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Highlights
• Novel computational framework for design of nonlinear auxetic metamaterials at finite strains is presented.
• Nonlinear homogenization at finite strains is consistently incorporated in the density-based topology optimization.
• Optimization formulations with single and multiple hyperelastic phases are considered.
• New single and multimaterial auxetic metamaterials designs are discovered.
• Multiscale micro and macro stability issues are addressed in the context of metamaterials design.

Abstract

A novel computational framework for designing metamaterials with negative Poisson’s ratio over a large strain range
is presented in this work by combining the density-based topology optimization together with a mixed stress/deformation
driven nonlinear homogenization method. A measure of Poisson’s ratio based on the macro deformations is proposed, which
is further validated through direct numerical simulations. With the consistent optimization formulations based on nonlinear
homogenization, auxetic metamaterial designs with respect to different loading orientations and with different unit cell domains
are systematically explored. In addition, the extension to multimaterial auxetic metamaterial designs is also considered, and
stable optimization formulations are presented to obtain discrete metamaterial topologies under finite strains. Various new
auxetic designs are obtained based on the proposed framework. To validate the performance of optimized designs, a multiscale
stability analysis is carried out using the Bloch analysis and rank-one convexity check. As demonstrated, short and/or long
wavelength instabilities can occur during the loading process, leading to a change of periodicity of the microstructure, which
can affect the performance of an optimized design.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

Design of mechanical metamaterials to achieve extreme properties has been an active research area in the past
decades [1–3], wherein the overall macroscopic properties of these metamaterials are tailored by carefully designing
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the geometries of the underlying microstructures. Thus, the properties of these metamaterials are largely determined
by their microstructural designs rather than by the chemical compositions of the constituent materials. Among these
metamaterials, materials with negative Poisson’s ratio (NPR), also known as auxetic materials [4], have received
considerable attention ever since the pioneering works by Robert [5] and Lakes [6]. The Poisson’s ratio measures
the extent by which a material contracts transversally relative to the axial stretch. As opposed to the common
engineering materials with positive Poisson’s ratio, the auxetic materials expand transversally when stretched. Due
to this unusual behavior, auxetic materials have been shown to possess many desirable mechanical properties such
as high shear resistance, synclastic curvature and indentation resistance, among others [7]. Auxetic metamaterial
behavior is usually achieved by purposefully designing microstructural geometries, and among the microstructural
geometric features that lead to auxetic behavior, three main types have been proposed, i.e., re-entrant type [8],
chiral type [9] and rotating units type [10]. By manipulating and combining these three features, a variety of
auxetic designs has been heuristically obtained [7]. Though promising, most of the auxetic material designs are valid
only within a relatively small deformation region. Due to the high geometric nonlinearities during the deformation
process, the design of auxetic metamaterials with NPR over a large deformation range is still a challenging issue.
More information regarding the auxetic materials can be found in the recent review articles [7,11].

Aside from the experimental or heuristic driven design approaches, novel metamaterial designs can be also
discovered by mechanical modeling and optimization based approaches. Among other design approaches, the
topology optimization method has shown great potential in structural and material designs since its initiation
by Bendsøe and Kikuchi [12], and has been used for many complex nonlinear structural designs, e.g. [13–18].
Combining with asymptotic homogenization under small deformations, Sigmund [19] first demonstrated the use
of topology optimization for designing materials with desirable effective properties, including NPR and other
thermoelastic properties [20]. Since then topology optimization has been applied for discovering metamaterials
with various extreme properties, e.g. extreme thermal expansion [21], extremal bulk and shear modulus [22,23],
desirable band-gaps [24], optimal damping characteristics [25] and optimal energy absorbing capacity [26], among
others. However, most of these design studies are still confined to small deformation range and there are only limited
studies that considered finite deformations in metamaterial topology optimization, e.g. [27–29].

The difficulties in incorporating the nonlinear elastic behavior at finite deformations in designing nonlinear
metamaterials are, in part, due to the characterization of overall homogenized metamaterial’s properties. Starting
with the work of Hill [30], a series of studies have been carried out to predict the effective properties of nonlinear
composites based on homogenization theories, see [31] and references therein. In contrast to these analytical
approaches, where it is difficult to incorporate the full geometric information of the underlying microstructures,
the computational homogenization approaches which are developed using the finite element (FE) models of
representative volume element (RVE) are capable of predicting the overall macroscopic metamaterial response [32],
and are therefore, more appropriate for analyses and design of metamaterials.

Another critical challenge, while considering metamaterials design under finite deformations, is related to the
potential instabilities that can happen at both the micro and macro scales. Previous studies have shown that a
nonlinear composite material with quasiconvex, and thus strictly rank-one convex constituents, can lose strict
rank-one convexity at adequate loads, which allows for the emergence of discontinuous deformation gradient, and
this response is termed as macroscale instability [33]. Depending on the geometry of a microstructure as well
as the loading conditions, short wavelength buckling or microscale instability can occur before the macroscale
instability [34], which leads to a change of the periodicity of the microstructure. As a result, the RVE which
includes the smallest periodic cell (one unit cell) cannot serve as RVE after the onset of instability. This presents
a barrier for nonlinear material characterization, since the wavelength of the buckling mode is not a priori known.
Therefore, the nonlinear metamaterial designs should be investigated w.r.t. stability issues, as a design might lose
its validity when micro or macro stability is lost.

In this study, a nonlinear homogenization based topology optimization framework is presented that can be
used for design of auxetic hyperelastic metamaterials under finite deformations. Compared to the previous work
on nonlinear auxetic metamaterials design via topology optimization by Wang et al. [29], which is based on
numerical tensile experiments instead of homogenization, the main contributions of this work are: (a) Consistent
mixed stress/deformation driven nonlinear homogenization analysis is incorporated in the topology optimization
that enables a clear transition from the microstructural behavior to macroscale properties, and an overall measure of
Poisson’s ratio in terms of the macro deformations is proposed; (b) Design space is greatly expanded in the proposed
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design framework, wherein different unit cell domains and loading orientations can be consistently considered,
due to the underlying homogenization framework; (c) Design of auxetic materials is extended from single to
multiple material phases and many novel auxetic metamaterial designs are discovered; (d) Optimized designs are
further validated by a direct numerical simulation of extended periodic solids with the optimized topologies; (e)
Multiscale stability investigation is carried out for validating the structural behavior of the optimized designs and
the stability issues are discussed in the design of auxetic metamaterials. The rest of the paper is organized as
follows: in Section 2, finite deformation based homogenization method is reviewed. In Section 3, density-based
multimaterial topology optimization formulations are presented. Sensitivity analysis is given in Section 4. Section 5
shows illustrative numerical examples, which is followed by the numerical validation studies of homogenization
analysis and multiscale stability investigations in Sections 6 and 7, respectively. Final remarks and conclusions are
given in Section 8.

2. Finite deformation homogenization

Homogenization theory is used for the prediction of overall properties of a metamaterial with underlying periodic
microstructure. For example, Fig. 1 shows a solid body made of material that has a specific microstructure that
can be characterized by a periodic arrangement of a unit cell. This unit cell is taken as a representative volume
element (RVE), which is then used to determine the overall metamaterial properties [33]. The domain that RVE
occupies is denoted by Ω

µ

0 , which includes solid part B and void part H, i.e., Ωµ

0 = B ∪ H, as shown in Fig. 1,
and ∂B = ∂Ω

µ

0 ∪ ∂H where ∂ (■) denotes the boundary of ■. To fulfill the scale separation assumption, the
characteristic length of RVE should be much smaller than the dimension of the macroscale solid body. In this
section, a brief review of the first-order finite deformation homogenization theory is presented that is used to obtain
the effective properties of metamaterials with periodic microstructures.

Let ∇u
(
X
)

denote the macroscopic displacement gradient at the material point X of the solid body which
occupies the domain Ω0. For the remainder of this paper, a bar will be used to denote the macroscopic quantities.
Without loss of generality, the microscale displacement field u (X) over the RVE domain Ω

µ

0 , which is associated
with a material point X ∈ Ω0, is linked to the macroscale kinematical variables by

u (X) = ∇u.X + ũ (X) (1)

where ũ (X) is defined as the displacement fluctuation field. The microscale deformation gradient can be thus
expressed as

F (X) = F + ∇X ũ (X) (2)

where F = I+∇u represents the macroscale deformation gradient, ∇X (·) denotes the gradient operator with respect
to the microscale coordinates X . Following [35], the microscale displacement field has to satisfy the kinematical
admissibility constraints, which are postulated as∫

B

u (X) dV = 0 and F = I +
1
V

∫
∂Ω

µ
0

u (X)⊗ Nd S (3)

in which V is the volume of the domain Ω
µ

0 and N is the unit normal vector on the boundary ∂Ωµ

0 . Using the
divergence theorem, it can be further shown that Eqs. (3)1 and (3)2 are equivalent to∫

B

ũ (X) dV = 0 and
∫
∂Ω

µ
0

ũ (X)⊗ Nd S = 0 (4)

where it is assumed that the microscale coordinate system is chosen such that
∫
B

XdV = 0. Moreover, applying
the divergence theorem to Eq. (3)2 gives

F = I +
1
V

∫
B

∇X u (X) dV −
1
V

∫
∂H

u (X)⊗ Nd S (5)

which means that the macroscopic deformation gradient F is not equal to the volume average of the microscopic
deformation gradient F, in general, due to the presence of the voids [36]. Finally, the kinematically admissible
displacement fluctuation field ũ (X) is defined in a functional space Vmin

Vmin =

{
ũ (X)

⏐⏐⏐⏐⏐ũ (X) ∈ H 1 (B) ,

∫
B

ũ (X) dV = 0,
∫
∂Ω

µ
0

ũ (X)⊗ Nd S = 0

}
(6)
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Fig. 1. Solid body with periodic microstructure and corresponding RVE.

where H 1 (B) =
{
v|vi ∈ L2 (B) , ∂vi/∂X j ∈ L2 (B) , i, j = 1, 2, . . . , d

}
and L2 (B) represents the space of square

integrable functions defined on B and d is the number of space dimensions. The subscript min means that this set
of constraints is the minimal set required for kinematical admissibility. It has been shown in [35] that this set of
constraints corresponds to the constant traction boundary conditions. Additional constraints can be introduced in a
consistent way that may lead to periodic boundary conditions or linear displacement boundary conditions [35]. It
is noted that the constraint in Eq. (3)1 is equivalent to removing rigid-body translation, while the constraint in Eq.
(3)2 implicitly removes rigid-body rotation.

