

Received 30 March 2020 Accepted 18 April 2020

Edited by M. Zeller, Purdue University, USA

Keywords: cobalt complex; dithiolene; redoxactive; non-innocent ligand; PTA ligand; crystal structure.

CCDC reference: 1986931

**Supporting information**: this article has supporting information at journals.iucr.org/e



# A five-coordinate cobalt bis(dithiolene)-phosphine complex [Co(pdt)<sub>2</sub>(PTA)] (pdt = phenyldithiolene; PTA = 1,3,5-triaza-7-phosphaadamantane)

# DaShawn Williams,<sup>a</sup> Jacob P. Brannon,<sup>b</sup> Perumalreddy Chandrasekaran<sup>a\*</sup> and S. Chantal E. Stieber<sup>b\*</sup>

<sup>a</sup>Department of Chemistry & Biochemistry, Lamar University, 4400 S. M.L.K. King Jr. Pkwy, Beaumont, TX 77705, USA, and <sup>b</sup>Department of Chemistry & Biochemistry, California State Polytechnic University, Pomona, 3801 W. Temple Ave., Pomona, CA 91768, USA. \*Correspondence e-mail: pchandraseka@lamar.edu, sestieber@cpp.edu

The title compound, bis(1,2-diphenyl-2-sulfanylideneethanethiolato- $\kappa^2 S, S'$ )-(1,3,5-triaza-7-phosphaadamantane- $\kappa P$ )cobalt(II) dichloromethane hemisolvate, [Co(pdt)<sub>2</sub>(PTA)]·0.5C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub> or [Co(C<sub>14</sub>H<sub>10</sub>S<sub>2</sub>)<sub>2</sub>(C<sub>6</sub>H<sub>12</sub>N<sub>3</sub>P)]·0.5C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub>, contains two phenyldithiolene (pdt) ligands and a 1,3,5-triaza-7-phosphaadamantane (PTA) ligand bound to cobalt with the solvent 1,2-dichloroethane molecule located on an inversion center. The cobalt core exhibits an approximately square-pyramidal geometry with partially reduced thienyl radical monoanionic ligands. The supramolecular network is consolidated by hydrogenbonding interactions primarily with nitrogen, sulfur and chlorine atoms, as well as parallel displaced  $\pi$ -stacking of the aryl rings. The UV–vis, IR, and CV data are also consistent with monoanionic dithiolene ligands and an overall Co<sup>II</sup> oxidation state.

#### 1. Chemical context

Transition-metal complexes of 1,3,5-triaza-7-phosphaadamantane (PTA) and related ligands have attracted much attention because of their potential as water-soluble catalysts, materials, and therapeutic agents (Guerriero et al., 2018). The small cone angle (103°) of the PTA ligand combined with the high thermal and chemical stability, and high hydrophilicity makes it unique among phosphine ligands (Phillips et al., 2004). Electronically, the PTA ligand is much less electron donating than PMe<sub>3</sub>, while a slightly better electron donor than PPh<sub>3</sub> (Darensbourg et al., 1999). However, the formation of heteroleptic dithiolene-phosphine complexes from the corresponding homoleptic metal-dithiolene has not been fully explored (Natarajan et al., 2017). Reactions of homoleptic metal-dithiolenes with phosphines to produce heteroleptic complexes have exhibited interesting metal-ligand redox interplay as a result of the redox-active or non-innocent nature of dithiolene ligands (Chandrasekaran et al., 2014). In this context, phosphine-induced cleavage of the iron and cobalt bis(dithiolene) dimer to yield five-coordinate bis(dithiolene)phosphine has been explored in depth with PPh<sub>3</sub> and PMe<sub>3</sub> ligands (Selby-Karney et al., 2017; Yu et al., 2007). These complexes were all synthesized from the corresponding bis-(dithiolene) metal dimer complexes followed by addition of an excess of phosphine ligand to form bis(dithiolene) metal complexes bound to an additional phosphine ligand. The resulting  $[M(adt)_2(PR_3)]$  (M = Co, Fe; adt = para-anisylphenyldithiolene;  $PR_3 = PMe_3$  or  $PPh_3$ ) complexes have

approximately square-pyramidal geometries at the metal center.



Herein, we report the synthesis and crystal structure of a five-coordinate cobalt dithiolene-phosphine complex  $[Co(pdt)_2(PTA)]$  (pdt = phenyldithiolene,  $S_2C_2Ph_2$ ), produced by PTA ligand-induced cleavage of the cobalt bis(dithiolene) dimer  $[Co_2(pdt)_4]$ .

#### 2. Structural commentary

[Co(pdt)<sub>2</sub>(PTA)] co-crystallizes with one molecule of 1,2-dichloroethane where half of the solvent molecule is symmetry generated, as shown in Fig. 1. The structure without hydrogen atoms is depicted in Fig. 2 for clarity. Each dithiolene ligand coordinates to the cobalt center in a  $\kappa^2$  fashion *via* the sulfur atoms, and PTA coordinates *via* the apical phosphorous atom. The cobalt dithiolene core is approximately planar, with angles of 89.73 (2)° for S1-Co1-S2, 88.93 (2)° for S1Co1-S3, 88.41 (2)° for S2-Co1-S4, and 89.90 (2)° for S3-Co1-S4. The sum of the angles is 356.97 (4)°, consistent with only a slight distortion from planarity. The PTA ligand occupies a 5<sup>th</sup> coordination site with angles of 101.94 (2)° for P1-Co1-S1, 98.12 (2)° for P1-Co1-S2, 90.97 (2)° for P1-Co1-S3, and 97.22 (2)° for P1-Co1-S4. Therefore, the overall geometry of [Co(pdt)<sub>2</sub>(PTA)] is approximately square pyramidal.

The distances from the cobalt atom to the sulfur ligands are 2.1620(5) Å for Co1-S1, 2.1669(6) Å for Co1-S2, 2.1685 (5) Å for Co1-S3, and 2.1487 (5) Å for Co1-S4. These are mostly within the range of Co-S distances of 2.1659 (9)-2.1765 (9) Å reported for the *p*-anisyl-substituted analogues with PMe3 and PPh3 (Selby-Karney et al., 2017; Yu et al., 2007). The Co1-P1 distance is 2.1424 (5) Å, which is shorter than the distances of 2.163 (1) and 2.192 (1) Å reported for the *p*-anisyl-substituted analogues with PMe<sub>3</sub> and PPh<sub>3</sub>, respectively (Selby-Karney et al., 2017; Yu et al., 2007). The decreasing length of the Co1 - P1 bond for  $PPh_3 > PMe_3 >$ PTA is not consistent with the  $\sigma$ -donating ability of the phosphine which increases from PPh<sub>3</sub> < PTA < PMe<sub>3</sub>. Instead, the short Co1-P1 bond for [Co(pdt)<sub>2</sub>(PTA)] is attributed to the small cone angle of 103° (Phillips et al., 2004) as compared to the cone angle of 118° for PMe<sub>3</sub> and 145° for PPh<sub>3</sub> (Bilbrey et al., 2013).

The sulfur–carbon distances are consistent with a partially reduced ligand thienyl radical monoanion with distances of 1.728 (2) Å for S1–C7, 1.719 (2) Å for S2–C8, 1.729 (2) Å for S3–C21, and 1.731 (2) Å for S4–C22. These are mostly within the range of S–C distances of 1.721 (2)–1.726 (3) and 1.730 (3)–1.742 (3) Å reported for the *p*-anisyl-substituted analogues with PMe<sub>3</sub> and PPh<sub>3</sub>, respectively (Selby-Karney *et al.*, 2017; Yu *et al.*, 2007). The C7–C8 distance of 1.372 (3) Å



Figure 1 View of  $[Co(C_{14}H_{10}S_2)_2(C_6H_{12}N_3P)]$ -0.5C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub> with 50% probability ellipsoids.



