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Influence of Lateral Constraints
on Wave Propagation in Finite
Granular Crystals
In the presented work, wave dynamics of 2D finite granular crystals of polyurethane cylin-
ders under low-velocity impact loading was investigated to gain better understanding of the
influence of lateral constraints. The deformation of the individual grains in the granular
crystals during the impact loading was recorded by a high-speed camera and digital
image correlation (DIC) was used to calculate high fidelity kinematic and strain fields in
each grain. These grain-scale kinematic and strain fields were utilized for the computation
of the intergranular forces at each contact using a granular element method (GEM) based
mathematical framework. Since the polyurethane were viscoelastic in nature, the viscoelas-
ticity constitutive law was implemented in the GEM framework and it was shown that linear
elasticity using the strain rate-dependent coefficient of elasticity is sufficient to use instead of
a viscoelastic framework. These particle-scale kinematic and strain field measurements in
conjunction with the interparticle forces also provided some interesting insight into the
directional dependence of the wave scattering and attenuation in finite granular crystals.
The directional nature of the wave propagation resulted in strong wave reflection from
the walls. It was also noteworthy that the two reflected waves from the two opposite side-
walls result in destructive interference. These lateral constraints at different depths leads
to significant differences in wave attenuation characteristics and the finite granular crystals
can be divided into two regions: upper region, with exponential wave decay rate, and lower
region, with higher decay rate. [DOI: 10.1115/1.4047004]

Keywords: granular matter, destructive interference, wave attenuation, impact loading,
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1 Introduction
The investigation of the mechanical wave’s propagation through

granular media has received considerable research attention during
the last few decades. Earlier research reports have shown effects such
as wave dispersion [1,2], wave scattering [3], reflection [4], and
energy trapping [5]. Based on those and the number of other proper-
ties, granular matter can be used in shock absorption and protection
layers [6], to build number of devices, e.g., acoustic lenses [7], acous-
tic switches and logic elements [8], acoustic diodes [9], etc.
Wave propagation through a 1D chain of granular elements is

extensively studied in the past both numerically [10–15] and exper-
imentally [4,5,13,16–18]. In the past, numerical studies based on
Hertzian contact have been used to prove the existence of solitary
waves in granular crystal based on the shape of the velocity of
the propagating wave [10]. The binary collision approximation
have been used to investigate wave propagation through soft gran-
ular chains [11] and wave decay that occurs in various types of
tapered granular chains [12,14]. In a recent numerical study [15],
it was shown that a local resonator in a granular chain results in
quick decrease in propagating wave amplitude. In most of the
experiments on the 1D chain of granular elements, the chain is
excited from one end, and the propagated wave is recorded at the
other end using a strain gauge or by strain gauges placed inside indi-
vidual particles. These experiments investigate wave propagation at
various conditions, using pre-pressed particles or particles without
pre-pressing; moreover, the authors compare velocity and force
data with theoretical observations made for Hertzian contact [19]
and prove the existence of solitary waves predicted by Nesterenko

[20] for both chain with pre-compression and without [16]. It was
also shown that there is a huge change in reflectivity from the inter-
face of two granular chains [4]. Moreover, it was also shown that
there is an energy trapping in tapered chains consisting of particles
with high and low elastic moduli [5,13]. In contrast, there are fewer
reports of more complicated 2D or 3D case. There are a number of
numerical and theoretical studies [21–29], as well as a number of
experimental studies [30–33]. Numerical and theoretical methods
use meshless techniques such as particle-in-cell technique [22],
based on Eulerian and Lagrangian descriptions of materials.
However, numerical solution of the Hertzian contact law is a
more common technique [21,23,24,26–29]. Experimental studies
mostly use photoelasticity to demonstrate wave propagation
through 2D granular media and show that the waves travel in the
form of solitary waves. Some experiments [32] use strain gauges
to measure the forces for various conditions. In various simulations
[33,34], contacts are represented using spring-dashpot systems.
While this method is quite successful, it has some limitations,
e.g., it assumes a constant coefficient of restitution for all velocities
[35,36], which is not always accurate [37].
Majority of previous research on wave propagation through gran-

