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Abstract

Activity recognition has been receiving significant atten-
tion from a variety of research areas such as human per-
formance enhancement, health promotion, and human com-
puter interaction. However, recognizing activities from ac-
celerometer data still remains a challenging problem due
to sensitivity to sampling rates, misalignment of data, and
increased variability in activities among clinically relevant
populations. In order to solve these issues, we adopt meth-
ods from functional analysis, which consider non-elastic
rate variations in movement. The overall framework fac-
tors out temporal variability within activity classes, before
leveraging robust machine learning pipelines for a given
end-use. The proposed approach has been evaluated on 7
classes of everyday activities with 50 subjects. The results
indicate that proposed approach achieves improved perfor-
mance with the improvements observed in separating sim-
ilar classes that differ in temporal rates, and also demon-
strate higher robustness to change in window lengths. These
results suggest that temporal alignment should be consid-
ered a core part of activity recognition pipelines.

1. Introduction

Activity recognition from wearable sensors has been an
active area of research for the past several years due to its
wide range of applications [2, 14]. In clinical applications,
self-measures were often used to assess daily activities, hav-
ing subjects report activity at the end of day. However, the
results of this approach suffer from bias, inaccuracy and dis-
crepancies. With advances in machine learning, automated
assessment of activities has been widely adopted, even in
clinical interventions [5, 6]. New devices with small form-
factors like the FitBit, Jawbone, etc. in conjunction with
advanced machine learning techniques can provide effec-

tive and scalable solutions.

However, developing recognition algorithms purely from
classical statistical learning frameworks has limitations for
clinical interventions. Challenges include: a) a much higher
variability in execution of actions in clinically relevant pop-
ulations, both within the same subject and across subjects,
compared to healthy subjects, b) the activities of interest in
clinical studies often show similarities in feature-space (e.g.
walking at 1mph and walking at 4mph), c) signals may be
temporally mis-aligned due to variability in sampling rates,
and temporal windowing operations as well.

Due to these issues, one needs to more explicitly model
temporal variability, while also leveraging popular machine
learning frameworks. We argue that comparing, summariz-
ing, and modeling a set of activity based time-series data are
needed for invariance to temporal mis-alignment which can
distort features and distance measures. The most common
way to deal with the temporal mis-alignment problem is to
use dynamic time warping (DTW) which was originally in-
troduced in the speech processing community [4]. Despite
its usefulness in a wide range of fields, in general, DTW
has limitations: it is not a true distance metric, and does not
naturally allow the estimation of statistical measures such
as mean and variance of time-series. It also might not pro-
vide smooth differentiable time-warping needed in various
applications. Therefore, in this work, we adopt more re-
cent methods from the field of functional analysis [22] that
counter some of these limitations.

Temporal variability and misalignment in activity
recognition:  Factoring out temporal variability is im-
portant for classifying activity signals. In addition, signals
may be mis-aligned due to variability in sampling rates, and
windowing operations as well. There is an inherent non-
linearity of the domain of analysis, where temporal vari-
ability of activities can distort traditional features and met-
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rics between time-series. Simple methods such as linear
time-scaling do not work well in practice. Sensor noise also
makes feature extraction difficult. To deal with these issues,
we adopt a recent framework for signal alignment based
on square-root velocity function (SRVF) [20]; this frame-
work uses the Fisher-Rao Riemmannian metric to derive
a proper distance on the quotient space of functions mod-
ulo the time-warping action. Exploiting this framework has
several desirable properties, including a rate-invariant met-
ric and vector-space representations.

For the proposed application of interest, using the SRVF
approach, the raw time-series can be decomposed into a
composition of time-warping functions and aligned time-
series signals, as illustrated in Figure 1. The rest of the pa-
per builds on this basic framework, and develops a complete
algorithmic pipeline that integrates the strengths of SRVF
with classical machine learning approaches, delivering im-
proved performance.

Contributions: We develop a complete pipeline for
activity recognition that integrates results from functional
analysis with robust statistical learning approaches. Our
approach results in the following advantages: (1) improve-
ments in activity recognition, with maximum improvements
in separating activities that differ in temporal rates (walk-
ing at lmph vs 4mph) (2) increased robustness to window
lengths compared to classical methods.

1.1. Related Work

Clinical Application: A wide range of classical meth-
ods for activity recognition have been developed, typically
using wearable sensors on specific body parts. For instance,
data from a sensor on the hip, worn over a 7-day period was
used to classify various activities of daily living [15]. A re-
cent trend, however, is to move the activity monitor from the
hip to the wrist location to increase wear-time compliance
and capture sleep-related behavior. Current interest in clin-
ical studies is aimed at 24-hour monitoring and automatic
recording of activities while being low-cost and wearable.

