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ABSTRACT

We have made high precision polarimetric observations of the polluted white dwarf G29-38 with the
HIgh Precision Polarimetric Instrument 2. The observations were made at two different observatories
– using the 8.1-m Gemini North Telescope and the 3.9-m Anglo Australian Telescope – and are
consistent with each other. After allowing for a small amount of interstellar polarization, the intrinsic
linear polarization of the system is found to be 275.3 ± 31.9 parts-per-million at a position angle
of 90.8 ± 3.8◦ in the SDSS g′ band. We compare the observed polarization with the predictions
of circumstellar disc models. The measured polarization is small in the context of the models we
develop which only allows us to place limits on disc inclination and Bond albedo for optically thin
disc geometries. In this case either the inclination is near face-on or the albedo is small – likely
in the range 0.05 to 0.15 – which is in line with other debris disc measurements. A preliminary
search for the effects of G29-38’s pulsations in the polarization signal produced inconsistent results.
This may be caused by beating effects, indicate a clumpy dust distribution, or be a consequence of
measurement systematics.

Key words: stars: individual: G29-38; white dwarfs; circumstellar matter; polariza-
tion

1 INTRODUCTION

White dwarfs, the end state of stellar evolution for stars of ∼0.5 – 8 M�, provide strong evidence for planetary systems

orbiting their precursor main sequence stars, as well as their subsequent survival through post-main sequence stellar evolution

(Farihi 2016). Specifically, 25 per cent of white dwarfs show metal lines in their atmospheres (Zuckerman et al. 2003). For

white dwarfs with hydrogen atmospheres, the sinking timescale for metals to leave the atmosphere due to the extreme gravity

is only weeks to centuries (Koester & Wilken 2006). These timescales imply that the metals must have arrived recently and

may still be arriving. Remnants of the precursor planetary system are the most likely source of these metals. Additionally,

around 4 per cent of these stars exhibit infrared excesses (Rocchetto et al. 2015; Wilson et al. 2019), typically re-radiating

approximately 1 per cent of the stellar flux. This fact, along with infrared spectroscopy showing silicates in emission in these

systems (Reach et al. 2005), is broadly interpreted to indicate that these stars are actively accreting dust from asteroids

and/or comets. Many white dwarfs with excesses have discs with substantial gas components (e.g. Farihi et al. 2012) which
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may be associated with dissociated planetesimals within the tidal disruption radius (Wilson et al. 2014). With the discovery of

transits in the time-series photometry of WD 1145+017 (Vanderburg et al. 2015; Zhou et al. 2016), and optical spectroscopy

of WD J0914+1914 indicating an evaporating giant planet (Gänsicke et al. 2019), the evidence appears overwhelming that

white dwarfs are providing insight into the ubiquity and composition of extrasolar minor bodies. Indeed, observations of these

systems have already motivated dynamical studies of the scenarios of their creation, assuming they are the result of inward

scattering of planetesimals (Bonsor et al. 2011; Bonsor & Veras 2015).

Yet, from an empirical standpoint, the fundamental properties of these systems remain poorly constrained. Of particular

concern is whether the circumstellar dust is optically thin or thick and the geometry of its distribution. Without this knowledge

it is impossible to accurately calculate the dust masses or circumstellar debris lifetimes in these systems (Jura 2003; Farihi

et al. 2014; Bonsor et al. 2017), which in turn are necessary to constrain their nature and the dynamical mechanism(s) that

brought the minor bodies close enough to the host star for what is thought to be tidal disruption (Jura 2003), followed by

eventual accretion.

G29-38 (ZZ Psc, WD 2326+049) became the prototype white dwarf with circumstellar dust when its infrared excess was

discovered at the NASA InfraRed Telescope Facility some thirty years ago (Zuckerman & Becklin 1987). It is a DA white

dwarf with Teff = 11 240 K, log g = 8.00 and is at a distance of d = 17.5 pc (Xu et al. 2018). This star has a rare yet

auspicious combination of properties that should allow us eventually to place some constraints on the geometry and nature

of its circumstellar dust. Based on its strong infrared excess (LIR/L? = 3.9 per cent, Farihi et al. 2014), it has one of the

most substantial circumstellar dust reservoirs. It is also a well-studied luminosity variable pulsating in a range of non-radial

gravity-modes with periods of 1 to 10 minutes (Kleinman et al. 1998). Pioneering observations (Graham et al. 1990; Patterson

et al. 1991) identified corresponding oscillations in the K-band, which can provide a measurement of the modes as seen from

the dust rather than directly by the observer.

Magnetic white dwarfs, those with surface magnetic fields stronger than 10 kG, can have significant linear polarization

– up to several per cent (e.g. West 1989). When linear polarization is seen in blind surveys of white dwarfs, it is attributed

to magnetism (Żejmo et al. 2016; S lowikowska et al. 2018). However, G29-38 has a magnetic field less than ∼100 G (Liebert

et al. 1989), so it is assumed that a measured polarization will be due to its dust.

Understanding the nature of the dust, and the geometry of the dust distribution, is critical for understanding the nature

of the planetary debris progenitor material and the mechanism(s) by which it is initially disrupted, and eventually finds its

way to the stellar surface. Such dust is usually assumed to be in the form of a thin disc close to the star, arising from the

disruption of a single asteroid. However, if the dust around the star is due to multiple asteroids and their resulting collisions,

the geometry of the dust might be more widespread. Reach et al. (2009) consider the infrared spectra that would result from

a variety of dust distributions.

In this paper we report a measurement of the polarization of optical light from G29-38, which we take to be the result

of scattering from the dust that surrounds the object and gives rise to the infrared excess. We also report an attempt to look

for variability of that polarization, which could be interpreted as resulting from the known variability of the star.

In Section 2 we report the details of the observations and the results, including making a determination of, and correction

for, interstellar polarization in Section 2.3. In Section 3 we analyse the data by first giving a brief overview of how these

results might be analysed in Section 3.1; then in Section 3.2 we summarise the assumptions we shall make about the general

properties of the dust that we require for modelling the data; and in Section 3.3 we present models for the dust distribution

and show the implications for the dust properties, given the measured polarization; before looking at a potential complications

(Section 3.4). We present a brief discussion in section 4 before presenting our conclusions in Section 5.

2 OBSERVATIONS AND RESULTS

2.1 Standard G29-38 observations

We have observed G29-38 (ZZ Psc, WD 2326+049) with (two copies of) the HIPPI-2 polarimeter (Bailey et al. 2020b) during

two observing runs. The first run was made at Mauna Kea in Hawaii with the Alt-Az 8.1-m Gemini North telescope during

early 2018 July (denoted GN). The second run was made at Siding Spring Observatory in Australia with the equatorial 3.9-m

Anglo-Australian Telescope (AAT) during 2018 August. HIPPI-2 is designed for an f/16 focus appropriate for the Gemini

North observations. For the AAT run, the f/8 Cassegrain focus was used with the addition of a ×2 negative achromatic

(Barlow) lens. In combination with the selected instrument apertures (4 mm GN, 3.6 mm AAT) this gives on-sky aperture

sizes of 6.4 arcsec (GN) and 11.9 arcsec (AAT).

HIPPI-2 is a high-precision optical linear aperture polarimeter based on the proven HIPPI (Bailey et al. 2015) and

Mini-HIPPI (Bailey et al. 2017) instruments, and is described in full in Bailey et al. (2020b). It has recently been used to

study polarization in the binary star system Spica (Bailey et al. 2019), the rapidly rotating star α Oph (Bailey et al. 2020a),

and the red supergiant Betelgeuse (Cotton et al. 2020). To summarise its performance, in the SDSS g′ band, in which our

observations were made, the instrument has demonstrated precision of better than 4 parts-per-million (ppm). It achieves this
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through two stages of modulation. The first stage is rapid (500 Hz) and electrically driven in order to beat seeing noise; it

is accomplished by a commercial Ferro-electric Liquid Crystal (FLC) modulator. The second stage of modulation is slower,

and involves utilising an instrument rotator to achieve four instrument position angles (PA) of 0◦, 45◦, 90◦ and 135◦ per

observation. The redundant angles (90◦ and 135◦) are used to cancel out instrumental effects. For the AAT run the FLC used

was the MS series polarization rotator from Boulder Non-Linear Systems (BNS). At Gemini North we used an FLC from

Meadowlark Optics (ML) with a design wavelength of 500 nm. The performance of each unit has been characterised by both

laboratory and on-sky measurements, and is described in detail in Bailey et al. (2020b).

