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Abstract15

The effect of environmental policy on water resources is often challenging to evalu-16

ate due to dynamic interactions between people and water, particularly in data-scarce water-17

sheds. Increasing interactions between society and hydrology present a need to understand18

causal relations for improved assessment and prediction in complex human-water systems.19

Conventional approaches to causal assessment in hydrology are sometimes insufficient due20

to data-scarcity or system complexity. We argue that natural experiments present a promising21

and complementary avenue for assessing causal relations in such systems. In this spirit, we22

exploit a natural experiment to assess causal effects of the Ganges water treaty, between In-23

dia and Bangladesh, on streamflow and channel salinity in the Ganges delta in Bangladesh.24

We apply causal inference to assess the effect of the treaty on streamflow and use the re-25

sults to generate synthetic ensembles of streamflow and salinity under a realistic scenario26

(with the treaty) and a counterfactual scenario (without the treaty). We then use synthetic27

streamflow ensembles to model salinity ensembles. The Ganges water treaty increased dry28

season streamflow in Bangladesh by approximately 18%, and decreased channel salinity by29

approximately 10%. The treaty has the greatest effect on salinity in Bangladesh in the driest30

years, but the overall effect is small compared with natural variability. We show that our ap-31

proach accounts for natural hydrologic variability to accurately assess the causal effect of the32

treaty, compared with a naive approach which greatly overestimates the effect. This research33

demonstrates the value of natural experiments for causal assessment in coupled human-water34

systems.35

blank line to preserve numbering36

1 Introduction37

Human society has extensively modified rivers throughout the world [Ceola et al.,38

2019; Vörösmarty et al., 2010], and incorporating anthropogenic interactions with the wa-39

ter cycle remains a major challenge in hydrology [Sivapalan et al., 2012; Gleeson et al.,40

2019]. Many recent efforts have focused on understanding dynamic interactions and feed-41

backs between humans and water resources with the aim of developing new insights into the42

resilience, trajectories, and co-evolutionary behavior of coupled human-water systems [e.g.,43

Montanari et al., 2013; Pande and Sivapalan, 2016; Penny and Goddard, 2018]. Integral44

to that effort is the need to identify and evaluate the causal mechanisms that produce hydro-45

logic change in heavily modified catchments [Ehret et al., 2014]. This task is particularly46

urgent in regions undergoing rapid change and in need of an adequate policy response, often47

despite very limited observational data [Sivapalan et al., 2014; Thompson et al., 2013]. Ac-48

curately framing the causes of hydrologic change in these regions is critical to evaluate water49

resources interventions and predict water availability amidst rapid social and environmental50

change [Wine, 2018; Srinivasan et al., 2016]. Causal assessment is therefore a critical task51

for hydrology but is fraught with challenges for a variety of reasons including the complex-52

ity of hydrologic processes [Savenije, 2009], limited observational data [Hrachowitz et al.,53

2013], and the issue of equifinality whereby an observed outcome could result from multi-54

ple, unobserved causal pathways [Beven, 2006]. These challenges are particularly vexing for55

causal assessment when considering scales pertinent to water management which must con-56

tend with considerable variability of climatic drivers, complexity of hydrologic processes,57

and landscape heterogeneity.58

To illustrate these challenges, consider a simple example in which we want to estimate59

the effect of a river diversion, beginning at time t0, on streamflow downstream of the diver-60

sion (Figure 1). This generic example is non-trivial if the diversion behavior is unknown, a61

situation that is analogous to the case study of the Ganges river, introduced in Section 2.1. A62

simple yet naive approach to this problem would be to compare observed flow regimes down-63

stream of the diversion before and after the t0. Such an approach is “naive” because it does64
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not account for confounding factors or processes, such as changing rainfall or upstream water65

use, that could affect the flow regime and bias the results.66

An ideal experiment would circumvent the problem of confounding variables by re-67

moving biases between treatment and control groups. Indeed, this is commonly done in other68

fields (e.g., medical studies) through the use of randomized control trials, but a similar ap-69

proach in hydrology is unlikely to succeed. In the example of the river diversion, if the days70

in which the diversion operates could be randomly assigned, the difference in flow observa-71

tions between the treatment (diversion is ‘on’) and control (diversion is ‘off’) could be inter-72

preted as the causal effect of the diversion because all unobserved confounding factors would73

be controlled for (or ‘averaged out’) through randomization [see Angrist and Pischke, 2008].74

Unfortunately, such an approach is generally impractical in real water systems.75

Because of the challenges noted above, hydrologists often consider causal effects in76

terms of counterfactuals: hypothetical scenarios of what would have occurred under causal77

conditions that differ from reality [Lewis, 1973, 2004]. The counterfactual theory of causa-78

tion asserts that the causal effect of a driver is the difference between the actual outcome and79

the hypothetical outcome of the counterfactual scenario in which the driver takes on a differ-80

ent value or is excluded entirely. Counterfactuals are commonly used in hydrology to assess81

causal relationships, typically through observing or modeling alternate scenarios.82

For instance, in the river diversion scenario, the counterfactual for downstream flow83

represents what downstream flow would be if the diversion did not exist. This counterfactual84

could be determined from streamflow records directly upstream and downstream of the di-85

version if such records are available because, absent the diversion, the two would be equal86

(Figure 1a). In more complex scenarios, counterfactuals could be similarly constructed from87

observations using results from paired catchment studies [Brown et al., 2005], space-for-time88

substitution [Wagener et al., 2010], or large-sample hydrology [Gupta et al., 2014]. How-89

ever, observations of policy-relevant variables in hydrology are often challenging to obtain90