The micro-to-macro transition is governed by the principle of multiscale virtual power [35], which reads

P : δF =
1
V

∫
B

P : δFdV ∀δF ∈ Lin, δũ ∈ V ⊆ Vmin (7)

where P and P are the macro and micro 1st Piola–Kirchhoff stress tensors, respectively, and the space of virtual
fluctuation field δũ is identical to that of the fluctuation field ũ, i.e. V, which is a subspace of Vmin . Eq. (7) can
be seen as the variational form of the Hill–Mandel condition [30,37] that states the incremental energy equivalence
between the macroscale and microscale. In Eq. (7), inertia and body forces are not considered and the interested
readers are referred to Refs. [35,38] for further extensions to dynamic cases.

The stress homogenization relation

P =
1
V

∫
B

PdV (8)

and the microscale equilibrium equation∫
B

P : ∇XδũdV = 0 ∀δũ ∈ V (9)

can be obtained from Eq. (7) by choosing δũ = 0 and δF = 0, respectively.

2.1. Deformation-driven homogenization — periodic boundary conditions

In this section, a deformation-driven homogenization formulation for computing the homogenized stresses and
tangent moduli of a given discretized microstructure is presented. Since in the metamaterial topological design, the
underlying microstructure is always assumed to be periodic with repeating unit cells (Fig. 1), it motivates the use
of periodic boundary conditions. To be compatible with the assumption of periodicity, the RVE must satisfy certain
geometrical constraints. For example, for 2D problems, the most general RVE shape is the parallelogram (Figs. 1
or 2a), and square or rectangular shapes are special cases of parallelogram. The hexagonal unit cell (Fig. 2b) can
also be equivalently recast into a parallelogram. For a 2D RVE, the boundary can be divided into a pair of negative
and positive sides, denoting as ∂Ωµ−

0 and ∂Ωµ+

0 , respectively, see Fig. 2, where points on the positive side can
be reached by translating the corresponding points on the negative side using a periodic lattice vector a1 or a2

or ± (a1 ± a2). For the periodic boundary conditions, the displacement fluctuations on the negative side equal the
corresponding ones on the positive side, i.e.,

ũ+
= ũ− on ∂Ωµ

0 (10)



494 G. Zhang and K. Khandelwal / Computer Methods in Applied Mechanics and Engineering 356 (2019) 490–527

Fig. 2. Geometries and partitioning of boundary nodes of discretized microstructures of RVE (blue color denotes the negative sides and
red color denotes the positive sides) . (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

which can be proved to automatically satisfy the constraints in Eqs. (4)2 or (3)2. As a result, the kinematically
admissible displacement fluctuation field considering periodic boundary condition is defined in a functional space
V

V =

{
ũ (X)

⏐⏐⏐⏐ũ (X) ∈ H 1 (B) ,

∫
B

ũ (X) dV = 0, ũ+
= ũ− on ∂Ωµ

0

}
(11)

and the multiscale homogenization problem is completely defined by Eq. (7).
For a given discretized RVE (Fig. 2), the constraints in Eq. (10) are given by

ũ+

q = ũ−

q , q = 1, 2, . . . ,m (12)

where m pairs of nodes lying on the negative and positive boundary sides are identified. The rigid-body translation
constraint (Eq. (4)1) can be equivalently replaced by fixing one arbitrary point, e.g. ũo = 0 in B. Thus, the discretized
functional space Vh is defined by

Vh
=
{
ũ (X) |ũ (X) ∈ H 1 (B) , ũo = 0, ũ+

q = ũ−

q (q = 1, 2, . . . ,m)
}

(13)

2.1.1. Principle of multiscale virtual power with Lagrange multiplier — discrete form
Using the Lagrange multipliers to enforce the constraints in Eq. (13), the discretized form of the principle of

multiscale virtual power reads

−V
(

P : δF
)
+

∫
B

P : δFdV − δλT uo − λT δuo −

m∑
q=1

δµT
q

[
u+

q − u−

q −
(
F − I

)
.Lq

]
−

m∑
q=1

µT
q

[
δu+

q − δu−

q − δF.Lq
]

= 0 ∀δF ∈ Lin, δu, δλ, δµ
(14)

where λ and µ =
[
µ1, . . . ,µm

]T are the Lagrange multipliers, and the constraints are restated in terms of the
displacement field u (X) instead of fluctuation field ũ (X). Note that uo = 0 is equivalent to ũo = 0 in the sense
of removing rigid-body translation. The vector Lq in Eq. (14) is defined as Lq =

∑d
i=1 ci ai where ci are integers

that satisfy X+

q = X−

q + Lq , and X+

q and X−

q are the coordinates of nodes on a pair of positive and negative sides,
see Fig. 2a.

2.1.2. Homogenized stress
Homogenized stress can be determined by the discrete forces on the boundary, which are related to the Lagrange

multipliers. To this end, the interpretation of the Lagrange multipliers in Eq. (14) is first carried out. Assuming
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δF = 0, δλ = 0 and δµ = 0 and δu = c0 (with c0 constant in B) in Eq. (14) gives δu+
q − δu−

q = 0 (q = 1, . . . ,m),
which leads to λT c0 = 0. Therefore,

λ = 0 (15)

has to be satisfied, which means that for a self-equilibrated system, fixing one arbitrary point for removing rigid-body
translation does not create any reaction force.

Now taking δF = 0, δλ = 0 and δµ = 0 in Eq. (14) but with δu (X) = A0.X in B where A0 ∈ Lin (a constant
2nd-order tensor), gives δF = A0 and δu+

q − δu−
q = A0.Lq , which leads to⎛⎝∫

B

PdV −

m∑
q=1

µq ⊗ Lq

⎞⎠ : A0 = 0 ∀A0 ∈ Lin (16)

where µq and Lq (q = 1, . . . ,m) are both vectors (or 1st-order tensors) while P and A0 are 2nd-order tensors in
the space of dimension d = 2 or 3 for 2D and 3D cases, respectively. Since A0 can be chosen arbitrarily, it follows
from Eqs. (8) and (16) that

P =
1
V

∫
B

PdV =
1
V

m∑
q=1

µq ⊗ Lq (17)

Therefore, it can be seen that the homogenized 1st Piola–Kirchhoff stress can be computed from the Lagrange
multipliers µ.

2.1.3. Finite element formulation
Considering the unknown variables to be solved as u, λ and µ, the resulting set of nonlinear constrained

equilibrium equations, from Eq. (14), reads

R (u,λ,µ) =

⎡⎣R1 (u,λ,µ)
R2 (u,λ,µ)
R3 (u,λ,µ)

⎤⎦ =

⎡⎣Fint (u)− MT
1 λ − MT

2 µ

−M1u
−M2u

⎤⎦+

⎡⎣0
0
b

⎤⎦ = 0 (18)

where Fint represents the global internal force vector defined by

Fint (u) =

nele
A

e=1
Fe

int with Fe
int =

∫
Ωe

BT PdV (19)

where B is the shape function derivative matrix, Ω e represents the eth element integration domain satisfying
B =

⋃nele
e=1 Ω

e and nele are the total number of elements in the RVE. In topology optimization, with the design
domain defined as the RVE, fictitious domain approach is adopted in which void area H is also included in the
finite element analysis (FEA) and is assigned vanishing material properties, i.e. Ωµ

0 =
⋃nele

e=1 Ω
e.

The matrices M1 and M2, and vector b are constructed such that

uo = M1u
u+

− u−
= M2u

b =

⎡⎢⎣
(
F − I

)
.L1

...(
F − I

)
.Lm

⎤⎥⎦ = [LM ]
([

F
]
− [I]

)
=

⎡⎢⎢⎢⎢⎢⎣
X̃1 0 Ỹ1 0
0 X̃1 0 Ỹ1
...

...
...

...

X̃m 0 Ỹm 0
0 X̃m 0 Ỹm

⎤⎥⎥⎥⎥⎥⎦
2m×4

⎛⎜⎜⎝
⎡⎢⎢⎣

F11

F21

F12

F22

⎤⎥⎥⎦−

⎡⎢⎢⎣
1
0
0
1

⎤⎥⎥⎦
⎞⎟⎟⎠ (20)

where u is the global nodal displacement vector, u+
=
[
u+

1 , . . . , u+
m

]T and u−
=
[
u−

1 , . . . , u−
m

]T includes m nodal

displacements defined on the positive and negative boundary sides, respectively. Lq =

[
X̃q , Ỹq

]T
is the translational

vector from the qth node on the negative side to the qth node on the positive side. The expression of b vector is
written for 2D case in a matrix–vector form in Eq. (20)3. In the following discussion, only 2D case is considered
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for numerical implementations; the presented theoretical and computational framework is directly applicable to 3D
cases, however.

The nonlinear system in Eq. (18) is solved using the Newton–Raphson method and the Jacobian matrix, which
is needed for Newton–Raphson solver, can be calculated as

JT =

⎡⎣∂R1/∂u ∂R1/∂λ ∂R1/∂µ

∂R2/∂u ∂R2/∂λ ∂R2/∂µ

∂R3/∂u ∂R3/∂λ ∂R3/∂µ

⎤⎦ =

⎡⎣ K T −MT
1 −MT

2
−M1 0 0
−M2 0 0

⎤⎦ (21)

where the term K T = ∂Fint/∂u is the usual tangent structural stiffness matrix calculated by

K T =
∂Fint

∂u
=

nele
A

e=1
ke

T with ke
T =

∫
Ωe

BT
[
∂ P
∂F

]
BdV (22)

in which the tangent moduli ∂ P/∂F is obtained from material subroutine.

