. 

The constraints defined in Eq. (1) are then invoked in a

variational principle – the Principle of Multiscale Virtual Power

(PMVP) – to derive the governing RUC equations and constitu-

tive homogenization relations for volume averaging. The PMVP

is a variational extension of the classical Hill-Mandel principle

( Hill, 1972 ; Mandel, 1966 ) which equates power expenditures at

the macro- and microscales. For the model laid out above, this

variational statement is 

P : ∇δu = 

1 

V 

∫ 
�μ

0 

P : ∇δu dV ∀ δu ∈ V kin , ∇δu ∈ R 

3 × R 

3 (2)

where P is the first Piola-Kirchhoff stress tensor and V kin is the

space of displacement variations δu which satisfy the kinematical

constraints in Eq. (1) . The variational statement in Eq. (2) can be

considered as a stationary principle for some unconstrained func-

tional 
� 

� by employing Lagrange multipliers ( γ) instead of restric-

tion to the constrained space V kin . The stationary conditions for

this functional then result in the following multiscale model 

Given ∇ u 

t 

Find u ( X ) = ∇ u . X + ̃

 u ( X ) and γ such that ∀ δu ∈ H 

1 
(
�μ

0 

)
∫ 
�μ

0 

℘ 
(
F t ( X , t ) 

)
: ∇δu dV = − 1 

V 

∫ 
∂�μ+ 

0 

γ . ( δu ( X ) − δu ( X − L ) ) dS 

u ( X ) − u ( X − L ) − ∇ u . L = 0 on ∂�μ+ 
0 

1 

V 

∫ 
�μ

0 

u ( X ) dV = 0 

Obtain P 
(∇ u 

t 
)

as 

P = − 1 

V 

∫ 
∂�μ+ 

0 

( γ ⊗ L ) dS (3)

Here ∇ ̄u 

t is the history of the macroscale displacement gradi-

ent ∇ ̄u , and the tensor valued functional ℘ represents prescribed

general microscale constitutive relations, i.e. P ( X , t ) = ℘( F t ( X ,t ))

where F t denotes the history of the deformation gradient F =
u + I = ∇ ̄u + ∇ ̃  u + I at each point in the RUC domain. Eq. (3) 1
s the weak form of linear momentum balance over the RUC do-

ain in the absence of body forces and Eq. (3) 3 precludes rigid

ody translations of the RUC (see Eq. (1) 2 ). The multiscale model

n Eq. (3) defines the constitutive relations P̄ ( ∇ ̄u 

t ) for an effective

omogeneous medium which encapsulates the behavior of the het-

rogeneous material represented by the RUC. 

.2. Computational homogenization 

The multiscale model in Eq. (3) is numerically evaluated us-

ng the finite element method, following the framework laid out

n ( Alberdi, et al., 2018 ). The resulting set of nonlinear algebraic

quations used to approximate RUC equilibrium for a given macro-

copic displacement gradient ∇ ̂

 ū (here the hat denotes that matrix

omponents are stored in vector form) is thus 

 ( u , ̂  γ ) = 

[
R 1 ( u , ̂  γ ) 

R 2 ( u ) 

]
= 

[
F int ( u ) + A 

T ̂ γ

Au − D ∇ ̂

 u 

]
= 

[
0 

0 

]
(4)

here the matrices A and D enforce the two kinematical con-

traints in Eq. (3) and 

̂ γ is the discrete vector of Lagrange multi-

liers. In order to account for incompressibility constraints in con-

titutive behavior, the F-bar finite element formulation is utilized

 de Souza Neto, et al., 1996 ), resulting in the global internal force

ector having the following form 

 int = 

n ele 

A 

e =1 
F e int 

 

e 
int = 

∫ 
�e 

0 

r a −1 B 

T 
e 

∼
P 

dV (5)

Here, ˜ P is the first Piola-Kirchhoff stress obtained from evaluat-

ng the constitutive relations in terms of the modified deformation

radient ˜ F . To avoid confusion with macroscopic quantities, a tilde

ill be used throughout instead of a bar for F-bar quantities. This

odified deformation gradient is defined as ˜ F = r a F 

 = 

det F 0 
det F 

(6)

here F 0 is the deformation gradient evaluated at the element

entroid, and the exponent a is 1/2 for two dimensional problems

nd 1/3 for three dimensional problems. 

A displacement control Newton-Raphson algorithm is used to

olve the nonlinear system of equations Eq. (4) . This requires the

acobian matrix 

 = 

⎡ ⎢ ⎣ 

∂R 1 

∂u 

∂R 1 

∂ ̂  γ

∂R 2 

∂u 

∂R 2 

∂ ̂  γ

⎤ ⎥ ⎦ 

= 

[
K T A 

T 

A 0 

]
(7)

here K T is the global tangent stiffness matrix, defined for the F-

ar formulation as 

 T = 

n ele 

A 

e =1 
K 

e 
T 

 

e 
T = 

∫ 
�e 

0 

B 

T 
e 

[˜ A T − a ̃  A T : 
(˜ F ⊗ ˜ F −T 

)
+ a ̃  P ⊗ ˜ F −T 

]
B e dV 

+ 

∫ 
�e 

0 

B 

T 
e 

[
ar a −1 ˜ A T : ̃  F ⊗ F −T 

0 − ar a −1 ˜ P ⊗ F −T 
0 

]
B 

0 
e dV (8)

ith 

˜ A T the algorithmic consistent tangent returned along with the

tress ˜ P by evaluating the constitutive algorithm in terms of ˜ F . Fol-

owing the solution of Eq. (4) , the macroscopic stress ̂  P̄ is obtained

n terms of the Lagrange multipliers ˆ γ using the discrete form of

q. (3) 4 as 

 

 = − 1 

D 

T ̂ γ (9)

V 
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Obtaining the macroscopic stress using Eq. (9) completes the

train-driven computational homogenization procedure wherein 

he macroscopic displacement gradient ∇ ̄u is prescribed and

he macroscopic first Piola-Kirchhoff stress is P̄ obtained. Ad-

itionally, the same discrete system can be used to perform

tress-driven computational homogenization (wherein P̄ is pre-

cribed and ∇ ̄u obtained) and mixed computational homogeniza-

ion (wherein some components of both P̄ and ∇ ̄u are prescribed

nd the remaining components obtained), see ( Alberdi, et al., 2018 )

or details. 

Finally, the homogenized tangent moduli tensor Ā which relates

ncrements of the homogenized first Piola-Kirchhoff stress P̄ to in-

rements of the homogenized deformation gradient F̄ = ∇ ̄u + I, i.e.

 ̄P = Ā : d ̄F , can be obtained by linearizing Eq. (9) following the

rocedure laid out in Alberdi et al. (2018) . It is given here as 

 = − 1 

V 

Q 

T S (10) 

here Q = [ 0 D ] 
T 

and the matrix S is computed by solving the

ollowing system 

 S = Q (11) 

n terms of the Jacobian matrix J defined in Eq. (7) . 

.3. Design parameterization and problem formulation 

A density-based parameterization is utilized for topology opti-

ization by assigning each element in the discretized domain a

ontinuous density variable ρe (0 ≤ ρe ≤ 1) which is used to rep-

esent whether the element contains one material phase ( ρe = 0)

r the other ( ρe = 1). Because this parameterization allows for the

xistence of intermediate densities (0 < ρe < 1) which do not rep-

esent either material phase fully, a material interpolation scheme

s needed. In addition to being able to interpolate between dif-

erent phenomenological models in a consistent way, this scheme

hould ensure that density values in the final design correspond to

istinct material phases. The bi-material interpolation scheme de-

eloped in ( Alberdi and Khandelwal, 2019 ) to meet the above crite-

ia is thus adopted in the present study. This interpolation scheme

s inspired by classical mixing rules and defines the strain energy

 within an element as 

 

e = χH ( ρe ) ψ H + χS ( ρe ) ψ S (12)

here ψ H and ψ S are strain energy functions for the harder and

ofter material phases, respectively. These are scaled by the fac-

ors χH and χ S which are functions of the volume fraction of

ach material phase. In order to ensure that the final topology is

ree of intermediate density values, penalization in the spirit of

he SIMP method ( Bendsøe and Sigmund, 1999 ) is utilized so that

he scaling factors χH and χ S contain a penalization parameter

 , i.e. 

H ( ρe ) = ρ p 
e 

χS ( ρe ) = 1 − ρ p 
e (13) 

The intent of this study is to design composites which can dis-

ipate the maximum amount of energy through a given volume

raction of hard glassy polymer phase ( ρe = 1) when the RUC

omain is subject to a prescribed macroscopic deformation mode

riven by ∇ ̂

 ū . For this purpose, the total plastic work in the RUC
omain is utilized as the objective function following the defini-

ion in Eq. (19) , and a volume fraction constraint is applied to the

lassy polymer phase. This results in the following optimization

roblem 

in 

x 
f 0 ( x ) = −W 

p = −
∫ 

t 

∫ 
�μ

0 

˙ w 

vp dVdt 

 . t . f 1 ( x ) = 

1 

V 

n ele ∑ 

e =1 

ρe ( x ) v e − V f ≤ 0 

R 

k 
(̂ u 

k , ̂  u 

k −1 , c k , c k −1 , ρ( x ) 
)

= 0 , k = 1 , 2 , . . . , n 

H 

k 
(̂ u 

k , ̂  u 

k −1 , c k , c k −1 , ρ( x ) 
)

= 0 , k = 1 , 2 , . . . , n 

0 ≤ x ≤ 1 

(14) 

here V is the total volume of the RUC design domain, v e is the

olume of element e and V f is the prescribed volume fraction

f the glassy polymer phase. A density filtering procedure – ac-

ounting for the periodicity of the domain – is used to ensure

esh-independency and control the length scale of topological fea-

ures ( Bourdin, 2001 ; Bruns and Tortorelli, 2001 ; Li and Khandel-

al, 2015 ). In this case, the design variables x are linearly mapped

y the density filtering operator to the vector ρ of density vari-

bles, which are obtained as a weighted average of the design vari-

bles of neighboring elements. 