HIPPI-2 uses a Wollaston prism as an analyser, whence the light is fed into twin compact photomultiplier tubes (PMTs)

used as detectors. For these observations we utilised two different pairs of Hamamatsu H10720-210 modules which have

ultrabialkali photocathodes (Nakamura et al. 2010) providing a quantum efficiency of 43 per cent at 400 nm. In combination

with the atmosphere, telescope and instrument optics this results in a mean effective wavelength for G29-38 observations of

451.7 nm (AAT) and 463.6 nm (Gemini North), as calculated by a bandpass model – the difference is mainly down to the

reflectance profile of Gemini North’s silver coated mirror compared to the AAT’s aluminium mirror. The bandpass model

also takes account of modulation efficiency of the instrument, the inverse of which must be multiplied by the raw Stokes

parameter measurements to determine the true polarization. The mean modulation efficiency was significantly impacted by

the performance characteristics of the different modulators; for AAT observations it was 63.5 per cent, on Gemini the figure was

93.4 per cent. The AAT run was the final one for the BNS modulator, the performance of which drifted over time, accounting

for the comparatively low modulation efficiency. The bandpass model requires a source spectrum. For this purpose we chose

to use the synthetic white dwarf spectra of Koester (2010). Koester et al. (2009) gives Teff =11 485 K and log(g) =8.071 for

G29-38; the two nearest models have Teff =11 000 K and 12 000 K. We therefore ran the bandpass calculations with both

models separately and took the mean.

The telescope polarization (TP) and position angle (PA) calibrations rely respectively on the observation of low and

high polarization standard stars. These observations and the associated calibrations for the two runs have both been reported

previously (Bailey et al. 2020b). On the AAT the TP was 13.6 ± 1.1 ppm at a position angle of 80.9 ± 2.2◦. On an Alt-Az

telescope the TP varies with parallactic angle for any given Stokes parameter. The TP at Gemini North is very large (around

2,050 ppm in the SDSS g′ band), and highly wavelength dependant, meaning that it also varies significantly with airmass. A

model describing the TP at Gemini North was developed, and is presented elsewhere (Bailey et al. 2020b). The uncertainties

surrounding the TP limit the achievable precision (in g′) at Gemini North to 24.9 ppm.

It is normal procedure with HIPPI-2 to make a measurement of the sky at each PA immediately before or after each

measurement of the object. At Gemini North this was done in the normal way with alternating trailing and leading skies. On

the AAT for observations of G29-38 we took skies that bracketed every measurement and averaged them before making the

subtraction. This precaution against changing sky conditions was taken because, at mB = 13.17 mag, G29-38 is one of the

faintest objects so far observed with a HIPPI-class polarimeter.

The individual HIPPI-2 observations are given in Table 1 and presented in the form of a Q-U diagram in Figure 1, along

with nightly means, run means, and the mean of both runs1. In all cases the means are error weighted. The errors on the

individual observations are fairly large, but these appear fairly consistent. This can be seen most clearly in the left-hand

panel of Figure 1, where only one of the individual Gemini North observations deviates by more than 2σ from the mean. More

meaningfully, the nightly means are in good agreement within the formal error, as are the run means. The latter, in particular,

gives confidence in the result, and implies stability in the system polarization on the scale of days to weeks. Combining all

the data gives p =274.3±31.8 ppm at a PA of 92.5 ± 3.3◦, a clear detection at a significance at 8.6σ.

2.2 Testing for pulsation effects

Subsequent to the data acquisition it was decided to interrogate the data for evidence of effects resulting from pulsation.

As a first step, variability was investigated by calculating the moments of the AAT and GN runs using the methodology of

Brooks et al. (1994). The results are presented in Table 2. In each instance the calculated kurtosis and skewness (defined

so 3 is normal skewness) are not inconsistent with the null hypothesis (of no variability) to a significant level (i.e. 95 per

cent). The error variance, which is a measure of whether the standard deviation in the data is consistent with the associated

errors, also indicates no variability for the AAT data. This is not surpising as the pulsations have periods much shorter than

the length of typical AAT observations, so could be expected to average out, and our errors are of similar magnitude to the

mean measurement. However, with the smaller errors associated with the GN data and slightly shorter dwell times, significant

non-zero error variances are recorded, which warrants further investigation.

G29-38 has prominent pulsation periods around 800 to 900 s. The total exposure for an observation is usually 1000 s at

Gemini North or 1280 s at the AAT, however each observation consists of four measurements at different instrument PAs,

1 We use Q and U to denote the linear polarization Stokes parameters, and q and u the normalised forms, i.e. q = Q/I, u = U/I.
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Table 1. HIPPI-2 Observations of G29-38

Run Observation Time Exp. λeff Eff. q u p PA

UT Date Start End (s) (nm) (%) (ppm) (ppm) (ppm) (◦)

In
d
iv
id
u
a
l
O
b
se

r
v
a
ti
o
n
s

GN 2018-07-05 12:52:03 13:15:54 1000 463.8 93.4 −48.1 ± 80.8 274.7 ± 84.5 278.9 ± 82.7 50.0 ± 8.8
GN 2018-07-05 13:16:05 13:39:33 1000 463.7 93.4 −221.7 ± 79.6 −217.5 ± 77.5 310.6 ± 78.6 112.2 ± 7.4
GN 2018-07-05 13:39:59 14:02:26 1000 463.6 93.4 −377.4 ± 83.8 −18.3 ± 84.5 377.8 ± 84.2 91.4 ± 6.5
GN 2018-07-05 14:02:48 14:25:19 1000 463.6 93.4 −338.8 ± 81.5 −65.4 ± 84.3 345.1 ± 82.9 95.5 ± 7.0
GN 2018-07-06 13:31:21 13:56:08 1000 463.6 93.4 −367.5 ± 80.0 −76.0 ± 83.5 375.3 ± 81.8 95.8 ± 6.4
GN 2018-07-06 13:56:37 14:20:57 1000 463.6 93.4 −250.6 ± 79.9 −104.5 ± 82.9 271.5 ± 81.4 101.3 ± 8.9
AAT 2018-08-16 14:56:07 15:26:47 1280 451.7 63.5 −27.7 ± 264.1 179.0 ± 250.7 181.1 ± 257.4 49.4 ± 37.6
AAT 2018-08-16 15:28:12 15:57:43 1280 451.5 63.3 −601.4 ± 263.5 −181.9 ± 258.7 628.3 ± 261.1 98.4 ± 13.7
AAT 2018-08-16 15:59:01 16:28:31 1280 451.5 63.3 −335.2 ± 262.4 −153.9 ± 261.1 368.8 ± 261.7 102.3 ± 25.0
AAT 2018-08-16 16:29:56 16:59:55 1280 451.7 63.5 −258.6 ± 261.7 251.6 ± 243.9 360.8 ± 252.8 67.9 ± 24.7
AAT 2018-08-16 17:01:13 17:30:56 1280 451.7 63.5 −224.5 ± 255.0 21.1 ± 269.3 225.4 ± 262.1 87.3 ± 34.5
AAT 2018-08-16 17:32:16 18:02:10 1280 452.0 63.6 −410.9 ± 264.1 −51.8 ± 256.1 414.1 ± 260.1 93.6 ± 22.3
AAT 2018-08-17 15:20:43 15:50:37 1280 451.5 63.3 −105.0 ± 229.5 −304.6 ± 236.7 322.2 ± 233.1 125.5 ± 25.4
AAT 2018-08-17 15:51:58 16:22:03 1280 451.5 63.3 −520.9 ± 229.5 59.3 ± 243.7 524.2 ± 236.6 86.8 ± 15.3
AAT 2018-08-17 16:23:22 16:53:40 1280 451.7 63.5 −333.2 ± 250.5 196.0 ± 238.1 386.6 ± 244.3 74.8 ± 22.5
AAT 2018-08-17 16:55:00 17:26:17 1280 451.7 63.5 167.8 ± 254.9 −190.9 ± 242.8 254.2 ± 248.9 155.7 ± 31.5
AAT 2018-08-17 17:27:42 17:57:44 1280 452.0 63.6 −118.9 ± 237.8 159.3 ± 243.4 198.8 ± 240.6 63.4 ± 35.2
AAT 2018-08-18 16:22:25 16:52:12 1280 451.7 63.5 −488.9 ± 255.8 −235.1 ± 231.1 542.5 ± 243.4 102.8 ± 15.1
AAT 2018-08-18 16:53:42 17:23:19 1280 451.7 63.5 −283.6 ± 257.2 35.3 ± 252.0 285.8 ± 254.6 86.5 ± 29.7
AAT 2018-08-18 17:24:41 17:54:26 1280 452.0 63.6 118.9 ± 266.0 459.8 ± 251.2 474.9 ± 258.6 37.7 ± 19.2
AAT 2018-08-20 16:39:35 17:09:58 1280 451.7 63.5 −198.3 ± 261.5 −383.2 ± 241.6 431.4 ± 251.5 121.3 ± 20.7
AAT 2018-08-20 17:11:34 17:47:50 1600 452.0 63.6 −764.4 ± 233.9 297.6 ± 229.4 820.3 ± 231.7 79.4 ± 8.3
AAT 2018-08-21 17:32:52 18:02:35 1280 452.2 63.8 −535.4 ± 259.9 211.4 ± 243.0 575.6 ± 251.5 79.2 ± 14.6
AAT 2018-08-21 18:03:57 18:33:43 1280 452.6 64.0 −401.7 ± 259.7 −140.1 ± 260.4 425.4 ± 260.1 99.6 ± 21.7