2.1.4. Homogenized tangent moduli
Using Eq. (17) and the definition of matrix [LM ] given in Eq. (20)3, it can be shown that the homogenized stress

P is given by[
P
]

=
1
V

[LM ]T µ (23)

where the bracket outside P means that it is arranged in a 4 × 1 vector form, similarly as
[
F
]

used in Eq. (20)3.
The 4th-order tensor homogenized tangent moduli A is defined by

A =
∂ P
∂F

(24)

and can be rephrased in a matrix form as
[
A
]

= ∂
[

P
]
/∂
[
F
]
, which is of size 4 × 4 for 2D case. From Eq. (23),

it is clear that
[
A
]

is determined by the derivative of Lagrange multiplier µ with respect to F. To this end, the set

of global equilibrium equations (18) is perturbed at the equilibrium state by a perturbation ∆F, i.e.,⎡⎣ K T −MT
1 −MT

2
−M1 0 0
−M2 0 0

⎤⎦⎡⎣∆u
∆λ

∆µ

⎤⎦+

⎡⎣ 0
0

LM

⎤⎦[∆F
]

= 0 (25)

which results in⎡⎣∆u
∆λ

∆µ

⎤⎦ = −J−1
T

⎡⎣ 0
0

LM

⎤⎦[∆F
]

(26)

Combining Eq. (26) with Eqs. (23) and (24), it can be shown that[
A
]

= −
1
V

[
L̂M

]T
J−1

T

[
L̂M

]
(27)

where the matrix
[

L̂M

]
is of size (N + 2 + 2m)× 4 and is defined by

[
L̂M

]
=

⎡⎣ 0N×4
02×4

[LM ]2m×4

⎤⎦ (28)

where N is the number of total DOFs in the displacement field, i.e. the size of u vector.

2.2. Uniaxial loading case — mixed stress/deformation driven formulation

In the deformation driven homogenization analysis, the macroscopic deformation gradient F is prescribed,
serving as the macroscopic loading imposed on the RVE. Without loss of generality, the macroscopic rigid-body
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rotation is ignored (R = I) and the principal macro stretch ratios λa are at a fixed angle θ with respect to the
standard Euclidean bases {ea}, i.e.,

F = U = Q FQ QT
=

[(
λ1 cos2 θ + λ2 sin2 θ

)
sin θ cos θ

(
λ1 − λ2

)
sin θ cos θ

(
λ1 − λ2

) (
λ1 sin2 θ + λ2 cos2 θ

)] (29)

where FQ
= diag

(
λ1, λ2

)
and Q the bases transformation matrix expressed as

Q (θ) =

[
cos θ − sin θ
sin θ cos θ

]
(30)

or written equivalently in matrix–vector form as
[
F
]

=
[

QM

] [
FQ
]

with

[
QM

]
=

⎡⎢⎢⎣
cos2 θ − sin θ cos θ − sin θ cos θ sin2 θ

sin θ cos θ cos2 θ − sin2 θ − sin θ cos θ
sin θ cos θ − sin2 θ cos2 θ − sin θ cos θ

sin2 θ sin θ cos θ sin θ cos θ cos2 θ

⎤⎥⎥⎦ (31)

where
[
F
]

=
[
F11 F21 F12 F22

]T
and

[
FQ
]

=
[
λ1 0 0 λ2

]T
are the vector forms of F and FQ

,
respectively.

The axial stress along stretch λ1 direction can be calculated through a bases transformation as

P
Q
11 = P11 cos2 θ + P21 cos θ sin θ + P12 cos θ sin θ + P22 sin2 θ (32)

where P i j is the component of the homogenized stress tensor P expressed in terms of the standard bases {ea}.
The uniaxial loading condition is achieved by a mixed stress/deformation driven homogenization formulation,

where λ2 and θ is prescribed together with the stress condition P
Q
11 = 0. Thus, the macro stretch λ1 is unknown,

and is obtained by the requirement that

H
(
P i j

(
λ1
))

= P
Q
11 = 0 (33)

As a result, the deformation driven homogenization presented in Section 2.1 can be seen as an inner loop where
F is given, and the outer loop is a scalar-valued nonlinear equation H

(
P i j

(
λ1
))

= 0 that solves for λ1. The
Jacobian for the outer loop is derived as

JoT
def
=
∂H

(
P i j

(
λ1
))

∂λ1
=
∂H

(
P i j

(
λ1
))

∂F pq

∂F pq

∂λ1

=

(
A1111

∂F11

∂λ1
+ A1112

∂F12

∂λ1
+ A1121

∂F21

∂λ1
+ A1122

∂F22

∂λ1

)
cos2 θ

+

(
A2111

∂F11

∂λ1
+ A2112

∂F12

∂λ1
+ A2121

∂F21

∂λ1
+ A2122

∂F22

∂λ1

)
cos θ sin θ

+

(
A1211

∂F11

∂λ1
+ A1212

∂F12

∂λ1
+ A1221

∂F21

∂λ1
+ A1222

∂F22

∂λ1

)
cos θ sin θ

+

(
A2211

∂F11

∂λ1
+ A2212

∂F12

∂λ1
+ A2221

∂F21

∂λ1
+ A2222

∂F22

∂λ1

)
sin2 θ

(34)

where Ai jkl
def
= ∂P i j/∂Fkl is computed in the inner loop (Eq. (27)) and

∂F11

∂λ1
= cos2 θ,

∂F12

∂λ1
=
∂F21

∂λ1
= sin θ cos θ,

∂F22

∂λ1
= sin2 θ (35)

3. Density based multimaterial topology optimization

In the density based multimaterial topology optimization [21], in particular with three phases including void
phase, the design is described by two element-wise density fields ρ1 (X) and ρ2 (X), where ρ1 indicates if the
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material, either material-1 or material-2, is present (ρ1 = 1) or absent (ρ1 = 0), and ρ2 denotes the proportion of the
material-1, i.e. ρ2 = 1 means full of material-1 while ρ2 = 0 means full of material-2. To accommodate gradient-
based optimizers, the density variables are relaxed to continuous values, i.e. ρ1 ∈ [0, 1] and ρ2 ∈ [0, 1],where
0 < ρ1 < 1 represents the mixture of void phase and solid phase, either material-1 or material-2, while 0 < ρ2 < 1
represents the mixture of two material phases.

3.1. Material interpolation scheme

In this section, a multi-incompressible-material interpolation is proposed. The considered three phases include
a void phase and two nearly incompressible isotropic hyperelastic solid phases. The material interpolation scheme
can be seen as an extension of the existing multimaterial interpolation scheme [21] that is tailored to include the
incompressible case. The material interpolation is carried out on the Helmholtz free energy, where the void phase
is also modeled as a hyperelastic material, but with diminishing properties. Thus, the free energy in the considered
multimaterial interpolation scheme is expressed as

ψ (ρ1, ρ2, F) = ψv (ρ1, F)+ ψ1 (ρ1, ρ2, F)+ ψ2 (ρ1, ρ2, F) (36)

where ψv , ψ1 and ψ2 denote the interpolated free energy of the void (v) phase, the 1st hyperelastic phase and the
2nd hyperelastic phase, respectively. Free energy of the void phase is interpolated as

ψv (ρ1, F) =
(
1 − ρ

pe
1

) [
ψ̂v (F)+ ψ̃v (F)

]
(37)

where ψ̂v and ψ̃v are the volumetric and isochoric contributions of the free energy, respectively, and pe is the
penalization power used for penalizing the density field ρ1. Free energies of the 1st and 2nd hyperelastic phases
are interpolated as

ψ1 (ρ1, ρ2, F) = ρ
p
2

[
ζ κ (ρ1) ψ̂1 (F)+ ζµ (ρ1) ψ̃1 (F)

]
(38)

and

ψ2 (ρ1, ρ2, F) = (1 − ρ2)
p
[
ζ κ (ρ1) ψ̂2 (F)+ ζµ (ρ1) ψ̃2 (F)

]
(39)

where the volumetric (ψ̂1 or ψ̂2) and isochoric contributions (ψ̃1 or ψ̃2) are separately interpolated, and p is the
penalization power used for penalizing the density field ρ2. The interpolation functions ζ κ (ρ1) and ζµ (ρ1) in the
Eqs. (38) and (39) are evaluated using material parameters according to the phase to which it is attached and are
defined based on the E-ν interpolation rule proposed in [39], which is used for relaxing the incompressibility in
the intermediate-density elements. Following the work by Zhang et al. [39], the functions ζ κ (ρ1) and ζµ (ρ1) are
determined by

ζ κ (ρ1) =
κ (ρ1)

κ0
and ζµ (ρ1) =

µ (ρ1)

µ0
(40)

where the bulk modulus κ (ρ1) and shear modulus µ (ρ1) are related to the Young’s modulus E (ρ1) and Poisson’s
ratio ν (ρ1) by

κ (ρ1) =
E (ρ1)

3 (1 − 2ν (ρ1))
and µ (ρ1) =

E (ρ1)

2 (1 + ν (ρ1))
(41)

with κ0 and µ0 the initial bulk and shear modulus of the solid material phase, and E (ρ1) and ν (ρ1) interpolated
using the E-ν interpolation scheme as

E (ρ1) = ρ
pe
1 E0

ν (ρ1) =
[
ϵν + (1 − ϵν)

(
1 − (1 − ρ1)

pν
)]
ν0

(42)

where the initial Young’s modulus E0 and Poisson’s ratio ν0 of the solid phase are determined from κ0 and µ0; ϵν
is the lower bound parameter for the Poisson’s ratio and is chosen as ϵν = 0.4 and pν is the penalization power. It
is noted that the material interpolation can be recovered for single material (only 1st hyperelastic material) topology
optimization by letting ρ2 ≡ 1 in the entire design domain, which is similar to the interpolation scheme proposed
in [39].
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3.2. Topology optimization formulation

To design a material with NPR it is considered that the material under uniaxial tension (or compression) along
the λ2 direction (λ2 is specified and P

Q
11 = 0 is enforced, see Section 2.2) expands (or contract) along the λ1

direction. The effective Poisson’s ratio ν of a metamaterial is defined by

ν
def
= −

λ1 − 1
λ2 − 1

(43)

For a nonlinear hyperelastic material, the material constitutive behavior depends on the applied loads. Thus, in
order to design a metamaterial that has a constant negative Poisson’s ratio over the considered load path with n
loading steps, ν1