ular materials have been using granular materials made of stiff
materials, e.g., steel [4,7,32], aluminum [32], etc. However, granu-
lar crystals made of soft grains are of high interest too. Number of
food products, colloidal suspensions, and microgels are examples of
soft granular materials [38]. Wave propagation process is signifi-
cantly different in soft materials, particularly due to viscoelastic
nature of the grains, which results in higher wave absorption
[39,40]. Due to this high wave absorption, soft granular materials
can have huge potential application in wave traps, protective
layers, etc. Soft granular materials are mostly investigated in
small deformation regions [41]. Soft granular materials can
undergo huge deformation even under small load, which cannot
be numerically simulated using Hertzian contact law, due to the lim-
itation of the Hertz’ law of less than 5% strain [20]. Some multi-
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contact based DEM models have been to describe the deformation
of soft granular systems up to 13% strain [42]. However, the utility
of multi-contact DEM models can be limited due to the need for
accurate experimental calibration for its nondimensional model
parameters. This is when methods in discrete (or distinct) element
method (DEM) [43] family can be utilized. DEM tracks the move-
ment of individual particles to find contact forces and displacements
through expensive computations using Newton’s laws based on an
apriori assumption of interparticle contact relationship. Since the
computational cost for DEM models grows exponentially, these
models can become computationally expensive as compared with
typical experimental methods and continuum mechanics methods
for large granular systems. The DEM-based mathematical frame-
work has also been modified to operate an inverse method to
infer interparticle forces for experimental measurements obtained
using photoelasticity [30,31,44]. This photoelasticity based visual-
ization of the force chains provide tremendous insight into the
mechanics of granular media. However, the photoelasticity based
quantitative measurements of interparticle force in granular media
have a few limitations, e.g., it requires a birefringent material
which should remain elastic throughout the experiment, a priori
knowledge of the contact law is needed to quantify the interforces
[45]. In order to address these limitations, a new method called
granular element method (GEM) [46–48] developed recently can
be used to represent strain fields in granular elements and
measure interparticle forces. GEM method uses Newton’s law of
motion and balance of momentum at particle level and an
imaging device to track the position of particles. The GEM
method will be discussed in more detail in Sec. 2.
In the current paper, the GEM method powered with DIC tech-

nique was used to calculate interparticle forces and investigate
wave propagation through the granular crystals composed of

polyurethane particles. A drop-tower technique was used to load
the system and create the propagating wave.

2 Experimental Procedure and Theory
The experimental setup of the drop-tower experiment is shown in

Fig. 1(a). The experimental procedure was similar to Ref. [49].
Polyurethane (Durometer 80A, McMaster-Carr) cylindrical grains
with around 1/2-in. diameter were arranged into a granular crystal
in two configurations: body-centered cubic (BCC) and hexagonal
close packing (HCP) as shown in Figs. 1(b) and 1(c). The crystals
were put into a fixture with rigid sidewalls and a sliding top wall.
The top face size is 4 in., much larger than the particle sizes are.
The impactor freely falls under gravity and reaches the fixture
holding the granular crystal with about 6 m/s velocity.
The images during the experiment were recorded using a

Phantom v710 high-speed camera with frame rates of 4000–
8000 fps. A commercial digital image correlation (DIC) software
(VIC-2D from Correlated Solutions) were used to calculate dis-
placements and velocities for each grain at any time instant. DIC
is an optical technique capable of calculating strains in subpixel
range, which measures deformation by tracking gray value pattern
on the object’s surface. Since DIC requires random, nonrepeating
speckle pattern, thus the front face of each grain was patterned
using spray paint. Based on the variations of the gray value
pattern in each pixel, displacements in horizontal and vertical direc-
tions for each pixel were calculated. Using the aforementioned
grain-scale displacement fields, in-plane strain fields in each grain
were calculated as seen in Fig. 2. It should be noted that the
strain fields shown in Fig. 2 are based on DIC analysis performed
for each grain independently in order to obtain better accuracy for

Fig. 1 (a) The experimental setup and left half of the granular crystals in (b) BCC and
(c) HCP configurations