Classical Methods: Classical approaches to wearable-
based activity analysis include extracting features from
overlapping windows in time, such as wavelets, Fourier fea-
tures etc, c.f. [2, 14, 7]. This is then followed by standard
machine learning approaches for classification. Classical
approaches do not provide special consideration to the is-
sue of temporal mis-alignment.

DTW-based time-series analysis: In order to account
for temporal misalignment, the DTW-based method has
been used to compare and measure the distance between
a given template and observed signal. By means of the
DTW-based template comparison, the template database is
selected from individual training samples and continuously
updated to capture the particular activities performed (c.f.
[17]). After computing and sorting the DTW scores for all

templates, the set of the smallest scores is compared to the
activity-specific thresholds. In such conventional methods,
DTW is used only to measure similarity between the test-
ing data and template database, without additional statisti-
cal modeling capabilities. Additionally, classical DTW has
inherent limitations in scaling to large training-sets. Using
a small fraction of training samples as templates is also not
optimal because they may not well represent their classes.
Thus, we seek a generic framework which can be applied
where the requirement is to compare, summarize, and model
a set of activity based time-series data. In this study, we ex-
ploit SRVF to compute Fréchet means of given time-series
signals. It provides well-defined mathematical properties
where distance and statistics are straightforward to com-
pute.

Functional Analysis: In this work, we adopt recent
functional analysis methods based on the SRVF represen-
tation that would allow dealing with phase variability or
elastic temporal misalignment, by separating phase and am-
plitude components. The space of analysis here becomes
the space of diffeomorphism that map the unit interval [0, 1]
to [0, 1]. The SRVF method allows development of proper
Riemannian metrics over time-series. It also allows for de-
veloping statistical summaries, and avoids some limitations
of DTW-based methods such as the ‘pinching’ effect [16].
More broadly, exploiting differential geometry of the con-
strained space leads to more efficient solutions, as well as
provides faster and stable solutions based on the geometry
of the underlying manifolds with nice mathematical struc-
ture. For these reasons, there has been an increased interest
in understanding differential geometric properties that can
be applied on a variety of fields, including activity recog-
nition [1, 24], movement quality assessment [ 8], medical
image analysis [10], and shape analysis [19]. In particular,
functional analysis from differential geometry and statistics
has been exploited for shape-based activity recognition with
high performance in [21, 13]. Furthermore, the proposed
approach can serve as a pre-processing step for machine
learning classifiers like deep neural networks [12, 9].

2. Proposed approach for action recognition

A brief overview of the proposed approach for action
recognition is shown in Figure 2. During the training phase,
we compute energy signals from original x, y, z signals, and
convert energy signals into SRVF representation to compute
the Fréchet mean for each class. Next, the original x,y, z
signals can be aligned by a composition with the estimated
warping functions as: [Z, ¢, 2] = [z, y, z] oy. Consequently,
anew training data set is created from which features can be
extracted in a sliding window procedure (non-overlapping)
with different window lengths. During the testing phase,
we align test signal to the Fréchet means for all classes, and
choose the warping function that results in the best fit across
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Figure 1. Here we illustrate how temporal variability and misalignment issues can significantly affect activity data. We show several
instances of walking on a treadmill at 1mph, using the energy of accelerometer signals with a 1000 sample window. The SRVF framework
allows decomposing the raw data into a composition of warping functions and aligned signals. In the bottom row, we illustrate the
qualitative difference in computing an average signal and standard deviation signals for the raw signal set and the aligned signal set. Note
that the summary signal statistics on after alignment show much more meaningful pattern, whereas the signal summaries before alignment
have lost all patterns of the walking activity.

‘Warp energy signal to - Extract features
e Represent energy Compute Frechet i 2 = Warp x, y, Z using .
[ flrainimsithase H signals as SRVF means for class 1...j s @Oy the same y function fm"_l SYM classifier
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Figure 2. Illustration of the proposed framework’s pipeline: The top row corresponds to the training phase and the bottom row corresponds
to the test phase. The raw energy signals can be represented as SRVF representation to compute Fréchet means for each class. This allows
original time-series, x, vy, 2z, to be aligned using the same warping function. The new warped signals are then created to leverage SVM
classifier by extracting features from them.

classes. Using the best-fit warping function, we align the
test signals for x, y, z. Note that for final classification, we
use a separate support vector machine (SVM) classifier that
operates on a set of classical features extracted from this
aligned test signal.

