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as from the unwelded basal fall layer of Lava 

Creek Tuff B (Fig. 1). Basal falls would have 

been the preferred material to collect for Lava 

Creek Tuff A, but outcrops remain unknown. 

The pumices were crushed, sieved, and hand-

picked to make quartz mineral separates. Quartz 

occur as euhedral bipyramids, or partial crystals 

with some faceted faces. Almost every crystal 

contains glass-filled, enclosed melt inclusions. 

The crystals are also embayed with one or more 

reentrants. Many of these reentrants are empty 

void space, not filled with glass.

To establish the statistical significance of the 

empty reentrants across the Lava Creek Tuff, we 

surveyed a few thousand quartz crystals and their 

reentrants from pumice samples (Table 1). We 

selected characteristic reentrant-bearing quartz 

crystals for synchrotron X-ray microtomogra-

phy (μXRT) and cathodoluminescence (CL) 

analyses to establish the relationship between 

the re entrants and crystallization processes (see 

the GSA Data Repository1). Reentrants are most 

common in the earliest-erupted Lava Creek 

Tuff A (Table 1). They occur in one-quarter of 

the quartz crystals, and >80% of those are hol-

low. Reentrants become slightly less common 

upsection, appearing in ~20% of quartz crystals 

from pumices in the middle and upper portions 

of the ignimbrite. Reentrant filling is variable in 

those samples, with some primarily filled with 

glass whereas they are almost all empty in other 

samples. Quartz from the basal fall of Lava Creek 

Tuff B contains reentrants in ~18% of the crystals.

Empty reentrants account for 0.02–1.5 vol% 

of their host quartz crystals. They appear as em-

bayments or tubes ranging from a few microns 

to 400 μm wide that extend into the center of 

the crystals (Fig. DR1 in the Data Repository). 

They are locally bulbous with bulging interiors 

that narrow to necks at the crystal surface. “Pen-

etration” depth is highly variable, extending as 

far as 1600 μm, although most range from 50 to 

500 μm. Rare embayments tunnel through en-

tire crystals, creating hollow pathways that con-

nect opposite faces (Fig. 2; Videos DR4–DR8). 

Many reentrants discordantly cut across primary 

growth bands in quartz, which appear as alter-

nating light and dark bands in CL (Fig. 2). CL 

images constrain the relative timing of quartz 

growth and the reentrants.

Empty reentrants sometimes contain magne-

tite crystals up to 50 μm in diameter, as well as 

small pockets of glass adhered to reentrant walls 

(Fig. 2). Reentrant shape does not correlate with 

its emptiness. In a given sample, both tortuous 

and simple-shaped reentrants may be hollow or 

filled with glass.

DISCUSSION

To infer the significance of the empty re-

entrants, we must consider how they came to be. 

Previous work regarding reentrants describes 
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Figure 1. A: Geologic map 
of sample locations in 
Yellow stone National Park, 
western United States, and 
surrounding region; modi­
fied from Christiansen 
(2001). The extent of Lava 
Creek Tuff deposits are 
highlighted in green. Gray 
domains with curved lines 
are post­caldera rhyo­
lites with pressure ridges 
shown schematically 
(Christiansen 2001). Blue 
domains are lakes and 
 rivers. The remaining white 
areas are undifferentiated 
recent alluvial sediments 
or pre­Lava Creek Tuff de­
posits. B: Schematic mea­
sured section shows rela­
tive stratigraphic position 
of pumice samples. Pum­
ice, lapilli, and gray bed­
ding planes are illustrated 
schematically.  Colors were 
chosen to best represent 
the color of observed 
outcrop variations, but 
should also be considered 
schematic.

1GSA Data Repository item 2019256, Figures 
DR1 and DR2 (additional quartz surface and reentrant 
textures), Figure DR3 (describing the effect of gas on 
magma compressibility), and Videos DR4–DR8 (3-D 
X-ray scans of the quartz and reentrants), is available 
online at http:// www .geosociety .org /datarepository 
/2019/, or on request from editing@ geosociety .org.