The system represented in Eq. (14) is a PDE-constrained opti-

ization problem wherein constraint R 

k = 0 represents the global

UC equilibrium equations and H 

k = 0 represents the local in-

egration point constitutive equations. These constraints are en-

orced implicitly through FEA in a nested approach where the de-

ign variables x are updated by the optimizer and then used in

EA. Once FEA has terminated, the objective and constraint func-

ions are evaluated. During FEA, initial value problems describing

he evolution of internal variables in path-dependent constitutive

odels are evaluated by discretizing the deformation history into

 time steps. Thus, the implicit constraints R 

k = 0 and H 

k = 0 are

nforced at each time step k . At step k , internal variables are up-

ated using previous step and current step information and so the

mplicit constraints are functionally dependent on this data, rep-

esented by a set of global variables ˆ u and local variables c . Fur-

hermore, these constraints are dependent on the density variables

through material interpolation ( Eq. (12) ). Hence, they have the

unctional form shown in Eq. (14) . 

.4. Constitutive modeling 

For the bi-material composites investigated in Wang et al.

2011) , inclusion of a soft elastomeric phase enhanced energy dissi-

ation in the hard glassy polymer phase by transferring stresses in

 way that caused a larger volume of material to experience plas-

ic deformation. This stress transfer mechanism also enhanced the

tiffness of the composite compared to a cellular material without

he elastomer phase. In order to explore novel bi-material com-

osite designs using topology optimization, the phenomena de-

cribed above must be captured by the constitutive models utilized

ithin computational homogenization. In Wang et al. (2011) , FEA is

arried out using an elasto-viscoplastic model for the hard glassy

olymer phase and a nearly incompressible hyperelastic model for

he soft elastomeric phase. Likewise, in this study the following

onstitutive models are used. 

The elastomer phase is modeled using a nearly incompressible

yperelastic model with strain energy ψ considered to be split into

sochoric ψ iso and volumetric ψ vol parts. The isochoric strain en-

rgy function is chosen as the regularized Ogden model, defined

n terms of the principal stretches λa , a = 1, 2, 3 (i.e. the eigenval-

es of the right Cauchy-Green tensor C = F T . F ) as 
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ψ iso ( λ1 , λ2 , λ3 ) = 

N mt ∑ 

p=1 

G p 

αp 

[ 
λ

αp 

1 + λ
αp 

2 + λ
αp 

3 − 3 

] 
λa = J −1 / 3 λa = 

λa 

( λ1 λ2 λ3 ) 
1 / 3 

= λ
2 
3 
a ( λb λc ) 

− 1 
3 (15)

where J = det F is the volumetric Jacobian, N mt is the num-

ber of terms considered in the strain energy function, G p 

are constant shear moduli, and αp are dimensionless constants

( Holzapfel, 20 0 0 ). In Eq. (15) 2 , ( a, b, c ) are cyclic permutations of

(1, 2, 3). For the examples used in this study, only one term is

considered in the Ogden strain energy function, i.e. the parameter

N mt = 1. The shear modulus G p for this term is set to the shear

modulus G and the dimensionless constant αp = 2. This choice of

parameters causes the regularized Ogden strain energy function to

coincide with the regularized Neo-Hookean strain energy function.

The volumetric part of the strain energy is set as ψ v ol = 

κ
2 ( J − 1 ) 2 ,

where κ is the bulk modulus. 

The glassy polymer phase is modeled using a finite deformation

isotropic elasto-viscoplastic model, based on the multiplicative de-

composition of the deformation gradient F = F e . F p , where F e and

F p are the elastic and plastic parts, respectively, of the total defor-

mation gradient F . Following consequences of frame indifference

and isotropy, the free energy has the form ψ( b e ( F , F p ), α) where b e

is the elastic left Cauchy-Green deformation tensor whose eigen-

values are the elastic principal stretches λe 
a , a = 1 , 2 , 3 and α is the

accumulated plastic strain. The free energy ψ is further assumed

to allow the decomposition ψ(b e , α) = W(b e ) + H(α) into a hy-

perelastic strain energy function W = W iso + W vol and hardening

potential H. Invoking thermodynamic restrictions, the Coleman-

Noll procedure ( Holzapfel, 20 0 0 ) then produces the following re-

lation for the Kirchhoff stress tensor τ

τ = 2 

∂ψ 

∂b 

e 
. b 

e (16)

which is related to the first Piola-Kirchhoff stress P as P = τ.F −T .

The isochoric and volumetric parts of the strain energy function W
are set to those used for the hyperelastic model defined above, but

in terms of the elastic principal stretches λe 
a , a = 1 , 2 , 3 . A linear

isotropic strain hardening model is chosen, so the hardening po-

tential has the quadratic form H = 

1 
2 K 

h α2 defined in terms of the

hardening coefficient K 

h . To complete the constitutive model, flow

rules describing the evolution of internal variables are prescribed

in an associative manner through the yield function φ, chosen here

as the von Mises yield function, i.e. 

φ = 

√ 

3 

2 

|| s || − ζ ( α) (17)

where s = τ − 1/3tr( τ) I is the deviatoric part of the Kirchhoff

stress tensor τ and ζ (α) = σy + ∂ H/∂ α is the hardening function.

Rate effects are accounted for in a Perzyna-type approach, follow-

ing the model in ( de Souza Neto, et al., 2011 ; Peri ́c, 1993 ; Peric and

Dettmer, 2003 ) which defines the following flow rules 

A 

def = ˙ γ
∂φ

∂τ
= ˙ γ

√ 

3 

2 

n 

˙ α = ˙ γ

˙ γ = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

1 

μ

⎡ ⎣ 

( √ 

3 

2 

|| s || 
ζ

) 

1 
ϑ 

− 1 

⎤ ⎦ , φ ≥ 0 

0 , φ < 0 

(18)

Here μ is a viscosity parameter (in units of time) and ϑ is

a dimensionless rate sensitivity parameter such that the rate-
ndependent von Mises model is recovered from Eq. (18) as ϑ → 0

r μ → 0. To characterize the energy dissipated through plastic

eformation for this model, the expression for plastic work is ob-

ained as 

 

p = 

∫ 
t 

∫ 
�0 

˙ w 

vp dVdt = 

∫ 
t 

∫ 
�0 

τ : A dVdt (19)

here ˙ w 

v p is the viscoplastic power density. Numerical implemen-

ation of this constitutive model is carried out following the ex-

onential return mapping algorithm discussed in Appendix A . Fur-

her details on constitutive modeling for finite deformation elasto-

lasticity can be found in ( Armero, 2017 ; de Souza Neto, et al.,

011 ). 

Using these constitutive models, an RUC consisting of a hard

lassy polymer matrix with circular inclusion of volume fraction

 f = 0.5 is analyzed under a uniaxial compression deformation

ode. This RUC can be seen as a cross-section of the square cu-

ic (SC) composite design investigated in ( Wang et al., 2011 ), but

or the plane strain formulation utilized herein corresponds to an

xtrusion of the cross-section, i.e. a cylindrical inclusion/void. The

aterial parameters for the elasto-viscoplastic model are set to

 = 3300, ν = 0.33, σ y = 105 and K 

h = 300. For the hypere-

astic model representing the elastomer phase, the shear modu-

us G = 3.3 and bulk modulus κ = 10 0 0. To simulate a uniax-

al compression deformation mode, mixed computational homog-

nization is carried out using ∇ ̂

 ū = [ ( ∇u ) 11 0 0 −0 . 1 ] , with

 ∇u ) 11 a free component to be found by prescribing P̄ 11 = 0 . In or-

er to mimic the topology optimization process, a uniform mesh is

tilized and elements within the inclusion are considered either to

e filled with elastomeric material or empty. Void elements within

he empty inclusion are modeled using the strain energy function

or the elastomer phase but with the material parameters set to

 = 4.12 × 10 −8 and κ = 5.48 × 10 −8 . 

Fig. 2 reports the total plastic work W 

p for both cases and

hows the distributions of von Mises stress, accumulated plas-

ic strain α, and plastic work density within the deformed glassy

hase. These results reflect the trends reported in Wang et al.

2011) , namely that when reinforced with elastomer, stress in the

lassy phase is higher and plastic deformation occurs in a greater

olume of the glassy phase. Because of this, substantially more en-

rgy is dissipated as plastic work, with W 

p = 3.587 × 10 6 when

einforced with elastomer as opposed to W 

p = 2.790 × 10 6 with

oid. As these constitutive models are able to capture the phenom-

na observed in Wang et al. (2011) , they are suitable for use in a

opology optimization formulation which aims to optimize com-

osites of this type. Unless otherwise noted, the material param-

ters introduced in this section will be utilized for both material

hases in the ensuing optimization examples. 