N
ig
h
tl
y
M

ea
n
s GN 2018-07-05 12:52:03 14:25:19 4000 463.7 93.4 −237.4 ± 44.0 −15.4 ± 44.6 237.9 ± 44.3 91.9 ± 5.4

GN 2018-07-06 13:31:21 14:20:57 2000 463.6 93.4 −308.9 ± 58.2 −90.6 ± 60.5 321.9 ± 59.3 98.2 ± 5.3
AAT 2018-08-16 14:56:07 18:02:10 7680 451.7 63.5 −308.8 ± 106.9 17.5 ± 104.5 309.3 ± 105.7 88.4 ± 10.5
AAT 2018-08-17 15:20:43 17:57:44 6400 451.7 63.5 −192.1 ± 107.2 −17.7 ± 107.7 193.0 ± 107.5 92.6 ± 19.7
AAT 2018-08-18 16:22:25 17:54:26 3840 451.7 63.5 −226.4 ± 149.9 68.4 ± 150.0 236.5 ± 145.4 81.6 ± 21.9
AAT 2018-08-20 16:39:35 17:47:50 2880 452.0 63.6 −512.8 ± 174.3 −25.2 ± 166.4 513.4 ± 170.3 91.4 ± 10.1
AAT 2018-08-21 17:32:52 18:33:43 2560 452.4 63.9 −468.5 ± 183.7 47.8 ± 177.7 470.9 ± 180.7 87.1 ± 12.3

M
ea

n
s GN 2018-07-05 to 2018-07-06 6000 463.6 93.4 −262.4 ± 37.5 −40.7 ± 38.2 265.6 ± 37.8 94.4 ± 4.1

AAT 2018-08-16 to 2018-08-21 23360 451.7 63.5 −300.4 ± 59.6 13.9 ± 58.2 300.7 ± 58.9 88.7 ± 5.7
Overall (GN + AAT) −273.2 ± 31.7 −24.3 ± 31.9 274.3 ± 31.8 92.5 ± 3.3

1000 800 600 400 200 0 200 400
q (ppm)

800

600

400

200

0

200

400

600

800

u
 (

p
p
m

)

Individual Observations

1000 800 600 400 200 0 200 400
q (ppm)

800

600

400

200

0

200

400

600

800

u
 (

p
p
m

)

Nightly Means

Figure 1. Q-U diagrams of HIPPI-2 observations of G29-38. Gemini North observations are shown as red diamonds, AAT observations

as blue squares. The left hand panel shows the individual observations, the right hand panel the nightly means. In both panels the mean
of all observations is shown as an orange circle, and the means of the GN and AAT runs shown as a pink diamond and light blue square

(mostly obscured in the right hand panel) respectively.

Table 2. Moment calculations, values are in parts-per-million (ppm).

Run n Stokes Mean Err. Std. Dev. Err. Var. Kurtosis Skewness

AAT 18 q 253.6 232.5 0.0 0.003 2.882
u 247.1 222.1 0.0 0.001 1.977

GN 6 q 80.9 113.8 79.9 0.807 2.574
u 82.7 151.1 126.3 1.235 3.292

Error variance (Err. Var.) is
√

(x2 − e2), where x is the standard deviation (Std. Dev.) and e the mean error (Mean Err.) of a set of

measurements.
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Figure 2. An example (AAT) measurement demonstrating the procedure to cut-up the data for pulsation testing. Calculated Stokes
parameters are shown individually for Channel 1 (blue) and Channel 2 (red) in the middle (Stokes I in PMT Voltage – which is linearly

proportional to flux in this range, Hamamatsu Photonics 2007) and lower (Stokes q as fractional polarization). The grey vertical lines
divide up the 10-integration sets. In the upper panel is a fifth-order polynomial fit to the average Stokes I data, that has had the minimum

value subtracted and then been normalised; the grey horizontal lines correspond to the cut limits.

with one quarter the exposure. A set of four measurements is necessary to properly remove any instrumental polarization.

As a result of triggering overheads, the dwell time for each measurement is about 10 to 20 s longer, meaning that each

measurement corresponds to roughly a third of a pulsation cycle. The measurements are separated by about 50 to 100 s owing

to Sky measurements. The net effect is that observations at Gemini North and the AAT have dwell times of around 19 min

and 25 min respectively (see Table 1).

HIPPI-2 is not photometrically calibrated, and rotating the instrument can produce small jumps in intensity as a result

of manufacturing/fabrication tolerances and alignment effects, but intensity (Stokes I) is recorded along with Stokes Q and U .

HIPPI-2’s software retains a record of every 2 s integration (which for convenience are grouped together in sets of 10 – called

a repeat in Bailey et al. 2015). While the arrangement of the observations is far from ideal for this purpose, it is possible to

investigate pulsation effects using the intensity and polarization recorded intra-measurement.

Each measurement has been broken down into its integrations, and a fifth-order polynomial fit to the intensity in that

sequence to take out obvious dips from thin clouds or short-duration seeing variability. The fit minimum was then set to

zero and the polynomial normalised. This gave an intensity range between 0 and 1 for each integration in each measurement

which could be mapped to the polarization measurements. To allow for the calculation of statistical errors in the polarization
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Table 3. Cuts by normalised Stokes I.

Run Cut q u p PA

(ppm) (ppm) (ppm) (◦)

GN U −198.8 ± 55.2 12.5 ± 56.2 199.2 ± 55.7 88.2 ± 8.2

GN M −375.1 ± 57.8 −5.2 ± 59.9 315.1 ± 58.8 90.4 ± 4.6
GN L −287.1 ± 47.2 −60.5 ± 50.2 293.4 ± 48.7 95.5 ± 4.9

AAT U −114.8 ± 98.0 −110.6 ± 92.4 159.4 ± 95.2 112.0 ± 21.2

AAT M −130.4 ± 99.3 8.5 ± 92.7 130.7 ± 96.0 88.1 ± 25.8
AAT L −390.0 ± 78.7 85.9 ± 78.2 399.3 ± 78.4 83.8 ± 5.7

Cuts: U = ‘Upper’, M = ‘Middle’, L = ‘Lower’.

500 400 300 200 100 0
q (ppm)

200

100

0

100

200

u
 (

p
p
m

) U

U

Figure 3. Q-U diagrams of cuts of HIPPI-2 observations of G29-38. Gemini North observations are shown as red diamonds, AAT

observations as blue squares. The Upper cuts, labelled U, are the first in sequence connected by a thin line to the Middle cuts, and then
the lower cuts. The overall mean is shown as an orange circle, and the means of the GN and AAT runs shown as a pink diamond and

light blue square respectively.