Figure 2 View of  $[Co(C_{14}H_{10}S_2)_2(C_6H_{12}N_3P)]$ ·0.5C<sub>2</sub>H<sub>4</sub>Cl<sub>2</sub> with 50% probability ellipsoids. H atoms omitted for clarity.

# research communications

| Table 1                                  |  |
|------------------------------------------|--|
| Hydrogen-bond geometry (Å, $^{\circ}$ ). |  |
|                                          |  |

| $D - H \cdot \cdot \cdot A$ | D-H  | $H \cdot \cdot \cdot A$ | $D \cdot \cdot \cdot A$ | $D - H \cdot \cdot \cdot A$ |
|-----------------------------|------|-------------------------|-------------------------|-----------------------------|
| $C28-H28\cdots C11^{i}$     | 0.95 | 2.83                    | 3.575 (3)               | 136                         |
| C19−H19···S4 <sup>ii</sup>  | 0.95 | 2.78                    | 3.513 (3)               | 135                         |
| C2−H2a···Cl1 <sup>iii</sup> | 0.99 | 2.88                    | 3.582 (2)               | 129                         |
| C35−H35a···N2               | 0.99 | 2.69                    | 3.297 (3)               | 120                         |
| $C26-H26\cdots Cl1^{iv}$    | 0.95 | 2.95                    | 3.824 (2)               | 154                         |
|                             |      |                         |                         |                             |

Symmetry codes: (i) x, y + 1, z; (ii) -x + 1, -y + 1, -z + 1; (iii) -x, -y + 1, -z + 1; (iv) -x + 1, -y + 2, -z + 1.

and the C21–C22 distance of 1.365 (3) Å are also consistent with this description.

#### 3. Supramolecular features

Two molecules of  $[Co(pdt)_2(PTA)]$  and one molecule of 1,2dicholorethane are present in the unit cell, as depicted in Fig. 3. The two metal complexes in the unit cell are related by an inversion operation with the inversion center on the 1,2-dichloroethane and the cobalt dithiolene cores being approximately parallel to each other. Six close contacts within the supramolecular framework were identified (Fig. 3, Table 1), resulting primarily from hydrogen-bonding interactions with



#### Figure 4

View of two molecules of  $[Co(C_{14}H_{10}S_2)_2(C_6H_{12}N_3P)] \cdot 0.5C_2H_4Cl_2$  within the unit cell and one additional translation of the unit cell along *b*, at 50% probability ellipsoids. Planes defined by aryl rings containing C15–C20 along with the corresponding centroids are depicted to highlight parallel displaced  $\pi$ -stacking of aryl rings.

nitrogen, sulfur and chlorine. Hydrogen bonds with sulfur and nitrogen include the C19-H19 $\cdot\cdot\cdot$ S4<sup>ii</sup> distance of 2.78 Å (Figs. 3, #2) and the C35-H35a $\cdot\cdot\cdot$ N2 distance of 2.69 Å (Figs. 3, #4).



#### Figure 3

View of two molecules of  $[Co(C_{14}H_{10}S_2)_2(C_6H_{12}N_3P)] \cdot 0.5C_2H_4Cl_2$  within the unit cell and one additional translation of the unit cell along *b*, at 50% probability ellipsoids. Close contacts, including hydrogen bonds are labeled 1–6 with distances given in Table 1.

Weaker hydrogen bonds with chlorine include the C2– $H2a\cdots Cl1^{iii}$  distance of 2.88 Å (Figs. 3, #3) and the C26– $H26\cdots Cl1^{iv}$  distance of 2.95 Å (Figs. 3, #5). Close contacts with carbon and hydrogen atoms include a C28– $H28\cdots Cl1^{i}$  distance of 2.83 Å (Figs. 3, #1; see Table 1 for symmetry operators).

When the unit cell is grown along the *b* axis, parallel displaced  $\pi$ -stacking of the aryl rings is revealed (Fig. 4). Planes defined by atoms C15–C20 (Fig. 4, blue) and C15<sup>v</sup>–C20<sup>v</sup> [Fig. 4, purple; symmetry code: (v) 1 - x, -y, 1 - z] within the unit cell are parallel, with a distance of 2.928 Å between planes and a distance of 4.961 Å between the respective centroids defined by the same atoms. The shortest atomic distance is between the carbon atoms of the aryl rings between unit cells with C17···C18<sup>v</sup> being 3.343 (3) Å apart (Figs. 3, #6; Fig. 4).

#### 4. Database survey

A survey of the Cambridge Structural Database (Web accessed March 26, 2020; Groom et al., 2016) and SciFinder (SciFinder, 2020) yielded no exact matches for reported structures of this complex. Structures with two dithiolene ligands with *p*-anisyl substitution bound to Co and an additional coordinated phosphine ligand were reported with PMe<sub>3</sub> coordination (Selby-Karney et al., 2017), and PPh<sub>3</sub> coordination (Yu et al., 2007). Both reported complexes also have approximately square pyramidal geometry at the cobalt center with slight deviations. The PPh<sub>3</sub> complex exhibits the largest distortion from planarity with a sum of angles around cobalt of 353.89 (6)°, while the sum of the angles is 356.97 (6)° for the PMe<sub>3</sub> complex. Similarly, the phosphine in PPh<sub>3</sub> is axially distorted because of the steric bulk of the phenyl groups, resulting in two more obtuse bond angles for S2-Co1-P1 and S3-Co1-P1 of 101.31 (3) and 106.6 (3)°, respectively. The other bond angles of 92.81 (3)° for S1-Co1-P1 and  $97.13 (3)^{\circ}$  for S4–Co1–P1 are within the range of S–Co1– P1 angles of 91.19 (3) to 99.65  $(3)^{\circ}$  observed for the PMe<sub>3</sub> complex.

#### 5. Spectroscopic analysis

The UV–vis characterization of  $[Co(pdt)_2(PTA)]$  was conducted in dichloromethane (Fig. 5) and revealed a strong absorption at 877 nm with a molar absorptivity of 6428 M<sup>-1</sup>cm<sup>-1</sup>. In the related *p*-anisyl-substituted cobalt complex bound to PMe<sub>3</sub> a similar absorption was observed at 905 nm. This is attributed to a ligand-to-ligand charge-transfer (LLCT) transition, based on comparison with the related iron complex with PPh<sub>3</sub> (Yu *et al.*, 2007) and related dithiolene metal complexes (Ray *et al.*, 2005). In the iron PPh<sub>3</sub> complex, the absorption occurred at 720 nm and disappeared upon conversion to the homoleptic iron bis(dithiolene) complex. The IR signal for  $[Co(pdt)_2(PTA)]$  at 1157.61 cm<sup>-1</sup> is characteristic of monoanionic dithiolenes with a  $\pi$ -radical when coordinated to metals, and is attributed to  $\nu(C=S\cdot)$  (Patra *et al.*, 2006). Combined, the IR and UV–vis characterization are consistent with two monoanionic dithiolene ligands bound to a  $\mathrm{Co}^\mathrm{II}$  center.

#### 6. Electrochemical analysis

The cyclic voltammogram (CV) of  $[Co(pdt)_2(PTA)]$  was collected in a solution of dichoromethane with a platinum working electrode (Fig. 6) and a glassy carbon working electrode (Fig. 7). Both CVs display two reversible waves with the first one at  $E_{1/2} = +0.62$  with both electrodes, and a second one at  $E_{1/2} = -0.17$  V with the platinum electrode and  $E_{1/2} = -0.16$  V with the glassy carbon electrode. The reversible oxidation wave at +0.62 V is attributed to a metal-centered redox event. The second oxidation at -0.17 V is attributed to ligand oxidation, by comparison to other metal dithiolene complexes (Patra *et al.*, 2006).

