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Abstract—In this paper, we present EdgeDrive, a networked
edge cloud services framework which can support low-latency
applications during mobility taking into account needs of the
driver, nature of the required service and key network features.
We implement head-mounted device (HMD) based Augmented
Reality (AR) ADAS applications such as navigation, weather
notification and annotation based assistance to drive the eval-
uation. These services are then coupled with the Mobile Edge
Clouds (MECs) wherein the container based service migration
is enabled based upon migration cost and required Quality
of Experience (QoE) to support mobility. An emulator based
evaluation is carried out on the ORBIT testbed using realistic
San Francisco taxicab traces running over nine edge cloud nodes
and AR HMD being used by drivers. The experiments show that
the EdgeDrive can support low-latency ADAS applications with
an average system latency less than 100 ms for the applications
under consideration.

Index Terms—ADAS, self-driving, Mobile Edge Cloud Com-
puting, Service Migration, Augmented Reality, Cloud computing.

I. INTRODUCTION

Advanced Driver Assistance Systems (ADAS) are expected
to become increasingly important to the automotive industry
[1]. ADAS focuses on assisting drivers by providing timely
critical information such as real-time navigation, safe driving
limits, pedestrian crossing, and sensor calibration. Recent
advances in ADAS focus on applications such as 3D mapping
[2], Internet of Vehicles (IoV) [3], and holographic displays [4]
requiring uninterrupted information exchange between con-
nected cars, offloading computation to the cloud computing
servers, and handling mobility through novel communication
as well as networking architectures [5], [6].

Head-mounted device (HMD) based Augmented Reality
(AR) provides a user-friendly method for drivers of vehicles to
interact with the surrounding environment by supplementing
real world with the contextual information, e.g., traffic sta-
tus, stop notification [7]. Furthermore, gesture enabled head-
mounted AR devices make this interaction hands-free thus
improving the user Quality of Experience (QoE). Never-
theless, the core functions of AR enabled driving assistant
applications (perception, annotation, visualization and sensing)
are usually computation and data intensive [8], and the on-
board computing capabilities of currently available AR devices
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Fig. 1. AR-enable ADAS Applications. The dashboard displays the weather,
navigation and surrounding information.

such as Microsoft Hololens [9] and Google glass [10] are
insufficient to perform these intensive tasks. For instance, the
latest Hololens has only 1.04 GHz CPU clock rate, and 2GB
RAM. The constrained capability cannot satisfy the service
demands associated with processing analytics over a single
frame within 30 ms and delivering a 60 frame per second [11].

Further, the applications running on these devices rely on
shared information obtained from nearby vehicles or roadway
infrastructure to interact with the environment. For example,
self-driving vehicles receive surrounding information from
other vehicles which have knowledge about distant traffic
for better informing driving decisions. This inter-vehicle in-
formation exchange can be realized either as a peer-to-peer
(V2V) application or as a cloud service based on edge cloud
infrastructure. As central cloud servers may be at distant
geographic location from the source of data generation, con-
ventional offloading is likely to introduce significant network
latency. For a client instance in New Jersey which connects to
Amazon EC2 cloud servers located in West Virginia, Oregon
and California, the round-trip latency alone is 17, 104 and
112ms, with achievable bandwidths of 50, 18 and 16 Mbps,
respectively.

Mobile Edge clouds (MECs) bring computation, storage and
networking close to the user thereby promising to support
stringent latency requirements for AR applications [12]-[14].
Latency is a critical factor in user QoE for AR applications.
For example, in an HMD, the combined network and process-
ing latency while using an AWS cloud is more than 100 ms at
which 50 degrees per second head or object rotation introduces
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Fig. 2. ADAS System Design

5 degrees of angular error [15]. In case of objects closer to
the user, this implies that the user views a virtual coffee cup
in the air instead of on the table and for farther objects, the
error only accumulates. MECs provide a way to reduce this
latency, and hence the overall errors by providing responses
faster than the user perceivable latency.

This paper presents, EdgeDrive, an edge cloud based end-
to-end system to minimize the latency of AR applications for
ADAS. We implement and deploy several example ADAS
based AR applications such as smart navigation, weather
notification, and annotation based assistance as shown in
Figure 1. The applications are augmented with networking
and edge cloud components emulated using the ORBIT [16]
testbed with demonstrated methods to reduce overall system
latency by edge cloud techniques such as caching, application
specific routing, dynamic server selection and edge cloud
migration [17]. A large-scale emulation using nine edge cloud
locations in San Francisco is used along with realistic taxicab
traces to showcase dynamic server migration. It is shown that
the MEC system can improve AR based ADAS performance
when augmented with additional capabilities such as service
containerization, and its migration.