[see Hrachowitz et al., 2013], which motivates the use of models to bridge observation gaps91

[Müller and Thompson, 2019] and assess causal relationships [Beven, 2012].92

Models are commonly used in hydrology to generate counterfactuals and assess causa-93

tion in a process of predictive inference [Ferraro et al., 2019]. In predictive inference, mod-94

els are created and calibrated to reproduce observations, after which drivers are manipulated95

to assess the causal effect on outcome variables. Continuing with the river diversion exam-96

ple, a counterfactual for downstream flow could be created by using a hydrologic model to97

simulate streamflow in the absence of the diversion (Figure 1b), calibrating on downstream98

observations before the diversion takes effect. The difference between the model (the coun-99

terfactual) and observations (after t0) is the causal effect of the diversion. Numerous ap-100

proaches are available for generating plausible counterfactuals in hydrology [e.g., see Ste-101

dinger and Taylor, 1982].102

Despite its common application, however, causal assessment through predictive infer-103

ence can be challenging to implement given the complexity of hydrologic processes and the104

issue of equifinality [e.g., see Savenije, 2009]. For instance, observational data might be in-105

adequate to sufficiently calibrate and validate the critical processes in a hydrologic model.106

The equifinality thesis asserts that limited data not only affects the uncertainty of parameters,107

but can also lead to uncertainty in the dominant hydrologic processes [Beven, 2006]. Fur-108

thermore, in intensively modified catchments, these concerns are amplified by the fact that109

human decision-making and water resources are mutually dependent and potentially nonsta-110

tionary [Sivapalan and Blöschl, 2015]. A model calibrated before the diversion begins may111

not be valid in the presence of the diversion, complicating predictive inference.112

As an alternative, we advocate the use of natural experiments to assess causal rela-122

tionships and generate plausible counterfactuals. Natural experiments differ from traditional123

approaches to causal assessment in hydrology in that they seek to mimic ideal experiments124
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Figure 1. Causal assessment of a river diversion through the use of counterfactuals determined from (a)
direct observation, (b) predictive inference, and (c) natural experiments. The causal effect of the diversion
(black arrows) is the difference between downstream flow (light blue) and the counterfactual (red). In this
simple case, the counterfactual of downstream flow could be taken directly from the observations of upstream
flow if there is no selection bias before and after t0 (direct observation). If selection bias exists or such data
are not available, the counterfactual must be simulated (predictive inference) or inferred through the use of a
control (natural experiment). We argue that natural experiments merit increased consideration in hydrology
because they can offer valuable advantages over direct observation and predictive inference, which are more
commonly applied to hydrologic problems.
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by leveraging known characteristics (e.g., events, rules, or processes) of the investigated sys-125

tem, in order to identify treatment and control groups in a manner that is as good as random126

[see Angrist and Pischke, 2008]. In the river diversion example, a natural experiment might127

arise from the arbitrary nature of diversion rules (Figure 1c). If the diversion is turned ‘on’128

and ‘off’ following rules that are unrelated to streamflow and its drivers, the outcome is ar-129

guably equivalent to that of the randomized experiment described above, where the diversion130

is turned ‘on’ and ‘off’ at random. Natural experiments require that the observational data131

meet specific criteria (i.e., an external and plausibly exogenous forcing), which sometimes132

presents obstacles to their implementation. Nevertheless, natural experiments have long been133

used for policy assessment in social and economic sciences [see Angrist and Pischke, 2008]134

and evaluation of disturbances in ecology [Stewart-Oaten et al., 1986]. This type of approach135

is also emerging in studies of coupled human-water systems [Müller and Levy, 2019] includ-136

ing transboundary water resources [Müller et al., 2016] and water quality [Sigman, 2005;137

Keiser and Shapiro, 2019], agricultural water use [Deryugina and Konar, 2017], effects of138

global trade on water and nutrient use [Dang and Konar, 2018; Dang et al., 2018], and hy-139

drologic consequences of land use change [Levy et al., 2018].140

Here we use a natural experiment to attribute hydrologic change in the context of the141

Ganges Water Agreement between India and Bangladesh [GOB and GoI, 1996]. The agree-142

ment was signed in 1996 and allocates Ganges river flow to India and Bangladesh during143

the dry season when streamflow is essential to both countries [Hossain, 1998]. Dry sea-144

son streamflow is insufficient to meet the needs of both India and Bangladesh, and future145

freshwater supply in the region will likely be further threatened due to increasing competi-146

tion for irrigation supply and increasing abstraction in the upstream watershed [Mukherjee147

et al., 2018]. The agreement expires in 2026, creating an immediate policy need to evalu-148

ate its causal effect on both streamflow and salinity. Such an evaluation is hampered by the149
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complexity and heterogeneity of socio-hydrologic processes throughout the basin and by the150

absence of data directly upstream of the diversion. These obstacles make it challenging to151

construct a counterfactual, either explicitly from observations (Figure 1a) or based on a fully152

calibrated hydrologic model (Figure 1b). Instead, we utilize a natural experiment to infer the153

causal effect of the treaty (similar to Figure 1c) by leveraging specific features of the agree-154

ment, which preferentially allocates flow to India and Bangladesh in six alternating 10-day155

periods, and properties of streamflow, including high autocorrelation in dry season. To illus-156

trate the importance of careful treatment of causal relations, we also conduct a naive assess-157

ment by estimating the effect of the treaty as the difference in streamflow before and after the158

treaty was signed.159

We use the results from the natural experiment to construct an ensemble of counter-160

factual scenarios of streamflow (Sections 2.3) and river salinity (Section 2.4), and evaluate161

these outcomes in relation to natural variability (Sections 3.1 and 3.2). We also show that the162

naive approach would considerably overestimate the effect of the treaty compared with our163

quasi-experimental approach. We conclude by evaluating results and discussing policy im-164

plications (Section 4), and contextualizing the potential benefits of natural experiments and165

counterfactuals for causal assessment of coupled human-water systems (Section 5).166