Fig. 2 (a) Horizontal and (b) vertical strain fields obtained by DIC for the particles in the BCC system and (c) a
typical example of a filtered and raw ɛyy strain signal
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kinematic and strain field measurements. Using a surface averaging
approach for displacement (u,v) and in-plane strain fields (ɛxx, ɛyy,
and ɛxy) at various time instants, the average displacement, strain,
velocity, and acceleration were computed in each grain for every
time instant. The high frequency noise in these “raw” volume aver-
aged strain and kinematic measurements was eliminated using a
moving average filter. An example of typical “raw” volume aver-
aged strain signal ɛyy strain and its filtered version is represented
in Fig. 2(c). The error between the raw signal and filtered signal
was monitored for each strain and kinematic quantity for each
grain to make sure that the filtered signal truly represents the raw
experimental data. The significant advantage of using DIC over
other techniques, e.g., using strain gauges is that in every particle,
on average 20*20 or 400 data readings were computed with a dis-
placement resolution ∼0.05–0.1 pixel. Moreover, an accuracy of
0.1% was assumed for the displacements, which, along with the
imaging framerate can be used to calculate velocities and accelera-
tions numerically.
The grain-scale kinematic and strain measurements were then

used to compute the interparticle force chains in the finite granular
crystals at any time instant using a modified GEM approach,
described below. GEM is an advanced inverse numerical technique
in DEM family introduced recently by Andrade and Avila [46],
which combines an imaging technique to collect experimental
data, with a mathematical framework to solve the interparticle
force problem. GEMmethod uses grain level strain values and kine-
matic data (particle displacements and material fabric) as an model
input to numerically solve the governing equations. The conserva-
tion of linear and angular momentums as well as the balance
between external forces and stresses inside each particle are consid-
ered to be the governing laws in GEM mathematical framework.
Using a multiobjective optimization approach, the experimental
data in conjunction with the mathematical framework can be used
to infer the interparticle forces at every contact in the granular
system. The aforementioned matthematical framework used in the
current work is described below.
The law for conservation of linear and angular momentums are

given as [47]

d

dt

∫
Vp

ρvdV =
∫
Vp

ρbdV +
∫
δVp

tdS (1)

d

dt

∫
Vp

x × ρvdV =
∫
Vp

x × ρbdV +
∫
δVp

x × tdS (2)

where ρ is the material density, v is the velocity, Vp is the particle
volume, b is the body force, t are surface tractions, and x is the posi-
tion vector. Taking the derivatives and ignoring the body forces, as
well as rewriting this for the mass center

∑NC

c=1

f c = mpa
cm
p (3)

∑NC

c=1

xc × f c = mp(x
cm
p × acmp ) (4)

where xc and fc are contacts’ position vectors and contact forces,
respectively. Equations (3) and (4) for all particles can be combined
into a matrix to form an objective function Km · f=Dm.
Using strain field data, stress fields can be calculated using

σ = C ∗ ε, where C is the stiffness tensor. Volume averaged stress
can be calculated from the stress field using [47]

�σp =
1
Vp

∫
VP

σdV (5)

Left multiplying by the identity matrix, using divergence
theorem, the balance of linear momentum, neglecting the body

forces and writing Eq. (5) for the mass center

∑Nc

c=1

xc ⊗ f c = Vp�σP + mp(x
cm
p ⊗ acmp ) (6)

which again can be combined into a matrix to form another objec-
tive function Ks · f=Ds.
Coulomb-type friction and cohesionless interaction are assumed

as constraints and using two objective functions, the interparticle
forces can be inferred by a multiobjective optimization process,
which can be found in Ref. [50].
In a typical GEM framework, a linear elastic constitutive

response was used for each grain in the granular system.
However, since in the current research soft, viscoelastic polyure-
thane grains were used, there is a need to adopt the viscoelastic
effect in the mathematical framework. For this purpose, dynamic
mechanical analysis (DMA) of polyurethane (Durometer 80A,
McMaster-Carr) sheet was performed. The dynamic response for
the polyurethane material was modeled as a Prony series with two
time constants and a mathematical representation of the time-
dependent relaxation modulus was found to be

E(t) = 15.7 + 253.1 · e−t/2.64 + 1320.4 · e−t/0.55 (MPa) (7)

where time constants 2.64 and 0.55 are in seconds.
As it will be shown later, the duration of the experiment was

about 5–6 ms, which, as it can be seen from Eq. (7), is about two
orders of magnitude less than the time constants of the relaxation
modulus, meaning that the viscoelastic creep is negligible, and
the stress fields can be calculated from the strain fields directly
using the relaxation modulus. In Sec. 3, it will be shown that due
to the short duration of the experiment, stress calculation can be
simplified even further, and a linear elastic law can be used,
where the “effective” coefficient of elasticity can be calculated
from the Prony series using strain rate in the particle. In order to
find the “effective” coefficient of elasticity, the framework from
Pacheco et al. [51] was implemented. According to Ref. [51],
stress can be expressed as

σProny = ε̇
∑TN
q=1

Eq

∫t
0
e−(t−τ)/τqdτ (8)

where ε̇ is the strain rate, Eq and τq are qth Maxwell model compo-
nents, while TN is the total number of those components, which in
our case is two. Using the obtained stress, stress–strain curve can be
plotted, and the “effective” coefficient of elasticity can be obtained
from the graph.