.5. Initial density distribution 

As discussed in ( Alberdi and Khandelwal, 2019 ), a non-uniform

istribution of element density values must be used as the initial

UC design in order to have non-uniform sensitivity values. For the

xamples in this study, the initial density distribution is based on

he square cubic (SC) cross-section design analyzed in Section 2.4 .

hat is, the initial distribution consists of a hard elasto-viscoplastic

atrix with a circular soft elastomer inclusion. The area of this in-

lusion is set to satisfy the volume fraction constraint. By relating

he area of the circular inclusion to the prescribed volume fraction,

esults obtained under different volume fraction constraints can be

traightforwardly compared. A similar initial density distribution is

tilized by Swan and Kosaka (1997) , but with the soft phase taken

s the matrix and hard phase as the inclusion, so as to represent a

ber reinforced composite. 
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Fig. 2. Result of glassy polymer unit cell subject to uniaxial compression with circular inclusion filled with elastomer and empty. 
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In order to reduce the bias of the optimizer to the initial den-

ity distribution, the density values in the matrix and inclusion

re not set to purely elasto-viscoplastic ( ρe = 1) or hyperelastic

 ρe = 0), but intermediate values which approach the values of ei-

her material phase. In this case, certain combinations of density

alues for the matrix and inclusion phases can result in the opti-

izer converging within a few iterations to a uniform distribution

f intermediate density values. Similar undesirable behavior was

lso observed in Guest and Prevost (2006) . To prevent this, the ma-

erial interpolation scheme should be defined in such a way that a

niform distribution of intermediate density values is less optimal

han any given topology. In order to ensure that the plastic work in

lements with intermediate density values is appropriately penal-

zed, the tensor A ( Eq. (18) 1 ) in the viscoplastic power density ˙ w 

v p 

sed to evaluate the total plastic work W 

P in the objective function

s scaled by a factor χA , i.e. 

˙ 
 

vp = τVP : ( χA A ) = χA ˙ γ

√ 

3 

2 

τVP : n (20)
here use is made of Eq. (18) 1 and τVP and n are the Kirchhoff

tress and flow vector from the elasto-viscoplastic model. Note

hat the Kirchhoff stress tensor in this expression remains inter-

olated through the element strain energy function in Eq. (12) .

he scaling factor is set to χA = ρ
p A 
e with p A being an ex-

ra penalization parameter. With the appropriate choice of p A , a

niform distribution of intermediate density values will be pe-

alized such that optimizer will be able to determine discrete

opologies. 

.6. Sensitivity analysis 

In order to exploit the use of gradient-based nonlinear pro-

ramming algorithms to solve the topology optimization prob-

em in Eq. (14) , accurate sensitivity information is needed, which

an only be obtained by accounting for the implicit constraints

 

k = 0 and H 

k = 0 at each time step k . The general adjoint sen-

itivity analysis framework formulated in Alberdi et al. (2018) for

uch path-dependent PDE constrained optimization problems is

hus utilized herein. Given a response function f with the general



158 R. Alberdi and K. Khandelwal / International Journal of Solids and Structures 193–194 (2020) 152–171 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

H  

a  

f  

g

H  

a

H  

w  

p  

i  

o

3

 

i  

r  

i  

t  

m  

t  

s  

t  

e  

i  

w  

i  

a  

o  

i  

i  

i  

a  

mization and FEA. 

Fig. 3. Initial density distribution for topology optimization when inclusion has a 

volume fraction V f = 0.5. 
functional form f (x ) = F ( ̂  u 

1 , . . . , ̂  u 

n , c 1 , . . . , c n , x ) , the sensitivity

df / d x is obtained by first solving the following system of equations

for the adjoint variables λk and μk 

n 

th step : 

⎧ ⎪ ⎨ ⎪ ⎩ 

∂F 

∂ ̂  u 

n 
+ λn T ∂R 

n 

∂ ̂  u 

n 
+ μn T ∂H 

n 

∂ ̂  u 

n 
= 0 

∂F 

∂c n 
+ λn T ∂R 

n 

∂c n 
+ μn T ∂H 

n 

∂c n 
= 0 

k th step : 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂F 

∂ ̂  u 

k 
+ λk +1 T ∂R 

k +1 

∂ ̂  u 

k 
+ μk +1 T ∂H 

k +1 

∂ ̂  u 

k 

+ λk T ∂R 

k 

∂ ̂  u 

k 
+ μk T ∂H 

k 

∂ ̂  u 

k 
= 0 

∂F 

∂c k 
+ λk +1 T ∂R 

k +1 

∂c k 

+ μk +1 T ∂H 

k +1 

∂c k 
+ λk T ∂R 

k 

∂c k 
+ μk T ∂H 

k 

∂c k 
= 0 

k = n − 1 , . . . , 2 , 1 (21)

As application of the density filter mapping design variables x

to density variables ρ is straightforwardly accounted for by ap-

plying the chain rule, the derivative df / d ρ is sought. After solving

Eq. (21) by starting at step n and ending at step 1, the sensitivity

df / d ρ is evaluated as 

df 

dρ
= 

∂F 

∂ρ
+ 

n ∑ 

k =1 

(
λk T ∂R 

k 

∂ρ
+ μk T ∂H 

k 

∂ρ

)
(22)

The following derivatives are thus needed for Eqs. (21) and

(22) : 

F or R 

k : 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ R 

k 

∂ρ

∂ R 

k 

∂ ̂  u 

k 

∂ R 

k 

∂ ̂  u 

k −1 

∂ R 

k 

∂ c k 

∂ R 

k 

∂ c k −1 

, F or H 

k : 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂ H 

k 

∂ρ

∂ H 

k 

∂ ̂  u 

k 

∂ H 

k 

∂ ̂  u 

k −1 

∂ H 

k 

∂ c k 

∂ H 

k 

∂ c k −1 

, F or F : 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

∂F 

∂ρ

∂F 

∂ ̂  u 

k 

∂F 

∂ c k 

(23)

These are obtained by specifying the set of global ˆ u and local

c state variables and their corresponding constraint equations. For

the problems considered in this study, the global state variables

and constraints are based on the discrete governing RUC equations

Eq. (4) , i.e. 

̂ u 

k = 

[
u 

k 

̂ γk 

]
; R 

k = 

[
R 

k 
1 

R 

k 
2 

]
= 

[ 

n ele 

A 

e =1 
F e 

k 

int + A 

T ̂ γk 

Au 

k − D ∇ ̂

 u 

] 

(24)

For the F-bar elements used to discretize the RUC do-

main in this study, the element internal force vector is F e 
k 

int 
=

n ipt ∑ 

r=1 

w r r 
k a −1 

e r 
B 

T 
e r 

˜ P k e r 
. Here r k e r 

is the deformation gradient ratio defined

in Eq. (6) for integration point r, a = 1/2 for the plane strain case

and w r is the weight of the r th integration point. Considering four

node plane strain F-bar elements with n ipt = 4 integration points,

the chosen local variables c k are represented in vector form as 

c k = 

⎡ ⎢ ⎢ ⎣ 

c k 1 

. . . 

c k n ele 

⎤ ⎥ ⎥ ⎦ 

with c k e = 

⎡ ⎢ ⎢ ⎢ ⎣ 

c k e 1 

c k e 2 

c k e 3 

c k e 

⎤ ⎥ ⎥ ⎥ ⎦ 

and c k e r 
= 

⎡ ⎢ ⎣ 

b 

e k 

e r 

αk 
e r 

�γ k 
e r 

⎤ ⎥ ⎦ 

(25)
4 
The local constraint equations corresponding to these variables

hus have the form 

 

k = 

⎡ ⎢ ⎢ ⎣ 

H 

k 
1 

. . . 

H 

k 
n ele 

⎤ ⎥ ⎥ ⎦ 

= 0 with H 

k 
e = 

⎡ ⎢ ⎢ ⎢ ⎣ 

H 

k 
e 1 

H 

k 
e 2 

H 

k 
e 3 

H 

k 
e 4 

⎤ ⎥ ⎥ ⎥ ⎦ 

and H 

k 
e r 

= 

⎡ ⎢ ⎣ 

h 

k 
e r1 

h 

k 
e r2 

h 

k 
e r3 

⎤ ⎥ ⎦ 

(26)

nd the residual equations H 

k 
e r 

at each integration point r follow

rom the constitutive algorithm discussed in Appendix A . For a

iven integration point at the elastic step, these equations are 

 

k 
e r 

= 

⎧ ⎪ ⎨ ⎪ ⎩ 

h 

k 
e r1 

= b 

e k 

e r 
− b 

e,tr 
e r = 0 

h 

k 
e r2 

= αk 
e r 

− αk −1 
e r 

= 0 

h 

k 
e r3 

= �γ k 
e r 

= 0 

(27)

nd for a given integration point at the viscoplastic step, they are 

 

k 
e r 

= 

⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

h 

k 
e r1 

= b 

e k 

e r 
− b 

e, tr 
e r 

. exp 

[
−2�tA 

k 
e r 

]
= 0 

h 

k 
e r2 

= αk 
e r 

− αk −1 
e r 

− �γ k 
e r 

= 0 

h 

k 
e r3 

= 

√ 

3 

2 

s V P 
k 

e r 

(
�t 

μ�γ k 
e r + �t 

)ϑ 

− ζ
(
αk 

e r 

)
= 0 

(28)

here �t = t k − t k − 1 . The derivatives in Eq. (23) needed to com-

lete the sensitivity analysis based on these definitions are given

n Appendix B , and an example verifying correct implementation

f this sensitivity analysis is presented in Appendix C . 