= ν2
= · · · = νn is required, where νk (k = 1, 2, . . . , n) denotes the Poisson’s ratio at loading

step k. To enforce this condition, the objective function f0 to be minimized can be constructed as

f0 =

n∑
k=1

(
−
λ

k
1 − 1

λ
k
2 − 1

− νT

)2

(44)

with the target value of Poisson’s ratio given by νT , where νT is prescribed based on the design requirements. The
formulation in Eq. (44) is, however, numerically unstable due to the potential singularity when λ

k
2 → 1. Thus, this

objective function is modified to

f0 =

n∑
k=1

(
λ

k
1 + νTλ

k
2 − νT − 1

)2
(45)

which gives a numerically stable measure of Poisson’s ratio. In this study, both single and multimaterial topology
optimizations are considered for NPR metamaterials designs. For NPR designs with a single material phase, the
optimization formulation (OF-1) is given by

min
x1∈D

f0 (x1)+ α1V f (x1)

s.t. f1 (x1) = 1 −

[
AQ

0

]
11
/k ≤ 0

f2 (x1) = 1 −

[
AQ

0

]
44
/k ≤ 0

f3 (x1) = V f (x1)− VT ≤ 0

(46)

For NPR designs with multiple material phases, the optimization formulation (OF-2) is given by
min

x1,x2∈D
f0 (x1, x2)+ α2 M f (x1, x2)

s.t. f1 (x1, x2) = 1 −

[
AQ

0

]
11
/k ≤ 0

f2 (x1, x2) = 1 −

[
AQ

0

]
44
/k ≤ 0

f3 (x1, x2) = M f (x1, x2)− 1 ≤ 0

(47)

where α1 ≥ 0 and α2 ≥ 0.

V f (x1) =
1
V

nele∑
e=1

ρe
1 (x1) ve (48)

is the total material volume fraction and

M f (x1, x2) =
1

M∗

nele∑
e=1

[
ω1ρ

e
1ρ

e
2ve + ω2ρ

e
1

(
1 − ρe

2

)
ve
]

(49)

is the total material weight ratio.
[
AQ

0

]
11

and
[
AQ

0

]
44

in Eqs. (46) and (47) are the macroscale initial stiffness along

the loading axis and the direction orthogonal to the loading axis, respectively. The initial stiffness matrix
[
AQ

0

]
,
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which is expressed in the eigenspace of U , is defined by
[
AQ

0

]
def
=
[

QM

]T
[
A0

] [
QM

]
, with

[
A0

]
given in Eq. (27)

but with the tangent Jacobian matrix JT replaced by the initial Jacobian matrix J0, and
[

QM

]
is given in Eq. (31).

The scalar k represents a predefined macroscopic required initial stiffness value; ve denotes the eth element volume;
VT defines the maximum allowable material volume fraction; ω1 and ω2 represent the physical densities of 1st and
2nd hyperelastic material phases, and M∗ is allowable upper limit on the total mass. Further box constraints are
enforced on the design variables such that D = [0, 1]nele .

Remark. The addition of the terms α1V f (x1) or α2 M f (x1, x2) on the objective function f0 in Eqs. (46) and (47)
can be seen as a multi-objective formulation, where besides the minimization of function f0, the material usage is
also minimized under the given constraints. These multi-objective formulations are needed in some cases, since it
is difficult to predetermine an appropriate combination of the target Poisson’s ratio (νT ), stiffness (k) and material
volume (VT ) or weight (M∗) constraints that can lead to a discrete NPR design. For instance, under a given material
volume constraint, if the stiffness constraint is set too high, the optimized topology will approach a stiffness design,
which is different from a NPR design. On the other hand, if the stiffness constraint is set too low, even though the
target NPR design is achievable, a discrete topology is not guaranteed. This is because of the fact that the penalty
effect brought by the penalization in the material interpolation scheme is not completely reflected in the objective
function, i.e. Poisson’s ratio, since it is not related to the stiffness of material. This necessity of adding α1V f (x1) or
α2 M f (x1, x2) terms in the objective functions will be made clear through the numerical examples in the following
sections.

3.3. Density filter — periodic formulation

Density filter [40,41] is utilized in this study to avoid the mesh dependency and checkerboarding issues. The
filter can be expressed in a matrix form as

ρ1 = W x1 and ρ2 = W x2 (50)

where ρ1 and ρ2 are the vectors containing the filtered design variables; W is the filtering matrix that can be
expressed in component form as

Wi j =
wi jv j∑nele
j=1wi jv j

with wi j = max
(
rmin − d

(
X i , X j

)
, 0
)

(51)

where rmin is the filter radius and X i denotes the coordinates of the centroid of i th element. The distance between
points X i and X j should take the spatial periodicity of the RVE into account, i.e.,

d
(
X i , X j

)
= min

L∈Q

X i −
(
X j + L

)
2 with Q

def
=

{
L

⏐⏐⏐⏐⏐L =

d∑
i=1

ci ai , ci ∈ Z

}
(52)

where Z stands for the set of integers. See Fig. 3 for an illustration of filter in parallelogram and hexagonal RVE
domains.

3.4. FE mesh distortion

The finite element mesh distortion issue due to the use of fictitious domain approach is addressed by introducing
the linear energy interpolation scheme, which was first proposed in [42] and later extended to an adaptive scheme
in [39]. Following [39], the idea is to interpolate between the linear and nonlinear kinematics based on the solid/void
density field ρ1. Thus, the deformation gradient F is interpolated using the volume fraction of void phase as

F = I + γ∇X u with γ (ρ1) =
exp (βρ1)

exp (cβ)+ exp (βρ1)
(53)

where c and β are interpolation parameters. Following [39], the element internal force vector Eq. (19) is modified
to

Fe
int =

∫
Ωe
γ BT PdV +

∫
Ωe

(
1 − γ 2) BT

L [C : ε] dV (54)
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Fig. 3. Density filter considering periodicity.

where BL denotes the derivative of the shape functions of a regular 4-node element, ε = ∇
s
X u represents the

small strain measure and C the linear isotropic elastic moduli determined by the interpolated Young’s modulus
E (ρ1) =

[
ϵE + (1 − ϵE ) ρ

pL
1

]
E0 and constant Poisson’s ratio ν = 0.2, where ϵE = 10−8 and E0 is chosen identical

to that of the initial Young’s modulus of the hyperelastic material phase (the soft one if two solid hyperelastic phases
are considered), and pL is the penalization power. The remaining parameters are β = 120 and c = 0.08, where c
is adaptively updated (if needed) using the scheme proposed in [39], i.e. c is updated to c + ∆c with ∆c = 0.05
until the convergence of FEA is achieved.

3.5. F-bar elements

Since incompressible material phases are considered, to avoid volumetric locking F-bar element formulation [43]
is adopted, where the deformation gradient F is modified to

Fb
= r1/2 F (in-plane part) with r =

det F0

det F
(55)

where F0 is the deformation gradient evaluated at the centroid of the element. As a result, the 1st Piola–Kirchhoff
stress tensor is modified to

P = r−1/2 Pb(in-plane part) (56)

where the deformation gradient–stress pair
(
Fb, Pb) serves as the input–output of the regular material subroutine.

Note that due to the introduction of the linear energy interpolation scheme (Section 3.4), both F and F0 in Eq. (55)
are evaluated based on the interpolated displacement field. Further details on the implementation and performance
of F-bar elements can be found in [43].

4. Sensitivity analysis

The use of hyperelastic material leads to a path-independent finite element analysis. However, due to the path
dependency of the objective function f0 as defined in Eq. (45), the sensitivity analysis of f0 still needs to include all
the analysis steps. In contrast, the sensitivity analyses of the constraints ( f1 and f2) take only the initial undeformed
configuration into account. The sensitivity calculations of f3, V f (x1) and M f (x1, x2) are straightforward and are
therefore omitted. The sensitivity of important quantities with respect to the physical density variables, ρ1 and ρ2,
are provided and the density filter (Eq. (50)) can be incorporated using a simple chain rule.

4.1. Sensitivity analysis of f0

The path-dependent sensitivity analysis is carried out using the adjoint sensitivity framework presented in [44].
Due to the path dependency of the objective function described by the principal stretch λ1 along the loading process,



502 G. Zhang and K. Khandelwal / Computer Methods in Applied Mechanics and Engineering 356 (2019) 490–527

the adjoint function is constructed as

f̂0 = f0
(
v1, . . . , vn)

+

n∑
k=1

γ kT
Rk
(

ûk
, vk, ρ1, ρ2

)
+

n∑
k=1

ηk H k
(

ûk
)

(57)

where ûk
≡
[
uk,λk,µk

]T and vk
≡ λ

k
1 are the solution and auxiliary variables at step k and are determined by

the corresponding global system Rk
= 0 given in Eq. (18) and a nonlinear equation H k

= 0 given in Eq. (33);
γ k and ηk are the adjoint variables and n is the total number of load steps. Clearly, d f̂0/dρ1 ≡ d f0/dρ1 and
d f̂0/dρ2 ≡ d f0/dρ2 since the constraints Rk

= 0 and H k
= 0 are always satisfied irrespective of the density

variables ρ1 and ρ2. Taking derivatives of f̂0 with respect to ρ1 (or ρ2) and eliminating all the terms that contain
the implicit derivatives d ûk

/dρ1 and dvk/dρ1 (k = 1, . . . , n) yield

d f̂0

dρ1
=

n∑
k=1

γ k T ∂Rk

∂ρ1
or

d f̂0

dρ2
=

n∑
k=1

γ k T ∂Rk

∂ρ2
(58)

since ∂ f0/∂ρ1 = ∂ f0/∂ρ2 = 0 and ∂H k/∂ρ1 = ∂H k/∂ρ2 = 0, and the adjoint variables γ k and ηk are calculated
by (k = 1, . . . , n)

[
γ k T

ηk
]⎡⎢⎢⎣

∂Rk

∂ ûk

∂Rk

∂vk

∂H k

∂ ûk 0

⎤⎥⎥⎦ =

[
0 −

∂ f0

∂vk

] (
Noticing

∂ f0

∂ ûk = 0 and
∂H k

∂vk
= 0

)
(59)

Hence, to complete the sensitivity analysis, the derivatives that need to be calculated are

∂ f0

∂vk
,
∂Rk

∂ ûk ,
∂Rk

∂vk
,
∂Rk

∂ρ1
,
∂Rk

∂ρ2
,
∂H k

∂ ûk

The detailed expressions for these derivatives are given in the Appendix.