2 Methods167

2.1 The Ganges water sharing agreement168

The Ganges river originates in the Himalayas of India and Nepal before flowing through169

the Gangetic plain and arriving at Farakka barrage, where water is diverted into the Hooghly170

distributary which flows south towards Kolkata. The Ganges continues east into Bangladesh,171

joining the Brahmaputra and Meghna rivers, and finally discharges into the Bay of Bengal172

(Fig. 2). The massive extent of the watershed encompasses considerable social and hydro-173

logic complexity spanning multiple cultures and hydrologic regimes, with 600 million people174

over an area of 1 million km2 and 520 km3 of streamflow per year on average. The hydrology175

exhibits strong seasonality, with precipitation and streamflow driven by the summer Mon-176

soon (June–September) and followed by an extended dry season (January–May).177

Flow availability in the Ganges is essential in both India and Bangladesh and the trans-178

boundary river has been the subject of regional disputes for at least 65 years [Hossain, 1998].179

Dry season flow has immediate effects on salinity, health, and economic well-being in both180

countries [Hossain, 1998]. In India, flow in the Hooghly has important consequences for181

Kolkata including siltation of the port [Ray, 1978] and salinity in drinking water [Ganguly182

and Roy, 2018]. In Bangladesh, salinization poses great threats to health and livelihoods of183

delta inhabitants [Salehin et al., 2018; Rahman et al., 2019], with much of the population at184

risk of hypertension from excessive salt intake [Talukder et al., 2016], agrarian livelihoods185

in danger [Mondal et al., 2019], the largest mangrove forest in the world, the Sundarbans,186

at risk of disappearance, and salinization strongly associated with forced internal migration187

[Chen and Mueller, 2018].188

Beginning in 1975, a portion of Ganges flow has been diverted at Farakka barrage into195

the Hooghly river to de-silt and sustain the port of Kolkata in India [Mirza, 2004]. Operation196

of the barrage was governed by temporary agreements through 1988, followed by nearly 10197

years absent agreement until the 1996 treaty was signed into effect for a period of 30 years198

[Hossain, 1998]. The 1996 treaty (hereafter referred to as the treaty) covers the January 1–199

May 31 period each year, with specific allocation requirements during six 10-day allocation200

periods March 11 – May 10 (Table 1). As the treaty is due for renewal in 2026, a quantita-201

tive estimate of the specific (causal) effect of the treaty on historical flow and salinity of the202

Ganges is relevant and timely and will inform future predictions.203
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Figure 2. Ganges watershed map. (left) The delta receives inflow from the Ganges, Brahmaputra, and
Meghna rivers. (right) Since the 1970s, a portion of Ganges water has been diverted at Farakka barrage into
the Hooghly river. Salinization due to low delta inflow is especially concerning in southwestern Bangladesh.
Data used in this study include streamflow records at Hardinge bridge and salinity records at Khulna and
Mongla stations. Dark blue channels indicate the extent of the HEC-RAS hydrodynamic mixing model
(Section 2.4).
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Table 1. Ganges agreement flow allocation.204

Inflow to Farakka Share of India Share of Bangladesh

January 1 – May 31 (except allocation periods)

<70,000 cusec 50% 50%
70,000-75,000 cusec Remainder 35,000 cusec
>75,0000 cusec 40,000 cusec Remainder

Alternating 10-day allocation periods (March 11 – May 10)

Bangladesh allocation period Remainder 35,000 cusec
India allocation period 35,000 cusec Remainder

A cusec is a cubic feet per second (0.028m3s−1)

2.2 Data Availability205

At the time of this study, the availability of salinity and streamflow records were sparse,206

especially along the main stem of the Ganges. As records of streamflow at Farakka bar-207

rage were not available, we relied primarily on streamflow records at Hardinge bridge in208

Bangladesh, 160 kilometers downstream of the barrage (Table 2). These daily streamflow209

observations were not continuous, and in five years the dry season (January 1–May 31) con-210

tained at least 20 consecutive days without any observational data. The remaining years con-211

tained a maximum of three consecutive missing days within the dry season. The years with212

20 or more consecutive missing days were included in our causal assessment of streamflow,213

but removed from the synthetic streamflow dataset (see Section 2.3).214

We had access to salinity records at Khulna station and six additional stations com-216

prising the boundaries to the HEC-RAS model, including Mongla station (Table 2). We had217

concerns over data integrity because the data contained unexpected extreme salinity (low or218

high) in some years, exhibited a variable relationship between salinity and streamflow, and,219

in 2014, salinity at Khulna station (upstream) exceeded salinity at Mongla station (down-220

stream). However, these datasets were the only available resource for in situ salinity mea-221

–6–



Confidential manuscript submitted to Water Resource Research

Table 2. Data availability.215

Location1 Measurement Availability

Hardinge bridge Streamflow 1985-20162

Khulna station Salinity 1988-20173

Mongla station Salinity 2001-20114

HEC-RAS boundaries (5) Salinity 2014, 2017
1 All data obtained from the Bangladesh Water Development Board.