#### 7. Synthesis and crystallization

A 50 mL Schlenk flask containing a stir bar was charged with  $[Co_2(pdt)_4]$  (0.300 g, 0.275 mmol) and PTA (0.144 g; 0.551 mmol) under an N<sub>2</sub> atmosphere. To this mixture of solids, 20 mL of CH<sub>2</sub>Cl<sub>2</sub> were added and stirred for 4 h at room temperature. The solvent was removed under reduced pressure and the resulting dark-orange solid was washed with 3 × 5 mL of Et<sub>2</sub>O and dried under vacuum. The product was stable under reduced pressure and at room temperature. Yield: 92% (0.357 g, 0.509 mmol). Crystals suitable for X-ray diffraction were grown by the vapor diffusion method with diffusion of pentane over a 1,2-dichloroethane solution of the compound. UV–Vis spectra were obtained at ambient temperature with a Varian Cary 50 diode array spectrometer, while IR spectra



UV-vis spectrum of  $[Co(pdt)_2(PTA)]$  in dichloromethane solution at  $25^{\circ}C$ .

## research communications



Figure 6

Cyclic voltammetry of  $[Co(pdt)_2(PTA)]$  in  $CH_2Cl_2$  recorded using a platinum working electrode and  $[^nBu_4N][PF_6]$  as electrolyte with a scan rate of 100 mV s<sup>-1</sup> at 25°C.



Figure 7

Cyclic voltammetry of  $[Co(pdt)_2(PTA)]$  in  $CH_2Cl_2$  recorded using a glassy carbon working electrode and  $["Bu_4N][PF_6]$  as electrolyte with a scan rate of 100 mV s<sup>-1</sup> at 25°C.

| Table 2           Experimental details.                                    |                                                               |
|----------------------------------------------------------------------------|---------------------------------------------------------------|
| Crystal data                                                               |                                                               |
| Chemical formula                                                           | $\frac{[Co(C_{14}H_{10}S_2)_2(C_6H_{12}N_3P)}{0.5C_2H_4Cl_2}$ |
| M <sub>r</sub>                                                             | 750.24                                                        |
| Crystal system, space group                                                | Triclinic, $P\overline{1}$                                    |
| Temperature (K)                                                            | 113                                                           |
| a, b, c (Å)                                                                | 9.0954 (7), 13.4319 (9),<br>14.7905 (10)                      |
| $\alpha, \beta, \gamma$ (°)                                                | 97.074 (3), 94.680 (3), 107.354 (3)                           |
| $V(Å^3)$                                                                   | 1698.1 (2)                                                    |
| Ζ                                                                          | 2                                                             |
| Radiation type                                                             | Μο Κα                                                         |
| $\mu \text{ (mm}^{-1})$                                                    | 0.91                                                          |
| Crystal size (mm)                                                          | $0.57 \times 0.32 \times 0.14$                                |
| Data collection                                                            |                                                               |
| Diffractometer                                                             | Bruker D8 Venture Kappa                                       |
| Absorption correction                                                      | Multi-scan (SADABS; Krause et al., 2015)                      |
| $T_{\min}, T_{\max}$                                                       | 0.661, 0.746                                                  |
| No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections   | 46909, 7487, 6778                                             |
| R <sub>int</sub>                                                           | 0.045                                                         |
| $(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$                       | 0.642                                                         |
| Refinement                                                                 |                                                               |
| $R[F^2 > 2\sigma(F^2)], wR(F^2), S$                                        | 0.031, 0.083, 1.06                                            |
| No. of reflections                                                         | 7487                                                          |
| No. of parameters                                                          | 406                                                           |
| H-atom treatment                                                           | H-atom parameters constrained                                 |
| $\Delta \rho_{\rm max},  \Delta \rho_{\rm min}  ({\rm e}  {\rm \AA}^{-3})$ | 0.73, -0.40                                                   |

Computer programs: APEX3 and SAINT (Bruker, 2017), SHELXT2014 (Sheldrick, 2015a), SHELXL2017 (Sheldrick, 2015b), OLEX2 (Dolomanov et al., 2009), Mercury (Macrae et al., 2020) and publCIF (Westrip, 2010).

were taken neat with an ALPHA FTIR instrument. Electrochemical measurements were performed with a CHI600E electroanalyzer workstation using an Ag/AgCl reference electrode, a platinum disk working electrode, a platinum wire auxiliary electrode, and [<sup>*n*</sup>Bu<sub>4</sub>N][PF<sub>6</sub>] as the supporting electrolyte in CH<sub>2</sub>Cl<sub>2</sub>. Under these conditions, the [Cp<sub>2</sub>Fe]<sup>+</sup>/ Cp<sub>2</sub>Fe couple consistently occurred at +440 mV. UV–vis in CH<sub>2</sub>Cl<sub>2</sub>: [ $\lambda_{max}$ , nm ( $\varepsilon_{M}$ , M<sup>-1</sup>cm<sup>-1</sup>)]: 301 nm (17881), 877 nm (6428). IR spectroscopy (cm<sup>-1</sup>): 3366.53 (*w*), 3054.34 (*w*), 2928.02 (*w*), 2869.68 (*w*), 1592.50 (*w*), 1440.63 (*m*), 1415.07 (*s*), 1275.25 (*m*), 1240.54 (*w*), 1157.61 (*m*), 1091.56 (*s*), 1012.49 (*m*), 969.10 (*s*), 940.65 (*vs*), 739.50 (*s*), 693.31 (*s*).

#### 8. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were placed in calculated positions with C–H distances of 0.95 and 0.99 Å for CH and CH<sub>2</sub>, respectively, and refined using a riding model with  $U_{iso}(H) = 1.2 U_{eq}(C)$  for CH and CH<sub>2</sub>.

#### **Funding information**

Funding for this research was provided by: National Science Foundation, Directorate for Mathematical and Physical Sciences (grant No. 1847926 to S. Chantal E. Stieber); U.S. Department of Defense, U.S. Army (grant No. W911NF-17-1-0537 to S. Chantal E. Stieber); MENTORES PPOHA (scholarship to Jacob P. Brannon); Lamar University [the Welch Foundation (V-0004) award to Perumalreddy Chandrasekaran].

References

- Bilbrey, J. A., Kazez, A. H., Locklin, J. & Allen, W. D. (2013). J. Comput. Chem. 34, 1189–1197.
- Bruker (2017). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chandrasekaran, P., Greene, A. F., Lillich, K., Capone, S., Mague, J. T., DeBeer, S. & Donahue, J. P. (2014). *Inorg. Chem.* **53**, 9192–9205.
- Darensbourg, D. J., Robertson, J. B., Larkins, D. L. & Reibenspies, J. H. (1999). *Inorg. Chem.* **38**, 2473–2481.
- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179.
- Guerriero, A., Peruzzini, M. & Gonsalvi, L. (2018). Coord. Chem. Rev. 355, 328–361.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10.

- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Natarajan, M., Faujdar, H., Mobin, S. M., Stein, M. & Kaur-Ghumaan, S. (2017). *Dalton Trans.* **46**, 10050–10056.
- Patra, A. K., Bill, E., Weyhermüller, T., Stobie, K., Bell, Z., Ward, M. D., McCleverty, J. A. & Wieghardt, K. (2006). *Inorg. Chem.* 45, 6541–6548.
- Phillips, A. D., Gonsalvi, L., Romerosa, A., Vizza, F. & Peruzzini, M. (2004). Coord. Chem. Rev. 248, 955–993.
- Ray, K., Weyhermüller, T., Neese, F. & Wieghardt, K. (2005). *Inorg. Chem.* 44, 5345–5360.
- SciFinder (2020). Chemical Abstracts Service: Colombus, OH, 2010; RN 58-08-2 (accessed March 26, 2020).
- Selby-Karney, T., Grossie, D. A., Arumugam, K., Wright, E. & Chandrasekaran, P. (2017). J. Mol. Struct. 1141, 477–483.
- Sheldrick, G. M. (2015a). Acta Cryst. A, 71, 3-8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yu, R., Arumugam, K., Manepalli, A., Tran, Y., Schmehl, R., Jacobsen, H. & Donahue, J. P. (2007). *Inorg. Chem.* 46, 5131– 5133.