4.2. Sensitivity analysis of f1 and f2

Using the chain rule yields

d f1

dρe
A

= −
1

k

d
[
AQ

0

]
11

dρe
A

,
d f2

dρe
A

= −
1

k

d
[
AQ

0

]
44

dρe
A

, A = 1, 2; e = 1, 2, . . . , nele (60)

On the other hand, since
[
AQ

0

]
is related to

[
A0

]
by a basis transformation, so are their derivatives, i.e.,

d
[
AQ

0

]
dρe

A
=
[

QM

]T
d
[
A0

]
dρe

A

[
QM

]
, A = 1, 2; e = 1, 2, . . . , nele (61)

As
[
A0

]
is determined by the initial Jacobian matrix evaluated at the undeformed configuration J0, i.e.

[
A0

]
=

−
1
V

[
L̂M

]T
J−1

0

[
L̂M

]
, the derivative d

[
A0

]
/dρe

A can be computed by

d
[
A0

]
dρe

A
= −

1
V

[
L̂M

]T dJ−1
0

dρe
A

[
L̂M

]
(62)

with

dJ−1
0

dρe
A

= −J−1
0

dJ0

dρe
A

J−1
0 and

dJ0

dρe
A

=

⎡⎣d K 0/dρe
A −MT

1 −MT
2

−M1 0 0
−M2 0 0

⎤⎦ (63)

where the remaining term d K 0/dρe
A can be easily computed.
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5. Numerical examples

In the following examples, the isotropic hyperelastic material phases are modeled using regularized neo-Hookean
model for which the free energy is expressed as

ψ (C) = ψ̂ (J )+ ψ̃
(

C̃
)

with

ψ̂ (J ) =
κ

2
(J − 1)2 and ψ̃

(
C̃
)

=
µ

2

(
Ĩ1 − 3

) (64)

where J = det F, C = FT F and Ĩ1 = tr
(

C̃
)

with C̃ = J−2/3C, and κ and µ are the bulk and shear modulus,
which are related to Young’s modulus E and Poisson’s ratio ν through Eq. (41). Except for the last example with
multiple materials, the other examples consider NPR designs with a single hyperelastic material with properties:
E = 100 and ν = 0.49. The void phase in both the single and multimaterial cases is modeled with material
properties E = 10−6 and ν = 0.2.

When considering finite deformations, continuation is usually needed to avoid FE analysis failure during early
optimization iterations when intermediate density design is present [39]. The employed continuation scheme
incrementally updates pe and p from 1 to 3, pL from 4 to 6 and pν from 3 to 1 with an increment/decrement
of 0.1 every 20 iterations. This increased penalization of pL compared to pe is done so that the optimizer does
not use low-density values to exploit small deformation kinematics [39]. It is noted that when evaluating the initial
tangent stiffness constraints, i.e.

[
AQ

0

]
11

and
[
AQ

0

]
44

in Eqs. (46) and (47), the material penalization pe and p are

taken to be 3 for the first 50 iterations and increased to 5 with an increment of 0.1 every 20 iterations, while pν is
taken to be 1 throughout the optimization process. Also, the linear energy interpolation (Eq. (53)) is not considered
in the evaluation of

[
AQ

0

]
11

and
[
AQ

0

]
44

, since there is no mesh distortion at the initial step.
All design domains – with square, parallelogram and hexagonal unit cells – are discretized by a 80 × 80 FE

mesh. In nonlinear FEA, the tolerance criterion for convergence of the adaptive step size Newton–Raphson (NR)
scheme utilized for analysis is 10−12 in terms of the energy residual. In the adaptive load-stepping NR scheme, the
initial and maximum load ratios are set to 0.05, while the minimum load ratio is set to 0.001. Therefore, at least
20 steps are involved in the FEA, i.e. n ≥ 20, resulting in an adequate control of the Poisson’s ratio over the entire
loading process. The Method of Moving Asymptotes (MMA) [45] is used as the optimizer with default parameter
settings. The density filter radius is set to rmin = 0.0375 for all problems, which spans over three elements in the
square shaped unit cell. All the numerical computations are carried out in a Matlab based in-house finite element
library CPSSL-FEA developed at the University of Notre Dame.

5.1. Stiffness constraint – a parametric study

The first example is used to illustrate the importance of using an appropriate combination of stiffness and material
volume constraints to achieve a discrete optimized topology with a target NPR. The design domain is a square unit
cell of dimension 1 × 1 with a unit thickness. Uniaxial tension with stretch ratio of λ2 = 1.2 is considered together
with OF-1 and νT = −1. The initial design is chosen as a checkerboard design, see Fig. 4. With a fixed material
volume VT = 0.4, different stiffness constraints are selected with k = 2, 3 and 5. Without minimizing the material
usage, i.e. α1 = 0 in Eq. (46), the final optimized topologies are shown in Fig. 5, where it can be seen that the
discreteness of a topology can be improved by increasing the stiffness constraint. However, the target negative
Poisson’s ratio is eventually deteriorated by increasing the initial stiffness constraint. Existence of the intermediate
density elements in Fig. 5a can be predicated on the fact that there is more material than that is required for
designing the microstructure with νT = −1, while simultaneously fulfilling the stiffness constraints with k = 2.
The penalization built in the material interpolation scheme is accordingly not reflected in the objective function f0.
From Fig. 5a and b, it is reasonable to conjecture that for the material volume constraint VT = 0.4, an appropriate
value for k should be between 2 and 3 to obtain a discrete topology with no intermediate floating densities. However,
it is not straightforward to predetermine k such that a discrete topology can be achieved with the prescribed VT and
νT .

This issue is remedied by incorporating a material usage term α1V f (x1) in the optimization objective function,
with α1 > 0 in Eq. (46). To remove the intermediate densities in Fig. 5a, α1 = 0.01 is used after 200 iterations
when an overall topology has already emerged, and the optimization history and results are shown in Fig. 6. It
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Fig. 4. Initial design.

Fig. 5. Optimized designs with VT = 0.4 and different stiffness constraints k (α1 = 0).
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Fig. 6. Optimization results with k = 2 and VT = 0.4: f0 = 1.03 × 10−4, V f = 0.292 (α1 = 0.01 after 200 iter.).

can be seen in Fig. 6 that compared to Fig. 5a the optimality of the design is preserved with lower material usage
(i.e. V f = 0.292) while still satisfying the stiffness constraint. It should be noted that the value of α1 should be
carefully chosen, since a too small α1 is not effective towards removing intermediate densities, while a large α1 will
shift the optimizer from minimizing f0 to minimizing the material usage. Thus, α1 should be chosen depending on
the relative values of f0 and V f in Eq. (46). Fig. 6d shows the deformed shape at λ2 = 1.2, where a clear negative
Poisson’s ratio effect can be seen. Note that only elements with density greater than or equal to 0.6 are plotted in
Fig. 6d.

5.2. NPR design under compression

This example serves as a comparison study for demonstrating the differences in the optimized designs under
tension and compression and for illustrating the difficulties in compression design. With the same problem settings
as in Fig. 6, the NPR design is carried out under compression with macroscopic applied stretch ratio of λ2 = 0.85.
The optimized result is shown in Fig. 7, where obvious differences in the design can be seen when compared to
the tension case in Fig. 6. A notable difficulty in this compression case is the mesh distortion issue. Although the
non-convergence of NR solver can be overcome by introducing linear energy interpolation as given in Section 3.4,
the need for smaller step size in the adaptive NR solver and additional FEA due to the automatic updates of the
parameter c in the linear energy interpolation function (Eq. (53)) makes the optimization process slower when
compared to the tension case. For example, the total number of FEA during the optimization process is 1125
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Fig. 7. Optimization results with k = 2 and VT = 0.4: f0 = 1.67 × 10−5, V f = 0.210 (α1 = 0.01 after 200 iter.).

Fig. 8. History of cutoff parameter c updates.

(Fig. 8), which far exceeds the number of optimization iterations. Due to the high computational cost associated

with NPR designs under compression, the rest of the examples only consider NPR designs under tension.
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Fig. 9. Initial designs.

Fig. 10. Optimized designs with k = 2 and VT = 0.4 (α1 = 0.01 after 200 iter.).

5.3. Influence of initial designs

In this test case, the influence of initial designs on the optimized NPR topologies is considered. With the same
problem setting as in Fig. 6, the optimization results corresponding to two different initial designs in Fig. 9 are shown
in Fig. 10. Clearly, different optimized NPR metamaterial designs are obtained starting from different initial designs.
This test case demonstrates the dependence of optimized results on the initial design, suggesting that multiple initial
designs can be examined, in practice, for designing auxetic metamaterials in order to achieve desirable results.
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Fig. 11. Optimized designs with k = 2 and VT = 0.4 (α1 = 0 before 200 iter.).

5.4. NPR designs under different loading magnitudes

It has been previously shown that for small and large deformations the NPR designs can be different [29]. In
this subsection, the differences in NPR designs induced from the small and large macroscopic strains is explored
together with the influence of the macroscopic strain magnitude on the selection of appropriate stiffness constraint
k. Note that the material usage term in Eq. (46) with α1 > 0 is only incorporated for cases where there are
intermediate floating densities in the optimized topology and is activated only after 200 iterations when an overall
topology has already emerged. The initial design shown in Fig. 4 is again used with the square unit cell design
domain. Fig. 11 shows the optimized topologies for different macroscopic stretches λ2 ∈ {1.1, 1.4, 1.6}. As can be
seen from these results, for a large stretch ratio, i.e. λ2 = 1.4 or 1.6, the stiffness constraint k is high enough to
generate discrete topologies and there is no need for the material usage term, i.e. α1 = 0. However, as λ2 increases
the objective f0 is deteriorated, which is due to the high stiffness constraint. To verify this, k is decreased to 1 and
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Fig. 12. Optimized designs with k = 1 and VT = 0.4 (α1 = 0 before 200 iter.).