2 Years 1997, 2001–2003, and 2013 contained 20
or more consecutive missing days in dry season.

3 Missing data from 1990, 1994, 2000, 2004, and 2009-2012.
4 Missing data from 2004.

surements and, in general, they exhibited self consistency such that salinity increased and222

peaked in dry season and variability was within allowable tolerance. We note that the rela-223

tionship between salinity and streamflow exhibited a notable change in 2013–2015 (see Sec-224

tion S2, Figure S2). Because this change was unlikely related to the 1996 treaty, we focused225

our salinity analysis on years prior to 2013 wherever possible.226

2.3 Causal inference and streamflow counterfactual227

In order to generate a counterfactual and assess the effect of the Ganges treaty on stream-
flow, we employ a natural experimental approach similar to difference-in-differences designs
used by economists [Angrist and Pischke, 2008] and Before-After-Control-Impact (BACI)
studies used by ecologists [Stewart-Oaten et al., 1986; Underwood, 1994]. This approach is
used for causal inference in a particular type of natural experiment where a treatment (here,
the treaty) is imposed on only one of two comparable groups at a particular point in time
[see Angrist and Pischke, 2008;Müller and Levy, 2019]. The causal effect of the treatment
(∆Xtreatment) is evaluated as:

∆Xtreatment = (XT,post − XT,pre) − (XC,post − XC,pre),

where X is the considered outcome, averaged across observation units, for the treatment (T)228

and control (C) groups before (pre) and after (post) treatment. In effect, the change in the229

control group (XC,post − XC,pre) controls for the change that would have occurred in the230

treatment group in the absence of treatment. The critical assumption is that observation units231

in the treatment group would have followed the same trajectory as the control group if the232

treatment had not been applied. This requirement is formalized in the stable unit treatment233

value assumption (SUTVA), which stipulates two components: (i) no interference among234

units where the treatment of some units affects the treatment of others, and (ii) no hidden235

treatments or unobserved variables affecting the potential outcomes of the experimental236

units. The ideal control would therefore capture all non-random variability and nonstation-237

arity within the system and allow analysis to proceed as if the units of observation were ran-238

domly assigned to the treatment or control category, such that the only difference between239

groups is the effect of the treatment itself.240

To evaluate the Ganges treaty (i.e., the treatment), we assigned daily streamflow records241

(the evaluated outcome) into treatment and control groups. Flows during allocation periods242

(March 11–May 10) were assigned to the treatment group to evaluate the average effect of243

the treaty, and the control group was comprised of streamflow records 20 days before (Feb244

19–Mar 10) and after (May 11–May 31) the allocation periods. The SUTVA assumption245

requires that the March 11 and May 10 dates in the treaty are arbitrary and exogenous, mean-246

ing that they are not, themselves, determined by any hydrologic considerations at the rele-247

vant time scales. In other words, it should make no difference from a hydrology perspective248
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that the the bounds fall on any particular day around March 11 and May 10. Evidence from249

historical negotiations suggests that political considerations (not hydrologic ones) were in-250

voked when determining these dates [Hossain, 1998], and streamflow recession analysis indi-251

cated similar trajectories of dry-season streamflow before and after the implementation of the252

treaty (see SI, Section S1).253

Formally, we operationalize the difference-in-differences approach and estimate the254

effect of the agreement on streamflow with the linear regression255

ln Q = α0 + ατDτ + αγDγ + αtreatDγDτ + ε (1)

where ln Q is the logarithm of daily streamflow observations, Dτ is a ‘dummy’ variable256

equal to 1 for observations after 1996 (i.e., after the treaty was signed) and 0 otherwise,257

Dγ is 1 for observations in the treatment group and 0 for the control group, and ε is the er-258

ror term. The regression coefficients represent the intercept (α0), the Time Effect (ατ), the259

Group Effect (αγ), and the treatment effect (αtreat ). We specify two separate regressions260

to assess the causal effect of the treatment: (1) a specification as described in Equation 1,261

and (2) a similar specification that differentiates the effect of the agreement during the India262

and Bangladesh allocation periods, so that the group term consists of two dummy variables263

(Dγ = {Dγ,IN,Dγ,BD}) with distinct regression coefficients. The error term ε in Equation264

1 represents regression errors, which we assume are uncorrelated with the treatment but cor-265

related within each year. We therefore clustered errors by year, such that the variance co-266

variance matrix Σi j takes a value of σ2 if i and j were observed during the same year and267

0 otherwise. Regression coefficients αi were estimated using ordinary least squares (OLS)268

and clustered standard errors σ2 using the ‘sandwich’ approach [specifications 1 and 2, see269

Williams, 2000]. The causal effect of the treatment on streamflow was assessed by consid-270

ering the sign, amplitude, and statistical significance (student-t test) of the regression coeffi-271

cient αtreat.272

In order to demonstrate the value of the difference-in-differences causal inference ap-273

proach, we estimated the effect of the treaty in two additional regression specifications using274

a naive approach in which we excluded data from the control period and used only data from275

the allocation periods. The regression output in these cases represents a simple comparison276

of streamflow before and after the treaty was signed. These regressions included (3) a speci-277

fication with only the time effect, ln Q = α0 + ατDτ , and (4) a specification that captured the278

before-after comparison in the differentiated group periods, ln Q = α0 + αγDγ + αtreatDγDτ ,279

with Dγ = {Dγ,IN,Dγ,BD}. These naive specifications 3 and 4 mimic the causal specifi-280

cations 1 and 2, respectively, but cannot be used for causal assessment because they do not281

account for unobserved drivers through the use of a control.282

Lastly, we used a similar framework to generate 1000 realizations of synthetic stream-283

flow time series with the agreement (the “treated” scenario) and without the agreement (the284