Stokes parameters the integrations were grouped into their sets of 10. This normalised intensity scale was averaged over an

integration set, and then that value used to make a cut of half the data, selecting either the high intensity half (Upper,

IPoly > 0.5), middle (Middle, 0.25 > IPoly > 0.75) or the low intensity half (Lower, IPoly < 0.5). As an example for a single

measurement, Figure 2 shows the Stokes I parameters calculated in each channel in the middle panel in units of detector

voltage; the polynomial to fit the average of the detectors is shown in the upper panel, and the corresponding (instrumental)

Stokes q determinations in the lower panel. The vertical grey lines divide up the integration sets. All four PA measurements

of the same cut (Upper/Middle/Lower) are then used to calculate polarization values in the standard way. Because each

measurement only corresponds to about a third of a pulsation period the upper and lower cuts of the data do not correspond

directly to magnitude, but should be indicative of any polarigenic mechanism proportional to magnitude changes.

There are more significant differences between the various cuts of the data given in Table 3 – and depicted graphically in

Figure 3 – than there are in the nightly means given in Table 1. This suggests that there are polarigenic effects resulting from

pulsation. Yet, the evidence is inconsistent. The difference between the Upper and Lower cuts of the AAT data are striking

in both q and u amounting to 100s of ppm significant to around 2σ, however the trends are not mirrored in the Gemini data.

In the Gemini data it is the Middle and Upper cuts that are most different in q, whilst the trend in u is reversed and is not

significant.

If one assumes that pulsation effects are present, then the difference between the two runs could either be methodological

or phenomenological in origin. The most obvious examples of the latter relate to the pulsations themselves. There are a number

of pulsation modes in G29-38 with similar frequencies and beating between those frequencies could result in less prominent

effects in one run than another. Although difficult to quantify, the pulsations do appear more prominent in the AAT data.

Secondly, G29-38 is an unstable pulsator with modes that come and go, often on timescales of a few months (Kleinman et al.
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Polarization measurements of G29-38 7

Table 4. Observations of interstellar control stars

Control SpT Run UT Dwell Exp. Ap. λeff Eff. q u p θ

HD (s) (s) (”) (nm) (%) (ppm) (ppm) (ppm) (◦)
216385 F6V AAT 2017-08-18 12:49:58 1336 960 11.7 470.3 73.9 0.8 ± 8.0 −16.0 ± 8.5 16.0 ± 8.2 136.4 ± 17.9
222368 F7V AAT-2 2019-12-09 10:34:51 980 640 12.9 469.2 92.9 10.5 ± 5.6 −26.1 ± 5.5 28.1 ± 5.5 146.0 ± 5.7

Notes: All control star observations were made with the SDSS g′ filter and the B PMT as the detector. Uncertainties include the positioning error. Spectral types are
from Gray et al. (2003) for HD 216385 and Gray et al. (2001) for HD 222368; the position and distance information presented later is from SIMBAD.
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Figure 4. A map (left) and magnitude of polarization vs distance (p̂ vs d) plot (right) of interstellar control stars within 35◦ of G29-38.

Interstellar PA is indicated on the map by the black pseudo-vectors; and defined as the angle North through East, i.e. increasing in
a clockwise direction with vertical being 0◦. The controls are colour coded in terms of p̂/d (where p̂ is the debiased p) and numbered

in order of their angular separation from G29-38; they are: 1: HD 222368, 2: HD 216385, 3: HD 4128, 4: HD 207098. In the (p̂ vs d)
plot dashed lines corresponding to p̂/d values of 0.2, 2.0 and 20.0 ppm/pc are given as guides. The grey data point is derived from the

interstellar model in (Cotton et al. 2017) and the black data point represents our best fit interstellar values for G29-38 (converted to

450 nm to best compare with the G29-38 g′ observations using the Serkowski Law assuming λmax= 470 nm) after Marshall et al. (2016),
which we favour over Cotton et al. (2019b) for very nearby objects.

1998) and so the star may be behaving differently in one run from the other. Other intrinsic changes in the system could affect

the polarization, we examine these in Section 4.

Alternatively, the difference between the two runs could be due to how the data were taken. The shorter duration

measurements in the GN run could be inadequately sampling the pulsation cycles for our normalised intensity assignment to

be effective – the smaller the fraction of the pulsation sampled at any given PA, the less appropriate splitting based on intensity

normalised over the exposure is. An observing program designed to measure distinctly the polarization of the pulsation peaks

and troughs is needed to resolve the problem.

2.3 Interstellar polarization

The measured polarization of G29-38 is a combination of intrinsic and interstellar polarization. G29-38 is within the Local

Hot Bubble, very near to the Sun, so its interstellar polarization is expected to be low. The Local Hot Bubble is a region of

space carved out by ancient supernovae with a very low gas and dust density that extends from 75 to 150 pc from the Sun

(Liu et al. 2016). The interstellar medium within this region is not very polarizing, with typical values being around 0.2 to

2 ppm/pc (Bailey et al. 2010; Cotton et al. 2016a), which is an order of magnitude less than the region beyond the Local Hot

Bubble (Behr 1959). Nonetheless, in consideration of the small polarization magnitude measured for G29-38 in Section 2.1,

the interstellar component may be significant, and here we make an attempt to measure and subtract it.

A common way of gauging the magnitude and orientation of interstellar polarization is to observe nearby intrinsically

unpolarized control stars (Clarke 2010). We have previously found stars with spectral types ranging from A to early K to

be the least intrinsically polarized (Cotton et al. 2016a,b). Such stars are a good probe of the nearby interstellar medium

so long as particularly active stars (Cotton et al. 2017, 2019a) and those that host prominent debris discs (Cotton et al.

2017) are avoided. The dust distribution within the Local Hot Bubble is patchy, making it difficult to measure the true level

of interstellar polarization with a control that is not a wide companion. However the ISM is not as patchy within ∼25 pc,

and we have previously devised a model for the nearest region of space (Cotton et al. 2017). The model relies on a weighted

average of nearby control stars with angular separations of less than 35◦ to determine the position angle, and simple piece-wise

linear relationships that vary with Galactic latitude for the magnitude of interstellar polarization. For stars with Galactic
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8 D. V. Cotton et al.

co-ordinates b < +30◦, the magnitude of interstellar polarization is given as

pi = (1.644± 0.298)(d− 14.5) + (11.6± 1.7), (1)

which for G29-38 at d = 17.5 pc gives pi = 16.6 ± 2.6 ppm.

A number of interstellar control stars are to be found in the Interstellar List in the appendix of Cotton et al. (2017).

There are two stars in the Interstellar List that are just within 35◦ of G29-38. So to be able to apply the method from Cotton

et al. (2017) we have supplemented the Interstellar List with two new observations reported here in Table 4 for the first time.

The interstellar control stars were observed with HIPPI-2 in the standard way, using the SDSS g′ filter. The first of these

control stars, HD 216385 was observed during the same AAT run as G29-38, and the same TP and PA calibrations apply.

The second star was observed some time later in 2019 December at the AAT (denoted AAT-2). During this later run the TP

was 20.1 ± 0.7 ppm at a PA of 104.8 ± 1.0◦ determined from observations of HD 2151, 2× HD 10700 and 6× HD 48915; the

PA was calibrated from observations of HD 84810 and HD 80558 with a standard deviation of 0.2◦.

In nearby space it is often difficult to find flawless calibrator stars, this is the case here. Both HD 216385 and HD 222368

have spectral types associated with low intrinsic polarization, but HD 222368 is known to have both hot and cold infrared

excesses. The (hot) excess in the K-band is 1.6 per cent (Nuñez et al. 2017), however we know that such hot dust is likely

made up of nanoscale grains and not very polarizing (Marshall et al. 2016; Kirchschlager et al. 2018). The cold component

has a fractional excess of just 1.1×10−6 (Sibthorpe et al. 2018), which would only result in a polarization greater than 1 ppm

should the disc have an asymmetric geometry. Thus we conclude that HD 222368 is a good interstellar calibrator.