The rest of paper is organized as follows. Section II de-
scribes the above mentioned ADAS applications while detail-
ing smart navigation application for the techniques used to
reduce its delay. Section III presents the EdgeDrive architec-
ture using MECs. Section IV describes the emulation set-up
used to carry out the experiments. Results and discussion are
presented in Section V and Section VI concludes the paper.

II. ADAS APPLICATIONS

In order to test the functionalities of ADAS system, we
identified three key applications namely, (a) annotation based
assistance, (b) smart navigation, and (c) 3D weather. These
applications are chosen as they cover different features and
requirements such as the latency, caching, throughput and
compute as listed in Table 1. In particular, the first application
supports the driver by embedding the processed surrounding
information onto the AR device using image processing. The
second application provides navigation support by embedding
3D objects onto the path where the driver collects the objects
similar to a game play. The third application projects the
current location’s and destination’s weather information on to
the driver’s AR display.

AR Application Latency Comparison

Single hop edge cloud
Cloud Server: 3.3 GIPS, 16 GB RAM
Core Bandwidth: 900 Mbps
Access: WiFi

Fig. 3. ADAS Application Latency Comparison

TABLE I
REQUIREMENTS FOR SAMPLE ADAS APPLICATIONS

Feature | Annotation | Smart Navigation | 3D Weather
Latency Low Medium High
Database/Caching No Yes Yes
Throughput High Medium Low
Compute High Medium Low

A. ADAS System Design

The system consists of devices (e.g. Hololens), network (e.g.
routers) and the service functions placed at each cloud servers.
The server runs on an edge cloud which is typically one hop
away from the Access Point (AP). The network, in addition to
routing and forwarding, also supports control exchange func-
tions among the edge clouds. The edge cloud provides features
such as computation, storage, resource virtualization, service
migration, and performance monitoring. The applications are
developed using Unity and C#. The design framework is as
shown in Figure 2. The APIs developed at the smart space
interface allows user to seamlessly access the services from the
cloud server. The user states are accessible across the network
using a logically centralized database.

By deploying this three-layered, device-router-edge cloud
system on the ORBIT testbed, the function level latency
is measured for all the applications as shown in Figure 3.
The arrows represent the required latency thresholds which is
low for annotation based application as the response should
be in real-time as the user’s head movement. The lower
bound represents the latency which is sufficient to provide
satisfied quality of experience to the user. The smart navigation
application spends most of the time in image processing using
OpenCV and therefore requires a highly computational, lightly
loaded edge cloud for offloading the compute. The 3D weather
application is able to serve without delays using its caching
function retrieving the statistics from a central weather server
periodically. It can be noted that despite edge cloud being one
hop away, the annotation based assistance application is unable
to achieve latency bounds and there require techniques such
as distributed task computing [11] which are not studied in
this work.

B. Smart Navigation

Smart Navigation is one of the most crucial features in
ADAS. First, we describe the challenges of developing an
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uninterrupted navigation service and then detail the suitable
design choices.

Localization with Hololens: Navigation needs GPS location
information of the device. Yet, currently available Hololens
devices do not support the GPS module. Therefore, we rely
upon mapping coordinates based upon accelerometer and
gyroscope sensor readings for localization. The map is divided
into set of junctions and at each junction, the route is recalcu-
lated based upon current Hololens coordinate and destination
coordinates. Therefore, the complete navigation system relies
upon manipulating coordinates as read by local sensors and
thus the implementation functions without the GPS as shown
in Figure 4.

High Uplink Bandwidth: Hololens requires to send the
stream of images to the server continuously. This is expensive
as it requires high uplink bandwidth. In order to optimize this,
we send only when the image changes more than 5% (can
be varied) as compared to the last sent image and thereby
also saving server compute. A lightweight bitmap based hash
function is locally employed on the HMD for the image
comparison.

Path Rerouting: Sometime the vehicle may take paths other
than that suggested by navigation. This is handled by con-
tinuously comparing the coordinates of line connecting two
suggested junctions. If the user’s current coordinates do not
lie on the line, the path is rerouted to the next optimal path.
Finally, the path is always selected based upon the minimum
distance between the source and the destination considering
all the possible combinations.

Receiving Real-time Responses: The image processing and
path calculations are offloaded to the neighboring edge cloud
server and is detailed in the next section.

In a general ADAS system, a tagged metadata image stream
is used for all the services rendered to an HMD. Therefore, in
this work, we have employed image streaming irrespective of
the application.