# supporting information

### Acta Cryst. (2020). E76, 736-741 [https://doi.org/10.1107/S2056989020005447]

A five-coordinate cobalt bis(dithiolene)–phosphine complex [Co(pdt)<sub>2</sub>(PTA)] (pdt = phenyldithiolene; PTA = 1,3,5-triaza-7-phosphaadamantane)

## DaShawn Williams, Jacob P. Brannon, Perumalreddy Chandrasekaran and S. Chantal E. Stieber

### **Computing details**

Data collection: *APEX3* (Bruker, 2017); cell refinement: *SAINT* (Bruker, 2017); data reduction: *SAINT* (Bruker, 2017); program(s) used to solve structure: SHELXT2014 (Sheldrick, 2015a); program(s) used to refine structure: *OLEX2* (Dolomanov *et al.*, 2009) and *SHELXL2017* (Sheldrick, 2015b); molecular graphics: *Mercury* (Macrae *et al.*, 2020); software used to prepare material for publication: *publCIF* (Westrip, 2010).

 $Bis (1,2-diphenyl-2-sulfanylidenee than ethiolato-\kappa^2 S, S') (1,3,5-triaza-7-phosphaadamantane-\kappa P) cobalt (II) dichloromethane hemisolvate$ 

#### Crystal data

 $[Co(C_{14}H_{10}S_{2})_{2}(C_{6}H_{12}N_{3}P) \cdot 0.5C_{2}H_{4}Cl_{2}$   $M_{r} = 750.24$ Triclinic, *P*1 a = 9.0954 (7) Å b = 13.4319 (9) Å c = 14.7905 (10) Å  $a = 97.074 (3)^{\circ}$   $\beta = 94.680 (3)^{\circ}$   $\gamma = 107.354 (3)^{\circ}$  $V = 1698.1 (2) Å^{3}$ 

#### Data collection

Bruker D8 Venture Kappa diffractometer Radiation source: microfocus sealed tube  $\varphi$  and  $\omega$  scans Absorption correction: multi-scan (SADABS; Krause *et al.*, 2015)  $T_{\min} = 0.661, T_{\max} = 0.746$ 46909 measured reflections

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.031$  $wR(F^2) = 0.083$ S = 1.067487 reflections 406 parameters 0 restraints Z = 2 F(000) = 776  $D_x = 1.467 \text{ Mg m}^{-3}$ Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9901 reflections  $\theta = 3.5-34.9^{\circ}$   $\mu = 0.91 \text{ mm}^{-1}$ T = 113 K Prism, black  $0.57 \times 0.32 \times 0.14 \text{ mm}$ 

7487 independent reflections 6778 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.045$  $\theta_{max} = 27.1^{\circ}, \ \theta_{min} = 2.6^{\circ}$  $h = -11 \rightarrow 11$  $k = -17 \rightarrow 17$  $l = -18 \rightarrow 18$ 

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: mixed H-atom parameters constrained  $w = 1/[\sigma^2(F_o^2) + (0.0327P)^2 + 1.8472P]$ where  $P = (F_o^2 + 2F_c^2)/3$   $(\Delta/\sigma)_{\rm max} = 0.002$  $\Delta\rho_{\rm max} = 0.73 \text{ e} \text{ Å}^{-3}$ 

#### Special details

**Geometry**. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

 $\Delta \rho_{\rm min} = -0.40 \ {\rm e} \ {\rm \AA}^{-3}$ 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | X            | у            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| C1  | 0.2841 (2)   | 0.44175 (16) | 0.13148 (14) | 0.0238 (4)                  |  |
| H1A | 0.327954     | 0.444029     | 0.072381     | 0.029*                      |  |
| H1B | 0.262644     | 0.369103     | 0.145884     | 0.029*                      |  |
| Col | 0.64640 (3)  | 0.50794 (2)  | 0.24515 (2)  | 0.01404 (7)                 |  |
| N1  | 0.1384 (2)   | 0.46794 (14) | 0.12245 (13) | 0.0265 (4)                  |  |
| C11 | -0.03998 (7) | 0.64232 (4)  | 0.56103 (4)  | 0.03132 (12)                |  |
| S1  | 0.59835 (5)  | 0.34986 (3)  | 0.17196 (3)  | 0.01709 (10)                |  |
| P1  | 0.42620 (5)  | 0.53418 (4)  | 0.22219 (3)  | 0.01466 (10)                |  |
| C2  | 0.3048 (2)   | 0.52908 (19) | 0.31626 (14) | 0.0262 (4)                  |  |
| H2A | 0.284600     | 0.459895     | 0.337846     | 0.031*                      |  |
| H2B | 0.360251     | 0.584927     | 0.368404     | 0.031*                      |  |
| S2  | 0.61456 (5)  | 0.44452 (3)  | 0.37252 (3)  | 0.01757 (10)                |  |
| N2  | 0.1566 (2)   | 0.54440 (16) | 0.28436 (13) | 0.0279 (4)                  |  |
| C3  | 0.0688 (2)   | 0.46267 (18) | 0.20808 (17) | 0.0319 (5)                  |  |
| H3A | 0.058232     | 0.392641     | 0.226358     | 0.038*                      |  |
| H3B | -0.036915    | 0.468504     | 0.196775     | 0.038*                      |  |
| S3  | 0.71513 (5)  | 0.56935 (3)  | 0.12089 (3)  | 0.01568 (10)                |  |
| N3  | 0.25473 (19) | 0.65989 (13) | 0.17147 (12) | 0.0225 (3)                  |  |
| C4  | 0.1799 (2)   | 0.64750 (18) | 0.25548 (15) | 0.0276 (4)                  |  |
| H4A | 0.244268     | 0.702669     | 0.305799     | 0.033*                      |  |
| H4B | 0.077805     | 0.659288     | 0.245456     | 0.033*                      |  |
| S4  | 0.76992 (5)  | 0.65936 (3)  | 0.32479 (3)  | 0.01744 (10)                |  |
| C20 | 0.4388 (3)   | 0.24991 (15) | 0.47931 (13) | 0.0238 (4)                  |  |
| H20 | 0.373511     | 0.292452     | 0.470978     | 0.029*                      |  |
| C21 | 0.8023 (2)   | 0.70357 (14) | 0.15445 (13) | 0.0156 (3)                  |  |
| C22 | 0.8262 (2)   | 0.74384 (14) | 0.24571 (12) | 0.0150 (3)                  |  |
| C23 | 0.8953 (2)   | 0.85744 (14) | 0.28453 (13) | 0.0169 (3)                  |  |
| C24 | 1.0120 (2)   | 0.88975 (16) | 0.35854 (15) | 0.0265 (4)                  |  |
| H24 | 1.051162     | 0.839134     | 0.382873     | 0.032*                      |  |
| C25 | 1.0716 (3)   | 0.99529 (17) | 0.39707 (17) | 0.0330 (5)                  |  |
| H25 | 1.151905     | 1.016440     | 0.447350     | 0.040*                      |  |
| C26 | 1.0157 (3)   | 1.06997 (16) | 0.36321 (16) | 0.0291 (5)                  |  |
| H26 | 1.057262     | 1.142228     | 0.389814     | 0.035*                      |  |
| C27 | 0.8984 (3)   | 1.03871 (16) | 0.29017 (15) | 0.0279 (4)                  |  |
| H27 | 0.858604     | 1.089600     | 0.266868     | 0.033*                      |  |
| C28 | 0.8388 (2)   | 0.93339 (16) | 0.25086 (14) | 0.0228 (4)                  |  |