3 Results and Discussions
Interparticle force change over time for four different contacts

can be seen in Fig. 3. In Figs. 3(b)–3(e), it can be seen that there
are two—red and black curves, where the black curve represents
the force calculated using viscoelastic relaxation modulus in
GEM, while the red curve represents the force calculated using
linear elasticity law with an “effective” coefficient of elasticity. In
DMA, relaxation modulus is calculated by applying varying
stress and for each stress, calculating the coefficient of elasticity.
The “effective” coefficient of elasticity, calculated using the
method discussed in Sec. 2, was found to be about 150 MPa,
530 MPa, 740 MPa, and 480 MPa for the top particle in contact
1, the left particles in contacts 2, 3, and the particle in contact 4,
respectively. As already mentioned, these values were calculated
using strain rates in each particle. Due to the nature of the experi-
ment, as obtained strain and strain rates are very noisy, containing
high frequency noise, thus the lowpass function of MATLAB with a
normalized passband frequency of 0.3 was used. Despite the high
image acquisition framerates, some minimal motion blur was
observed for the top two rows for the first image recorded post-
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impact. Thus, a moving average approach was used to smoothen
strain rate data for the grains in the top two rows to eliminate the
overestimation of strain rates for this first time instant after
the initial impact. In order to determine the difference between
the black and red curves, the force curves can be integrated over
time, which will represent the momentum. After integration, it
was found that the difference between the viscoelastic and elastic
laws for the particles presented is in order of 1.65–2.2%. As it
can be seen visually from Fig. 3 and quantitatively from the
above values, the difference between the viscoelastic and the line-
arly elastic frameworks is negligibly small, meaning that a
simpler linearly elastic framework along with the “effective” coef-
ficient of elasticity is adequate for the calculation of the interparticle
forces. This framework will be used below to calculate forces (pre-
sented in Fig. 7) acting on the particles when the initial wave
reaches them and to prove the effect of lateral constraint on wave
propagation.
The lateral displacement plots (transverse to the direction of the

vertical impact) for a simple BCC ordered polyurethane granular
system at different time instances are plotted in the Fig. 4. Lateral
displacement of the particles will be discussed in detail, as it has
a huge effect on the vertical wave motion, which will be proved
below. As it can be seen from Fig. 4, in all images until when the
system relaxes in Fig. 4(e), the two parts of the image are almost
perfectly symmetric. To take advantage of this symmetry, in all
our further discussions, only a half of the system was considered
for the data analysis through DIC, as this will provide a much
higher temporal resolution for DIC based kinematic and strain mea-
surements for the same system size and the imaging system.
However, this procedure involves the inherent assumption of mid-
plane symmetry for the granular system and may introduce some
uncertainty in our analysis. While the uncertainty introduced by
the assumption of symmetry may affect the individual measure-
ments, these would not significantly influence the spatial distribu-
tion of the full-field kinematic and strain fields.

As seen in Fig. 5, at the time instance corresponding to Fig. 5(a),
upper few grains have negative displacement, i.e., they move
toward the rigid wall on the left. Due to symmetry, the upper few
grains in right half of the finite granular crystal (not shown here)
would move in the opposite direction toward the rigid wall on the
right. Thus, the upper few rows of this finite granular crystal expe-
rience a tensile lateral load at this particular time instant. This is a
result of the incident wave traveling away from the center toward
the wall.
At the time instant corresponding to Fig. 5(b), the incident wave