“counterfactual” scenario). For this purpose, we defined a fifth regression specification (5)285

which included the regression variables from specification (2) as well as year fixed effects286

to control for interannual climate variations, and quadratic calendar days to control for sea-287

sonal variability. The latter was modeled as a parabola that captures the stream recession in288

dry season and recovery at the beginning of wet season. Because the focus is now on pre-289

diction, these added controls increase prediction accuracy while preserving the causal infer-290

ence results from the (more parsimonious) specification (2). Coefficients from specification291

(5) were estimated using generalized least squares with cluster-robust standard errors at the292

annual level [Cameron et al., 2011]. Coefficient estimates were then used to generate 1000293

random realizations of synthetic streamflow timeseries at Hardinge bridge, with the agree-294

ment ({αtreat,IN, αtreat,BD} , 0) and without the agreement ({αtreat,IN, αtreat,BD} = 0) (see295

Appendix A for details). These two ensembles excluded years with 20 or more consecutive296

missing days (Table 2). We used both ensembles of synthetic streamflow time series as in-297

puts to the salinity model to assess the effect of the agreement on river salinity (Section 2.4).298
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2.4 Salinity model and counterfactual299

The difference-in-differences approach taken for streamflow (Section 2.3) was not300

amenable to salinity because we were unable to identify an adequate control period that301

would adhere to SUTVA. River salinity in the delta accumulates throughout the dry season,302

so that salinity on any given day is the cumulative effect of complex mixing processes within303

the delta over the course of the dry season. Selecting an adequate control would be neces-304

sary to adhere to the “no hidden treatments” assumption of SUTVA, but selection of such305

a control would likely violate the “no interference” assumption because the rate of salinity306

accumulation depends on both streamflow levels and salinity gradients, which complicates307

any definition of treatment and control groups. For these reasons, we utilized a more conven-308

tional predictive inference approach to understand the effect of the treaty on salinity, build-309

ing a HEC-RAS transport model [USACE, 2016] to simulate salinity within a portion of the310

delta. This approach relies on the intuition that the Ganges treaty only affected river salinity311

through its effect on streamflow. The cost of such an approach is that we must assume that312

the model sufficiently captures the dynamic processes and boundary conditions that affect313

salinity so that the model is accurate even when applied to the hypothetical counterfactual314

scenarios.315

The natural experimental approach for streamflow and the predictive inference ap-316

proach for salinity were complimentary. The synthetic streamflow data generated from re-317

gression specification (5) were used to generate synthetic salinity within the delta, and both318

synthetic datasets (streamflow and salinity) were necessary boundary conditions for the319

HEC-RAS model. We used a one-dimensional mixing model to generate the synthetic salin-320

ity data from streamflow data. The model included discharge and first order exchange to sim-321

ulate salinity concentration (C) at Khulna station (where salinity data is available) as a func-322

tion of streamflow at Hardinge Bridge (QH ):323

dC
dt
= −aQHC + be−dQH (CD − C), (2)

where CD = 35ppt is downstream (ocean) salinity and parameters a, b, and d are calibra-324

tion constants. The two terms on the right-hand side of the equation represent discharge and325

first order exchange, respectively. The exchange term be−dQH decreases (or increases) with326

higher (or lower) streamflow as the channel becomes dominated by inflow (or tidal oscilla-327

tions).328

The mixing model was calibrated on Khulna salinity across all years through 2008 in329

which data were available and nearly continuous, both for streamflow at Hardinge bridge and330

salinity at Khulna station (Table 2). Our calibration therefore captures the period in which331

dredging of Gorai channel was initiated [beginning in 1998, de Groot and van Groen, 2001],332

but not any changes in the relationship between Hardinge streamflow and Khulna salinity oc-333

curring after 2008 (see Section 2.2). The physical model was validated using a leave-one-out334

approach across the same years used for calibration (see Section S2 for details). The vali-335

dated physical model was forced by the ensembles of synthetic streamflow (treated and coun-336

terfactual) to simulate corresponding ensembles of salinity at Khulna, and these ensembles337

were extrapolated to salinity at the boundaries of the HEC-RAS domain (Appendix B).338

The HEC-RAS model was calibrated manually in two steps, using only observed data339

from 2014 and 2017 (see Section S3 and Figure S3 for further details). The hydrodynamic340

model was first calibrated by fitting Manning’s roughness coefficient using observed water341

level in the Gorai channel (see Fig. 2), with a reasonable Nash Sutcliffe Efficiency (NSE=0.81).342

The dispersal coefficient of the salinity mixing model was then calibrated using observed343

salinity data at Khulna station (NSE=0.82). These calibrated coefficients were used to simu-344

late the spatial and temporal distribution of salinity, as forced by the ensemble-median real-345

ization of synthetic streamflow and salinity for the treaty and counterfactual scenarios.346
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3 Results347

3.1 Causal effect of the agreement on streamflow348

Table 3 reports the regression results describing the effect of the Ganges treaty on349

streamflow, with columns 1–2 corresponding to the causal difference-in-differences regres-350

sion specifications, columns 3–4 corresponding to the naive specifications, and column 5 cor-351

responding to the specification used to generate synthetic data, as described in Section 2.3.352

The effect of the treaty is captured by the Treatment Effect, except in column 3 which eval-353

uates the effect of the treaty as the post-treaty Time Effect. Because the dependent variable354

was specified as ln Q, the estimated coefficient for each effect can be interpreted as a percent355

change (divided by 100) in streamflow during the considered period due to the treaty.356

The Ganges treaty resulted in an 8.2±7.4% (Mean ± Standard error) increase (statis-357

tically insignificant) in streamflow in the combined allocation periods (Table 3, Column 1).358