| H28  | 0.758727   | 0.912696      | 0.200497      | 0.027*     |
|------|------------|---------------|---------------|------------|
| C29  | 0.8531 (2) | 0.76591 (14)  | 0.07994 (12)  | 0.0159 (3) |
| C30  | 0.7460 (2) | 0.78816 (16)  | 0.01894 (14)  | 0.0229 (4) |
| H30  | 0.638499   | 0.763550      | 0.025136      | 0.027*     |
| C31  | 0.7949 (3) | 0.84572 (17)  | -0.05041 (14) | 0.0293 (5) |
| H31  | 0.721373   | 0.861822      | -0.090688     | 0.035*     |
| C32  | 0.9510(3)  | 0.87993 (17)  | -0.06125 (15) | 0.0300 (5) |
| H32  | 0.984506   | 0.918433      | -0.109521     | 0.036*     |
| C33  | 1.0578 (3) | 0.85777 (18)  | -0.00151 (16) | 0.0311 (5) |
| H33  | 1.164953   | 0.881375      | -0.008711     | 0.037*     |
| C34  | 1.0094 (2) | 0.80118 (16)  | 0.06902 (14)  | 0.0240 (4) |
| H34  | 1.083649   | 0.786567      | 0.109948      | 0.029*     |
| C35  | 0.0253 (2) | 0.55372 (15)  | 0.48550 (14)  | 0.0226 (4) |
| H35A | -0.019761  | 0.549633      | 0.421409      | 0.027*     |
| H35B | 0.139845   | 0.579612      | 0.488730      | 0.027*     |
| C5   | 0.1638 (2) | 0.57416 (17)  | 0.09845 (14)  | 0.0252 (4) |
| H5A  | 0.217909   | 0.579321      | 0.042966      | 0.030*     |
| H5B  | 0.061620   | 0.584021      | 0.082845      | 0.030*     |
| C8   | 0.5691 (2) | 0.30997 (14)  | 0.34348 (13)  | 0.0173 (4) |
| C7   | 0.5610 (2) | 0.26674 (14)  | 0.25345 (13)  | 0.0173 (4) |
| C6   | 0.4165 (2) | 0.65983 (16)  | 0.18756 (15)  | 0.0232 (4) |
| H6A  | 0.474959   | 0.719078      | 0.236339      | 0.028*     |
| H6B  | 0.465750   | 0.670512      | 0.130753      | 0.028*     |
| C9   | 0.5189 (2) | 0.15214 (14)  | 0.21930 (13)  | 0.0183 (4) |
| C19  | 0.4218 (3) | 0.18900 (17)  | 0.54991 (15)  | 0.0341 (5) |
| H19  | 0.342685   | 0.188436      | 0.588150      | 0.041*     |
| C10  | 0.5971 (2) | 0.11500 (15)  | 0.15203 (14)  | 0.0215 (4) |
| H10  | 0.680174   | 0.163381      | 0.129720      | 0.026*     |
| C11  | 0.5548 (3) | 0.00803 (16)  | 0.11733 (14)  | 0.0252 (4) |
| H11  | 0.608667   | -0.016269     | 0.071427      | 0.030*     |
| C12  | 0.4341 (3) | -0.06324 (16) | 0.14966 (15)  | 0.0273 (4) |
| H12  | 0.405635   | -0.136409     | 0.126284      | 0.033*     |
| C14  | 0.3962 (2) | 0.07902 (15)  | 0.25086 (13)  | 0.0216 (4) |
| H14  | 0.340984   | 0.102673      | 0.296318      | 0.026*     |
| C13  | 0.3552 (2) | -0.02763 (16) | 0.21590 (14)  | 0.0260 (4) |
| H13  | 0.272179   | -0.076569     | 0.237726      | 0.031*     |
| C15  | 0.5509 (2) | 0.24862 (14)  | 0.42110 (13)  | 0.0190 (4) |
| C16  | 0.6491 (2) | 0.18828 (16)  | 0.43625 (15)  | 0.0268 (4) |
| H16  | 0.726843   | 0.187116      | 0.397345      | 0.032*     |
| C17  | 0.6331 (3) | 0.12979 (17)  | 0.50830 (17)  | 0.0356 (6) |
| H17  | 0.701147   | 0.089642      | 0.518871      | 0.043*     |
| C18  | 0.5191 (3) | 0.12967 (17)  | 0.56452 (15)  | 0.0367 (6) |
| H18  | 0.507881   | 0.088833      | 0.613074      | 0.044*     |

## Atomic displacement parameters $(Å^2)$

|    | $U^{11}$    | $U^{22}$    | U <sup>33</sup> | $U^{12}$   | $U^{13}$    | U <sup>23</sup> |
|----|-------------|-------------|-----------------|------------|-------------|-----------------|
| C1 | 0.0212 (10) | 0.0219 (10) | 0.0265 (10)     | 0.0092 (8) | -0.0051 (8) | -0.0047 (8)     |