passed the upper few layers and now reached few layers below.
Since the incident wave passed the upper layers, they begin to
return back to their original position and have positive velocity,
thus they move away from the wall. Thus, these upper few layers
would experience a net compressive load in the lateral direction.
In Figs. 5(c)–5(e), a similar trend can be seen with the only differ-
ence that the incident wave dies down with depth. Moreover, it can
be seen that the reflected wave is moving toward the center of the
image. Due to symmetry, the two reflected waves from two walls
reach each other at the same time and phase at around seven
grain layers and a destructive interference happens, i.e., the reflected
waves cancel each other, as it can be seen in Fig. 5( f ). Similar inter-
ference effect [1,3,9] and destructive interference of waves [52]
have been previously reported for granular matter. A very compara-
ble image can be seen for the HCP ordered polyurethane granular
crystal (see Fig. 6). Comparing with the BCC system, as it can be
seen, wall neighboring particles in the HCP system differ from
the rest of the granular crystal. This is because of huge rotational
motion of the grains near the wall in this case resulting from the
configurational features of the system. Due to the large displace-
ment in the finite HCP crystals, the grains near walls tend to
undergo huge in-plane rotations as evidenced in these plots.
However, despite these differences for grains close to the walls, a
destructive interference similar to the BCC system occurs in these
HCP finite granular crystals when the reflected waves from walls

Fig. 3 (a) BCC system with numbered contacts and corresponding force versus time plots of (b) contact 1,
(c) contact 2, (d ) contact 3, and (e) contact 4, where the black curve represents force calculated using the vis-
coelastic relaxation modulus, whereas the red curve represents force calculated using “effective” coefficient
of elasticity (Color version online.)
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Fig. 4 Horizontal displacement plots of full-sized BCC ordered system at (a) 1 ms, (b) 1.5 ms, (c) 2.25 ms, (d ) 2.75 ms, and
(e) 3 ms

Fig. 5 Horizontal displacement plots of BCC ordered system at (a) 0.75 ms, (b) 1.25 ms,
(c) 1.75 ms, (d ) 2.25 ms, (e) 2.5 ms, and (f ) 2.75 ms
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Fig. 6 Horizontal displacement plots of HCP ordered system at (a) 0.75 ms, (b) 1.25 ms,
(c) 1.75 ms, (d ) 2.25 ms, (e) 2.75 ms, and ( f ) 3.25 ms

Fig. 7 Maximum velocity of the particles with depth for BCC system at (a) 0 deg and (b) 45 deg and HCP system
at (d ) 0 deg and (e) 45 deg with corresponding angles and directions for (c) BCC and (f ) HCP crystals
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reach each other at approximately 8–9 grain layers. This interfer-
ence effect results in different lateral constraints for the upper part
and lower layers of the finite granular crystals and plays a major
role on the wave propagation in these finite crystals. It was also
observed that the influence of reflected wave, like the primary
wave, is directional in nature.
Considering the sizes of both crystals, it can be seen that the

depth at which the destructive interference happens depends on
the transverse size of the system, i.e., the reflected wave is limited
to a “square” area on the top of the system (see Fig. 6(e)). This is
an important result, indicating that the depth where most of the
kinetic energy in concentrated can be modified by changing the
lateral size of the system or external lateral constraints in the form
of external loading in the lateral direction.
In Fig. 7, plots for the maximum velocity of the grains at various

depths are represented for both crystals at two different angles—
along vertical and diagonal directions. For simplicity, these direc-
tions will be labeled as 0 deg and 45 deg. As it can be seen, the
plots can be divided into two distinct regions. In the first region
of the plot, the amplitude of maximum velocity for the grains
decreases exponentially as function of the depth, however, in the
second part, the amplitude of the maximum velocity decreases at
a much higher rate. This behavior is consistent for both BCC and
HCP crystals for both directions. Moreover, it can be seen that
the depth at which the second part of the graph begins occurs at
around the same depth as the destructive interference of two
reflected waves shown earlier in Figs. 5 and 6. This behavior can
be attributed to different lateral constraints experienced by the
two upper and lower parts of the granular crystals. In the upper
region, where the reflected wave is present, the grains are under
lateral compression at the instant of maximum velocity along the
longitudinal direction. Thus, the wave propagation through
the grains follows a wave decay law like continuous media, i.e.,
the amplitude decreases exponentially in this region. This kind of
exponential decay has been previously reported for the granular
matter [27–29] and it was explained that the exponential decay
region corresponds to a low-disorder system. The reason for expo-
nential decay is explained for example in Refs. [20,27]. The equa-
tion of motion of the ith particle in a granular chain is routinely
described as [20]

miüi = A[(ui+1 − ui)
3/2 − (ui − ui−1)