We describe the testing phase in more details in Al-
gorithm 1. While testing, we represent a test signal and
each Fréchet mean as SRVF representations (denoted by
q,u respectively) to find the best warping function, and
test signals are then aligned with this warping function.
Here, the warping function can be computed by solving
v* = argminer||u — (¢ o v)v/7|| where u is the Fréchet
mean which is obtained from training phase, I' is referred

to as the warping group, and ¢ is the SRVF representa-
tions of given functions. The solution to this optimization
comes from a dynamic programming algorithm. Through
this step, we can perform warping of test signals by a com-
position: [Z,9, 2] = [z,y, 2] o v*. Next, we calculate the
Euclidean distance to measure the similarities between the
Fréchet means of all classes, [Z;, ¥, Z;], and warped test
signals, [Z, ¢, Z], where j is the class index. The distance
values from the Euclidean distance indicate how test sig-
nals can be warped with best-fit warping function and we
denote minimum index by Prediction_label in Algorithm 1.
Note, the final classification results could be affected based
on prediction label. Finally, we can extract features from
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the warped signals corresponding with the minimum class
index. We describe each of the major steps involved in the
pipeline in more details next after first briefly describing the
dataset used.

Algorithm 1 Algorithm for computing warped signals dur-
ing testing phase.

Input : Test signals z, y, 2, £ and the Fréchet means for all
classes, Z;, ¥, Zj, Ej, where j = 1,2, ...,number of classes
QOutput : Warped signals z, g, Z, E.
cforj=1,2,...,ndo
[E. ;] = SRVF warp(E};, E)
[‘%a Y, 2} = [.’E, Y, Z} °j
Dist[j] = Euclidean distance([Z;, y;, Z;], [Z, 7, Z])
Temp datalj] = [Z, 7, 2, E]
end
: Min_index = min(Dist)
: Prediction_label = Min_index
: Warped signals = Temp data[Min_index]

R e A o

2.1. Data collection and activity classes

We collected data from subjects of male and female
adults, in the age range 18-64 years. All of them were re-
cruited by fliers, emails, or social networks. The consenting
participants were requested to complete an online screener
and visit a lab to determine eligibility. All procedure for
this study were approved by the Institutional Review Board
at Arizona State University.

The participants were requested to wear comfortable
clothing and were fitted with a GENEActiv sensor (Activin-
sights Ltd., Kimbolton, UK) on their non-dominant wrist
along with other activity monitors. The GENEActiv wrist-
worn sensor provides us raw accelerometer data and advan-
tages of being lightweight and waterproof. The subjects
then performed a set of ambulatory and daily living activi-
ties from a predetermined pool of activities.

Table 1 lists the 7 activity classes collected from this
study and the description of each activity. Note that the
acceleration signals were first trimmed to remove the rest-
ing periods at the beginning and the end of each activity (if
such periods existed).

3. Detailed description of approach
3.1. Converting accelerometer data to features

Extracting features succinctly capture the important in-
formation embedded in the signal, while reducing the
amount of resources needed to describe the data accurately.
We note here that using the SRVF framework, it is actu-
ally possible to build a full Bayesian model on the prod-
uct space of phase and amplitude functions, in a manner

| Class | Activity \
1 Walking (treadmill at 1mph)

Walking (treadmill at 4mph)

Running (treadmill at 6mph, 5% grade)
Seated/folding/stacking laundry
Standing/fidgeting with hand while talking
Hard surface walking holding filled coffee cup
Walking down stairs (5 floors)

~N OB W

Table 1. The activities of daily living of interest in this paper.

similar to the one used by Veeraraghavan et. al. [23]. In
this paper, however, we use the framework only as a pre-
processing step, so as not to preclude the use of any end-
classifier one wishes to use. This choice ensures that one
can specifically evaluate the impact of pre-alignment on fi-
nal classification performance, while conforming to popular
classification pipelines.

A variety of methods have been used to extract features
from accelerometer data — mean, variance, RMS value of
signal, Pearson correlation coefficients, frequency domain
entropy features, and power spectral density (PSD) from
FFT values (e.g. [25]). In this work, complementary to the
triaxial raw accelerometer data, an additional time-series,
called energy signal C'g, is obtained by computing the mag-
Jez+ 2y cz,
We also extend the feature space by extracting features from
energy signals. Finally, a 37-dimensional feature vector is
used and calculated for each window for SVM training and
prediction. The final features include:

nitude of the acceleration vector: Cg =

1) Mean, variance, and root mean square values
of the acceleration values on each of Cy, Cy, C,
and C'p respectively.