Fig. 13. Deformed shape of the topologies in Fig. 12(a) and (b).

the optimization results for λ2 = 1.4 and 1.6 are shown in Fig. 12. As can be seen, with the decrease in k the
material penalization term has to be activated in order to get a discrete topology for λ2 = 1.4 (α1 = 0.01) and the
objective f0 is obviously improved. For λ2 = 1.6, discrete topology can be obtained with α1 = 0, again indicating
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Fig. 14. Optimized designs for different target negative Poisson’s ratios with VT = 0.4 (α1 = 0 before 200 iter.).
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Fig. 15. Deformed shape of the topologies in Fig. 14(d) and (e).

Fig. 16. Relationship between designs with negative Poisson’s ratio ν = νT and ν = 1/νT : dashed grey line represents the initial square
unit cell and black solid line represents the deformed shape.

a sufficient stiffness constraint. Moreover, the objective f0 is still improved by decreasing k. The deformed shapes
of the topologies in Fig. 12(a) and (b) are given in Fig. 13, demonstrating the capability of maintaining target
NPR over the specified strain range. This exercise demonstrates that the appropriate value of the stiffness constraint
depends on the macroscopic strain range, and in general, k decreases as the target strain increases.

5.5. Designs with different target NPR

In this section, numerical studies are carried out to demonstrate the effectiveness of the proposed framework
for designing metamaterials exhibiting various target NPRs, i.e. νT . Under the same material volume constraint
VT = 0.4 and macroscopic stretch λ2 = 1.2, different values for stiffness constraint k and material penalization
factor α1 have to be used in order to achieve desired Poisson’s ratios. In general, following the observations in
Section 5.4, as the target NPR decreases, k has to be decreased in order to have a better design. Again, α1 > 0 is
only used in cases with intermediate densities and is only activated after 200 iterations. The optimization results are
shown in Fig. 14, where it can be seen that starting from the same initial design (Fig. 4) different Poisson’s ratios
correspond to different topologies, as expected. Fig. 15 shows the deformed shape of the designs in Fig. 14(d) and
(e), where the deformation mechanisms that lead to auxetic behavior can be clearly seen. It should be noted that
designing auxetic material with target ν = νT < 0 along one loading direction is equivalent to designing material
with target ν = 1/νT along the orthogonal direction, see Fig. 16 for an illustration. As a result, the difference
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Fig. 17. Different unit cell shapes, first row: design domains, second row: initial designs.

between designing with νT = −0.5 in Fig. 14a and designing with νT = −2 in Fig. 14d can be understood as
designing under different macroscopic stretch magnitudes. This also explains why a smaller value of k is sufficient
for designing for smaller νT .

5.6. Different unit cell geometries

For 2-D periodic metamaterials, the two periodic lattice vectors can be at any non-zero angle and of different
lengths. Different set of periodic vectors constitute different shapes of unit cells. The most general shape of a unit
cell is parallelogram, and the square and hexagonal unit cells can be seen as special cases of a parallelogram. Three
different non-square unit cell design domains are investigated in this subsection, as shown in Fig. 17. It should
be noted that the regular hexagonal unit cell shown in Fig. 17c has the same periodicity as the 60◦ parallelogram
shown in Fig. 17b (although their periodic vector lengths or equivalently unit cell sizes are different). Starting from
the initial designs given in Fig. 17 with k = 2 and VT = 0.4, the optimized designs for different unit cell shapes
are shown in Fig. 18, where appropriate α1 values are again used to achieve discrete topologies. As can be seen,
different unit cell design domains can lead to different optimized topologies with similar auxetic behavior. It is
worth mentioning that compared to the proposed framework in [29] for designing nonlinear auxetic materials, the
framework in this study is based on nonlinear homogenization theory. As a result, different unit cell design domains
can be consistently incorporated as shown above, which is not possible in the framework presented in [29].

5.7. Loading axis

Another merit of the presented framework based on a nonlinear homogenization formulation is that inclined
loading scenario can be consistently considered. This is important in studying and controlling the auxetic behavior
of material along different directions, which can also be useful when uncertainties in the loading direction are
involved. To demonstrate this idea, this subsection considers square unit cell with three different loading axes
θ = 15◦, 30◦ and 45◦ (see Section 2.2). The material volume constraint and stiffness constraints are chosen as
VT = 0.4 and k = 2. With the initial design shown in Fig. 4, the optimized results for different loading axes are
shown in Fig. 19, where different topologies are achieved showing their dependencies on the loading directions. To
further understand the auxetic behavior of the designed materials, their deformed shapes at λ2 = 1.2 under different
loading scenarios are plotted in Fig. 20. The results seem counter-intuitive since for usual material with positive
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Fig. 18. Optimized designs for different unit cell shapes with k = 2 and VT = 0.4 (α1 = 0 before 200 iter.).

Poisson’s ratio, a uniaxial stretch along 45◦ direction should lead to mostly shear deformation. However, the resultant
deformation shows a clear uniform expansion, i.e. volumetric expansion, see Fig. 20c where the macroscopic strain

F =

[
1.198 −0.00249

−0.00249 1.198

]
further establishes the observation. This auxetic behavior is clearly due to the

negative Poisson’s ratio effect and can be explained by Fig. 21, where the role of Poisson’s ratio in measuring
the relative resistances to the volumetric and isochoric deformations can be seen.

5.8. Multimaterial NPR design

Lightweight auxetic material with prescribed stiffness might be desirable in engineering applications and this
can be also achieved using the presented nonlinear homogenization framework by using the OF-2 (Eq.(47)), which
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Fig. 19. Optimized designs for different loading axes with k = 2 and VT = 0.4 (α1 = 0.01 after 200 iter.).

Table 1
Material properties of M1 and M2 material phases.

Material Young’s modulus E Density ω E/ω

M1 (red) 300 2100 0.143
M2 (blue) 100 500 0.200

considers multimaterial design with constraints on total mass. As illustrative examples, two hyperelastic materials
with properties given in Table 1 are considered, where the softer and lighter material M2 has a higher stiffness to
weight ratio as compared to the stiffer and heavier material M1. Using the optimization formulation in Eq. (47),
the material weight constraint M∗ in Eq. (49) is chosen as M∗

= ω∗
· VD with ω∗

= 500 (Fig. 23) or 400 (Fig. 24)
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Fig. 20. Deformed shape of the topologies in Fig. 19(a), (b) and (c) at λ2 = 1.2.

Fig. 21. Illustration of Poisson’s ratio in measuring the relative resistances to isochoric and volumetric deformations.

Fig. 22. Initial designs for: (a) and (b) square unit cell; (c) 60◦ parallelogram unit cell; and (d) hexagonal unit cell.
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Fig. 23. Optimized multimaterial designs for different unit cell shapes and initial designs in Fig. 22 with k = 4 and ω∗
= 500 (α2 = 0

before 200 iter.).
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Fig. 24. Optimized multimaterial designs for different unit cell shapes and initial designs in Fig. 22 with k = 4 and ω∗
= 400 (α2 = 0

before 200 iter.).
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and VD is the total volume of the unit cell design domain, i.e. VD = 1 for square unit cell, VD = 0.866 for 60◦

parallelogram unit cell and VD = 2.598 for hexagonal unit cell, respectively. The stiffness constraints are chosen
as k = 4 in Eq. (47). Starting from the initial designs shown in Fig. 22 for different unit cell shapes (ρ2 = 0.5
while ρ1 = 0 or 1 in the initial design), the corresponding optimized results for ω∗

= 500 and ω∗
= 400 are

shown in Figs. 23 and 24, respectively. It can be seen that different constraints or initial designs or unit cell shapes
greatly affect the optimized topologies, as expected. Besides, although not efficient in terms of stiffness/weight
ratio, the material M1 is still needed in the optimized topologies due to the relatively high stiffness constraint.
These examples also demonstrate the effectiveness of proposed multimaterial interpolation scheme in generating
discrete and meaningful auxetic metamaterial designs.

6. Numerical testing of the optimized auxetic metamaterial designs

In this section, representative optimized topologies obtained in Section 5 are further validated using direct
numerical simulations, where a bulk of metamaterial with 20 × 20 optimized unit cells is tested under uniaxial
loading boundary conditions in ABAQUS [46] (Fig. 26). The Poisson’s ratio is measured by the negative ratio of
engineering strains along the transverse and longitudinal directions of the central 2 × 2 unit cells. The geometries
of the optimized unit cells are obtained by a B-spline curve fitting of the level set of the density value 0.5 (Fig. 25).
The optimized topologies in Figs. 14e and 24b are investigated and their corresponding fitted topologies (after FE
discretization) are shown in Fig. 26. Four node plane strain elements with reduced integration (CPE4R) are used, and
the total number of elements for the 20 × 20 testing of Design-A in Fig. 26a is 889 200, while 2 424 000 elements
are used in Design-B. Since these two topologies are optimized for stretch ratio λ2 = 1.2, the uniaxial loading
condition is specified as u y = 4, which corresponds to 20% axial strain. In the FEA, the actual stretches that the
central 2 × 2 cells undergo are 0.3997 and 0.3984, respectively, for the Design-A and Design-B, which correspond
to approximately 20% engineering strain. The analysis results are shown in Fig. 27, where the deformation of the
central 3 × 3 unit cells are plotted in Fig. 27(a) and (c) at different deformation stages. The measured Poisson’s
ratios for the two designs are calculated and compared with the results from the homogenization analysis of one
unit cell in Fig. 27(b), which show a close match between the two results. The small differences may be attributed
to the fact that the boundary conditions are not perfectly matched with those assumed in the homogenization,
and also that the scale separation assumption in homogenization is not completely fulfilled. Nevertheless, a good
agreement further strengthens the basis for using the presented homogenization framework for designing nonlinear
auxetic metamaterials. Moreover, the proposed measure for Poisson’s ratio in Eq. (43) is also validated by the close
matches in the two results. On the other hand, the resulted Poisson’s ratios are not the same as the ones in the design
phase (see the plotted triangles and squares which are reproduced from Figs. 14e and 24b, respectively). This is
due to the difference in the designs before and after B-spline fitting. It should be noted that these difference can be
further mitigated by adopting projection techniques and by incorporating additional shape optimization based on
the B-spline representation of the design. The investigation of these methods are out of this paper’s scope, however,
and the interested readers are referred to Refs [47–50].