# supporting information

| Co1 | 0.01191 (12) | 0.01288 (12) | 0.01779 (13) | 0.00396 (9)  | 0.00186 (9)  | 0.00394 (9)  |
|-----|--------------|--------------|--------------|--------------|--------------|--------------|
| N1  | 0.0189 (8)   | 0.0249 (9)   | 0.0342 (10)  | 0.0091 (7)   | -0.0055 (7)  | -0.0012(7)   |
| C11 | 0.0363 (3)   | 0.0239 (2)   | 0.0365 (3)   | 0.0108 (2)   | 0.0142 (2)   | 0.0052 (2)   |
| S1  | 0.0180 (2)   | 0.0140 (2)   | 0.0196 (2)   | 0.00467 (17) | 0.00375 (16) | 0.00368 (16) |
| P1  | 0.0124 (2)   | 0.0152 (2)   | 0.0172 (2)   | 0.00534 (17) | 0.00227 (16) | 0.00254 (17) |
| C2  | 0.0196 (10)  | 0.0406 (12)  | 0.0239 (10)  | 0.0142 (9)   | 0.0075 (8)   | 0.0103 (9)   |
| S2  | 0.0199 (2)   | 0.0142 (2)   | 0.0185 (2)   | 0.00479 (17) | 0.00112 (16) | 0.00396 (16) |
| N2  | 0.0189 (8)   | 0.0421 (11)  | 0.0296 (9)   | 0.0159 (8)   | 0.0089 (7)   | 0.0117 (8)   |
| C3  | 0.0133 (9)   | 0.0310 (11)  | 0.0524 (14)  | 0.0047 (8)   | 0.0036 (9)   | 0.0160 (10)  |
| S3  | 0.0155 (2)   | 0.0135 (2)   | 0.0172 (2)   | 0.00298 (16) | 0.00296 (16) | 0.00246 (16) |
| N3  | 0.0173 (8)   | 0.0213 (8)   | 0.0319 (9)   | 0.0101 (7)   | 0.0027 (7)   | 0.0054 (7)   |
| C4  | 0.0239 (10)  | 0.0323 (11)  | 0.0301 (11)  | 0.0168 (9)   | 0.0034 (8)   | -0.0021 (9)  |
| S4  | 0.0192 (2)   | 0.0150 (2)   | 0.0166 (2)   | 0.00298 (17) | 0.00080 (16) | 0.00396 (16) |
| C20 | 0.0338 (11)  | 0.0164 (9)   | 0.0207 (9)   | 0.0071 (8)   | 0.0032 (8)   | 0.0027 (7)   |
| C21 | 0.0110 (8)   | 0.0146 (8)   | 0.0216 (9)   | 0.0036 (6)   | 0.0026 (6)   | 0.0051 (7)   |
| C22 | 0.0114 (8)   | 0.0152 (8)   | 0.0195 (8)   | 0.0049 (7)   | 0.0010 (6)   | 0.0062 (7)   |
| C23 | 0.0160 (8)   | 0.0154 (8)   | 0.0196 (9)   | 0.0047 (7)   | 0.0046 (7)   | 0.0031 (7)   |
| C24 | 0.0269 (11)  | 0.0174 (9)   | 0.0332 (11)  | 0.0077 (8)   | -0.0063 (8)  | 0.0012 (8)   |
| C25 | 0.0308 (12)  | 0.0231 (11)  | 0.0394 (12)  | 0.0082 (9)   | -0.0120 (9)  | -0.0053 (9)  |
| C26 | 0.0332 (12)  | 0.0160 (9)   | 0.0352 (12)  | 0.0065 (8)   | 0.0022 (9)   | -0.0030 (8)  |
| C27 | 0.0390 (12)  | 0.0203 (10)  | 0.0285 (10)  | 0.0154 (9)   | 0.0035 (9)   | 0.0043 (8)   |
| C28 | 0.0264 (10)  | 0.0210 (9)   | 0.0216 (9)   | 0.0093 (8)   | -0.0003 (8)  | 0.0028 (7)   |
| C29 | 0.0183 (9)   | 0.0123 (8)   | 0.0166 (8)   | 0.0043 (7)   | 0.0022 (7)   | 0.0016 (6)   |
| C30 | 0.0187 (9)   | 0.0226 (10)  | 0.0248 (10)  | 0.0028 (8)   | -0.0016 (7)  | 0.0063 (8)   |
| C31 | 0.0363 (12)  | 0.0249 (10)  | 0.0236 (10)  | 0.0059 (9)   | -0.0063 (9)  | 0.0072 (8)   |
| C32 | 0.0417 (13)  | 0.0224 (10)  | 0.0240 (10)  | 0.0036 (9)   | 0.0089 (9)   | 0.0099 (8)   |
| C33 | 0.0280 (11)  | 0.0315 (11)  | 0.0359 (12)  | 0.0067 (9)   | 0.0150 (9)   | 0.0125 (9)   |
| C34 | 0.0205 (10)  | 0.0249 (10)  | 0.0288 (10)  | 0.0076 (8)   | 0.0063 (8)   | 0.0091 (8)   |
| C35 | 0.0228 (10)  | 0.0240 (10)  | 0.0227 (9)   | 0.0088 (8)   | 0.0051 (7)   | 0.0046 (8)   |
| C5  | 0.0224 (10)  | 0.0319 (11)  | 0.0250 (10)  | 0.0152 (9)   | -0.0013 (8)  | 0.0039 (8)   |
| C8  | 0.0125 (8)   | 0.0162 (8)   | 0.0234 (9)   | 0.0038 (7)   | 0.0010 (7)   | 0.0061 (7)   |
| C7  | 0.0127 (8)   | 0.0168 (9)   | 0.0230 (9)   | 0.0042 (7)   | 0.0029 (7)   | 0.0061 (7)   |
| C6  | 0.0177 (9)   | 0.0201 (9)   | 0.0355 (11)  | 0.0091 (8)   | 0.0042 (8)   | 0.0093 (8)   |
| C9  | 0.0162 (9)   | 0.0159 (9)   | 0.0215 (9)   | 0.0037 (7)   | -0.0025 (7)  | 0.0040 (7)   |
| C19 | 0.0601 (16)  | 0.0197 (10)  | 0.0189 (10)  | 0.0064 (10)  | 0.0093 (10)  | 0.0010 (8)   |
| C10 | 0.0213 (9)   | 0.0178 (9)   | 0.0260 (10)  | 0.0070 (7)   | 0.0012 (7)   | 0.0047 (7)   |
| C11 | 0.0294 (11)  | 0.0217 (10)  | 0.0260 (10)  | 0.0123 (8)   | -0.0012 (8)  | 0.0020 (8)   |
| C12 | 0.0326 (11)  | 0.0147 (9)   | 0.0305 (11)  | 0.0051 (8)   | -0.0091 (9)  | 0.0019 (8)   |
| C14 | 0.0208 (9)   | 0.0193 (9)   | 0.0221 (9)   | 0.0029 (8)   | -0.0011 (7)  | 0.0044 (7)   |
| C13 | 0.0260 (10)  | 0.0186 (9)   | 0.0284 (10)  | -0.0010 (8)  | -0.0035 (8)  | 0.0085 (8)   |
| C15 | 0.0210 (9)   | 0.0131 (8)   | 0.0194 (9)   | 0.0017 (7)   | -0.0033 (7)  | 0.0027 (7)   |
| C16 | 0.0234 (10)  | 0.0191 (9)   | 0.0358 (11)  | 0.0065 (8)   | -0.0075 (8)  | 0.0038 (8)   |
| C17 | 0.0423 (13)  | 0.0186 (10)  | 0.0405 (13)  | 0.0081 (9)   | -0.0213 (11) | 0.0045 (9)   |
| C18 | 0.0674 (17)  | 0.0159 (10)  | 0.0187 (10)  | 0.0045 (10)  | -0.0094 (10) | 0.0036 (8)   |
|     | · /          | · /          | · /          | · /          | × /          | × /          |

# supporting information

Geometric parameters (Å, °)

| C1—H1A     | 0.9900      | С27—Н27              | 0.9500      |
|------------|-------------|----------------------|-------------|
| C1—H1B     | 0.9900      | C27—C28              | 1.386 (3)   |
| C1—N1      | 1.469 (3)   | C28—H28              | 0.9500      |
| C1—P1      | 1.833 (2)   | C29—C30              | 1.396 (3)   |
| Co1—S1     | 2.1620 (5)  | C29—C34              | 1.388 (3)   |
| Co1—P1     | 2.1424 (5)  | С30—Н30              | 0.9500      |
| Co1—S2     | 2.1669 (5)  | C30—C31              | 1.383 (3)   |
| Co1—S3     | 2.1685 (5)  | C31—H31              | 0.9500      |
| Co1—S4     | 2.1487 (5)  | C31—C32              | 1.385 (3)   |
| N1—C3      | 1.462 (3)   | С32—Н32              | 0.9500      |
| N1—C5      | 1.469 (3)   | C32—C33              | 1.382 (3)   |
| Cl1—C35    | 1.794 (2)   | С33—Н33              | 0.9500      |
| S1—C7      | 1.7282 (18) | C33—C34              | 1.389 (3)   |
| P1—C2      | 1.841 (2)   | С34—Н34              | 0.9500      |
| P1—C6      | 1.847 (2)   | C35—C35 <sup>i</sup> | 1.506 (4)   |
| C2—H2A     | 0.9900      | С35—Н35А             | 0.9900      |
| C2—H2B     | 0.9900      | С35—Н35В             | 0.9900      |
| C2—N2      | 1.472 (3)   | C5—H5A               | 0.9900      |
| S2—C8      | 1.7192 (19) | С5—Н5В               | 0.9900      |
| N2—C3      | 1.463 (3)   | C8—C7                | 1.372 (3)   |
| N2—C4      | 1.460 (3)   | C8—C15               | 1.486 (2)   |
| С3—НЗА     | 0.9900      | С7—С9                | 1.482 (3)   |
| С3—Н3В     | 0.9900      | C6—H6A               | 0.9900      |
| S3—C21     | 1.7286 (18) | С6—Н6В               | 0.9900      |
| N3—C4      | 1.468 (3)   | C9—C10               | 1.396 (3)   |
| N3—C5      | 1.468 (3)   | C9—C14               | 1.405 (3)   |
| N3—C6      | 1.471 (2)   | C19—H19              | 0.9500      |
| C4—H4A     | 0.9900      | C19—C18              | 1.377 (4)   |
| C4—H4B     | 0.9900      | C10—H10              | 0.9500      |
| S4—C22     | 1.7307 (18) | C10—C11              | 1.390 (3)   |
| C20—H20    | 0.9500      | C11—H11              | 0.9500      |
| C20—C19    | 1.395 (3)   | C11—C12              | 1.386 (3)   |
| C20—C15    | 1.390 (3)   | C12—H12              | 0.9500      |
| C21—C22    | 1.365 (3)   | C12—C13              | 1.381 (3)   |
| C21—C29    | 1.486 (2)   | C14—H14              | 0.9500      |
| C22—C23    | 1.485 (2)   | C14—C13              | 1.388 (3)   |
| C23—C24    | 1.390 (3)   | C13—H13              | 0.9500      |
| C23—C28    | 1.396 (3)   | C15—C16              | 1.395 (3)   |
| C24—H24    | 0.9500      | C16—H16              | 0.9500      |
| C24—C25    | 1.386 (3)   | C16—C17              | 1.392 (3)   |
| С25—Н25    | 0.9500      | C17—H17              | 0.9500      |
| C25—C26    | 1.379 (3)   | C17—C18              | 1.380 (4)   |
| С26—Н26    | 0.9500      | C18—H18              | 0.9500      |
| C26—C27    | 1.383 (3)   |                      |             |
| H1A—C1—H1B | 108.0       | C27—C28—C23          | 120.67 (19) |