TABLE 1. REENTRANT AND INCLUSION ABUNDANCES FOR LAVA
CREEK TUFF A AND B, YELLOWSTONE, WESTERN USA

Eruption Sample

Percent with melt 
inclusions

(%)

Percent 
reentrants

(%)

Percent empty 
reentrants

(%) n

Lava Creek 
Tuff A

Y306 95 26 87 728
Y307 93 23 84 1405
Y308 97 21 11 831
Y310 96 20 94 498

Lava Creek 
Tuff B

Y301 93 18 62 608
Y305 92 18 16 630

Note: n is the total number of counted quartz crystals in each sample, with ~4700 crystals examined across all 
samples. Repeated counts on the same population produced counting errors of <1%.
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them being filled with dense glass that preserves 

volatile diffusion profiles that are enriched in 

the interior and decrease systematically toward 

the outlet (e.g., Liu et al., 2007; Humphreys 

et al., 2008; Lloyd et al., 2014). Commonly, a 

single, outsized bubble occurs at the crystal-

melt interface, which acts as the sink for the 

degassing volatiles.

Empty reentrants require a different mecha-

nism of formation. They were either initially 

filled with melt that was subsequently expelled 

by vesiculation, or primarily filled with exsolved 

fluid. During decompression, the expanding 

fluid would force out melt, but that mechanism 

is not preferred because when glass is preserved, 

it is not highly vesiculated. Further, it is unlikely 

that pumiceous, inflating melt responding to de-

compression would expand efficiently through 

tortuous and irregular pathways to produce 

evacuated, clean reentrants. Instead, formation 

could occur via dissolution or by synchronous 

growth, if the fluid exsolved at a similar rate to 

quartz growth (Gutmann, 1974).

The dissolution model is supported by tex-

tures preserved within the crystals. Many re-

entrants crosscut CL bands (Fig. 2). Most of 

the reentrants are interpreted to have formed by 

local, accelerated dissolution of quartz by pre-

eruptive bubbles (Busby and Barker, 1966; Gut-

mann, 1974; Donaldson and Henderson, 1988). 

Accelerated dissolution has been documented 

experimentally and is inferred to be driven by 

local thermodynamic disequilibrium and en-

hanced molecular transport along the fluid-melt 

interface (Busby and Barker, 1966) (Fig. DR2). 

This process of dissolution in the presence of 

bubbles of exsolved fluid was ongoing during 

the crystallization of quartz. We see evidence 

for bubble departure, as some crystals contain 

early-generation reentrants in their interiors that 

crosscut CL bands from earlier growth, but were 

later filled with quartz (Fig. 2).

Quartz-hosted, glass-filled reentrants cut 

across CL bands in eruptions from other cal-

deras, including the Toba Tuff (Indonesia), the 

Oruanui Tuff (New Zealand), and the Central 

Plateau Member rhyolite lavas (Yellowstone 

caldera) (Liu et al., 2006; Vazquez et al., 2009; 

Girard and Stix, 2010; Matthews et al., 2012; 

Loewen and Bindeman, 2015). In these ex-

amples, melt filled the reentrants. The dissolu-

tion to produce those reentrants may provide 

evidence that those magmas contained ex-

solved fluid bubbles at one time. Indeed, vola-

tile saturation is proposed for those and many 

other large silicic eruptions. For example, the 

Bishop Tuff (California) is estimated to have 

been volatile-stratified, with its upper portions 

containing at least 3 wt% exsolved gas, equiva-

lent to 5–20 vol% exsolved fluid (Wallace et al., 

1995). Primary bubbles in reentrants from the 

Bishop Tuff provide additional physical evi-

dence that the magma contained an exsolved 

fluid (Anderson, 1991).

Primary, magmatic fluid inclusions com-

posed of H2O-CO2 mixtures are sometimes 

preserved in phenocrysts from volcanic erup-

tions (e.g., Lowenstern, 2003; Kamenetsky and 

Kamenetsky, 2010; Audétat and Lowenstern, 

2014). These “voids” within crystals preserve a 

record of pre-eruptive exsolved volatiles. Mag-

matic fluid inclusions are commonly used as 

observational data sets to understand the fluids 

supplied to magmatic ore deposits (e.g., Hein-

rich et al., 1999). They are less commonly dis-

cussed in the volcanic context, but are similar to 

established intrusive features such as miarolitic 

cavities (e.g., Kamenetsky et al. 2002). Volcanic, 

primary fluid inclusions have been described in 
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Figure 2. Synchrotron X­ray microtomography (μXRT) and cathodoluminescence (CL) images 
of quartz from Lava Creek Tuff, Yellowstone, western United States. μXRT images (left) are 
shown both with opaque and transparent surfaces to show surface morphology and interior 
distribution of reentrants (blue pathways). Magnetite and glass are shown in red and green, 
respectively. CL images (right) display crystal interior along slice plane shown in gray on 
transparent surface in μXRT images. Growth bands display prominent grayscale differences. 
White arrows highlight quartz partially to completely filling earlier reentrants.
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different mineral phases crystallized from a di-

verse array of mafic to silicic eruptions ( olivine: 