7. Multiscale stability

A basic assumption in the homogenization analysis during optimization process is that one unit cell serves as
the fundamental periodic cell during the entire loading process and can be taken as the RVE. For finitely strained
nonlinearly elastic composites, this assumption, however, does not always hold. Upon loading, buckling can happen
at the microscale at a wavelength possibly across arbitrary length, which leads to a change of the periodicity
in the underlying microstructure. If the buckling mode is periodic, a fundamental periodic cell consists of more
than one unit cell, while when the buckling mode is aperiodic, no fundamental periodic cell can be found [51].
From macroscopic viewpoint, though polyconvexity in the sense of Ball [52] of the underlying material phases is
guaranteed, which ensures the strict rank-one convexity, the homogenized macroscopic metamaterial may still lose
strict rank-one convexity [53]. As shown in the previous studies, there exists a close connection between microscale
buckling and macroscale loss of strict rank-one convexity, i.e., the long wavelength buckling on the microscale
corresponds to the loss of strict rank-one convexity (strong ellipticity) in the homogenized incremental moduli on
the macroscale [33,34]. Also, it is noted that the micro-instability occurs either before (short wavelength buckling)
or simultaneously (long wavelength buckling) with the macro-instability [33,34]. Compared to the macro-stability
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Fig. 25. Contour plot and B-spline fit.

Fig. 26. Uniaxial test setups for two periodic solids including 20 × 20 unit cells.

check where a rank-one convexity examination of the homogenized incremental moduli is only needed, the micro-
stability check is much more computationally expensive since the length scale of the buckling mode is not a priori
known.

7.1. Microscale stability

For rate-independent solids, the stability is governed by the Hill’s stability criterion [54]. The principal solution
branch ceases to be stable if the functional β (λ) defined by

β (λ) = inf
v

Q
(
v;Rd) with Q (v;Ω)

def
=

∫
Ω ∇v∗

: A : ∇v dV∫
Ω ∇v∗ : ∇v dV

(65)

loses positive definiteness, where v is taken from the kinematically admissible displacement variation space H 1
0 (Ω)

for the corresponding macroscale boundary value problem. For periodic solids of infinite extent (Ω → Rd ), v is
taken from locally integrable, bounded functions that ensures the finiteness of the ratio Q [34]. The symbol ∗

denotes the complex conjugate and λ stands for the load parameter, which in this study can be taken as identical
to the macroscopic stretch ratio λ2 (see Section 2.2). The tensor A represents the tangent moduli under the loading
parameter λ with the same periodicity as one unit cell. It was shown in [33] that this infimum β (λ) can be computed
through Bloch analysis, where the calculation is carried out within one unit cell Ωµ

0 and is expressed as

β (λ) = inf
k

inf
u

Q
(
vB (k, u) ;Ωµ

0

)
with vB (k, u) = eik.X u (66)
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Fig. 27. Uniaxial test results of the 20 × 20 periodic solids: Comparison between 20 × 20 uniaxial test results and the 1 unit cell
homogenization results in (b). (Results from Figs. 14e and 24b are plotted using triangles and squares, respectively); Deformation patterns
of the central 3 × 3 unit cells at different loading strains for Design-A and Design-B, respectively, in (a) and (c).

where vB is the Bloch function representing the eigenmode in which u is periodic functions with the same
periodicity as one unit cell, i.e. u (X + ci ai ) = u (X) with ci arbitrary integers and ai the i th periodic lattice
vector (i = 1, . . . , d), while the wavevector k is chosen in the 1st Brillouin zone (BZ) in the reciprocal space
spanned by the reciprocal bases bi (i = 1, . . . , d) defined by ai b j = 2πδi j [55]. For the square unit cell, which is
the case of interest in this section, the 1st BZ can be simply chosen as ki ∈ [0, 1), i = 1, . . . , d with k =

∑
i ki bi .

It is worth noting that two physically different types of buckling modes exist in the neighborhood of k = 0, i.e., the
long wavelength instability with k → 0 that leads to the loss of rank-one convexity of the homogenized tangent
moduli at the macroscale, and the highly localized buckling mode with k = 0 which has the same periodicity as
one unit cell. The following relationship was also established in [33]

β (λ) ≤ β (λ; k → 0) ≤ β (λ; k = 0) (67)

which states that the short wavelength instabilities always precede the long wavelength instabilities which always
precede the highly localized ones. Interested readers are referred to Refs [33,34,56] for further theoretical details
and numerical implementations.

7.2. Macroscale stability

As a measure of the macroscopic stability, the strict rank-one convexity of the homogenized tangent moduli
ensures the absence of discontinuities in the deformation gradient field at the macroscale. It can be assessed by
examining the positive definiteness of the ellipticity indicator B (λ) defined by

B (λ) = min
m,M

(
m ⊗ M

)
: A :

(
m ⊗ M

)
(68)

where m and M span over all possible directions with ∥m∥ =
M

 = 1. A recent study has also shown that
upon the loss of strict rank-one convexity there is not always a discontinuous/localized deformation pattern on
the bifurcated branch [57]. The presence or absence of the localized deformation depends on the stability of
the bifurcated branch [57]. When there is a discontinuous deformation corresponds to the loss of strict rank-one
convexity, i.e. B (λ) = 0, the corresponding minimizing vector M represents the normal to the curves across which
the jump discontinuities appear and m determines the nature of the discontinuous mode (simple shear if m is
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Fig. 28. Loss of micro and macro stabilities of the topology in Fig. 7b at λ2 = 0.972175.

orthogonal to M or pure splitting if m is parallel to M or mixture otherwise) [58]. Also, the loss of strict rank-one
convexity corresponds to a long wavelength microscale buckling [33], i.e.

B (λ) = 0 if β (λ; k → 0) = 0 (69)

7.3. Examples — stability investigation of the optimized topologies

Since in the Bloch analysis, the wave vector k needs to scan for the infimum over the whole 1st BZ which
contains infinite points, the computational cost is extremely high. As a result, a direct incorporation of the Bloch
stability calculations in the optimization is not feasible in the presented topology optimization framework. However,
the stability of optimized topologies can be checked to further validate their performance. To this end, in this
subsection, some of the optimized designs in Section 5 fitted using B-splines are examined for both micro and
macro stabilities.

7.3.1. Design for compression
Fig. 28a shows the FE mesh of the optimized auxetic design under compression (Section 5.2) fitted using B-

spline. The macroscale rank-one convexity is first examined by slowly increasing the loading factor λ (≡ λ2) until
B (λ) ≤ 0 at every π /720 radian increment in both m and M space. The smallest load for the loss of rank-one
convexity is detected as λ2 = 0.972175. Fig. 28c shows the plot of Bα (λ) = minm

(
m ⊗ M

)
: A :

(
m ⊗ M

)
versus

angle α ∈ [0, π) of the normal of the singular surface with respect to the horizontal axis, i.e. M =

[
cosα
sinα

]
. By

definition, the microscale stability must have been lost at this step as well, either with short or long wavelength
buckling mode. The microscopic stability is investigated using the Bloch analysis where the 1st BZ, i.e., (k1, k2) ∈

[0, 1) × [0, 1), is discretized with a 400 × 400 uniform mesh together with 100 × 100 uniform meshes in three
refined zones (0, 0.0025)×(0.0025, 1], (0.0025, 1]×(0, 0.0025) and (0, 0.0025)×(0, 0.0025). The stability indicator
βk (λ), which is defined as βk (λ) = infu Q

(
vB (k, u) ;Ωµ

0

)
, is computed at each discretized point k in the 1st BZ

and the results are shown in Fig. 28b. Two wave vectors that lead to a change of sign of βk (λ) were detected at
the same λ2 = 0.972175 load step, which are (k1, k2) = (1.9307×10−3, 0.99003) and (k1, k2) = (1.9554×10−3,
0.99003). With the same k-mesh in the Bloch analysis, no microscale instabilities were found when increasing λ2
by ∆λ2 = 7.5×10−5. Moreover, it can be observed that the origin (k1, k2) = (0, 0) is a singular point, which shows
that the highly localized buckling mode is not occurring simultaneously with the long wavelength buckling and
β (λ) < β (λ, k = 0). Thus, within the precisions of the underlying computational study, it can be concluded that
the optimized design loses both micro and macro stability on the principal branch at the stretch ratio λ2 = 0.972175,
which is far from the design target λ2 = 0.85 for which this topology is designed. Thus, the homogenization results
cease to be valid once λ2 < 0.972175, and the optimality of the optimized design in Fig. 7 cannot be justified.
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Fig. 29. Macroscale rank-one convexity investigations of different topologies under tension.

7.3.2. Design for tension
Two representative topologies (Figs. 12b and 24b) optimized under tension are investigated for their multiscale

stabilities. As opposed to the compression case, both micro and macro stabilities are maintained during the loading
process even with large stretch ratios (λ2 = 1.6 in Fig. 29a). The macro rank-one convexity curves are shown in
Fig. 29(a) and (b), respectively, for the two designs at different loading steps. The Bloch stability analysis is carried
out for both designs using the same k-mesh as that in Section 7.3.1 in the 1st BZ and no microscopic instability
was detected.

8. Conclusion

In this study, a computational framework is proposed for designing nonlinear auxetic metamaterials based on the
nonlinear mixed stress/deformation driven homogenization and density-based multimaterial topology optimization.
Optimization formulations with multimaterial hyperelastic phases are considered, and challenges associated with
obtaining discrete topologies are addressed by multiobjective formulations, wherein material usage term is consid-
ered in the overall objective function. Compared to the previous studies on auxetic metamaterial designs, the merits
of the proposed framework are:

• A consistent nonlinear homogenization method is incorporated which enables correct representation of the
homogenized material properties of periodic solids under finite strains.
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• In the presented homogenization framework, the design space is greatly expanded. For example, designs with
different unit cell shapes such as square, parallelogram and hexagon can be consistently explored and different
loading orientations can be considered.