In Figure 4 it can be seen that the nearest two stars to G29-38 have a similar position angle to each other; this bodes

well for the reliability of the interstellar subtraction mechanism. According to Cotton et al. (2017) the position angle is then

found by weighting the four stars within 35◦ as

Wt = (1− sa/35), (2)

where sa is the separation to G29-38 in degrees. This gives PAi = 138.5◦; which in turn gives qi = 2.0 ± 1.6 ppm and

ui = −16.5 ± 1.6 ppm.

Subtracting this interstellar polarization from that measured for G29-38 gives us a determination for its intrinsic compo-

nent as q? = −275.2 ± 31.8 ppm and u? = −7.8 ± 32.0 ppm or alternatively p? = 275.3 ± 31.9 ppm (hereafter referred to as

Pobs) at PA? = 90.8 ± 3.8◦.

3 ANALYSIS

3.1 Simple models

Ignoring for the moment geometrical effects, and other details (such as dust properties etc.), the simple overview of interpreting

the observed polarization in terms of scattering from circumstellar dust is as follows:

(i) From the ratio f of infrared flux LIR to stellar flux L? (Farihi et al. 2014),

f = LIR/L? = 0.039, (3)

we know that the fraction of light from the white dwarf that is intercepted by the dust is f ′ = f/(1− AB), where AB is the

Bond albedo – defined as the fraction of energy incident on the dust that is not absorbed by the dust2. We shall find that it

is likely that AB is small and hence that f does not differ greatly from f ′.

(ii) We conclude that a fraction f ′ of all photons of a given frequency, which we shall call “optical” (e.g. SDSS g′ band)

strike the dust. Of these photons, a fraction 1− AB are absorbed, and a fraction AB are scattered. Therefore the fraction of

scattered star light is ABf
′.

(iii) If the typical polarization of the scattered light is Pscat then the observed polarization in the “optical” is

Pobs = Pscat ×AB × f/(1−AB). (4)

(iv) For G29-38 we have f ≈ 0.04. We have found Pobs ≈ 0.0003. From the models below we find a typical value of around

Pscat ≈ 0.3. From this we see that we expect the approximate value of the Bond albedo to be

AB ≈ 0.025. (5)

Thus, to summarise, the most direct outcome of our analysis will be an estimate of the Bond albedo AB . However, in

order to obtain an accurate estimate we would require both knowledge of the scattering properties of the dust, and of its

geometric distribution, both with respect to the star and with respect to the observer; none of this do we have.

2 It is important to note that the word “albedo” is used in the literature to mean two different things – the Bond albedo, as defined here

in the text, and the “geometric albedo”, or “backscattering albedo” which is the fraction of incoming radiation that is scattered back in
the direction it came from. These two terms are often confused (see the discussion in the review article by Hughes et al. 2018).
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Polarization measurements of G29-38 9

3.2 Dust properties for modelling

Since we do not know what the geometry of the dust is, we shall have to make some plausible assumptions and make do with

simple models. It is evident that we shall not be able to elucidate the details of the dust geometry. The main thing that we

shall be able to do is to shed light on the dust Bond albedo, and to then compare that with dust elsewhere. Recall that we

are interested in the scattering properties at optical wavelengths.

To make a model we shall need some handle on the properties of the dust. In particular we are interested in AB , the

scattering phase function I(θ) which denotes what fraction of the scattered light is scattered through an angle θ, and the

polarization function Ps(θ) which denotes the polarization fraction of the light scattered through an angle θ.

3.2.1 Scattering phase function I(θ)

A commonly used, scattering phase function is that of Henyey & Greenstein (1941). In this case the scattered light intensity

varies as

I(θ) =
1

4π

1− g2

(1 + g2 − 2g cos θ)3/2
, (6)

which has a single parameter g. Here the scattering angle θ is such that 0◦ < θ < 90◦ corresponds to forward scattering. Thus

0 < g < 1 results in forward scattering and g = 0 implies uniform scattering. Observed dust tends to show forward scattering.

Hughes et al. (2018, figure 6) show a comparison between this function and observations of several debris discs (as well as

Zodiacal dust). Judging from the figure, for these objects, a combination of g ≈ 0.5−0.7, which fits θ < 90◦, and g = 0.0−0.2,

which fits θ > 90◦ might work best.

However, Krist et al. (2010) find that for HD 207129, because of the lack of a significant difference between the near

and far sides of the ring, they have 0 < g < 0.1. Similarly, Golimowski et al. (2011) find that for the dust in HD 92945,

g = 0.015 ± 0.015. Krist et al. (2010) contrast this with the tendency of many other discs to show more forward scattering,

with g > 0.15; these are Fomalhaut g = 0.2 (Kalas et al. 2005); HD 141569A g ≈ 0.25− 0.35 (Clampin et al. 2003); AU Mic

g = 0.4 (Krist et al. 2005); HD 107146 g = 0.3± 0.1 (Ardila et al. 2004). More recently for AU Mic, Graham et al. (2007) find

a fit with g = 0.68 ± 0.01. In addition, Ahmic et al. (2009) in modelling the dust discs in β Pic find values of g = 0.64 and

g = 0.85 favoured for their two discs.

We could also note that Köhler et al. (2006) report models of light scattering simulations of large cosmic dust aggregates

and find values of g in the range 0.2 – 0.8.

We conclude that overall it seems that using the H-G function (equation 6) is a rough approximation, but the best

available. Furthermore, given our paucity of input data for the models it is appropriate to adopt a scattering function with

only one parameter.

3.2.2 Polarization with scattering angle Ps(θ)

Here, we consider the question of whether it is sufficient to assume a Rayleigh-like angular variation

Ps(θ) = Pmax
sin2 θ

1 + cos2 θ
. (7)

For the debris disc in AU Mic, Graham et al. (2007) find that this works with Pmax > 0.5. A good fit to the Graham

et al. (2007) data was obtained by Shen et al. (2009), fitting their models of porous dust grains to the observations, obtaining

g ≈ 0.68 and Pmax ≈ 0.53.

There is more information on the polarization properties of cometary dust and Zodiacal dust. The fits do not seem to be

far off the Rayleigh law, except that for scattering angles 150◦ 6 θ 6 180◦ (i.e. backscattering) the polarization can change

sign3. But since the scattering we are interested in seems to be biased in the forward direction this is not of great concern here.

For this dust Pmax is likely to be in the range 0.1 – 0.3, with larger values correlating with the presence of silicate features

in the spectrum. In addition, Gupta et al. (2006) report models of the scattering properties of cometary dust with values of

Pmax in the range 0.2 – 0.6.

Given all this, we shall consider models using Rayleigh scattering only (equation 7). We shall use a canonical value of

Pmax = 0.5, noting that our conclusions scale simply with this parameter, and will consider primarily two cases, g = 0 –

corresponding to uniform scattering – and g = 0.6 – corresponding to moderate forward scattering – as well as values of g in

between.

3 Beware that in many papers the angle α = 180◦ − θ is used.
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10 D. V. Cotton et al.

3.3 Models

A number of the dust scattering models in the literature apply to objects (standard debris discs) in which the geometry can

be resolved. For this reason, many of the models are quite sophisticated, and use dust models which take into account a range

of dust particle sizes and properties.

But in our case, although the dust around G29-38 is often called a “debris disc”, there is no evidence that the dust is

even in the form of an annular disc. The dusty material is assumed to have come from some ‘planetesimal’ or ‘comet’ which

formed part of an original debris disc and which has been scattered inwards somehow to get closer to the white dwarf.

Since we have no knowledge of the actual dust distribution, we consider below some simple ideas that are discussed in the

literature (with some slight modifications). Reach et al. (2005, 2009) suggest some idealised models of where the dust around

G29-38 might be situated, as well as its mineralogy, in order to fit the infrared spectrum (from 1 to 35 µm). In the absence

of any other information, we use their dust distributions as a starting point.

For the dust, the only parameters we need are the H-G parameter g, AB and Pmax. Everything scales linearly with AB
(provided AB � 1) and Pmax. Thus the main variable of interest is g.