| N1—C1—H1A  | 109.4       | C27—C28—H28                | 119.7       |
|------------|-------------|----------------------------|-------------|
| N1—C1—H1B  | 109.4       | C30—C29—C21                | 121.23 (17) |
| N1—C1—P1   | 111.30 (13) | C34—C29—C21                | 119.85 (17) |
| P1—C1—H1A  | 109.4       | C34—C29—C30                | 118.91 (17) |
| P1—C1—H1B  | 109.4       | С29—С30—Н30                | 119.7       |
| S1—Co1—S2  | 89.729 (19) | C31—C30—C29                | 120.58 (19) |
| S1—Co1—S3  | 88.927 (19) | С31—С30—Н30                | 119.7       |
| P1—Co1—S1  | 101.94 (2)  | С30—С31—Н31                | 119.9       |
| P1—Co1—S2  | 98.12 (2)   | C30—C31—C32                | 120.1 (2)   |
| P1—Co1—S3  | 90.975 (19) | С32—С31—Н31                | 119.9       |
| P1—Co1—S4  | 97.22 (2)   | С31—С32—Н32                | 120.2       |
| S2—Co1—S3  | 170.88 (2)  | C33—C32—C31                | 119.68 (19) |
| S4—Co1—S1  | 160.81 (2)  | С33—С32—Н32                | 120.2       |
| S4—Co1—S2  | 88.415 (19) | С32—С33—Н33                | 119.8       |
| S4—Co1—S3  | 89.895 (19) | C32—C33—C34                | 120.4 (2)   |
| C3—N1—C1   | 110.66 (17) | С34—С33—Н33                | 119.8       |
| C3—N1—C5   | 108.76 (17) | C29—C34—C33                | 120.29 (19) |
| C5—N1—C1   | 111.36 (16) | C29—C34—H34                | 119.9       |
| C7—S1—Co1  | 106.05 (7)  | C33—C34—H34                | 119.9       |
| C1—P1—Co1  | 116.49 (7)  | Cl1—C35—H35A               | 110.0       |
| C1—P1—C2   | 99.60 (10)  | Cl1—C35—H35B               | 110.0       |
| C1—P1—C6   | 99.16 (10)  | C35 <sup>i</sup> —C35—Cl1  | 108.53 (18) |
| C2—P1—Co1  | 119.19 (7)  | C35 <sup>i</sup> —C35—H35A | 110.0       |
| C2—P1—C6   | 98.56 (10)  | C35 <sup>i</sup> —C35—H35B | 110.0       |
| C6—P1—Co1  | 119.84 (6)  | H35A—C35—H35B              | 108.4       |
| P1—C2—H2A  | 109.6       | N1—C5—H5A                  | 108.7       |
| P1—C2—H2B  | 109.6       | N1—C5—H5B                  | 108.7       |
| H2A—C2—H2B | 108.2       | N3—C5—N1                   | 114.18 (16) |
| N2—C2—P1   | 110.06 (14) | N3—C5—H5A                  | 108.7       |
| N2—C2—H2A  | 109.6       | N3—C5—H5B                  | 108.7       |
| N2—C2—H2B  | 109.6       | H5A—C5—H5B                 | 107.6       |
| C8—S2—Co1  | 105.84 (7)  | C7—C8—S2                   | 119.61 (14) |
| C3—N2—C2   | 111.82 (17) | C7—C8—C15                  | 124.29 (17) |
| C4—N2—C2   | 111.77 (17) | C15—C8—S2                  | 115.98 (14) |
| C4—N2—C3   | 108.62 (17) | C8—C7—S1                   | 118.77 (14) |
| N1—C3—N2   | 114.42 (17) | C8—C7—C9                   | 124.82 (17) |
| N1—C3—H3A  | 108.7       | C9—C7—S1                   | 116.40 (14) |
| N1—C3—H3B  | 108.7       | P1—C6—H6A                  | 109.4       |
| N2—C3—H3A  | 108.7       | Р1—С6—Н6В                  | 109.4       |
| N2—C3—H3B  | 108.7       | N3—C6—P1                   | 111.14 (13) |
| НЗА—СЗ—НЗВ | 107.6       | N3—C6—H6A                  | 109.4       |
| C21—S3—Co1 | 105.31 (6)  | N3—C6—H6B                  | 109.4       |
| C4—N3—C6   | 110.70 (16) | H6A—C6—H6B                 | 108.0       |
| C5—N3—C4   | 108.50 (16) | С10—С9—С7                  | 120.40 (17) |
| C5—N3—C6   | 111.41 (16) | C10—C9—C14                 | 118.51 (18) |
| N2-C4-N3   | 114.23 (16) | C14—C9—C7                  | 121.05 (17) |
| N2—C4—H4A  | 108.7       | С20—С19—Н19                | 119.8       |
| N2—C4—H4B  | 108.7       | C18—C19—C20                | 120.4 (2)   |