2) Pearson correlation coefficients between all
combinations of C,, Cy, C, and Cg, frequency
domain entropy, and the PSD from FFT values.
3) Difference between maximum and minimum
accelerations on each axis (dz,dy,dz,dFE), and
the following 5 features [ 1]:

dCy.y = \/dz? + dy?,

dC,y,. = \/dy? + dz?,

dCy,, = \/da? + dz=2, (1)
ACyoy .o = V/dz? + dy? + d22,

dc;ryy sz B = \/dl'Q + dy2 + d22 + dE2

Classifier Validation : In this work, we extracted fea-
tures from non-overlapping windowing. In particular, we
used different window length sizes to evaluate robustness to
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window lengths. We employed leave-one-subject-out cross-
validation method, i.e., we trained the classifier using data
from 49 subjects, and tested on the remaining subject. This
process was repeated for all 50 subjects and results were
averaged.

3.2. Pre-alignment with SRVF framework

In this section we describe the SRVF representation,
which was developed in a series of papers [20, 22] as a
novel geometric framework for separating the phase and
amplitude variability in given functional data. One impor-
tant reason for using SRVF representation is to transform
the Fisher-Rao metric into the standard 1.2 metric, simpli-
fying the computations and thus the Fisher-Rao distance be-
tween two functions becomes the standard IL? between their
SRVFs. This metric could help define a Fréchet mean tem-
plate, among other summaries. For completeness of this
paper, we reiterate the essence of the SRVF representation
below.

We denote a real-valued function on the interval [0, 1]
denote by f, and let F denote the set of all such functions,
we then define the mapping: @@ : R — R according to:

_ Ja/V/lzl, iffz| #0
Q(z) = .
0 otherwise

analysis of function f, we redefine it as a SRVF represen-
tation satisfying the following formulation: ¢ : [0,1] — R,

where ¢(t) = Q(f(t)) = f(t)//|f(t)|. In fact, if the func-
tion f is absolutely continuous, then the resulting SRVF
is square-integrable. Thus, the set of all SRVFs are given
by L2([0, 1], R) (or simply L?) and we can define that the
SRVF of f o ~y, which means that warp a function f by ~ is
given by [22]:

. Note that for further

For convenience, we will denote this transformation by

(¢,7) = (goV)VH.

Elastic Riemannian metric and distance on quotient
space : We use the nonparametric form of the Fisher-Rao
metric for analyzing SRVFs. This metric provides several
fundamental advantages, including invariant property to do-
main warping.

The next step is to define an elastic distance between
functions. Let [g] = closure{(q,7)|y € '} = closure{(q o
v)v/3l7 € T'} denote the orbit of an SRVF ¢ € L2, that is,
the set of SRVFs involved with all the warpings of a func-
tion, and their limit points. For any two orbits, the elastic
distance d on the quotient space S is given by:

d([q1]; [g2]) = infyer|lgr — (g2, )] 3)

The solution to this minimization problem over I' is
solved by using dynamic programming. This distance d is
a proper distance (i.e. with the properties of non-negativity,
symmetry, and the triangle inequality) on S.

In this work, we compute the Fréchet mean of energy
signals for each class. The Fréchet means are used as rep-
resentative templates with which testing signals are com-
pared. To compute the Fréchet means, one needs to ap-
ply warping and averaging iteratively. For further details of
computing Fréchet mean, we refer the reader to [22].

3.3. Post-alignment activity classification

After a given test signal is first aligned to the best-fit
mean energy signal from all classes, the warping function
thus estimated is used to align the z, y, z time-series as well,
and then we extract the features described in Section 3.1
from the aligned signal. After this step, a trained SVM
classifier is used for final classification. We generally ob-
served that the highest classification rates were achieved
using SVM classifiers with a radial basis function kernel.
SVM classifiers are desirable because the optimization cri-
teria are convex, which implies that a global optimal solu-
tion exists, and many toolboxes exist that simplify applica-
tion of the algorithms. In this study, the SVM implementa-
tion from the LibSVM toolbox [8] was used.