. Optimized composite designs 

In this section, the topology optimization framework laid out

n Section 2 is applied to explore performance-optimized mate-

ial layouts which exploit the stress transfer mechanisms discussed

n Wang et al. (2011) and illustrated in Section 2.4 to enhance

he energy dissipation capacity of composites. For all of the opti-

ization problems carried out in this section, a displacement con-

rol scheme is utilized with an adaptive step-size Newton-Raphson

trategy ( Crisfield, 1991 ) to solve the strain-driven microscale sys-

em in Eq. (4) , with convergence criterion based on the global en-

rgy residual, abs ( R 

T � ˆ u ) ≤ 10 −12 . Optimization is carried out us-

ng the Method of Moving Asymptotes (MMA) ( Svanberg, 1987 )

ith default algorithmic parameters and terminated after 300 total

terations. The penalization parameters p and p A are both set to 3

nd the filter radius utilized is r min = 3 × ms where ms is the size

f each element in the uniform mesh. In all of the figures show-

ng optimized composite topologies, the elasto-viscoplastic phase

s shown in red while the hyperelastic phase is shown in blue. The

n-house Matlab based finite element solver CPSSL-FEA developed

t the University of Notre Dame is used to perform both the opti-
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Fig. 4. Optimized composites obtained under different deformation modes and symmetry cases using V f = 0.5. 
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.1. Deformation modes and symmetry 

In this section, a square RUC domain of dimensions 10 0 0 by

0 0 0 is discretized into an 80 × 80 mesh of plane strain F-bar el-

ments and optimized under a number of different macroscopic

eformation modes. The deformation modes considered include:

i) uniaxial compression under 20% strain ( ∇ ̂

 ū = [ 0 0 0 −0 . 2 ] );

ii) simple shear under 25% strain ( ∇ ̂

 ū = [ 0 0 . 25 0 . 25 0 ] );
nd two cases of combined shear and compression, (iii) ( ∇ ̂

 ū =
 −0 . 1 0 . 2 0 0 ] ), and (iv) ( ∇ ̂

 ū = [ 0 0 0 . 2 −0 . 1 ] ). Geometric

ymmetry lines which correspond to macroscale elastic orthotropy

nd square symmetry in the linear elastic regime are prescribed

see discussion in ( Neves et al., 20 0 0 )), and optimization for each

eformation mode is carried out using these two symmetry cases

n addition to the case where no symmetry is enforced. The pre-

cribed volume fraction of the hard glassy polymer phase is set
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Fig. 5. Plastic work density distributions in glassy phase of deformed optimized RUC under uniaxial compression and combined shear and compression (case 2) for different 

symmetry cases subject to on-axis and off-axis deformation. 
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to V f = 0.5 and Fig. 3 gives the initial density distribution. In this

distribution, density values for the hard glassy polymer matrix are

ρH = 0.7 while density values for the soft elastomer inclusion are

ρS = 0.3. 

The optimized composites obtained under each deformation

mode and symmetry case are shown in Fig. 4 with the RUC out-

lined in black dashed lines. The total plastic work in the RUC

domain ( W 

p ) is also reported in this figure. It can be seen that

when no symmetry is enforced the optimized composites for all

but the simple shear deformation mode resemble lamellar com-

posites. Through the investigations carried out on bi-material poly-

meric composites in Cho et al. (2016) and Sabet et al. (2018) it

was concluded that the stiffness is enhanced in composites with

a connected hard phase rather than a disperse lamellar structure.

However, these results suggest that for certain deformation modes

the use of lamellar composites leads to improved energy dissi-

pation capacity. This trend is similar to the results reported in

Andreasen et al. (2014) for the design of viscoelastic composites.

A downside of this type of composite topology is that the high de-

gree of anisotropy means being subject to an off-axis deformation

mode can result in drastically decreased performance. Indeed, in

Wang et al. (2011) it is mentioned that composite designs with a

lower degree of anisotropy can provide an advantage in terms of

performance under arbitrary deformation modes. 

The anisotropy of composites can of course be reduced by in-

creasing the degree of geometric symmetry and this is borne out

in the optimized composites shown in Fig. 4 under different sym-

metry cases. Here it can be seen that enforcing symmetry results

in optimized composites with a well-connected glassy phase, more

closely resembling those in Wang et al. (2011) . While increasing

the degree of symmetry reduces optimality in terms of total plas-

tic work values under the prescribed deformation mode, it offers

an improvement in performance under deformation modes aligned

along other axes. This is illustrated in Fig. 5 , where the distribution

of plastic work density within the glassy phase of the deformed

optimized RUCs obtained under uniaxial compression and com-
ined shear and compression (case 2) with different symmetries

s shown for both on-axis and off-axis deformation. The total plas-

ic work in the RUC domain ( W 

p ) is also provided. Here, on-axis

efers to the deformation modes prescribed during optimization

i.e. ∇ ̂

 ū = [ 0 0 0 −0 . 2 ] and ∇ ̂

 ū = [ 0 0 0 . 2 −0 . 1 ] , respec-

ively) and off-axis to the same deformation modes but with the

xes of application flipped (i.e. ∇ ̂

 ū = [ −0 . 2 0 0 0 ] and ∇ ̂

 ū =
 −0 . 1 0 . 2 0 0 ] , respectively). For the case of uniaxial compres-

ion, plastic work density distributions are shown for the cases

f no symmetry and square symmetry. For the case of combined

hear and compression, plastic work density distributions are only

rovided for the case of orthotropic symmetry since this deforma-

ion mode is the same as that used for case 1 of combined shear

nd compression and the optimized composites obtained under

he other symmetry cases match. 

When the degree of symmetry is reduced, the plastic work val-

es under off-axis deformation decrease due to the glassy polymer

hase being utilized in an inefficient manner. This inefficient us-

ge is especially clear for uniaxial compression, as the reduction

n plastic work is 87.6%. However, when square symmetry is en-

orced the plastic work values match under on-axis and off-axis

eformation. This can be seen in Fig. 4 for the combined shear

nd compression deformation mode by comparing the two cases.

hus, the tradeoff in terms of optimal design performance under a

iven deformation mode and more robust performance under gen-

ral deformations can be controlled by enforcing different degrees

f geometric symmetry. 

Finally, to demonstrate the advantages of using topology opti-

ization to design composites of this type, Fig. 6 a shows the con-

ergence curve for the shear deformation mode with square sym-

etry enforced. Keeping in mind that the initial density distribu-

ion used is a cross-section of an SC topology (albeit under plane

train conditions), this convergence shows the level of improve-

ent that can be achieved by optimizing the RUC topology. Fur-

hermore, Fig. 6 b compares the evolution of macroscopic von Mises

tress for this optimized RUC to that of the SC RUC with discrete
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Fig. 6. Convergence curve and comparison of macroscopic stress-strain behavior of optimized composite RUC obtained under simple shear with square symmetry. 
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lassy polymer and soft elastomer phases (i.e. ρH = 1 and ρS = 0)

nder the same shear deformation mode. These results show that

 topology optimization-based approach for designing bi-material

omposites can lead to significant improvement in design perfor-

ance. 

.2. Volume fraction 

Next, the influence of phase volume fraction on optimized

omposite designs is investigated by considering case (iv) from

ection 3.1 , i.e. the combined shear and compression deforma-

ion mode ( ∇ ̂

 ū = [ 0 0 0 . 2 −0 . 1 ] ). Two new volume fractions

re considered for the hard glassy polymer phase, i.e. V f = 0.35

nd V f = 0.65. The initial density distribution again has the den-

ity values for the hard glassy polymer matrix set to ρH = 0.7 and

ensity values for the elastomer inclusion set to ρS = 0.3 but the

rea of the inclusion differs based on the prescribed volume frac-

ion. Fig. 7 shows the optimized composites obtained when enforc-

ng square symmetry for these two volume fractions as well as that
ig. 7. Optimized composites and plastic work density distributions in glassy phase of d

etry using different volume fractions of glassy phase. 
btained in Section 3.1 using V f = 0.5. It can be seen that the opti-

ized composites are the same topologically, but the thickness of

he glassy polymer members varies with volume fraction. Accord-

ngly, as the volume fraction of the glassy phase is increased, the

nergy dissipation capacity of the composite (i.e. the plastic work)

ncreases. Also shown in Fig. 7 is the distribution of plastic work

ensity within the glassy phase of the deformed optimized RUCs

or each volume fraction. It can be seen that for the different vol-

me fractions, the composites make use of the same deformation

echanisms to maximize the plastic work, resulting in very simi-

ar distributions. Hence, the topology of material phases appears to

ave a greater influence on energy dissipation capacity than does

olume fraction. 