III. EDGEDRIVE SYSTEM
In this section, the EdgeDrive system components and its
capabilities are described.

A. System Components

The system has the following components as shown in
Figure 5. (1) End Devices: These are hosts, sensors and
embedded compute devices such as FGPA which can push/pull
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Fig. 5. EdgeDrive System

data from the system; (2) Smart Space Interface: It al-
lows to connect heterogeneous devices to the edge cloud by
mapping their API requirement to the deployed system; (3)
Network: Its functions are routing, forwarding and control.
The deployed network has additional feature which allows
application state to be pushed to the cloud and vice-versa.
This simple action allows application specific routing to best
available edge cloud while keeping the control distributed in
the network; (4) Edge Cloud: Each instance of edge cloud
can compute, store, migrate resources by virtualization (such
as containers), measure and report statistics to the network
and neighbors; (5) Database: It contains user states and space
specific information which can be cached at the edge cloud
proactively or on-demand.

B. AR using HoloLens

HoloLens provides a state of the art technique to achieve
AR functionalities by its unique features such as frame of
references (stationary and attached), spatial anchoring and
spatial mapping. This implies that a virtual object (hologram)
can be placed and oriented at a fixed location in the real-world
(mixed reality) and can be retrieved at the same location later
anytime. The specially designed spatial coordinate system can
be used to derive other coordinate systems or can be used as-
is to determine device’s own position in the three-dimension
space.

C. EdgeDrive Capabilities

The key features of EdgeDrive are described as follows.
Service Containerization: All the services such as navigation,
annotation and weather reporting are containerized at the
edge cloud servers. Containerization provides benefits such as
service and user level isolation, faster start and stop, and easy
migration.

Mobility Support using Container Migration: EdgeDrive
provides ADAS application mobility support by migrating
containers across edge cloud nodes. Each edge cloud node
has a performance monitor, migration manager and controller
which with the help of neighboring edge cloud resource
information decides the target as shown in Figure 6. The
migration' cost is assessed using the equation in [18], for the

IThe authors would like to thank Shalini Choudhury for her help in
container migration system formulation.
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Fig. 6. Container Migration in EdgeDrive

parameters shown in Table II, as follows:

-y [
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In the above equation, the former part provides time for
computing while the latter estimates the migration time due to
inter-edge bandwidth. From [18], the decision migration algo-
rithm ShareOn is used in EdgeDrive for estimating the target
location based upon network bandwidth, compute capability
and current utilization of the destination with the following
objective function:

. kin,j + Kout,j) * S i % Tpd,j
min . |:maX ) { ( in,j Out,]) page,j pd,j +
sp.j * (1 —load;)
N
Kin,j1* s K Tpd 2
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TABLE II
CONTAINER MIGRATION PARAMETERS
Param | Description [ Param | Description
Tpd page dirty rate (KBps) Spage page size (KB)
Sp processor speed (GIPS) m RAM (GB)
b; inter-edge bw (Gbps) tn network latency (ms)
load CPU load at MEC (0-1) k #running containers
kin #containers received kout #containers sent

In Equation 2, the migration time in a continuous migration
process (wherein multiple containers overlap) is optimized by
minimizing the time of maximum cost migration. The control
plane exchange is similar to that of [19] where the neighbors
exchange their load and compute information with each other.

IV. EXPERIMENTAL DETAILS

The experiment is set up at the sandbox-9 (SB9) on the OR-
BIT [16] testbed. Nine nodes are set-up based on the topology
of a San Francisco edge cloud network with variable inter-
edge bandwidth (randomly chosen between 100-900 Mbps)
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Fig. 7. San Francisco Edge Cloud Network

connectivity as shown in Figure 7. The nodes are placed based
on the population density in SFO and have heterogeneous
memory, processing speed (Ref: Fig.7) and cpu load (varied
from O to 1). Real SFO taxicab traces are used from the heavy
traffic routes across the city. Each of these users are assumed to
be using the smart navigation application as described earlier.
The source and destination are chosen randomly. The low-
latency requirement of the navigation application is aimed to
be fulfilled by EdgeDrive by: (a) pre-caching and reevaluating
navigation information at each junction and the line connecting
the neighboring junctions, (b) associating user to the best
available edge cloud, (c) providing service transfer support
using container migration, and (d) enabling network embedded
application specific routing.

A. Emulating ADAS

The ADAS applications are emulated on the ORBIT testbed
by setting in-lab source and destination for navigation. The
junctions are pre-defined at every intersection and realistic
dimensions are obtained using a laser rangefinder. A naviga-
tion algorithm finds the shortest distance between the source
and the destination. The coordinates are initialized at (x,y,z) =
(0,0,0) using OpenCV based recognizable chilitags placed at
the source. For the entire experiment, z (height) is set to 0. At
source, the user looks at the marker using Hololens and the
navigation begins for the set destination. The user then collects
the pink cubes as shown in Figure 8(b) to navigate towards the
destination. The image stream rate from HoloLens is varied
from 10fps to 60fps for the walking user to emulate vehicular
mobility. For a large scale experiment, 536 mobile users are
injected into the system using a custom script emulating from
the SFO taxicabs traces and thereby loading servers. Similarly,
the annotation application is emulated by obtaining real-time
printer information such as ink status as shown in Figure 8(c).
MySQL database is used for storage and Apache for server
code.