3.3.1 Optically thin distribution on a partial sphere

Reach et al. (2009) consider a model with the dust spread in a spherical shell. Since they were trying to fit the infrared

spectrum, and therefore need a range of dust temperatures, they need the shell to be physically thick, but optically thin

(τ‖ ≈ LIR/Lopt ≈ 0.039). This, being spherically symmetric, would of course give zero polarization in scattered light, which

can be ruled out. Thus, in the first instance, we consider a modified model. Keeping the disc idea in mind, we consider the

properties of a section of a spherical shell. We consider a section of a sphere which (for a spherical polar coordinate system,

centred on the star) covers the angles π/2 − θ0 6 θ 6 π/2 + θ0; 0 6 φ < 2π. This corresponds to a band around the

equator (θ = π/2) of half-width θ0. In order to fulfil the infrared flux condition, we would need to increase the optical depth

accordingly. And, since we are not here concerned with fitting the infrared spectrum, we can simply assume that the dust

shell is infinitesimally thin in the radial direction. For this model, in addition to the dust property parameters (AB , Pmax, g),

the only geometrical freedom is in θ0 (the half-width of the band of dust on a sphere), and the inclination angle i between the

line of sight and the symmetry axis of the dust (θ = 0).

If the luminosity of the star is L∗ and the fraction of absorbed light is f , presumed to be given by the infrared excess

to stellar flux, with Bond albedo AB , then as above the total luminosity in scattered light is Lscatt = L∗fAB/(1 − AB). If

the total polarization magnitude of the band of light (isolated from the star) is Pscatt then the polarization magnitude of the

band plus star is Pobs = PscattLscatt/L∗ = PscattfAB/(1−AB). This leads to:

Pobs/f =
AB

(1−AB)
Pscatt =

AB
(1−AB)

PmaxP (i, θ0|g) (8)

where P (i, θ0|g) = Pscatt/Pmax. In this equation, the observables, Pobs and f are on the left side. The value of AB is unknown,

and to be determined. Pscatt can be calculated given the choice of polarization and scattering functions, and the properties

of the partial dust shell. We derive Pscatt or equivalently P (i, θ0|g) by numerically integrating the distribution of intensity

and Stokes parameter Q (U is zero by symmetry and our choice of coordinates) for a band of half-width θ0 over a range of

inclination angles i given a choice of H-G scattering parameter g and maximum polarization Pmax.

Figure 5 shows the isotropically scattered (g = 0) integrated polarization as a function of inclination for a set of optically

thin bands whose half-width is θ0, with θ0 running from 86◦ down to 6◦ in steps of 5◦, assuming Pmax = 0.5, solved numerically

as given in appendix A. As θ0 decreases and the bandwidth shrinks, the polarization increases. In the limit, of an infinitely

narrow band and isotropic scattering, the polarization magnitude can be solved analytically as shown in appendix A, plotted

here as the thick black curve. For small inclinations, the shell becomes almost symmetric around the line of sight, and thus

the polarization becomes small. Maximum polarization is achieved when the line of sight to the observer lies in the plane of

the band (or disc) of dust. For the assumed value of Pmax = 0.5, a typical band-integrated polarization is about 10 per cent,

up to ∼20 per cent for an edge-on thin disc or ring.

For a dust model described by the Henyey-Greenstein scattering phase function with g = 0.6 – moderately forward

scattering – the equivalent curves are in the bottom panel of Figure 5, where the upper envelope is derived numerically from

equations (A6)—(A9) of appendix A. The integrated polarization is lower than for isotropic scattering, because of an increased

contribution of forward-scattered low-polarization light. Here, for the assumed value of Pmax = 0.5, a typical disc integrated

polarization is ∼5 per cent rising to a maximum of ∼8 per cent for the edge-on, geometrically thin case.

3.3.2 Physically thin disc of dust

The most popular assumption about the geometry of the dust is that it lies in a thin, annular disc (see, for example, Rafikov

2011; Farihi 2016). Reach et al. (2005, 2009) consider a thin disc model (which they call the “physically thick disk”) which is
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Polarization measurements of G29-38 11

Figure 5. Top: Light emitted by a white dwarf is scattered by a surrounding dust shell or disc. The dust is assumed to scatter isotropically
(g = 0). The dust is assumed to be in a thin spherical shell, within angles ±θ0 around the equator, with angle of inclination i to the
observer. Here we plot the degree of polarization of the scattered light. A complete spherical shell would correspond to θ0 = 90◦ and

would give zero polarization. The various curves in blue (and annotated) correspond to θ0 decreasing from θ0 = 86◦ in steps of 5◦ down
to θ0 = 6◦. Large θ0 corresponds to an almost complete shell, and hence low values of polarization. Inclination i = 90◦, corresponds to
an edge-on shell/disc, and thus to maximum polarization. The thick black curve corresponds to the limit of a very thin ring, θ0 → 0◦.
Bottom: The same as in the top panel, but with Henyey-Greenstein parameter g = 0.6, corresponding to moderately forward scattering
dust.
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12 D. V. Cotton et al.

essentially the limiting case θ0 → 0◦. Since we know that around 4 per cent of the radiation from the white dwarf is absorbed

and re-radiated by the dust, it is clear that as θ0 decreases, the optical depth of the dust needs to be increased, becoming

around unity when sin θ0 ≈ 0.039, that is when θ0 ≈ 2.23◦. Nevertheless, it is instructive to consider the polarization properties

of the limiting case of an optically thin, physically thin disc of dust.

For convenience, we here introduce the parameter K where

K ≡ ABPmax

1−AB
=

Pobs

(f P (i, θ0|g))
. (9)

For a small value of AB , K ≈ ABPmax; Pobs and f are known from observation and P (i, θ0|g) is calculated theoretically, for

a given model. The observational values are f ≈ 0.039 (section 3.1), and Pobs ≈ 0.000275 (sections 2.1 and 2.3).

We see here that the parameter K derives directly from the observations, combined with the properties of the assumed

model for the dust. From K, given the maximum scattering polarization of the dust (Pmax) we may deduce the Bond albedo,

AB .

In Figure 6 we show the functions K and AB versus inclination for a range of g values derived from the right hand side

of equation (9), assuming the dust is distributed in a optically thin, geometrically thin disc (θ0 → 0◦).

For isotropically orientated discs, the expected value of the inclination is i = 60◦. At this inclination the value of K ranges

from K ≈ 0.020 to 0.046 as g ranges from 0.0 to 0.6. Assuming Pmax = 0.5, the corresponding values of AB are 0.039 to 0.084.

3.3.3 Optically thick, geometrically thin disc

The simple model, discussed for example by Rafikov (2011) concerns a model in which an optically thick4 layer, but very thin,

annular disc of dust orbits the white dwarf. The model is such that H � R? � Rdisc, where R? is the white dwarf radius, H

the disc semi-thickness, and Rdisc the radius of the inner disc edge. In order for the dust at the inner disc edge to be warm

enough to provide the spectrum, it is necessary for Rdisc/R? ≈ 10− 20 (Reach et al. 2009; Rafikov 2011).

As far as modelling the polarization is concerned there are two additional complications to the simple optically thin

models we considered above. First, because the radiation from the white dwarf strikes the disc surface very obliquely, to

a first approximation around one half of the incident flux is scattered into the disc. To a first approximation it might be

acceptable to assume that all the light scattered into the disc is absorbed, and thus to replace AB by AB/2 in equation (9)

above. However, in reality, a more detailed model requiring some knowledge of the structure of the surface disc layers and then

involving polarized radiative transfer is necessary. Second, given the geometry, with H � R?, it can be shown (for example

by Friedjung 1985) that the energy received by one side of the disc is (for Rdisc � R?)

Lrec =
L?
3π

R?
Rdisc

= 0.106 L?
R?
Rdisc

. (10)

The apparent luminosity of the disc (presumably in the infrared, thus Lapp = LIR) then depends on the disc inclination and

is given by

Lapp =
L?
3π2

cos i

(
R?
Rdisc

)
= 0.034L? cos i

(
R?
Rdisc

)
. (11)

Thus we note that there is a trade-off between increasing the observed polarization (increasing i) and the fraction of white dwarf

radiation that has to be intercepted by the disc in order to give rise to the observed infrared flux. Given that LIR/L? = 0.039,

this sets an upper limit to Rdisc that is too low to be acceptable (even i = 0◦ implies R? > Rdisc). It is partly for this reason

that the model of such a disc by Reach et al. (2009) also includes a disc warp.