| N3—C4—H4A                  | 108.7        | С18—С19—Н19                    | 119.8        |
|----------------------------|--------------|--------------------------------|--------------|
| N3—C4—H4B                  | 108.7        | C9—C10—H10                     | 119.6        |
| H4A—C4—H4B                 | 107.6        | C11—C10—C9                     | 120.75 (19)  |
| C22—S4—Co1                 | 105.61 (6)   | C11—C10—H10                    | 119.6        |
| С19—С20—Н20                | 119.9        | C10-C11-H11                    | 120.0        |
| С15—С20—Н20                | 119.9        | C12—C11—C10                    | 120.1 (2)    |
| C15—C20—C19                | 120.3 (2)    | C12—C11—H11                    | 120.0        |
| C22—C21—S3                 | 119.00 (13)  | C11—C12—H12                    | 120.1        |
| C22—C21—C29                | 124.87 (16)  | C13—C12—C11                    | 119.86 (19)  |
| C29—C21—S3                 | 116.05 (13)  | С13—С12—Н12                    | 120.1        |
| C21—C22—S4                 | 119.29 (14)  | C9—C14—H14                     | 119.9        |
| C21—C22—C23                | 125.07 (16)  | C13—C14—C9                     | 120.25 (19)  |
| C23—C22—S4                 | 115.62 (13)  | C13—C14—H14                    | 119.9        |
| C24—C23—C22                | 120.60 (17)  | C12—C13—C14                    | 120.58 (19)  |
| C24—C23—C28                | 118.51 (18)  | С12—С13—Н13                    | 119.7        |
| C28—C23—C22                | 120.80 (17)  | С14—С13—Н13                    | 119.7        |
| C23—C24—H24                | 119.8        | C20—C15—C8                     | 121.69 (17)  |
| $C_{25}$ $C_{24}$ $C_{23}$ | 120.45 (19)  | $C_{20}$ — $C_{15}$ — $C_{16}$ | 119.03 (18)  |
| C25—C24—H24                | 119.8        | C16—C15—C8                     | 119.29 (18)  |
| C24—C25—H25                | 119.6        | С15—С16—Н16                    | 120.0        |
| C26—C25—C24                | 120.7 (2)    | C17—C16—C15                    | 120.1 (2)    |
| C26—C25—H25                | 119.6        | С17—С16—Н16                    | 120.0        |
| C25—C26—H26                | 120.3        | С16—С17—Н17                    | 119.7        |
| C25—C26—C27                | 119.41 (19)  | C18—C17—C16                    | 120.5 (2)    |
| С27—С26—Н26                | 120.3        | С18—С17—Н17                    | 119.7        |
| С26—С27—Н27                | 119.9        | C19—C18—C17                    | 119.7 (2)    |
| C26—C27—C28                | 120.24 (19)  | C19—C18—H18                    | 120.1        |
| С28—С27—Н27                | 119.9        | C17—C18—H18                    | 120.1        |
| C23—C28—H28                | 119.7        |                                |              |
|                            |              |                                |              |
| C1—N1—C3—N2                | 68.0 (2)     | C21—C29—C34—C33                | 178.76 (19)  |
| C1—N1—C5—N3                | -67.8 (2)    | C22—C21—C29—C30                | -108.8 (2)   |
| C1—P1—C2—N2                | -49.64 (17)  | C22—C21—C29—C34                | 72.5 (2)     |
| C1—P1—C6—N3                | 49.67 (16)   | C22—C23—C24—C25                | -177.3 (2)   |
| Co1—S1—C7—C8               | -0.88 (16)   | C22—C23—C28—C27                | 176.84 (19)  |
| Co1—S1—C7—C9               | 177.96 (12)  | C23—C24—C25—C26                | 0.5 (4)      |
| Co1—P1—C2—N2               | -177.43 (12) | C24—C23—C28—C27                | 0.3 (3)      |
| Co1—P1—C6—N3               | 177.50 (11)  | C24—C25—C26—C27                | 0.2 (4)      |
| Co1—S2—C8—C7               | 0.23 (16)    | C25—C26—C27—C28                | -0.6 (3)     |
| Co1—S2—C8—C15              | 176.41 (12)  | C26—C27—C28—C23                | 0.4 (3)      |
| Co1—S3—C21—C22             | 6.17 (16)    | C28—C23—C24—C25                | -0.7 (3)     |
| Co1—S3—C21—C29             | -176.88 (12) | C29—C21—C22—S4                 | -176.22 (14) |
| Co1—S4—C22—C21             | -6.88 (16)   | C29—C21—C22—C23                | 5.2 (3)      |
| Co1—S4—C22—C23             | 171.84 (12)  | C29—C30—C31—C32                | 1.4 (3)      |
| N1-C1-P1-Co1               | 179.98 (12)  | C30—C29—C34—C33                | 0.1 (3)      |
| N1—C1—P1—C2                | 50.42 (17)   | C30—C31—C32—C33                | -1.1 (3)     |
| N1—C1—P1—C6                | -49.96 (16)  | C31—C32—C33—C34                | 0.2 (3)      |
| S1—C7—C9—C10               | 41.3 (2)     | C32—C33—C34—C29                | 0.3 (3)      |

| S1—C7—C9—C14    | -136.15 (16) | C34—C29—C30—C31 | -0.9 (3)     |
|-----------------|--------------|-----------------|--------------|
| P1—C1—N1—C3     | -60.4 (2)    | C5—N1—C3—N2     | -54.7 (2)    |
| P1-C1-N1-C5     | 60.7 (2)     | C5—N3—C4—N2     | 55.1 (2)     |
| P1-C2-N2-C3     | 60.2 (2)     | C5—N3—C6—P1     | -59.98 (19)  |
| P1-C2-N2-C4     | -61.8 (2)    | C8—C7—C9—C10    | -140.0(2)    |
| C2—P1—C6—N3     | -51.58 (16)  | C8—C7—C9—C14    | 42.6 (3)     |
| C2—N2—C3—N1     | -68.7 (2)    | C8-C15-C16-C17  | -179.60 (18) |
| C2—N2—C4—N3     | 68.5 (2)     | C7—C8—C15—C20   | -123.2 (2)   |
| S2—C8—C7—S1     | 0.4 (2)      | C7—C8—C15—C16   | 57.0 (3)     |
| S2—C8—C7—C9     | -178.29 (14) | C7—C9—C10—C11   | -177.73 (18) |
| S2-C8-C15-C20   | 60.8 (2)     | C7—C9—C14—C13   | 177.89 (18)  |
| S2-C8-C15-C16   | -119.02 (17) | C6—P1—C2—N2     | 51.23 (17)   |
| C3—N1—C5—N3     | 54.4 (2)     | C6—N3—C4—N2     | -67.4 (2)    |
| C3—N2—C4—N3     | -55.3 (2)    | C6—N3—C5—N1     | 67.6 (2)     |
| S3—C21—C22—S4   | 0.4 (2)      | C9-C10-C11-C12  | -0.2 (3)     |
| S3—C21—C22—C23  | -178.16 (14) | C9-C14-C13-C12  | -0.1 (3)     |
| S3—C21—C29—C30  | 74.4 (2)     | C19—C20—C15—C8  | 178.12 (18)  |
| S3—C21—C29—C34  | -104.22 (18) | C19—C20—C15—C16 | -2.0 (3)     |
| C4—N2—C3—N1     | 55.1 (2)     | C10-C9-C14-C13  | 0.4 (3)      |
| C4—N3—C5—N1     | -54.5 (2)    | C10-C11-C12-C13 | 0.5 (3)      |
| C4—N3—C6—P1     | 60.85 (19)   | C11—C12—C13—C14 | -0.3 (3)     |
| S4—C22—C23—C24  | 48.6 (2)     | C14—C9—C10—C11  | -0.2 (3)     |
| S4—C22—C23—C28  | -127.87 (17) | C15-C20-C19-C18 | 2.1 (3)      |
| C20-C19-C18-C17 | -0.6 (3)     | C15—C8—C7—S1    | -175.40 (14) |
| C20-C15-C16-C17 | 0.5 (3)      | C15—C8—C7—C9    | 5.9 (3)      |
| C21—C22—C23—C24 | -132.7 (2)   | C15—C16—C17—C18 | 0.9 (3)      |
| C21—C22—C23—C28 | 50.8 (3)     | C16—C17—C18—C19 | -0.9 (3)     |
| C21—C29—C30—C31 | -179.60 (18) |                 |              |

Symmetry code: (i) -x, -y+1, -z+1.

### Hydrogen-bond geometry (Å, °)

| <i>D</i> —Н | H···A                                               | $D \cdots A$                                                                                                                                                | D—H···A                                                                                       |
|-------------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| 0.95        | 2.83                                                | 3.575 (3)                                                                                                                                                   | 136                                                                                           |
| 0.95        | 2.78                                                | 3.513 (3)                                                                                                                                                   | 135                                                                                           |
| 0.99        | 2.88                                                | 3.582 (2)                                                                                                                                                   | 129                                                                                           |
| 0.99        | 2.69                                                | 3.297 (3)                                                                                                                                                   | 120                                                                                           |
| 0.95        | 2.95                                                | 3.824 (2)                                                                                                                                                   | 154                                                                                           |
|             | <i>D</i> —H<br>0.95<br>0.95<br>0.99<br>0.99<br>0.99 | D—H         H…A           0.95         2.83           0.95         2.78           0.99         2.88           0.99         2.69           0.95         2.95 | DHH…AD…A0.952.833.575 (3)0.952.783.513 (3)0.992.883.582 (2)0.992.693.297 (3)0.952.953.824 (2) |

Symmetry codes: (i) -x, -y+1, -z+1; (ii) x, y+1, z; (iii) -x+1, -y+1, -z+1; (iv) -x+1, -y+2, -z+1.