4. Experiments

We evaluate our proposed approach on data captured
with a wrist-worn accelerometer, the details of which are
described in Section 2.1. The 7 activity classes with 50
subjects listed in Table | are investigated in this study.
First, we show in Figure 3, how temporal pre-alignment can
reveal significant patterns of quasi-periodicities across all
classes. Without pre-alignment, none of this structure is re-
vealed, and any further statistical summary computed from
unaligned data simply loses all signal structure.

Comparison with and without SRVF: We tabulate and
compare the activity recognition performance without and
with SRVE, referred to as — Original Data (SVM) Base-
line and Warped Data (SVM) SRVF respectively, as shown
in Table 2. We observe that using the proposed pipeline
that integrates the SRVF framework with classical machine
learning approaches can deliver improved performance for
all window lengths. Our approach combines both ap-
proaches, aiming to preserve feature information in feature
domain, as well as reducing variability due to temporal mis-
alignment.
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Figure 3. These figures show how temporal alignment can reveal patterns of activity across all classes, whereas the signal summaries
without any alignment would have lost all meaningful patterns of activity, as illustrated in Figure 1 for one class. Note that the length of

signals for each class were 1000 samples.

Approach Window length Avg. testing time
1000 500 200 100 50 (for window length = 500)
Original Data(SVM) Baseline | 86.29% 85.86% 84.74% 79.54% 73.81% ~ 1.3s
Warped Data(SVM) SRVF 8943 87.86% 87.14% 85.74% 80.71% ~ 22.1s

Table 2. Comparison of proposed approach (bottom) with classical method (top). We observe that using the proposed approach can deliver
improved performance for all window lengths, demonstrating increasing robustness to variability in window lengths. The recognition
accuracy (%) is reported for activities using leave-one-subject-out validation over 50 subjects.

Increased separation of similar classes: As another ad-
vantage, we show that the activities that cause significant

confusion are much better classified using the proposed ap-
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Proposed approach, window length = 100
Accuracy: 85.74%

1 00% 05% 9.0% 00% 05%
0 3 37 0 2
2 00% 0.0% 1.0% 16% 3.4%
21 0 4 8 15
"3 0.0% 0.0% 0.0% 0.9%
g 0 0 0 0 4
O 4 09% 0.0% 95% 14% 1.1%
o 5 0 3 39 7 5
E 5 13.0% 13% 0.6% 16.2% 28% 2.5%
72 7 3 91 14
6 00% 0.0% 0.0% 28% 29%
0 0 0 16 12
7 27% 112% 02% 12% 3.7%
15 60 1 7 15
1 2 3 4 5 6 7

Predicted Class

Baseline, window length = 100
Accuracy: 79.54%

] 11.0% 00% 04% 86% 08% 2.8%
0 2 35 4 14
5| 8 00% 06% 07% 09% 8.8%
45 3 3 5 44
0 3| 00% 19% 00% 00% 0.6%
@ 0 2 0 0 3
©
Cgql22% 11% 28%  4.2%
° 12 6 2 15 21
E 5| 159% 33% 02% 3.0% 5.6%
89 18 1 79 16
| 04% 00% 00% 06% 20%
2 0 0 3 8
7| 45% 108% 04% 1.3% 44%
25 59 2 6 18
1 2 3 4 5 6 7

Predicted Class

Figure 4. Comparison of confusion matrices with precision rates
of proposed approach (top) and baseline (bottom) with window
length 100. Please note that the confusion between the first two
classes — which differ in temporal rates — is reduced using the pro-
posed approach.

proach. In our set of activity classes, note that the first two
differ in temporal rates— walking on a treadmill at Imph and
4mph. The confusion matrices obtained with different win-
dow lengths are shown in Figure 4 and 5. As seen in both
figures, our approach results in increased ability to distin-
guish between them.

One of the reasons for the improvement in recognition
accuracy is likely due to the improved frequency domain en-
tropy feature. For example, walking activities in the same-
class carried out at varying rates may have different distri-
bution of FFT components in the frequency domain. Af-
ter temporal alignment, the spectra of same-class signals
may become more similar with each other, and as a result,
the frequency domain features become more concentrated
within the same-class, leading to better classification result.
We computed frequency domain entropy and compared the
values before and after alignment. The results, shown in

Proposed approach, window length = 50
Accuracy: 80.71%

00% 05% 9.0% 00% 0.5%
1 0 3 37 0 2
5 0.0% 00% 1.0% 16% 34%
21 0 4 8 15
w3 0.0% 0.0% 0.0% 0.9%
7} 0 0 0 0 4
©
3) 4 0.9% 0.0% 95% 14% 1.1%
) 5 0 3 39 7 5
E 5 13.0% 1.3% 0.6% 16.2% 28% 2.5%
72 7 3 91 14
6 0.0% 0.0% 0.0% 28% 29%
0 0 0 16 12
7 27% 112% 02% 1.2% 3.7%
15 60 1 7 15
1 2 3 4 5 6 7