Given these inherent uncertainties in the disc structure, which would add yet more parameters to any models, it does not

seem appropriate at this stage to attempt to draw conclusions for such models from our single polarization measurement.

3.4 Clumpy dust distribution complications

Speculatively, if the dust distribution is clumpy, the orbits will complicate an investigation of the pulsations, since the orbital

periods may be similar to the pulsation cycles. While typically an asymmetric dust distribution yields a higher polarization

than otherwise expected, the observed polarization will be lower if individual exposures are long enough to integrate over

a substantial portion of an orbit. Uneven dust distributions are observed; for WD 1145+017 (Vanderburg et al. 2015), the

transits are interpreted as dust orbiting on a timescale of 4.5 to 4.9 hours. This is on the long side for observed dust around

white dwarfs. Most estimates of the innermost orbital period of the dust are derived by fitting a series of blackbody profiles

to the infrared excess, which for G29-38 and the assumption of a disc morphology (von Hippel et al. 2007) yields a ring with

inner temperature 1150 K and outer temperature 725 K. This in turn yields Rdust = 0.15 to 0.28 R�.

Extending to other dust morphologies and dust properties, Reach et al. (2009) show that for a spherical dust shell the

4 Optically thick in every direction, i.e. radially and in vertical thickness.
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Polarization measurements of G29-38 13

Figure 6. Top: The optically thin, physically thin dust disc. The quantity K, defined in equation (9) is plotted against inclination, i, of

the disc to the line of sight (with i = 0◦ corresponding to face-on) for different value of the H-G parameter g = 0.0, 0.2, 0.4 (thin lines)
and 0.6 (thick line, and annotated

) with isotropic scattering (g = 0) giving the largest values. Bottom: For the same discs as in as the top panel, we plot the deduced

Bond albedo, AB , as a function of inclination, i, for an assumed dust scattering parameter Pmax = 0.5.
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14 D. V. Cotton et al.

distance of the innermost dust is weakly dependent on the optical depth, with Rdust = 1.3 to 2.6 R�. Taking the mass of the

white dwarf as 0.6 M�, the Keplerian orbital period is 752 to 1917 s for the physically thin disc case, which is indeed a similar

time scale to the pulsation cycles. For the spherical dust shell, the Keplerian orbital period of the hottest dust is instead 5

to 15 hr. In the former case, if measured instantaneously, the polarization would be higher than the mean polarization over a

whole innermost orbit, and phase curve sampling would have to be considered. For this it would be advantageous to better

determine the range of orbital periods, which would ideally require knowledge of both the radial thickness of the dust band

and the dust particle size distribution (in particular the minimum dust grain size); the latter is something that might be

furnished by multi-band polarimetry.

4 DISCUSSION

It is useful to compare our results regarding the Bond albedo for the dust around G29-38 to those concerning similar objects.

A summary of recent results for the Bond albedo in debris discs is given in the review by Kimura et al. (2016). Backman

et al. (1992) look at infrared observations and thermal models of the β Pic disc. They compare the infrared flux (caused by

absorption of stellar flux) with the optical scattering of stellar flux at radii 100 AU < R < 300 AU. They find an albedo for

grains in this outer component to be AB ≈ 0.35. A later model of the same star is by Tamura et al. (2006), which also uses

the previous optical data. Their model uses compact, spherical, optically bright silicate grains whose properties are in accord

with the value obtained for the albedo by Backman et al. (1992).

Krist et al. (2010) use Hubble and Spitzer observations of the HD 207129 debris ring. Because they have spatially resolved

optical observations of the scattering ring (debris disc, but here a ring with radius ≈ 163 AU and width ≈ 30 AU) around

a G0V star at a distance of 16.0 pc, they can get a good measure of I(θ) and Ps(θ). But because they also have infrared

data (resolved at 70 µm), they also have a handle on AB . They find that AB ≈ 0.05. From NIR imaging of the young Solar

System analog HD 105 Marshall et al. (2018) recover values of AB of 0.15 and 0.06 from HST/NICMOS and SPHERE

observations respectively. Choquet et al. (2018) obtain similarly low scattering albedos from HST/NICMOS data for discs

around HD 104860 and HD 192748. Such low values for albedo are also seen for asteroids in the Solar System (Morrison 1977).

Krist et al. (2010) note the work of Hage & Greenberg (1990) who model porous grains using 1000 cubes randomly spread

through a larger cube. Porosity is defined as the fractional amount of vacuum within the enclosing volume. Thus porosity = 0

means solid aggregate, and porosity = 1 means vacuum cloud of particles. The highest porosity that they model is around 0.9

– 0.95, and the lowest albedo (AB) that they get is 0.15 – 0.3, depending on the material. Thus obtaining for these theoretical

models such a low AB seems to be problematic. Golimowski et al. (2011) use Hubble and Spitzer observations of the debris disc

around the nearby K dwarf HD 92945. They find AB ≈ 0.10. They note that standard Mie theory gives values of AB ≈ 0.55

from visual to infrared wavelengths. They also note the work of Hage & Greenberg (1990), but contrast it with Voshchinnikov

et al. (2005) who conclude that albedo increases with porosity.

Thus it seems that, within the uncertainties, our results are not out of line with previous findings for the Bond albedo of

dust in debris discs, i.e. fairly low values.

With only a small polarization measured, there is a possibility that some fraction of it might be due to a weak magnetic

field. Although the magnetic field of G29-38 has been found to be less than 105 G (Liebert et al. 1989), line blanketing has

been found to produce 4 ppm/G in the weakly magnetic late-type dwarf ξ Boo A (Cotton et al. 2019a). Line blanketing

should be a much less effective polarigenic mechanism in a white dwarf where there are fewer spectral lines, however the same

mechanism produces around 1.5 ppm/G rotation-modulated amplitude in B-type stars with stronger fields (Wade et al. 2000).

A similar effect could account for a significant part of the polarization measured if the field is near 100 G. The rotation period

of G29-38 is poorly constrained, but there is evidence (Thompson et al. 2010) that it is approximately 18.5 h. If so, this is too

slow for a significant magnetic field induced polarization to obfuscate pulsation polarization measurements.

Finally we comment briefly on the possibilities afforded by future observations of time-dependent polarization measure-

ments, preferably coupled with synoptic, if not simultaneous, measurements at optical and infrared wavelengths. It is already

known that G29-38 displays oscillatory behaviour at optical and infrared wavelengths. In the original analyses by Graham

et al. (1990); Patterson et al. (1991), correlation, as well as lack of correlation, was established between mode frequencies

seen at optical and infrared wavelengths. These authors modelled their data in terms of the infrared (J , Ks) variability being

caused by re-radiation by a circumstellar ring of dust, of variable flux from the white dwarf. With assumptions about the

nature of the modes (in particular that the modes were l = 2), they were able to put forward ideas about the orientation

of the dust disc to the line of sight. However, it is now thought that most of the modes seen in G29-38 correspond to l = 1

(Kleinman et al. 1998).

Nevertheless it is evident that a more detailed set of observations of the oscillation modes at optical and infrared wave-

lengths, coupled with polarization measurements, can be used to shed light on models for the circumstellar dust configuration.

As a simple example, consider the optically thin dust ring modelled in section 3.3.2. If the central white dwarf is pulsating

with an l = 1 mode, then by symmetry there would be no corresponding oscillatory response seen in the infrared. In contrast,
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for the optically thick disc/ring, there would be an infrared response to the m = 0 component of the l = 1 mode, as measured

in the frame of the ring. Also, if the dust scattering were isotropic (g = 0) there would also, by symmetry, be no variation in

the fractional polarization in either case. However, if the scattering is not isotropic (g 6= 0) then a variation in the fractional

polarization would be observed.

5 SUMMARY AND CONCLUSIONS

The star G29-38 is a nearby white dwarf which displays a significant infrared excess, corresponding to 3.9 per cent of the white

dwarf luminosity. The infrared flux is thought to be caused by absorption and re-emission of white dwarf flux by circumstellar

dust. Such dust is also likely to scatter optical photons from the white dwarf photosphere, and such scattered light is likely

to be polarized.

We have presented high precision polarization observations of G29-38 made with two telescopes in the SDSS g′ band.

After correction for interstellar polarization, we measure a polarization Pobs = 275.3 ± 31.9 ppm; which is a detection with a

significance of 8.6 σ.