When differentiating between India and Bangladesh allocation periods, the treaty produced359

an 18.5±7.6% increase (statistically significant) in the Bangladesh periods and a -1.6±8.5%360

decrease (statistically insignificant) in streamflow in the India periods (Column 2). The ef-361

fect of the treaty is similar in the regression with fixed effects (Column 5). This suggests that362

our results are robust to interannual (e.g., climate driven) streamflow variability. By com-363

parison, the naive approach exaggerates the effect of the treaty, estimating a 36% increase in364

streamflow in the combined allocation periods (Column 3) and 46% and 26% increases in365

the Bangladesh and India allocation periods, respectively (Column 4).366

In specifications 1 and 2, the Time Effect corresponds to the increase in streamflow367

in the control period before and after the treaty was signed. In other words, streamflow in-368

creased by 27.8±10.9% (statistically significant) in the control period, which explains the369

discrepancy between the causal and naive estimates. The naive specifications estimate the net370

change in streamflow in the allocation periods before and after the treaty, whereas the causal371

specifications estimate the change in streamflow relative to the control (e.g., 46.3% - 27.8%372

= 18.5% increase in the Bangladesh allocation period). The increase in streamflow during373

the control period reflects the non-stationary hydrology of the river and has important impli-374

cations for the interpretation of results, which we discuss further in Section 4.1.375

In both causal specifications (Table 3, columns 1–2), the Group Effect (αγ) was neg-376

ative. This is consistent with the decline in streamflow during the allocation periods which377

coincided with the driest part of the year. The group effect is diminished when fixed effects378

are included (Column 5), because the inclusion of Day and Day2 captures most of the dry379

season recession and recovery of the hydrograph.380

The regression specification with fixed effects (Table 3, Column 5) was used to gener-382

ate synthetic streamflow with the agreement (“treated” scenario) and without the agreement383

(“counterfactual” scenario). Synthetic streamflow reproduced observed intra-annual stream-384

flow variability with an R2 coefficient of 0.75, suggesting that the model captures the most385

relevant sources of variability. The synthetic 95% prediction interval contained nearly all ob-386

servations (see Figure 3, blue). Similarly, the synthetic counterfactual data (without treaty)387

reproduced observed streamflow variability outside of the allocation periods (Figure 3, red).388

The regression model used to generate synthetic streamflow explicitly captured interannual389

climate variations by controlling for year fixed effects (Figure 4). As a consequence, syn-390

thetic flow data reproduced annual flow volumes during the Bangladesh and India allocation391

periods (Figure 4, blue line vs. black dots). In contrast, counterfactual (without treaty) flows392

clearly deviated from observations during the Bangladesh allocation periods (Figure 4, red393

line vs. black dots), indicating the effect of the treaty. Note that these deviations were greater394

when observed streamflow was lower, highlighting that the minimum allocation requirement395

in the agreement had the strongest effect in the driest years. Results also suggest that the net396

effect of the agreement (given by the difference between long-term mean values of the syn-397
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Table 3. Linear regressions: Effect of the Ganges treaty on downstream flow.381

Dependent variable:
Log streamflow at Hardinge Bridge (Bangladesh)
Causal Naive Synthetic

(1) (2) (3) (4) (5)

Treatment Effect BD Alloc. Period 0.185∗∗ 0.463∗∗∗ 0.208∗∗∗
(Ganges treaty) (0.076) (0.131) (0.074)

IN Alloc. Period −0.016 0.262∗ −0.001
(0.083) (0.146) (0.082)

Combined 0.082
(0.074)

Group Effect BD Alloc. Period −0.343∗∗∗ −0.086∗
(0.065) (0.051)

IN Alloc. Period −0.297∗∗∗ 0.045∗∗ −0.082
(0.069) (0.019) (0.054)

Combined −0.320∗∗∗
(0.066)

Time Effect (post-treaty) 0.278∗∗ 0.278∗∗ 0.360∗∗∗ 0.816∗∗∗
(0.109) (0.109) (0.136) (0.044)

Intercept 6.855∗∗∗ 6.855∗∗∗ 6.536∗∗∗ 6.513∗∗∗ 8.420∗∗∗
(0.091) (0.091) (0.115) (0.118) (0.232)

Covariates None None None None Fixed effects‡
Observations 2,623 2,623 1,616 1,616 2,623
R2 0.215 0.226 0.163 0.181 0.750

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Standard errors were clustered by year in all regressions

‡Regression covariates included fixed effects for year, day, day2
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Figure 3. Dry season streamflow timeseries at Hardinge bridge in 2009. The shaded areas indicate 95%
prediction intervals around daily streamflow. The high and low 10-day periods follow the 10-day allocation
periods alternating between India and Bangladesh. Boxplots show within-year variability of daily data during
the full March 11–May 10 period and for Bangladesh and India allocation periods, respectively.

400

401

402

403

thetic streamflow with and without the agreement) was notably smaller than the variability in398

annual streamflow (Figure 4).399

3.2 Causal effect of the agreement on salinity408

Synthetic flows with the agreement gave rise to salinity levels that were smaller than409

those caused by counterfactual synthetic flows (without the agreement). The agreement re-410

duced salinity levels by 9.8% for the entire allocation period (March 11–May 10), and by411

13.1% at the end of the allocation periods (May 10). The absolute reductions in salinity were412

considerably larger when salinity was higher. These reductions resulted primarily from the413

slower rate of salinity intrusion during Bangladesh allocation periods. Although the allo-414

cation periods ended May 10, salinity typically peaked May 22–25 (Figure 5a). Similar to415

streamflow, the average effect of the agreement (10%) was considerably smaller than the416

overall interannual variability of peak salinity (Figure 5b).417

The HEC-RAS model highlighted intra-annual and interannual variability in salin-421

ity intrusions from the Bay of Bengal (Figure 6). Freshwater discharge, (given by salinity422