Predicted Class

Baseline, window length = 50
Accuracy: 73.81%

. 10.7% 00% 1.0% 16.2% 06% 3.6%
114 0 9 142 6 34
o | 122% 00% 15% 42% 05% 10.4%
138 14 37 5 100
0 3| 00% 02% 0.0% 0.7%
a 0 5 2 0 7
Og 28% 18% 6.5% 5.2%
° 32 19 7 69 50
2 5| 173% 44% 01% 49% 6.7%
ol 495 47 1 164 52
g| 05% 00% 00% 27% 46%
6 0 0 25 40
7| 54% 166% 02% 22% 42%
61 177 2 20 37
1 2 3 4 5 6 7

Predicted Class

Figure 5. Comparison of confusion matrices with precision rates
of proposed approach (top) and baseline (bottom) with window
length 50. Please note that the confusion between the first two
classes — which differ in temporal rates — is reduced using the pro-
posed approach.

Figure 6 and Table 3, supported our assumption. In Fig-
ure 6, both plots show the variance of the feature within
each class. The first box-plot shows the variance before
alignment, whereas the second box-plot corresponds to af-
ter alignment. The second box-plot shows that the standard
deviations of the features are smaller, compared to the first
box-plot. We also demonstrate the quantitative comparisons
of (mean =+ std) in Table 3. We observe that the standard
deviations are reduced for all classes.

For further visualization of impact of alignment, we il-
lustrate the overall performance improvement for individual
classes across a range of window lengths in Figure 7. We
note that the higher improvements in recognition accuracy
are obtained for classes 1, 2, and 7.

Analysis of testing time: We also conducted an analy-
sis of the increased computational load for the proposed
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Figure 6. Frequency domain entropy feature values before and af-
ter alignment. We observe reduction of variance in this feature,

across all classes, while not altering the separation of dominant
modes in feature space. Numerical details appear in table 3.

methods. We report average testing time per test-window
in Table 2. We note that the implementation was based in
MATLAB 2017a, on a Windows desktop, with an Intel Core
17-2600 CPU(3.40 GHz). We observe there is an increase
in computation time, as expected. This implies that the pro-
posed method, even with unoptimized code, is at least suited
for offline analysis applications. But with optimization of
the pipeline, it is conceivable that the approach could work
in real-time or near real-time situations. For reducing test-
ing time, the fast DP algorithm that runs in O(V) time can
be applied with N nodes [3].

5. Conclusion

In this paper, we present a fusion of classical methods
with modern functional analysis method for elastic tempo-
ral alignment, for activity recognition from accelerometer
data. We find an overall improvement in recognition per-
formance on a dataset of 7 activities with 50 subjects. The

Class No.

Before alignment

(mean =+ std)

After alignment
(mean =+ std)

1 2.96 + 0.296 2.95 + 0.215
2 2.46 £ 0.406 2.50 +0.370
3 2.49 +0.338 2.82 +0.242
4 3.07 £ 0.374 3.02 +£0.278
5 3.37£0.514 3.30 £ 0.409
6 2.28 +0.423 2.42 +0.317
7 2.58 +0.492 2.62 +0.363

Table 3. Comparison of mean and standard deviation of frequency-
domain entropy feature before and after alignment. The means and
standard deviations were calculated for all subjects with window
length 200.

s B win_size 500 O win_size 200 @win_size 100 O win_size 50

n

Al H

aa= o H sl |

Performance Improvement (%)

class1 class2 class3 class4 class5 class6  class 7

-10

Figure 7. The performance improvements for all classes with re-
spect to different window lengths — 500, 200, 100, 50.

improvement benefits are due to: (1) superior discrimina-
tion between activities that differ in temporal rates (2) in-
creased robustness to window lengths. An extension of this
work would be moving toward new representation spaces,
afforded by new kinds of sensors. For example, time-series
of rotation-matrices, which may be obtained by sensor-
fusion from accelerometer, gyros, and magnetometers, may
be treated as Riemannian manifold-valued signals. Exten-
sions of functional methods to manifold-valued functions
can be adopted for such new kinds of data. Further, opti-
mization and/or modification of the proposed approach that
results in close to real-time classification is another avenue
of work.
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