The volume fraction of constituent phases influences not only

he energy dissipation capacity of the composite but also the

egree of anisotropy. In Cho et al. (2016) the influence of vol-

me fraction of the hard phase on the degree of anisotropy in

onnected and disperse composite topologies was investigated. It

as found that in composites with a connected hard phase the
eformed optimized RUC under combined shear and compression and square sym- 
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Fig. 8. Optimized composites under simple shear and orthotropic symmetry with different viscoplastic rate effects in glassy phase. 
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degree of anisotropy decreases as the volume fraction is increased,

while in composites with a disperse hard phase the anisotropy in-

creases with increasing volume fraction. In composites with cubic

symmetry (square symmetry for the plane strain case), there are

three independent elastic constants and the degree of anisotropy

can be determined in terms of these constants as 

a = 

2 C 44 

C 11 − C 12 

(29)

where the constant C 11 is a measure of the stiffness under longi-

tudinal compression, C 12 is a measure of the stiffness under trans-

verse expansion and C 44 is a measure of the stiffness under shear-

ing. The anisotropy ratio a thus contains information on how the

composite stiffness changes with orientation of the RUC, and a = 1

corresponds to isotropic behavior. This ratio can be calculated for

optimized composites in terms of the components of the homoge-

nized tangent moduli in Eq. (10) , but calculated for the initial lin-

ear elastic response (see discussion on calculation of initial tangent

moduli in ( Alberdi and Khandelwal, 2019 )) when square symme-

try is enforced. The anisotropy ratios for the optimized composites

shown in Fig. 7 are a = 9.717 when V f = 0.35, a = 4.061 when

V f = 0.5 and a = 2.032 when V f = 0.65. Hence, the anisotropy de-

creases with increasing volume fraction, mirroring the trends ob-

served in ( Cho et al., 2016 ) for composites with a connected hard

phase. 
Fig. 9. Distributions of von Mises stress and accumulated plastic strain in glassy pha
.3. Rate effects 

In the previous optimization examples, the elasto-viscoplastic

odel parameters are set so that the behavior is rate-independent

i.e. the rate sensitivity parameter ϑ = 0). This mimics the type

f loading considered in Wang et al. (2011) where the defor-

ation is applied slowly so that rate effects are negligible. As

lassy polymer materials show rate-dependent plastic behavior,

owever, the influence of this behavior on the optimized compos-

te topologies is now investigated. Note that elastomeric materi-

ls may have non-negligible rate dependent viscoelastic behavior

t high rates, but this behavior is not captured in the hyperelas-

ic model used for this phase. The simple shear deformation mode

rom Section 3.1 (i.e. ∇ ̂

 ū = [ 0 0 . 25 0 . 25 0 ] ) is considered with

rthotropic symmetry enforced and optimization is carried out for

wo different cases considering rate effects with a volume fraction

onstraint V f = 0.5 on the glassy phase. The rate effects for these

wo cases are enabled by setting ϑ = 1 and controlled by setting

he ratio between the viscosity parameter and total time of de-

ormation ( μ/ t n ) to 5 and 500, which correspond low-to-moderate

nd high rates of deformation, respectively. Fig. 8 compares the

ptimized composites obtained for these two cases to that from

ection 3.1 where no rate effects are considered. It can be seen

hat the consideration of rate effects results in different compos-
se of deformed optimized RUC obtained with different viscoplastic rate effects. 
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te topologies. The optimized composites obtained under the two

ifferent rate cases are the same topologically, but have slight dif-

erences in their shapes. 

Of note is that the total plastic work in the optimized compos-

te obtained using μ/ t n = 5 is the highest of the three cases, while

hat in the optimized composite obtained using μ/ t n = 500 is the

owest. This can be explained by looking at the distributions of von

ises stress and accumulated plastic strain in the glassy polymer

hase of the deformed topologies, as shown in Fig. 9 . Here it can

e seen that increasing the rate of deformation results in higher

tress values, but lowers the amount of plastic flow. At the low-

o-moderate rate captured by μ/ t n = 5, the stress is much higher

ompared to the rate-independent case while significant plastic

ow still occurs. As the plastic work depends on both the stress

evel and the amount of plastic flow, this case results in the highest

mount of plastic work. At the high rate captured by μ/ t n = 500

he stress is much higher than in the other two cases, but the to-

al plastic work is much reduced due to the negligible plastic flow.

s such rate effects influence how the material phases should be

rranged to increase energy dissipation capacity, they must be con-

idered for design scenarios where composites are subject to rapid

oading times. 

. Soft energy dissipating phase 

For the glassy polymer and elastomer materials investigated

n Wang et al. (2011) and modeled in the previous sections, the

ard material phase provides both the stiffness and energy dis-

ipation capacity. The role of the soft phase is thus to provide

he stress transfer mechanisms which allow a greater volume of

he hard phase to be exploited to enhance these properties. This

henomenon is reflected in optimized composite topologies where

he glassy polymer phase forms a connected frame which is rein-

orced by the elastomer phase. As nonlinear problems are highly

ependent on material parameters, it is worth investigating how

hanging these parameters can affect the response and optimiza-
ig. 10. Optimized composites and plastic work density distributions in deformed confi

yperelastic phase and soft elasto-viscoplastic phase. 
ion of bi-material composites. Specifically, an alternative way to

ombine hard and soft phases in a composite is to have the hard

hase provide stiffness while the soft phase provides energy dis-

ipation capacity. This approach is now investigated by using the

yperelastic model as the hard phase and the elasto-viscoplastic

odel as the soft phase. The parameters of the hyperelastic phase

re set to G = 1241 and κ = 3235 while the parameters of the

lasto-viscoplastic phase are set to E = 2500, ν = 0.38, f y = 20

nd K 

h = 125. The scaling factors χH and χ S remain defined as

n Eq. (13) , but will be swapped for this case in the sensitivity

erivative expressions presented in Appendix B . Hence ρe = 1 cor-

esponds to the hyperelastic hard phase while ρe = 0 corresponds

o the elasto-viscoplastic soft phase. To carry out topology opti-

ization with these materials, the scaling factor χA in Eq. (20) is

et to 1 – as the optimizer can find discrete topologies without ex-

ra penalization – and the penalization parameter is kept as p = 3.

nalysis and optimization are carried out as discussed at the be-

inning of Section 3 . 

.1. Square RUC domain 

The square RUC domain utilized in Section 3 is again consid-

red. The initial density distribution is set to the SC cross-section

ith inclusion scaled by the prescribed volume fraction, but the

atrix material is now initialized as the hard hyperelastic phase

hile the inclusion is initialized as the soft elasto-viscoplastic

hase. Initial density values for the hard and soft phases are set

o ρH = 0.9 and ρS = 0.1, respectively, and the volume fraction

onstraint on the soft energy dissipating elasto-viscoplastic phase

ses V f = 0.5. Again, a filter radius of r min = 3 × ms is utilized. In

he optimized composites shown below the colors remain set so

hat red represents the elasto-viscoplastic (soft) phase while blue

epresents the hyperelastic (hard) phase. 

The optimized composites and distributions of plastic work

ensity within each deformed optimized RUC are shown in

ig. 10 for three different deformation modes: uniaxial compres-
guration of optimized square RUC under different deformation modes with hard 
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Fig. 11. Distributions of shear strain components and von Mises stress in deformed configuration of optimized square RUC under different deformation modes with hard 

hyperelastic phase and soft elasto-viscoplastic phase. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Initial density distribution for hexagonal RUC domain when inclusion has 

a volume fraction V f = 0.5. 
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v

sion under 20% strain ( ∇ ̂

 ū = [ 0 0 0 −0 . 2 ] ), simple shear under

10% strain ( ∇ ̂

 ū = [ 0 0 . 1 0 . 1 0 ] ), and combined shear and com-

pression ( ∇ ̂

 ū = [ −0 . 1 0 . 2 0 0 ] ). Also shown is the plastic work

capacity w 

p , i.e. the plastic work W 

p divided by the RUC volume V .

For all three deformation modes, the optimized composites consist

of hard phase inclusions within a matrix of the soft phase. Hence,

these optimized composites are disperse, having an unconnected

hard phase which is in stark contrast to the well-connected opti-

mized composites obtained previously. In fact, for this combination

of hard and soft phases the volume fraction constraint on the soft

energy dissipating phase is not even active. The percentage of soft

phase utilized is 30.0% for the uniaxial compression case, 12.7% for

the simple shear case and 15.7% for the combined shear and com-

pression case. This suggests that using a smaller percentage of the

soft energy dissipating phase results in superior energy dissipation

capacity than if a greater volume of this phase was utilized. 

Looking at the distributions of plastic work density in the opti-

mized composites ( Fig. 10 ), it can be seen that a large amount of

energy dissipation occurs throughout the entire soft phase. In fact,

this arrangement of material phases appears to have been deter-

mined so as to purposefully induce localized strain concentrations

wherein a large amount of energy can be dissipated. This is car-

ried out by allowing the hard inclusions to deform relative to each

other such that shear strains are localized within the thin layers

of the soft phase, leading to high shear stress values and result-

ing plastic work. For example, Fig. 11 shows the distribution of the

shear components of the microscale displacement gradient ∇u ( X )

throughout the RUC, and it can be clearly seen that shear strains

are localized in the soft phase. Also shown in Fig. 11 is the dis-
ribution of the von Mises stress throughout the RUC, where the

igher stress values in the hard inclusions indicate that this phase

s providing stiffness to the composite. This localization of strains

eading to high energy dissipation thus explains why utilizing a

ower volume of soft phase is considered more optimal. Designs

f this type mimic natural materials which exploit similar phe-

omena in their arrangement of material phases ( Barthelat, 2015 ).

ence, radically different phenomena are exploited to optimize

omposites when the hard phase provides stiffness and the soft

hase energy dissipation capacity than when the hard phase pro-

ides both. 
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Fig. 13. Optimized composites and plastic work density distributions in deformed configuration of optimized hexagonal RUC under different deformation modes with hard 

hyperelastic phase and soft elasto-viscoplastic phase. 
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.2. Hexagonal RUC domain 

Next, the same material phases and deformation modes are

onsidered, but using a hexagonal RUC domain (RUC 2 in Fig. 1 )

nstead of a square RUC domain. Each side of this domain has a

imension of 10 0 0 and 640 0 non-uniform plane strain F-bar ele-

ents are used for discretization. The filter radius used for topol-

gy optimization with this domain is set to 80 and the initial den-

ity distribution is shown in Fig. 12 , where the hexagonal inclusion

f elasto-viscoplastic phase is sized so as to meet the prescribed

olume fraction V f = 0.5. Initial density values for the hard and

oft phases are again set to ρH = 0.9 and ρS = 0.1, respectively. 