≤ 1 ppt) extended fully into the delta at the beginning of the treaty period, but receded con-423

siderably into the Gorai channel during the allocation periods. Brackish water (salinity=2424

ppt) exhibited similar behavior, with sharp salinity gradients towards the end of dry season.425

An indicative drinking water salinity limit of 5 ppt intruded upstream of Khulna at the end426

of the allocation period and even further on the date of maximum intrusion (note that there427

is no official salinity guideline for drinking water [Rahman et al., 2019]). The effect of the428

agreement on intrusion distance was small compared with the interannual variability in the429

allocation period and subsequent date of maximum intrusion (Figure 6b).430
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419

420

4 Discussion437

4.1 Endogeneity and causal inference438

Careful consideration of causal inference in an empirical context is necessary to isolate439

the effect of the agreement from potential confounding sources of hydrologic change. The440

effect of the treaty cannot be estimated by simply comparing streamflow before and after the441

treaty because any changes could be caused by confounding factors not associated with the442

treaty, such as precipitation or land use change. Indeed, such a naive approach overestimates443

the effect of the treaty by 28%, which is the change in streamflow within the control period.444

The critical challenge to our empirical approach was the identification of an appropri-445

ate control period such that the control and treatment groups would have followed similar446

trajectories in the absence of the treaty in order to meet the criteria of SUTVA. The “no in-447
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Figure 6. Maps of delta salinization (top) and boxplots of salinity intrusion distance (bottom). (a)
HEC-RAS model domain (gray) and location of salinity profile maps (dark blue) situated in the Ganges-
Brahmaputra-Meghna delta. (b) Average salinity during the allocation period, Mar 11–May 10, including
intrusion of freshwater (1 ppt), brackish water (2 ppt), and suggested upper bound for drinking water (5 ppt).
(c) Average salinity at the end of the agreement period, May 10. (d) Average salinity on the date of maximum
intrusion.

431

432

433

434

435

436

terference” assumption is realized through clustering of daily streamflow observations within448

each year. The “no hidden treatments” assumption is affirmed by two arguments: (i) we as-449

sume India acts in its own interest and does not unnecessarily suppress its streamflow allo-450

cation at the start of dry season, which is supported by (ii) comparable dry season recession451

constants before and after the treaty, indicating similar diversion rates by India in the dry sea-452

son before the allocation periods (i.e., January 1–March 10, see Table S2). The finding that453

dry season streamflow increased independent of the treaty is further justified by the fact that454

streamflow increased in both November and December by 37% (Table S1), outside the period455

governed by the treaty (January 1–May 31). The statistically significant increase in stream-456

flow in the control period since the signing of the treaty (Time effect in Table 3, columns 1–457

2) likely results from an observed increase in precipitation in October and earlier snowmelt458

in May, both of which are unrelated to the treaty. In other words, the control period functions459

exactly as it should by isolating the agreement from other unobserved, nonstationary hydro-460

logic processes.461

4.2 Data scarcity and non-stationarity462

Empirical assessment of salinity in this scenario is impractical due to limited availabil-463

ity of high-integrity data, pushing us towards a modeling approach to assess the causal effect464

of the treaty on salinity. The parsimonious salinity model attributed a 10% decrease in salin-465

ity to the agreement and the HEC-RAS model predicted a small decrease in salinity intrusion466

distances. Using streamflow to model the effect of the agreement on salinity was complicated467

by multiple challenges. The available data were sparse and irregularities within the dataset468

suggested possible concerns with data integrity which we were forced to accept because of469

lack of alternatives. Additionally, predictions are challenged by the fact that the Ganges delta470
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is in constant flux due to erosion, sedimentation, and other anthropogenic processes includ-471

ing dredging, land use change, groundwater pumping, and aquaculture practices [e.g., see472

Rahman et al., 2019;Mondal et al., 2019].473

In particular, validation of the mixing model (Section S2) suggests a nonstationary474

relationship between streamflow at Hardinge bridge and salinity at Khulna station, most no-475

ticeable after 2013 (Figure S2). We exclude these years from our analysis but note the likeli-476

hood of non-negligible interannual variability in other years and the fact that the only avail-477

able calibration data for five of the HEC-RAS boundaries came from 2014, a year in which478

high salinity at Khulna station exceeded downstream salinity at Mongla station. Although479

this increase could have been influenced by a variety of factors, understanding the causes480

of this variability is nonessential and the most important factor for the purpose of estimat-481

ing the effect of the treaty is that we have adequately reproduced the effect of streamflow at482

Hardinge bridge on salinity within the delta. In this regard, our analyses indicate a reason-483

able fit between the model and predictions (see Section S2) suggesting that we adequately484

capture the signal of the agreement even if we do not reproduce the observed variability of485

salinity. Lastly, there is a possibility that our need to attenuate salinity at the HEC-RAS do-486

main boundaries could have resulted in an underestimate of the effect on salinity within the487

HEC-RAS model, meaning that the results for salinity could be slightly conservative.488

4.3 Policy implications489

The agreement alone is unlikely to resolve the issue of salinization because there is not490

enough streamflow in dry season to prevent salinity intrusion in both the Hooghly and Gorai491

distributaries, especially in dry years. The effect of the agreement is considerably smaller492

than natural variability in the system, meaning that excessive salinity in some years will be493

followed by tolerable salinity in other years. Nevertheless, the agreement plays an important494

but non-dominant role in reducing salinity in the delta despite the fact that the agreement was495

not specifically designed to minimize salinization.496

In the context of the expiration of the current agreement in 2026, upcoming negotia-497

tions should carefully consider the effect of the agreement on future salinity within the delta.498