• Design of auxetic metamaterials is extended from single to multiple material phases.
• In the presented homogenization-based formulation, the homogenized tangent moduli can be evaluated, which

allows for the multiscale stability examination of the optimized metamaterials by Bloch analyses and rank-one
convexity checks.

Many novel single and multimaterial auxetic metamaterial designs are created using the proposed framework.
Performance of the optimized designs as well as the validity of the proposed homogenization method is demonstrated
by the direct numerical simulations on a bulk of periodic solids with optimized microstructures. Multiscale stability
investigation using Bloch analyses and rank-one convexity checks show that the optimized metamaterial designs
might lose both micro and macro stabilities during the loading process. Thus, the optimized topology should always
be examined for their micro and macro stabilities in order to validate the structural performance under applied loads.
Although only 2D problems are considered in this study, the proposed framework can be canonically extended to 3D
cases. Furthermore, it is envisioned that with the proposed framework, the design of auxetic metamaterials wherein
the Poisson’s ratio varies in a tailored manner along a load path can be also pursued. Finally, the consideration
of multiscale stability in the optimization phase is challenging, and further investigations are needed to directly
consider the multiscale stability constraints in the design phase.
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Appendix. Explicit derivatives required for the adjoint sensitivity analysis

This appendix gives the derivatives that are used in the sensitivity calculation of f0 (see Section 4.1). In the
following derivations, the tensor forms and matrix–vector forms are both utilized for notational simplicity and the
appropriate form should be clear by the context.

A.1. Derivative ∂ f0/∂v
k

The calculation of the derivative ∂ f0/∂v
k is straightforward

∂ f0

∂vk
≡
∂ f0

∂λ
k
1

= 2
(
λ

k
1 + νTλ

k
2 − νT − 1

)
(A.1)

A.2. Derivatives ∂Rk/∂ρ A (A = 1, 2)

Taking the F-bar formulation (Eqs. (55) and (56)) and linear energy interpolation (Eqs. (53) and (54)) into
account, some useful derivatives are first calculated.

The 1st PK stress P is computed as

P = r−1/2 Pb with Pb
= Pb

v + Pb
1 + Pb

2 (A.2)

where r = r (ρ1, u) is a function of ρ1 and u, and Pb
v , Pb

1 and Pb
2 are 1st PK stresses contributed from different

material phases. Using this information, the following derivatives are derived
∂r
∂ρ1

=
∂r
∂F

:
∂F
∂ρ1

+
∂r
∂F0

:
∂F0

∂ρ1
with

∂r
∂F

= −r F−T and
∂r
∂F0

= r F−T
0

and
∂F
∂ρ1

=
∂γ

∂ρ1
∇X u and

∂F0

∂ρ1
=
∂γ

∂ρ1
∇

0
X u

(A.3)
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where ∇
0
X denotes the gradient operator evaluated at the centroid of the element. Also,

∂r
∂u

=
∂r
∂F

:
∂F
∂u

+
∂r
∂F0

:
∂F0

∂u
with

∂F
∂u

= γ B and
∂F0

∂u
= γ B0 (A.4)

where B and B0 are the shape functions derivative matrices evaluated at the integration points and the centroid,
respectively. Besides, due to the dependence of Fb on ρ1 and u the following derivatives are obtained

∂Fb

∂ρ1
=

1
2

r−1/2 ∂r
∂ρ1

F + r1/2 ∂F
∂ρ1

and
∂Fb

∂u
=

1
2

r−1/2 F ⊗
∂r
∂u

+ r1/2 ∂F
∂u

(A.5)

With all the above derivatives and noting that the explicit dependence of Rk on ρ1 comes from the linear energy
interpolation parameter γ (ρ1) as well as the interpolated constitutive model parameters, the derivative ∂Rk/∂ρ1 is
computed as

∂Rk

∂ρ1
=

⎡⎢⎢⎣
∂Fk

int

∂ρ1
0
0

⎤⎥⎥⎦ with
∂Fk

int

∂ρ1
=

nele
A

e=1

∂Fk
int,e

∂ρ1
and

∂Fk
int,e

∂ρ1
=

[
∂Fk

int,e

∂ρ1
1

· · ·
∂Fk

int,e

∂ρ
nele
1

]

where
∂Fk

int,e

∂ρ
j
1

= 0 if j ̸= e and

∂Fk
int,e

∂ρe
1

=

ni pt∑
s=1

BT
es

(
∂γ

∂ρe
1

Pk
es

+ γ
∂ Pk

es

∂ρe
1

)
wes

+

ni pt∑
s=1

BT
L ,es

[
−2γ

∂γ

∂ρe
1

(
C : εes

)
+
(
1 − γ 2) ( ∂C

∂ρe
1
: εes

)]
wes with

∂ P
∂ρ1

= −
1
2

r−
3
2
∂r
∂ρ1

Pb
+ r−

1
2

(
∂ Pb

∂ρ1

⏐⏐⏐⏐
Fb fixed

+
∂ Pb

∂Fb :
∂Fb

∂ρ1

)

(A.6)

where
∂ Pb

∂Fb = Ab
v + Ab

1 + Ab
2 (A.7)

and Ab
v , Ab

1 and Ab
2 are the tangent moduli evaluated from each constitutive model with material interpolation,

i.e. Ab
v

def
= ∂ Pb

v/∂Fb, Ab
1

def
= ∂ Pb

1/∂Fb and Ab
2

def
= ∂ Pb

2/∂Fb. The subscript “s” denotes the sth quadrature point and
in total ni pt quadrature points are used in each element. The subscript “es” is used to denote the quantity evaluated
at the sth quadrature point in eth element and w represents the quadrature weight. The term ∂ Pb

∂ρ1

⏐⏐⏐
Fb fixed

is computed
by

∂ Pb

∂ρ1

⏐⏐⏐⏐
Fb fixed

=
∂ Pb

v

∂ρ1

⏐⏐⏐⏐
Fb fixed

+
∂ Pb

1

∂ρ1

⏐⏐⏐⏐
Fb fixed

+
∂ Pb

2

∂ρ1

⏐⏐⏐⏐
Fb fixed

(A.8)

where
∂ Pb

v

∂ρ1
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Fb fixed

= −peρ
pe−1
1

(
P̂

b
v,0 + P̃

b
v,0

)
∂ Pb

1

∂ρ1

⏐⏐⏐⏐
Fb fixed

= ρ
p
2

(
∂ζ κ1

∂ρ1
P̂

b
1,0 +

∂ζ
µ

1

∂ρ1
P̃

b
1,0

)
∂ Pb

2

∂ρ1

⏐⏐⏐⏐
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= (1 − ρ2)
p
(
∂ζ κ2

∂ρ1
P̂

b
2,0 +

∂ζ
µ

2

∂ρ1
P̃

b
2,0

) (A.9)

where “0” in the subscript denotes that the term is evaluated with the non-interpolated solid material parameters.
Again, the upper hat denotes the volumetric part while upper tilde denotes the isochoric part, e.g. P̂

b
1,0 = ∂ψ̂1/∂Fb

where ψ̂1 is evaluated with solid phase parameters. On the other hand, the dependence of Rk on ρ2 comes from
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the constitutive model parameters. As a result, the derivative ∂Rk/∂ρ2 is computed as

∂Rk

∂ρ2
=

⎡⎢⎢⎣
∂Fk

int

∂ρ2
0
0

⎤⎥⎥⎦ with
∂Fk
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and
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2

· · ·
∂Fk

int,e

∂ρ
nele
2

]

where
∂Fk

int,e

∂ρ
j
2

= 0 if j ̸= e and

∂Fk
int,e

∂ρe
2

=

ni pt∑
s=1

γ BT
es

∂ Pk
es

∂ρe
2
wes with

∂ P
∂ρ2

= r−
1
2
∂ Pb

∂ρ2

where
∂ Pb
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=
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1
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+
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2

∂ρ2
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∂ Pb
1
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= pρ p−1

2

(
ζ κ1 P̂

b
1,0 + ζ

µ

1 P̃
b
1,0

)
and
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2
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= −p (1 − ρ2)

p−1
(
ζ κ2 P̂

b
2,0 + ζ

µ

2 P̃
b
2,0

)

(A.10)

A.3. Derivative ∂Rk/∂ ûk

According to the expression of Rk given in Eq. (18), its derivative w.r.t. ûk can be derived as

∂Rk

∂ ûk =

⎡⎢⎢⎣
∂Fk

int

∂uk
−MT

1 −MT
2

−M1 0 0
−M2 0 0

⎤⎥⎥⎦ with
∂Fk

int

∂uk
=

nele
A

e=1

∂Fk
int,e

∂uk
e

(A.11)

where
∂Fk

int,e

∂uk
e

=

ni pt∑
s=1

γ BT
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r−1/2 ∂ Pb
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−
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2
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2 Pb

⊗
∂r
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)
wes

+

ni pt∑
s=1

(
1 − γ 2) BT

L ,es
[C] BL ,eswes

(A.12)

A.4. Derivative ∂Rk/∂vk

The derivative ∂Rk/∂vk can be calculated as

∂Rk

∂vk
≡
∂Rk

∂λ
k
1

=

⎡⎢⎢⎢⎣
0
0
∂b

∂λ
k
1
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∂b

∂λ
k
1

= [LM ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F11
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k
1

∂F21

∂λ
k
1

∂F12

∂λ
k
1

∂F22

∂λ
k
1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(A.13)

where the derivatives ∂F i j/∂λ
k
1 are given in Eq. (35).

A.5. Derivative ∂H k/∂ ûk

The derivative ∂H k/∂ ûk is calculated as

∂H k

∂ ûk =

[
∂H k

∂uk

∂H k

∂λk

∂H k

∂µk

]
=

[
0 0

∂H k

∂µk

]
with

∂H k

∂µk
≡

∂H
(

P
k
i j

)
∂µk

(A.14)
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where according to Eqs. (32) and (33) the only terms that need to be calculated are ∂P
k
i j/∂µ

k , which can be obtained
by

∂
[

P
]

∂µk
=

1
V

[LM ]T . (A.15)
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