3/2] (9)

where A = E
���
2R

√
/3(1 − ν2) and the solution of this equation is an

exponential function.
As opposed to this, where there is no compressive lateral force or

it is significantly smaller in the lower region, the particles are free to
vibrate, thus have higher disorder and transfer only fraction of the
wave that reaches them. Huge energy loss here can be a result of
much more friction between particles, as well as multiple scattering
events. The particles in this region behave more individually

comparing with the upper part of the finite granular crystals. This
is a very important result, which shows that by varying the size
of the system, more specifically the transverse size, it is possible
to control the depth where most of the impact is concentrated. In
order to investigate the influence of particle stiffness and particle
size, similar impact experiments were conducted for BCC and
HCP granular crystals consisting of (1) polycarbonate grains with
½ in. diameter and (2) polyurethane grains with 1 in. diameter.
The wave propagation characteristics for finite granular crystals
with both the larger polyurethane grains and stiffer polycarbonate
grains exhibited very similar trends with two distinct regions,
upper region with exponential wave decay and lower region with
higher rate decay.
The spatial wave decay rate in region 1 of different finite granular

systems would be assessed using an exponential fitting in the form
of exp(−α*x), where α is the coefficient of attenuation or the decay
rate and x is the distance from the point of initial impact. The coef-
ficient of attenuation represents the reciprocal of the distance over
which wave amplitude decreases by a factor of e (Euler’s constant).
Thus, a larger value for the coefficient of attenuation would indicate
a faster spatial decay rate for wave amplitude as the wave propa-
gates through a medium. Since the coefficient of attenuation is
only applicable for exponential spatial decay, the coefficient of
attenuation was calculated only for the region 1. It should be
noted that the coefficient of attenuation was not calculated for
region 2 as the spatial wave decay rate in this region varies
significantly from an exponent decay. From the data fitting in
Fig. 7, the coefficient of attenuation in the finite granular crystals
was found to be around 1.6–1.8 m−1, with HCP crystals having a
slightly higher coefficient of attenuation. In both the BCC crystals
along 45 deg as well as HCP crystals at 0 deg, the attenuation coef-
ficient is drastically different, which is a result of a limited number
of particles in these directions; however, the general behavior is
reproducible.
Above, when discussing the velocity behavior (thus the kinetic

energy), it was assumed that the presence of two regions with dif-
ferent decays was a result of different lateral forces. In Fig. 8,
lateral forces for both the finite granular crystals along the
longest directions are shown for the instant when the initial wave
reaches the particle (i.e., velocity is maximum). Forces for two
other directions discussed above show a similar trend as those in
Fig. 8, however, due to a limited number of particles, are not as rep-
resentative, so it will not be included in this discussion. As it can be
seen from Fig. 8, lateral forces show a similar trend as the veloci-
ties. It can be seen, that there are two regions with slightly different
forces. In the first region, the forces are higher, whereas there is a
sudden drop in force values in the second region. The borderline
between these two regions is at approximately the same height
where it was identified for the velocities in Fig. 7. This proves
the previous claim about lateral compression affecting the wave
propagation. As it can be seen from Fig. 8, force data is noisier

Fig. 8 Lateral forces when the initial wave reaches the particles (a) BCC system along
0 deg direction and (b) HCP system along 45 deg direction
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than the velocity data, which is a result of more complicated calcu-
lations involved in the GEM-based force calculations, as well as
more complicated wave processes and interactions between the par-
ticles. It should be noted that the force values in Fig. 8 are not nec-
essarily the maximum force values in the particle but are
instantaneous force values when initial wave passes through the
particle.
The velocities of grains along 0 deg in both BCC and HCP finite

granular crystals are shown in Fig. 9. As it can be seen from Fig. 8,
in both BCC and HCP crystals, there is a huge peak in the beginning
and a much smaller peak later at around 4 ms. The first peak corre-
sponds to the primary wave, whereas the second small peak is due
to reflected waves. This assumption was made based on the fact that
the second peak appears at some certain depth only and cannot be
found for first few particles. As it is shown in Fig. 9 by a solid
line, the wave is traveling along the system and reaches each next
particle after some delay. Using this information, the velocity of
the wave propagation or the time-of-flight velocity was estimated
to be around 125 m/s and has no detectable dependence on the
system size or the direction of propagation. It should be noted
that this is an average velocity over the whole system, and it is
not necessarily equal to local wave propagation velocity over the
whole duration of the experiment, which is a function of local
instantaneous force [20] and is not the group velocity, which was
found to differ significantly due to nonlinearity and coupling of
nonlinearity with dispersion [53]. Moreover, in both granular crys-
tals, it can be seen that the primary wave broadens with depth and
begins to narrow again at some point. Wave broadening effect in
granular media was observed in earlier reports [54,55]. This
change in wave broadening behavior happens at around the same