Optimized topologies obtained under each of the three defor-

ation modes from Section 4.1 are shown in Fig. 13 along with the

lastic work density distributions within the deformed RUC config-

rations and the plastic work capacity w 

p . It can be seen that dis-

inct topologies are obtained as compared to those with the square

UC in Fig. 10 , despite the same deformation modes and similar

nitial density distributions. This is due to the fact that the hexag-

nal RUC represents a different type of periodicity and causes the

UC to deform in a different manner (as shown in the deformed

UC domain in Fig. 13 ). However, the optimized topologies follow

he same trends as when the square RUC is utilized, i.e. the soft

nergy dissipating elasto-viscoplastic phase is arranged so as to in-

uce areas of highly localized plastic work. Again, in these exam-

les the volume fraction constraint is not active as using a small

mount of the elasto-viscoplastic phase results in greater energy

issipation capacity. 

. Conclusions 

A topology optimization framework for the purpose of discov-

ring novel performance-optimized designs of bi-material compos-

tes with enhanced energy dissipation is explored in this study.

his work is motivated by the numerical and experimental stud-

es in Refs. ( Al-Ketan et al., 2017 ; Cho et al., 2016 ; Sabet et al.,

018 ; Wang et al., 2011 ) which combine a hard glassy polymer

hase with a soft elastomer phase to enhance the stiffness, tough-

ess and energy dissipation capacity of composites. The topol-
gy optimization examples investigated herein show the ability

f the framework to exploit the physical phenomena reported in

ang et al. (2011) to improve energy dissipation capacity. Using

n initial topology corresponding to an extruded cross-section of

he square cubic composite investigated in Wang et al. (2011) , sig-

ificant improvements in energy dissipation capacity are obtained

nder different prescribed deformation modes. These results sug-

est that a topology optimization-based approach for designing bi-

aterial composites can lead to significantly improved designs. 

A key takeaway concerns the tradeoff between the use of

ighly specialized anisotropic composite topologies and more ro-

ust topologies with a lower degree of anisotropy. The former re-

ult in very high energy dissipation capacity for a specific deforma-

ion mode while the latter can perform more optimally under gen-

ral deformations. Enforcing geometric symmetry leads to compos-

tes with a lower degree of anisotropy and a well-connected hard

lassy polymer phase, and the dependence of the anisotropy on

he volume fraction of this hard phase is illustrated. Additionally,

arying the volume fractions assigned to different material phases

uring optimization illustrates the outsized role that the topolog-

cal arrangement of these phases plays in increasing energy dissi-

ation capacity as compared to phase volume fraction. The effects

f material rate dependence on optimized composite behavior are

lso shown. These effects follow similar trends as those observed

n the design of multi-material structures with material rate effects

 Alberdi and Khandelwal, 2019 ). The design of composites with a

oft phase providing energy dissipation capacity and hard phase

roviding stiffness is also carried out. Optimized designs highlight

ow vastly different phenomena are exploited to dissipate energy

n optimized composites of this type. Namely, the hard hyperelas-

ic phase is arranged in a disperse manner so as to induce localized

train concentrations in the soft elasto-viscoplastic phase. 

There are numerous ways that the work presented herein can

e extended. First, elasto-viscoplastic models which consider dam-

ge accumulation can be incorporated into the optimization frame-

ork in an approach similar to Li et al. (2018) . This is especially

elevant for problems considering a soft elasto-viscoplastic phase,

s the optimized topologies obtained in Section 4 exploit highly lo-

alized plastic work which can lead to damage accumulation and
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eventual material failure. Second, as composite strength is often

dictated by interface properties, homogenization and optimization

techniques which take the material interface into account should

be considered, see for example, the works ( Firooz and Javili, 2019 ;

Saeb et al., 2019 ; Saeb et al., 2019 ). The authors are currently pur-

suing these avenues. 
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Appendix A. Exponential return mapping algorithm 

This appendix presents the exponential return mapping algo-

rithm used to numerically implement the elasto-viscoplastic ma-

terial model discussed in Section 2.3 . For time step m + 1 at inte-

gration point r of element e , given information includes the current

and previous step deformation (characterized by ˜ F m +1 
e r and 

˜ F m 

e r 
) and

the previous step internal variables ( J 

m 

e r 
= { b e m e r 

, αm 

e r 
} ) . The purpose

of the constitutive algorithm is to calculate the current step stress
˜ P m +1 
e r , internal variables J 

m +1 
e r and the consistent tangent modulus

˜ A T needed to evaluate the tangent matrix in Eq. (8) . The expo-

nential return mapping algorithm detailed in this appendix is pre-

sented with the superscript removed from variables at the current

time step m + 1 and no reference made to element or integration

point number. Likewise, the bar is removed from any of the F-bar

quantities so that the algorithm is presented independently from

the type of element used. 

Making use of the relations for the plastic distortion-rate tensor

L p = 

˙ F p . F p −1 = F e −1 . l p . F e and the polar decomposition F e = V 

e . R 

e ,

the rate equation for the plastic part of the deformation gradient

F p can be written as 

·
F 

p 

= R 

e T . A . R 

e . F p (A.1)

This rate equation is numerically approximated using the expo-

nential mapping integrator, giving 

F p = exp 

[
�t R 

e T . A . R 

e 
]
. F p n = R 

e T . exp [ �tA ] . R 

e . F p n (A.2)

The exponential map integrator is used as it preserves the in-

compressibility of plastic flow, i.e. it ensures that det F p = 1 . Using

Eq. (A.2) along with the definitions F e = F.F p −1 and b e = V 

e 2 re-

sults in the following discrete flow rule for b e 

b 

e = exp [ −2�tA ] . F . F −1 
n . b 

e 
n . F 

−T 
n . F T = b 

e, tr . exp [ −2�tA ] (A.3)
here the trial elastic left Cauchy-Green deformation tensor is de-

ned as b e,tr = �F . b e n . �F T with �F = F . F −1 
n and can be seen to

epend on the given previous step information b e n and F n and

urrent step information F . The discrete flow rule Eq. (A.3) can

e greatly simplified by considering its evaluation in the space

panned by the elastic left principal directions l e a , a = 1 , 2 , 3 . In this

pace, 

b 

e = 

3 ∑ 

a 

λe 2 

a l 
e 
a ⊗ l e a 

 

e, tr = 

3 ∑ 

a 

λe , tr 2 

a l e, tr 
a ⊗ l e, tr 

a (A.4)

Given the coaxiality between b e and τ resulting from the as-

umption of isotropy, together with the coaxiality between b e and

 resulting from the assumption of associativity, the principal di-

ections l e a coincide with l e,tr 
a . Thus, in principal space, Eq. (A.3) is

e 2 

a = exp 

[ 

−2�γ

√ 

3 

2 

n a 

] 

λe , tr 2 

a , a = 1 , 2 , 3 (A.5)

here n a are the principal components of the flow vector n . Tak-

ng the natural logarithm of this expression results finally in the

iscrete flow rule for the logarithmic elastic principal stretches

 

e 
a = ln λe 

a , i.e. 

 

e 
a = ε e, tr 

a − �γ

√ 

3 

2 

n a , a = 1 , 2 , 3 (A.6)

hich can be seen to coincide with the discrete flow rule for the

lastic strains in the small strain case ( de Souza Neto et al., 2011 ). 

Complementing the discrete flow rule in Eq. (A.6) with the dis-

rete flow rule for the accumulated plastic strain α obtained by

tilizing a backward Euler integration thus provides the necessary

quations for carrying out the return mapping algorithm. The first

tep of this algorithm is the elastic trial step which is performed

s follows 

iven : F , b 

e,tr = F . F −1 
n . b 

e 
n . F 

−T 
n . F T , αtr = αm 

Evaluate τ tr 
a using the trial elastic principal stretch values λe,tr 

a 

n Eq. (15) . Compute 

s tr = P 

s 
dev τ

tr 

q 

tr = K 

h αtr 

tr 
(
τtr , q tr 

)
= 

√ 

3 

2 

‖ s tr ‖ −
(
σy + q tr 

)
(A.7)

ith τtr = [ τ tr 
1 

τ tr 
2 

τ tr 
3 

] T , s tr = [ s tr 
1 

s tr 
2 

s tr 
3 

] T , and ‖ s tr ‖ =
 

s tr2 
1 

+ s tr2 
2 

+ s tr2 
3 

. The matrix P 

s 
dev = I − 1 / 3 where 1 is a matrix

hose entries are all 1. 

If φtr ≤ 0 then the current step is an elastic step and the fol-

owing elastic updates are made 

b 

e = b 

etr , α = αtr , τ = τtr 

 T = A (A.8)

here A is the matrix form of the tangent moduli tensor A =
 

2 ψ/∂ F ∂ F for the strain energy function defined in Eq. (15) . 