G29-38 also displays significant variability, which is interpreted as being due to non-axisymmetric stellar oscillations

(Kleinman et al. 1998; Winget & Kepler 2008). With this in mind we attempted to look for evidence for such effects in the

polarization data. We were unable to detect the effect conclusively, but found enough marginal evidence that such variability

might be present. Further investigation of this possibility is warranted, as polarimetric observations with sufficient time

resolution might be used to further constrain the dust distribution. In some scenarios, discussed in Section 3.4, a clumpy dust

distribution would complicate this search.

Our ability to draw conclusions from the current data is limited by our lack of knowledge of the scattering and absorption

properties of the dust, and of its geometrical distribution about the white dwarf. Thus (in section 3.1) we have made some

simple assumptions. We assume that the absorption properties of the dust are described by a single quantity, the Bond albedo,

AB which is the fraction of incoming photons from the white dwarf that are scattered, with the rest (1−AB) being absorbed

(and re-emitted as infrared). With regard to the scattering properties, we assume the Henyey-Greenstein form of the scattering

phase function (equation 6), with the parameter g on observational grounds taken in the range g = 0 (isotropic) to g = 0.6

(moderately forward scattering), and we assume the polarization with scattering angle as Rayleigh scattering (equation 7),

with a maximum value of Pmax = 0.5, again on observational grounds (for details, see section 3.2). An inherent assumption

of all of these models is that the dust is smoothly distributed around the star. If the dust is clumpy as in WD 1145+017

(Vanderburg et al. 2015; Zhou et al. 2016) then even geometries that are nominally zero polarization, might produce some

small polarizations. Putting this possibility aside, for the geometrical distribution of the dust we draw on ideas based on

simple theoretical expectations (e.g. Farihi 2016), and on ideas used to model the infrared spectrum (Reach et al. 2009).

As a means of illustration we first consider (section 3.3.1) the dust to be optically thin and to be distributed in an

equatorial segment of a spherical shell, of semi-thickness 0 6 θ0 6 π/2. In the upper panel of Figure 5 we plot how the

polarization expected for such shell segments for isotropic scattering g = 0, vary with the inclination angle, i, of the segments

to the line of sight. When i = 0◦, the segments are viewed along their axes of symmetry and there is no polarization. Maximum

polarization occurs when the segments are seen edge on, and the amount of polarization increases as the width of the segments

(θ0) decreases. Maximum polarization occurs when the segments becomes a thin ring (θ0 → 0) and the ring is seen edge-on.

In this case the maximum value is Pscatt = 0.21, for Pmax = 0.5. In the lower panel of Figure 5 we show the corresponding

plot when g = 0.6, that is for moderately forward scattering. The main point to notice here is that with a stronger degree of

forward scattering the maximum polarization, Pscatt, is significantly reduced, from around 0.2 to around 0.08.

In section 3.3.2 we specialise these ideas to the case of the dust lying in a thin ring or disc (θ0 → 0). For the case in

which the dust is fully optically thin, for the given dust scattering properties and the observed ratio of infrared excess to

stellar flux, f , and the observed optical polarization, Pobs, we are able to obtain the Bond albedo of the dust, as a function

of the inclination, i. Thus, we find that for most values of the inclination the estimated values of the Bond albedo are around

AB ≈ 0.05 − 0.15 (although higher values cannot be ruled out if the ring/disc is sufficiently face-on). Such values seem

reasonably consistent with estimates of the Bond albedo for debris discs around young stars.

Determining the relationship between the pulsation signal in the optical and infrared offers hope for constraining the

geometry. Since the infrared signal is dominated by the dust, if the dust ring is in a face-on inclination there should be a

one-to-one relationship between the two wavelength ranges, whereas if the inclination is larger there will be a delay between

the signal from the dust behind and in-front of the white dwarf.

We discuss briefly (section 3.3.3) the more widely accepted model of an optically thick, but geometrically thin, disc. In

this case we conclude that there are too many free parameters to be able to draw credible conclusions.
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APPENDIX A: MODEL CALCULATION DETAILS

A1 Thin ring: θ0 → 0

The limiting case for this model occurs when the spherical segment described in Section 5.1 is reduced to a thin ring, θ0 → 0.

In this case one can obtain some analytic results.

Consider working in Cartesian axes, (X,Y,Z), with the Z−axis in the direction of the observer. A ring of radius R tilted

at an angle i to the observer is given in these axes as

r = R(cosφ, cos i sinφ, sin i sinφ), (A1)

where φ is the azimuthal angle measured in the plane of the ring, and φ = 0 corresponds the the point r = (1, 0, 0) in the

plane of the sky.

We assume that the white dwarf radius R? is such that R? � R so that we can treat the white dwarf as a point light

source at the centre of the ring. In this case the scattering angle ζ(φ) is given by

cos ζ(φ) = r̂ · ẑ = sin i sinφ. (A2)

Then, using the H-G phase function, the scattered intensity is proportional to

I(ζ(φ)) =
1

4π

(1− g2)

(1 + g2 − 2g cos ζ)3/2
, (A3)

where −1 6 g 6 1. Then, using a Rayleigh-like polarization scattering function, we find that the polarized intensity of the

scattered light is

IP (ζ) = Ps(ζ)I(ζ), (A4)

where

Ps(ζ) = Pmax
sin2 ζ

1 + cos2 ζ
. (A5)
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To obtain the polarized fraction of scattered light in this model we require the following three quantities:

Q =

∫ 2π

0

IP (ζ) cos 2χdφ, (A6)

U =

∫ 2π

0

IP (ζ) sin 2χdφ, (A7)

and

Itot =

∫ 2π

0

I(ζ) dφ. (A8)

where χ is the angle on the plane of the sky. Then the polarized fraction is given by

P =

√
Q2 + U2

Itot
. (A9)

We note that for the axes we have chosen, by symmetry, we have that U = 0.

Special Case: Isotropic Scattering

In the case of isotropic scattering, that is g = 0 and I(ζ) = 1/4π, we can find analytic expressions for the integrals. We

find that Itot = 1/2, and that

Q(i, g = 0) =
Pmax

4π

∫ 2π

0

(
1− sin2 i sin2 φ

1 + sin2 i sin2 φ

)(
1− cos2 i tan2 φ

1 + cos2 i tan2 φ

)
dφ. (A10)

This can be written as

Q(i, g = 0) =
Pmax

4π
F (sin i), (A11)

giving the polarization fraction as

P =
Pmax

2π
F (sin i), (A12)

where the function F (x) is given by (Wolfram Research, Inc., Mathematica)

F (x) = 2π

[
1 +

2

x2

(
1√

1 + x2
− 1

)]
. (A13)

We then find that the polarization fraction varies between P = 0 for i = 0 (face-on) and P = Pmax(
√

2− 1) = 0.41Pmax

for i = 90◦ (edge-on).

General Case: g 6= 0

In this case we have

Itot =
1

4π
(1− g2)

∫ 2π

0

(1 + g2 − 2g sin i sinφ)−3/2 dφ, (A14)

and

Q(i, g) =
Pmax

4π
(1− g2)

∫ 2π

0

(
1− sin2 i sin2 φ

1 + sin2 i sin2 φ

)(
1− cos2 i tan2 φ

1 + cos2 i tan2 φ

)
× (1 + g2 − 2g sin i sinφ)−3/2 dφ.

(A15)

These integrals can be evaluated numerically using standard techniques.

A2 Partial sphere: θ0 > 0

For the case where the optically thin band is not narrow, we solved for the scattering and polarization distributions by

evaluating them at each pixel individually on a Cartesian grid centered at the white dwarf. Using a pseudo-image approach

with dimension up to 4096 × 4096, we evaluated the scattering angle for each pixel, and hence intensity and polarization

contributions with its appropriate weighting, and integrated the results using straightforward summation. For low inclination

cases, where more of the light is scattered tangentially, this resulted in some numerical noise as the tangent is undersampled

by the pixelation. Nevertheless, in the limiting cases where we can compare the integrations to either the analytic solution

for isotropic scattering, or to the numerically solved equations (A6)—(A9) above (this Appendix), the upper envelope of

polarization given by these limiting cases is in good agreement with the numerical approach.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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