B. Container Migration

As the services run on containers at the nine edge clouds,
the migration is self-triggered locally at an edge considering
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migration cost and the parameters as described in ShareOn.
The migration has three stages: (a) decision, (b) initiation
and (c) completion. During the decision phase, the right edge
cloud is chosen for migrating a running containerized service.
During the initiation phase, the pre-copy of container begins
thus copying the pages from source to the destination. Finally,
during the completion phase, source edge cloud node informs
the destination edge cloud node to run the newly received
container and itself discards the old container upon receiving
confirmation from the destination. The complete process is
automated using Python and shell scripts.

V. RESULTS AND DISCUSSION

This section presents the results obtained using the experi-
ments as detailed earlier.

A. Parameters Impacting Container Migration

Container migration consists of pre-copy, migration and
post-copy. For stateless applications such as annotation,
weather and navigation, post-copy is not required and therefore
merely migrating the dependencies enables the destination
node to restart the services. Figure 9 shows the impact of
machine type and container size on the total migration time.
It can be seen that the migration time for a 4.2 GB container
running on an Intel i5 machine can be as high as 60 seconds
which is less useful for real-time applications described in
this paper. Therefore, while deciding service migration, along
with the bandwidth, machine type plays an important role.
The other parameters of interest are system utilization (load),
processing capabilities of the edge cloud and the available
RAM.

B. Factors Affecting Application Performance

The input from HoloLens in case of weather and smart
navigation applications is primarily the coordinates (a few
KBs) of user whereas in case of annotation application, con-
tinuous stream of images (avg. 30fps) is sent from the device
to the server. Therefore, the annotation application is the most
affected by the system load as shown in Figure 10. As the
weather application relies upon the pre-fetched data in the edge
cloud, the current system load does not affect its performance.
The navigation application intermittently requests server to
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calculate the path and therefore its round trip response time
grows when the system load is high.

Figure 11(a) depicts that when the frame per second sent
from the HoloLens to the edge cloud server is low, the server is
unable to determine the object and therefore the response time
is high. When the fps is increased, OpenCV is able to detect
the marker or object and therefore the annotation appears in
less than 70 ms. As the fps is increased, the server is loaded
with the heavy processing and therefore the RTT increases
again.

Figure 11(b) shows the impact of mobility on the navigation
performance of HoloLens. The in-lab mobility is normalized
from O to 1 and error is defined as junction missed due to mo-
bility which otherwise would have provided the shortest path.
The percentage error is calculated by running the experiment
multiple times and then averaging the miss rate.

C. Effect of Container Migration

Figure 12(a) shows the latency for the navigation application
for a single random user when the system is loaded at 0.5 (50%
CPU utilization). As the user is mobile, the latency depends
upon whether the user is moving closer to the assigned
edge cloud or not. Employing ShareOn based EdgeDrive, the
application latency for the user drops after the time tick 20
at which point the migration is complete and user’s service is
migrated to another edge cloud.

Figure 12(b) shows the average latency for the whole system
for all the applications when the CPU load is 0.5. For the
higher compute demanding applications, EdgeDrive is able to
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provide better QoE as the latency is significantly lower than
the system without migration.

VI. CONCLUSION

In this paper, we proposed EdgeDrive, a mobile edge cloud
based compute, network and storage orchestrated architec-
ture to support advanced driver assistance systems (ADAS).
Using key Augmented Reality (AR) applications developed
for the head mounted display (HMD), it is demonstrated that
EdgeDirive is able to provide low-latency service to the driver
during mobility. The experiment is set-up on the ORBIT
testbed for real time emulation by deploying set of edge cloud
nodes, container based service migration system, SFO taxicab
traces for mobility and the network support.

The key observations from this study are: (1) machine type
plays a crucial role in deciding migration, (2) applications
requiring higher compute for instance annotation based as-
sistance should be offloaded to the closest available edge
cloud, (3) increasing frames per second sent to the edge
cloud server does not necessarily improve the application
performance, (4) the latency of applications requiring pre-
fetched data cannot be further optimized, and (5) service
migration should consider network bandwidth, system load,
and compute capability of the source and the destination. Our
future work includes evaluating EdgeDrive on a large-scale
testbed such as COSMOS [20] where realistic mobility data
can be evaluated.
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