Else, if φtr > 0 then plastic flow is occurring in this step and

he algorithm proceeds to Step 2, the viscoplastic return map-

ing step. In this step, the initial value problem defined by the

ow rules given in Eq. (18) must be evaluated numerically. Making

https://doi.org/10.13039/100000001
https://doi.org/10.1016/j.ijsolstr.2020.02.006
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se of Eq. (A.6) , the discrete update equations for the time step

t = t − t m 

are 

ε e a = ε e, tr 
a − �γ

√ 

3 

2 

n a , a = 1 , 2 , 3 

α = αm 

+ �γ

γ = 

1 

μ

⎡ ⎣ 

( √ 

3 

2 

‖ s ‖ 

ζ

) 

1 
ϑ 

− 1 

⎤ ⎦ �t 

n a 
def = 

s a 

‖ s ‖ 

(A.9) 

Combining Eqs. (A.9) 2 and (A.9) 3 thus results in the nonlinear

lgebraic system 

 = 

[
R 1 

R 2 

]
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

ε 

e − ε 

e tr + �γ

√ 

3 

2 

n 

�γ − �t 

μ

⎡ ⎣ 

( √ 

3 

2 

‖ s ‖ 

ζ ( �γ ) 

) 

1 
∈ 

− 1 

⎤ ⎦ 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

[
0 

0 

]

(A.10) 

hich is solved for the unknowns X = [ ε e �γ ] T using the

ewton-Raphson method with tangent matrix 

dR 

dX 

= 

⎡ ⎢ ⎢ ⎢ ⎣ 

I + 

�γ

‖ s ‖ 

√ 

3 

2 

(
P 

s 
dev − n ⊗ n 

)
B 

√ 

3 

2 

n (
�t 

μ�γ + �t 

)ϑ 
√ 

3 

2 

n 

T B −
( √ 

3 

2 

(
�t 

μ�γ + �t 

)ϑ 

μ

Here, B is a matrix containing the terms ∂ τa /∂ε e 
b 
, a, b = 1 , 2 , 3 .

he converged values of ε e a are used to obtain the elastic principal

tretches λe 
a and by extension b e . The converged values τ a are used

o obtain τ and the first Piola-Kirchhoff stress tensor is calculated

s P = τ . F −T . The algorithmic consistent tangent modulus A T can

hen be calculated in component form as 

 ijkl = J a ipkr F 
−1 

jp 
F −1 

lr 
(A.12)

here the spatial moduli tensor a is given as 

 a = 

∂τ

∂b 

e, tr 
: 
(
I � b 

e,tr T + b 

e, tr � I 
)

− τ � I (A.13) 

nd the products � and � between two second order tensors

re defined as ( A �B ) ijkl = A ik B jl and ( A �B ) ijkl = A il B jk . The term

 τ/ ∂ b e,tr is computed in principal space using data from the con-

titutive Newton-Raphson routine as 

∂τa 

∂b e, tr 
b 

]
a,b=1 , 2 , 3 

= BD 11 

ith 

d R 

d X 

]−1 

= 

[
D 11 D 12 

D 21 D 22 

]
(A.14) 

nd then brought to physical space for use in Eq. (A.13) . This com-

letes the exponential return mapping algorithm. 

ppendix B. Derivatives for sensitivity analysis 

Based on the definition of global and local state variables de-

ned in Section 2.6 , the derivatives needed for sensitivity analy-

is ( Eq. (23) ) are presented in this appendix. In the expressions

elow, use is made of the products � and � between two sec-

nd order tensors, defined in Appendix A as ( A �B ) ijkl = A ik B jl and

 A �B ) ijkl = A il B jk . 
 s ‖ 

+ �t 
+ K 

h 

) 

⎤ ⎥ ⎥ ⎥ ⎦ 

(A.11) 

.1: Derivatives of global constraints 

The derivative of the global constraint R 

k with respect to the

lement density variable vector ρ is 

∂R 

k 

∂ρ
= 

⎡ ⎣ 

n ele 

A 

e =1 

(
∂F e 

k 

int 

∂ρe 

)
0 

⎤ ⎦ (B.1) 

ith 

∂F e 
k 

int 

∂ρe 
= 

n ipt ∑ 

r=1 

w r r 
k a −1 

e r 
B 

T 
e r 

∂ ̃  P k e r 

∂ρe 

∂ ̃  P k e r 

∂ρe 
= 

∂χH 

∂ρe ̃

 τV P k 

e r 
. 
∼
F 

k −T 

e r 
+ 

∂χS 

∂ρe ̃

 P HE k 

e r 
(B.2) 

The derivatives with respect to the global variables ˆ u are 

∂R 

k 

∂ ̂  u 

k −1 
= 0 ; ∂R 

k 

∂ ̂  u 

k 
= 

⎡ ⎣ 

n ele 

A 

e =1 

(
∂F e 

k 

int 

∂u 

k 
e 

)
A 

T 

A 0 

⎤ ⎦ (B.3) 

nd the term ∂F e 
k 

int 
/ ∂u 

k 
e is given as 

∂F e 
k 

int 

∂u 

k 
e 

= 

n ipt ∑ 

r=1 

w r r 
k a −1 

e r 
B 

T 
e r 

∂ ̃  P k e r 

∂u 

k 
e 

+ ( a − 1 ) 

n ipt ∑ 

r=1 

w r r 
k a −2 

e r 
B 

T 
e r ̃

 P k e r 
⊗ ∂r k e r 

∂u 

k 
e 

∂ ̃  P k e r 

∂u 

k 
e 

= 

(
χS ̃

 A 

HE k 

e r 
− χH ̃

 P V P 
k 

e r 
� ˜ F k 

−1 

e r 

)
: 
∂ ̃  F k e r 

∂u 

k 
e 

∂r k e r 

∂u 

k 
e 

= r k e r 

( 

F k 
−T 

0 e r 
: 
∂F k 0 e r 

∂u 

k 
e 

− F k 
−T 

e r 
: 
∂F k e r 

∂u 

k 
e 

) 

(B.4) 

Finally, the derivatives with respect to the local variables c are

∂R 

k 

∂c k −1 
= 0 ; ∂R 

k 

∂c k 
= 

⎡ ⎣ 

n ele 

A 

e =1 

(
∂F e 

k 

int 

∂c k e 

)
0 

⎤ ⎦ (B.5) 

ith 

∂F e 
k 

int 

∂c k e 

= 

[
∂F e 

k 

int 

∂c k e 1 

∂F e 
k 

int 

∂c k e 2 

∂F e 
k 

int 

∂c k e 3 

∂F e 
k 

int 

∂c k e 4 

]
(B.6) 

The derivatives ∂ F e 
k 

int 
/∂ c k e r 

are 

∂F e 
k 

int 

∂c k e r 

= 

[
w r r 

k a −1 

e r 
B 

T 
e r 

∂ ̃  P k e r 

∂b 

e k 
e r 

0 0 

]T 

nd 

∂ ̃  P k e r 

∂b 

e k 
e r 

= 

∂ 

(
χH ̃  τV P k 

e r 
. 
∼
F 

k −T 

e r 

)
∂b 

e k 
e r 

(B.7) 

In Eq. (B.7) , the term ∂ P̄ k e r 
/∂b e 

k 

e r 
has the component form 

∂τip F 
−T 

pj 

∂b e 
kl 

= 

∂τip 

∂b e 
kl 

F −T 
pj 

(B.8) 

nd ∂ ̄τV P /∂ b e can be computed in the constitutive algorithm. 
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B.2: Derivatives of local constraints 

The derivative of the local constraints H 

k with respect to the

element density variable vector ρ is given by the block diagonal

matrix 

∂H 

k 

∂ρ
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂H 

k 
1 

∂ρ1 

0 . . . 0 

0 

∂H 

k 
2 

∂ρ2 

· · · 0 

. . . 
. . . 

. . . 
. . . 

0 0 · · · ∂H 

k 
n ele 

∂ρn ele 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

with 

∂H 

k 
e 

∂ρe 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂H 

k 
e 1 

∂ρe 

∂H 

k 
e 2 

∂ρe 

∂H 

k 
e 3 

∂ρe 

∂H 

k 
e 4 

∂ρe 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(B.9)

and the entries ∂ H 

k 
e r 

/∂ ρe are only nonzero at a viscoplastic step,

having the form 

∂H 

k 
e r 

∂ρe 
= 

[
∂h 

k 
e r1 

∂ρe 
0 

∂h 

k 
e r3 

∂ρe 

]T 

∂h 

k 
e r1 

∂ρe 
= −b 

e, tr 
e r 

. 
∂ exp 

[
−2�tA 

k 
e r 

]
∂ρe 

∂h 

k 
e r3 

∂ρe 
= 

√ 

3 

2 

(
�t 

μ�γ k 
e r + �t 

)ϑ 

n 

k 
e r 

: 

(
∂χH 

∂ρe 
τV P k 

e r 

)
(B.10)

The term ∂ exp [ −2�tA 

k 
e r 

] /∂ ρe is computed in the principal

space, where for each principal value the derivative is 

∂ exp 

[ 
−2�γ

√ 

3 
2 

n a 

] 
∂ρe 

= −2�γ

√ 

3 

2 

exp 

[ 

−2�γ

√ 

3 

2 

n a 

] 

∂n a 

∂τa 

(
∂χH 

∂ρe 
τa 

)
, a = 1 , 2 , 3 

(B.11)

The derivatives with respect to the global variables ˆ u are 

∂H 

k 

∂ ̂  u 

k 
= 

⎡ ⎣ 

∂H 

k 

∂u 

k 

0 

⎤ ⎦ and 

∂H 

k 

∂ ̂  u 

k −1 
= 

⎡ ⎣ 

∂H 

k 

∂u 

k −1 

0 

⎤ ⎦ (B.12)

and the nonzero submatrix ∂ H 

k / ∂ u 

k has the structure 

∂H 

k 

∂u 

k 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂H 

k 
1 

∂u 

k 

. . . 