depth where the reflected waves were reaching each other and
was connected with the effect of constraint change already men-
tioned above and seen in Figs. 5 and 6. The broadening of the
wave in the upper part of the system, where most of the impact
was localized, meaning that the energy of the impulse becomes
more distributed over the time and thus the potential damaging
effect of the impulse is reduced. However, both reports mentioned
[54,55] agree that the wave broadening happens in high disorder
system too and that the wave decay follows a power law, i.e., it is
faster than exponential, which was already observed in Fig. 7.
This does not match with what can be seen in the bottom half of
Fig. 9. As it can be seen, the wave narrows down after initial broad-
ening. In comparison with the current experiment, both [54] and
[55] use granular crystals with a huge number of particles.
Ref. [54] represents a numerical simulation of elastic granular
gas, whereas [55] experimentally investigates various elastic and
viscoelastic, highly disordered granular crystals. The limitation of
Ref. [55] is that it measures the bulk wave that reached the
bottom of the system and has no information on the particle level.
For viscoelastic material, the authors report wave broadening
similar to elastic granular crystals; however, they did not consider
varying lateral compression, which was found to affect the wave
width [56].
Figure 10 shows the probability distribution of maximum veloc-

ities of all particles in both BCC and HCP systems. Although some
previous results [57–59] show deviation from Gaussian ∼exp(v/v0)2
distribution toward ∼exp(v/v0)1.5, thus Gaussian is unsuccessful in
predicting high and low velocities, as it can be seen from Fig. 10,
the distribution in both of the systems is very close to a Gaussian
distribution. However, it should be noted that the papers above
report distribution in granular media consisting of glass beads
[57], granular gas with a huge number of particles [58], and the
velocity statistics for granular media consisting of viscoelastic
grains are absent from the literature. In Ref. [59], the authors
report theoretical calculations of velocity distribution using the
spring-dashpot model to represent the nonlinear contacts in granular
media. The authors found Gaussian distribution in a low dissipation
system, whereas for higher dissipation system the distribution
becomes closer to ∼exp(v/v0)1.5 form.
As it can be seen from Fig. 10, there is a slight difference between

the distribution plots of BCC and HCP systems. As it can be seen,
the HCP system has lower variance comparing with BCC system,
which results in higher probability of the mean value of
maximum velocities and lower spread of the maximum velocity
values. In the smaller velocity region, a discrete group of particles
can be seen, which likely represents the lowest row of the system,
where besides the fact that velocity is naturally very small, it is
also affected by the rigid floor. At high-velocity region, neglecting
one point in HCP, which is likely an error, BCC configuration has a
higher concentration of high-velocity particles.

Fig. 10 Maximum velocity probability distribution plots of all particles in BCC (a) and
HCP (b) systems. The dots show experimental results and the solid line is the Gaussian
fitting.

Fig. 9 Velocity versus time plots of the particles along the 0 deg
for (a) BCC and (b) HCP systems
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4 Conclusions
In this study, experimental investigation of the wave propagation

through the system of granular particles was presented. The visco-
elastic framework was discussed, and it was shown that for exper-
iments with short duration, the viscoelastic framework can be
successfully substituted by linear elastic framework using the
strain rate-dependent coefficient of elasticity. It was found that in
the granular systems with finite sizes, the wave propagation
process is governed by effects due to the finite sizes of the system
and that there is a huge reflection from the walls. Analyzing the
observed destructive interference, it was found that the transverse
size of the granular system defines the depth where most of the
impact is concentrated, thus by varying the size of the system, it
is possible to control the wave propagation process. It was also
found, that due to destructive interference, based on the wave atten-
uation behavior, the system can be divided into two parts: upper,
with exponential wave decay rate, and lower, with higher decay
rate. The exponential decay is likely a result of particles being
under lateral compression by the reflected wave, which does not
reach the lower part and the particles here have no or much less
lateral compression, which have been proved to be correct as
well. This less compression results in a much higher rate of wave
attenuation. In the exponential decay part, significant broadening
of the propagating wave was observed, resulting in energy being
more distributed over time. In addition, despite other researchers
found a deviation from Gaussian distribution, it was found that
Gaussian distribution successfully predicts the velocity distribu-
tions in the system.
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