From a research perspective, it will be very important to understand (i) how the agreement499

affects flow availability in conjunction with variable and nonstationary streamflow at Farakka500

barrage, (ii) the relationship between flow allocation and downstream salinity, and (iii) the ef-501

fect of variability of streamflow and other hydrologic processes on salinity levels in the delta.502

The lack of available data to evaluate such relationships presents multiple methodological503

challenges. The research herein presents a solution to some of these challenges, but further504

research on (i-iii) guided by our work should be conducted to provide information to negotia-505

tors as they prepare to extend or re-negotiate the current agreement.506

5 Conclusions507

We estimated the causal effect of a policy change (the Ganges water treaty) on stream-508

flow and salinity in a data-limited environment through the use of a natural experiment and509

synthetic counterfactual scenarios. Our analyses produced three main findings pertaining to510

the Ganges water treaty: (i) the treaty increased streamflow in Bangladesh during Bangladesh511

allocation periods by 18%, (ii) the increased streamflow produced a 10% decline in channel512

salinity in the delta, and (iii) the salinity intrusion distance was slightly reduced but natural513

variability greatly exceeded the effect of the treaty. Future research should explore how the514

agreement could be modified to better achieve the objectives of both countries in terms of515

flow availability and water quality.516

The use of natural experiments is common in other disciplines (e.g., economics and517

ecology) but has rarely been applied within hydrologic sciences. The value of this approach518

can be understood by comparison with more conventional approaches to causal assessment519

–15–



Confidential manuscript submitted to Water Resource Research

in hydrology. Indeed, before settling on this methodology, we considered multiple alternative520

approaches to generating a counterfactual and assessing the effect of the Ganges treaty on521

streamflow. For instance, we could have used a naive comparison of streamflow before and522

after the agreement but, as we show, such an approach would have greatly exaggerated the ef-523

fect of the treaty on streamflow. We had hoped to utilize direct observations of flow upstream524

and downstream of Farakka barrage, but were unable to obtain the necessary upstream data.525

We also considered using a hydrologic model to simulate streamflow in the Ganges river,526

but we had concerns about using such a large scale model to simulate dry season streamflow527

in the absence of calibration data upstream of Farakka barrage. In other words, the natural528

experiment we describe for assessing streamflow provided a solution where other, more com-529

mon approaches would have had considerable shortcomings.530

Accelerating interdependencies between society and hydrology create an imperative531

to understand the relationships between humans and water, including causal mechanisms532

driving change within and across systems. The predominant methodological approaches in533

hydrology sometimes fall short because of limitations of hydrologic modeling or scarcity of534

data [Clark et al., 2015], and new empirical approaches are needed to assess nonstationarity535

in complex human-water systems. Studies that emphasize the use of natural experiments536

show considerable promise and can be assimilated with commonly accepted approaches in537

hydrology [e.g., observation and simulation,Müller et al., 2017] as well as other approaches538

to causal assessment [e.g., the method of multiple hypotheses, Srinivasan et al., 2015; Penny539

et al., 2018]. Paradigms from causal inference that emphasize empirical design and analysis540

present a useful alternative for hydrologists to evaluate and attribute change.541

A: Generating synthetic streamflow ensembles542

Generating synthetic ensembles of streamflow at Hardinge bridge required a model543

that captured properties of the variability and autocorrelation of streamflow. Synthetic log-544

transform daily flows were drawn from the following distribution:545

ln Q ∼ N(ln Q̂, ΣGLS), (A.1)

where N(·, ·) designates the normal distribution and ln Q̂ are deterministic predictions of the
linear model in Equation 1 with and without (αtreat ≡ 0) the treaty. The variance-covariance
matrix ΣGLS captures the serial correlation of streamflow at the daily time scale but neglects
correlations at the interannual time scale:

Σi j =

{
σ2ρ |i−j | if i and j observed in same year
0 otherwise

The variance σ2, autocorrelation coefficient ρ, and regression coefficients αi used to gener-546

ate synthetic streamflow were jointly estimated using generalized least squares (GLS). The547

GLS-estimated coefficients were finally used to generate an ensemble of 1,000 instances of548

synthetic streamflow time series for the 1985–2016 period, and a corresponding counterfac-549

tual without the treaty (αtreat ≡ 0) using the model in Equation A.1.550

B: Extrapolation to HEC-RAS domain boundaries551

We assumed that salinity C evolves linearly along stream reaches (C = ax + b, where552

x is a distance along the stream) to obtain salinity at the six HEC-RAS model boundaries.553

We smoothed salinity at Khulna and Mongla station using a 30-day moving average, and then554

using a first-order linear regression to calibrate the coefficients (a, b) for each day. The coef-555

ficients were used to translate daily salinity at Khulna station to Mongla station, attenuating556

high salinity to ensure no values exceeded ocean salinity (35 ppt). We then translated salin-557

ity at Mongla to each of the other five HEC-RAS boundaries following the same approach558

but with a fixed ratio (i.e., b = 0). The simulated boundary salinity datasets (treated and559
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counterfactual) were then used as time-varying boundary conditions in the HEC-RAS model.560

We validated this approach by comparing the original synthetic salinity at Khulna with the561

HEC-RAS model output at Khulna, with sufficient agreement (R2=0.71). We also attempted562

calibrating Mongla station using a fixed ratio (C = ax), but this led to considerable over-563

estimates of salinity. Allowing a non-zero intercept (b , 0) dampened the the effect of the564

agreement but more accurately reproduced observed salinity at Mongla station.565
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