∂H 

k 
n ele 

∂u 

k 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

with 

∂H 

k 
j 

∂u 
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= 

n ele 

A 

e =1 

(
∂H 

k 
j 

∂u 

k 
e 

)
, j = 1 , 2 , . . . , n ele 

(B.13)

Here, ∂ H 

k 
j 
/∂ u 

k 
e = 0 if j 
 = e . The nonzero entries, ∂ H 

k 
e /∂ u 

k 
e , are 

∂H 

k 
e 

∂u 

k 
e 

= 

[
∂H 

k 
e 1 

∂u 

k 
e 

∂H 

k 
e 2 

∂u 

k 
e 

∂H 

k 
e 3 

∂u 

k 
e 

∂H 

k 
e 4 

∂u 

k 
e 

]T 

(B.14)
ith 

∂H 

k 
e r 

∂u 

k 
e 

= 

[
−∂b 

e, tr 
e r 

∂u 

k 
e 

0 0 

]T 

∂b 

e, tr 
e r 

∂u 

k 
e 

= 

∂b 

e, tr 
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∂ ̃  F k e r 
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∂u 
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e 

∂b 
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e r 

∂ 
∼
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k 
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= I � �
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∼
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e r 
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. 
∼
F 
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e r 
� I (B.15)

or an elastic step, and 

∂H 

k 
e r 

∂u 

k 
e 

= 

[
−∂b 

e, tr 
e r 

∂u 

k 
e 

. exp 

[
−2�tA 

k 
e r 

]
0 0 

]T 

(B.16)

or a plastic step. The nonzero submatrix ∂ H 

k / ∂ u 

k − 1 in Eq.

B.12) has the same structure as in Eqns. (B.13) and (B.14) , and the

onzero entries ∂ H 

k 
e r 

/∂ u 

k −1 
e are 

∂H 

k 
e r 

∂u 

k −1 
e 

= 

[
− ∂b 

e, tr 
e r 

∂u 

k −1 
e 

0 0 

]T 
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k −1 
e 

= 

∂b 

e, tr 
e r 
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e r 
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∂u 

k −1 
e 
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∼
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∼
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∼
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(B.17)

or an elastic step and 

∂H 

k 
e r 

∂u 

k −1 
e 

= 

[
− ∂b 

e, tr 
e r 

∂u 

k −1 
e 

. exp 

[
−2�tA 

k 
e r 

]
0 0 

]T 

(B.18)

or a plastic step. 

The nonzero derivatives ∂ H 

k / ∂ c k and ∂ H 

k / ∂ c k − 1 , have the

lock diagonal matrix form 

∂H 

k 

∂c k 
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂H 
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1 

∂c k 
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0 . . . 0 
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· · · 0 

. . . 
. . . 

. . . 
. . . 

0 0 · · · ∂H 
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∂c k n ele 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

∂H 

k 
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= 
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∂H 
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1 
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0 . . . 0 
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∂H 
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0 0 · · · ∂H 

k 
n ele 

∂c k −1 
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⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(B.19)

ue to the fact that c k e and c k 
j 

are independent of each other and

hat H 

k 
e and H 

k 
j 

are uncoupled for j 
 = e . The submatrices ∂ H 

k 
e /∂ c 

k
e 
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Fig. C.1. Square RUC domain for sensitivity verification with element numbering 

and density distribution. 
ave this structure for the same reasons, i.e. 

∂H 

k 
e 

∂c k e 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 
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∂H 
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∂c k e 3 

0 

0 0 0 

∂H 
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e 4 

∂c k e 4 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

∂H 

k 
e 

∂c k −1 
e 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

∂H 

k 
e 1 

∂c k −1 
e 1 
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0 

∂H 
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e 2 

∂c k −1 
e 2 
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∂H 

k 
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∂H 
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⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(B.20) 

The nonzero entries ∂ H 

k 
e r 

/∂ c k e r 
are 

∂H 

k 
e r 

∂c k e r 

= 

⎡ ⎣ 

I s 4 0 0 

0 1 0 

0 0 1 

⎤ ⎦ (B.21) 

or an elastic step, and 

∂H k e r 

∂c k e r 

= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 
I s 4 − b e, tr 

e r 
. 
∂ exp 

[
−2�tA k e r 

]
∂b e 
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e r 

0 −b e, tr 
e r 

. 
∂ exp 

[
−2�tA k e r 

]
�γ k 

e r 

0 1 −1 √ 
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( 
�t 

μ�γ k 
e r 

+ �t 

) ϑ 
n k e r 
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∂τV P k 

e r 

∂b e 
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e r 

− ∂ζ

∂α

∣∣∣∣
α= αk 
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⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 
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�t 

μ�γ k 
e r 

+ �t 

) ϑ 
ϑμ|| s V P k 

e r 
|| 

μ�γ k 
e r 

+ �t 
(B.22) 

or a plastic step. Again, the derivatives of the term exp [ −2�tA 

k 
e r 

]

re computed in the principal space as 

∂ exp 

[ 
−2�γ

√ 

3 
2 

n a 

] 
∂b e 

b 

= −2�γ

√ 

3 

2 
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[ 

−2�γ

√ 

3 

2 

n a 

] 

× ∂n a 

∂τc 

(
χH 

∂τc 

∂b e 
b 

)
, a, b, c = 1 , 2 , 3 

∂ exp 

[ 
−2�γ

√ 

3 
2 

n a 

] 
∂�γ

= −2 

√ 

3 

2 

exp 

[ 

−2�γ

√ 

3 

2 

n a 

] 

n a (B.23) 

Finally, the nonzero entries of the derivative matrix ∂ H 

k / ∂ c k − 1 

re 

∂H 

k 
e r 

∂c k −1 
e r 

= 

⎡ ⎢ ⎢ ⎣ 

− ∂b 

e, tr 
e r 

∂b 

e k −1 

e r 

0 0 

0 −1 0 

0 0 0 

⎤ ⎥ ⎥ ⎦ 

∂b 

e, tr 
e r 

∂b 

e k −1 

e 

= 

1 

2 

(
�

∼
F 

k 

e r 
� �

∼
F 
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e r 
+ � ˜ F k e r 

� � ˜ F k e r 

)
(B.24) 
r 
or an elastic step and 

∂H 

k 
e r 

∂c k −1 
e r 

= 

⎡ ⎣ 

− ∂b e,tr 
e r 

∂b e 
k −1 

e r 
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[
−2�tA 

k 
e r 

]
0 0 

0 −1 0 

0 0 0 

⎤ ⎦ (B.25) 

here 
∂b e, tr 

ip 
exp [ −2�tA pj ] 

∂b e,k −1 
kl 

= 

∂b e, tr 
ip 

∂b e,k −1 
kl 

exp [ −2�tA pj ] for a plastic step. 

.3: Derivatives of objective function 

Discretizing the plastic work used to evaluate the objective

unction ( Eq. (20) ) using the trapezoid rule gives 
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n ∑ 

k =1 

( 

n ele ∑ 

e =1 

( 

n ipt ∑ 

r=1 

( 

w r χA 
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(B.26) 

From this, it can be seen that the nonzero derivatives are

 W 

P / ∂ ρ and ∂ W 

P / ∂ c k , which are given as 
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here the derivatives ∂ τV P k 
e r 

/∂ b e 
k 

e r 
and ∂ n 

k 
e r 

/∂ b e 
k 

e r 
are evaluated in

rincipal space and then transformed to physical space. 

ppendix C. Verification of sensitivity analysis 

In this Appendix, implementation of the adjoint sensitivity

nalysis is verified by comparing the values obtained using the ad-

oint method to those obtained using the central difference method
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Fig. C.2. Comparison of sensitivity values obtained using the adjoint method and CDM with �h = 10 −5 for two cases of rate effects in elasto-viscoplastic glassy polymer 

phase under simple shear. 
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(CDM). The sensitivity of the total plastic work W 

P with respect to

design variable x e is calculated using the CDM as follows 

dW 

P ( x ) 

dx e 
≈ W 

P ( x + �h ) − W 

P ( x − �h ) 

2�h 

(C.1)

where �h is a vector containing all zeros except at the compo-

nent corresponding to x e , which has the perturbation value �h ,

here taken as 10 −5 . The example used for sensitivity verification is

a square RUC domain of dimensions 10 0 0 by 10 0 0 discretized into

a 10 × 10 mesh of plane strain F-bar elements with a thickness of

1. The density distribution is set to correspond to that discussed in

Section 2.5 , i.e. a matrix of glassy polymer phase and circular in-

clusion of soft elastomer phase with the radius set so that the area

of the inclusion corresponds to a volume fraction of 0.5. For this

example the density values used in the hard glassy polymer matrix

are ρH = 0.7 while the density values used in the soft elastomer

inclusion are ρS = 0.3. Fig. C.1 a shows the discretized domain and

element numbering while Fig. C.1 b shows the initial density distri-

bution. The material parameters discussed in Section 2.4 are uti-

lized and no filter is considered (i.e. dW 

P / ∂x = dW 

P / ∂ρ). 

This RUC is subject to a simple shear deformation mode under

30% strain ( ∇ ̂

 ū = [ 0 0 . 3 0 . 3 0 ] ) for two cases. In the first

case no rate effects are considered in the elasto-viscoplastic glassy

polymer phase (i.e. ϑ = 0 in the viscoplastic model) while the sec-

ond case considers rate effects using ϑ = 1 and a ratio between

the viscosity parameter and total deformation time μ/ t n = 500,

corresponding to a high rate of deformation. The sensitivity val-

ues obtained using the adjoint method and CDM for both cases

are shown in Fig. C.2 , where it can be seen that the sensitivity

values match closely, verifying the correct implementation of the

path-dependent adjoint sensitivity analysis. 
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