Roedder, 1965; plagioclase: Gutmann, 1974; 

Naumov et al., 1996; quartz: Davidson and 

 Kamenetsky, 2007; Pasteris et al., 1996). Indeed, 

Gutmann (1974) described some fluid inclu-

sions as “tubular voids” that are open at the 

surface of the crystal, similar to the reentrants 

described here.

The empty, quartz-hosted reentrants are a 

new example of magmatic fluid inclusions that 

provides a physical record of exsolved volatiles 

in the Lava Creek Tuff reservoir. We theorize that 

the hollow reentrants were filled with exsolved 

volatiles in the pre-eruptive magma, and can be 

considered quartz-hosted “bubbles.” Bubbles 

demonstrate that the magma was saturated prior 

to eruption. But how bubbly was the magma? 

Empty reentrants occupy 0.02–1.5 vol% of the 

host quartz. Reentrants from the basal ignimbrite 

of the earliest-erupted Lava Creek Tuff occupy 

the most volume, accounting for 0.4 ± 0.4 vol% 

of the quartz. Throughout the Lava Creek Tuff, 

~15%–25% of quartz crystals contain embay-

ments. Quartz is a common phenocryst, but ac-

counts for only ~10 vol% of the dense rock. 

Reentrants thus represent a tiny percentage of 

magma, <0.03 vol%. But, the number and vol-

ume of quartz-hosted reentrants is a strict mini-

mum for the pre-eruptive bubble content; the 

total exsolved fluid must have been much higher.

Bubbles preferentially nucleate on crystal 

surfaces because reduced surface tension low-

ers the required supersaturation (Hurwitz and 

Navon, 1994). Magnetite crystals significantly 

drop the required supersaturation, making them 

an excellent heterogeneous nucleation surface 

for bubbles (Gardner, 2007). Quartz surfaces 

do not strongly encourage bubble nucleation 

(Cluzel et al., 2008). Texturally, we know that 

bubbles must have attached to quartz in order to 

drill the reentrants via dissolution. These were 

large bubbles whose size likely correlates with 

reentrant diameter (10–400 μm wide). Smaller 

bubbles may have been established on oxide 

crystals. This creates a picture of the pre-erup-

tive magma: large, free-floating bubbles were 

distributed throughout the Lava Creek magma, 

some preferentially attaching to quartz and other 

phenocryst phases.

We cannot constrain the absolute abundance 

of exsolved magmatic volatiles in the Lava 

Creek Tuff. The reentrants demonstrate that 

the magma was saturated, with more exsolved 

fluid likely in the upper portions of the reservoir, 

but the empty reentrants provide only a lower 

bound. Nevertheless, the textures record retained 

exsolved volatiles in the magma, complement-

ing both geodetic measurements that indicate 

that exsolved volatiles are present in magmatic 

reservoirs, and the geochemical evidence for 

volatile exsolution (Kilbride et al., 2016). Sur-

face gas flux measurements demonstrate that the 

modern Yellowstone magmatic system is likely 

gas saturated (Lowenstern and Hurwitz, 2008). 

Gassy magma has different physical properties 

than volatile-undersaturated melt. Of particu-

lar importance is the compressibility of magma 

because it affects the evolution of magma pres-

sure and the volume of magma that will erupt 

(Edmonds and Woods, 2018).

Our results have bearing on what may make 

eruptions super. There are two key questions. 

First, why do large volumes of magma accu-

mulate before eruption? Second, why are the 

eruptions themselves so large? The presence 

of exsolved volatiles greatly increases magma 

compressibility (Fig. DR3). In turn, high com-

pressibility buffers magma reservoirs from large 

changes in overpressure during recharge events 

(Townsend et al., 2019). High compressibility 

also promotes eruptions that are long lived 

and discharge a greater proportion of stored 

magma (Huppert and Woods, 2002). Our mea-

surements directly document the existence of 

exsolved volatiles in the reservoirs that supplied 

supereruptions.
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