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Abstract

The effect of environmental policy on water resources is often challenging to evalu-
ate due to dynamic interactions between people and water, particularly in data-scarce water-
sheds. Increasing interactions between society and hydrology present a need to understand
causal relations for improved assessment and prediction in complex human-water systems.
Conventional approaches to causal assessment in hydrology are sometimes insufficient due
to data-scarcity or system complexity. We argue that natural experiments present a promising
and complementary avenue for assessing causal relations in such systems. In this spirit, we
exploit a natural experiment to assess causal effects of the Ganges water treaty, between In-
dia and Bangladesh, on streamflow and channel salinity in the Ganges delta in Bangladesh.
We apply causal inference to assess the effect of the treaty on streamflow and use the re-
sults to generate synthetic ensembles of streamflow and salinity under a realistic scenario
(with the treaty) and a counterfactual scenario (without the treaty). We then use synthetic
streamflow ensembles to model salinity ensembles. The Ganges water treaty increased dry
season streamflow in Bangladesh by approximately 18%, and decreased channel salinity by
approximately 10%. The treaty has the greatest effect on salinity in Bangladesh in the driest
years, but the overall effect is small compared with natural variability. We show that our ap-
proach accounts for natural hydrologic variability to accurately assess the causal effect of the
treaty, compared with a naive approach which greatly overestimates the effect. This research
demonstrates the value of natural experiments for causal assessment in coupled human-water
systems.

1 Introduction

Human society has extensively modified rivers throughout the world [Ceola et al.,
2019; Vorésmarty et al., 2010], and incorporating anthropogenic interactions with the wa-
ter cycle remains a major challenge in hydrology [Sivapalan et al., 2012; Gleeson et al.,
2019]. Many recent efforts have focused on understanding dynamic interactions and feed-
backs between humans and water resources with the aim of developing new insights into the
resilience, trajectories, and co-evolutionary behavior of coupled human-water systems [e.g.,
Montanari et al., 2013; Pande and Sivapalan, 2016; Penny and Goddard, 2018]. Integral
to that effort is the need to identify and evaluate the causal mechanisms that produce hydro-
logic change in heavily modified catchments [Ehret et al., 2014]. This task is particularly
urgent in regions undergoing rapid change and in need of an adequate policy response, often
despite very limited observational data [Sivapalan et al., 2014; Thompson et al., 2013]. Ac-
curately framing the causes of hydrologic change in these regions is critical to evaluate water
resources interventions and predict water availability amidst rapid social and environmental
change [Wine, 2018; Srinivasan et al., 2016]. Causal assessment is therefore a critical task
for hydrology but is fraught with challenges for a variety of reasons including the complex-
ity of hydrologic processes [Savenije, 2009], limited observational data [Hrachowitz et al.,
2013], and the issue of equifinality whereby an observed outcome could result from multi-
ple, unobserved causal pathways [Beven, 2006]. These challenges are particularly vexing for
causal assessment when considering scales pertinent to water management which must con-
tend with considerable variability of climatic drivers, complexity of hydrologic processes,
and landscape heterogeneity.

To illustrate these challenges, consider a simple example in which we want to estimate
the effect of a river diversion, beginning at time £y, on streamflow downstream of the diver-
sion (Figure 1). This generic example is non-trivial if the diversion behavior is unknown, a
situation that is analogous to the case study of the Ganges river, introduced in Section 2.1. A
simple yet naive approach to this problem would be to compare observed flow regimes down-
stream of the diversion before and after the #y. Such an approach is “naive” because it does
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not account for confounding factors or processes, such as changing rainfall or upstream water
use, that could affect the flow regime and bias the results.

An ideal experiment would circumvent the problem of confounding variables by re-
moving biases between treatment and control groups. Indeed, this is commonly done in other
fields (e.g., medical studies) through the use of randomized control trials, but a similar ap-
proach in hydrology is unlikely to succeed. In the example of the river diversion, if the days
in which the diversion operates could be randomly assigned, the difference in flow observa-
tions between the treatment (diversion is ‘on’) and control (diversion is ‘off’) could be inter-
preted as the causal effect of the diversion because all unobserved confounding factors would
be controlled for (or ‘averaged out’) through randomization [see Angrist and Pischke, 2008].
Unfortunately, such an approach is generally impractical in real water systems.

Because of the challenges noted above, hydrologists often consider causal effects in
terms of counterfactuals: hypothetical scenarios of what would have occurred under causal
conditions that differ from reality [Lewis, 1973, 2004]. The counterfactual theory of causa-
tion asserts that the causal effect of a driver is the difference between the actual outcome and
the hypothetical outcome of the counterfactual scenario in which the driver takes on a differ-
ent value or is excluded entirely. Counterfactuals are commonly used in hydrology to assess
causal relationships, typically through observing or modeling alternate scenarios.

For instance, in the river diversion scenario, the counterfactual for downstream flow
represents what downstream flow would be if the diversion did not exist. This counterfactual
could be determined from streamflow records directly upstream and downstream of the di-
version if such records are available because, absent the diversion, the two would be equal
(Figure 1a). In more complex scenarios, counterfactuals could be similarly constructed from
observations using results from paired catchment studies [Brown et al., 2005], space-for-time
substitution [Wagener et al., 2010], or large-sample hydrology [Gupta et al., 2014]. How-
ever, observations of policy-relevant variables in hydrology are often challenging to obtain
[see Hrachowitz et al., 2013], which motivates the use of models to bridge observation gaps
[Miiller and Thompson, 2019] and assess causal relationships [Beven, 2012].

Models are commonly used in hydrology to generate counterfactuals and assess causa-
tion in a process of predictive inference [Ferraro et al., 2019]. In predictive inference, mod-
els are created and calibrated to reproduce observations, after which drivers are manipulated
to assess the causal effect on outcome variables. Continuing with the river diversion exam-
ple, a counterfactual for downstream flow could be created by using a hydrologic model to
simulate streamflow in the absence of the diversion (Figure 1b), calibrating on downstream
observations before the diversion takes effect. The difference between the model (the coun-
terfactual) and observations (after #y) is the causal effect of the diversion. Numerous ap-
proaches are available for generating plausible counterfactuals in hydrology [e.g., see Ste-
dinger and Taylor, 1982].

Despite its common application, however, causal assessment through predictive infer-
ence can be challenging to implement given the complexity of hydrologic processes and the
issue of equifinality [e.g., see Savenije, 2009]. For instance, observational data might be in-
adequate to sufficiently calibrate and validate the critical processes in a hydrologic model.
The equifinality thesis asserts that limited data not only affects the uncertainty of parameters,
but can also lead to uncertainty in the dominant hydrologic processes [Beven, 2006]. Fur-
thermore, in intensively modified catchments, these concerns are amplified by the fact that
human decision-making and water resources are mutually dependent and potentially nonsta-
tionary [Sivapalan and Bloschl, 2015]. A model calibrated before the diversion begins may
not be valid in the presence of the diversion, complicating predictive inference.

As an alternative, we advocate the use of natural experiments to assess causal rela-
tionships and generate plausible counterfactuals. Natural experiments differ from traditional
approaches to causal assessment in hydrology in that they seek to mimic ideal experiments
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Figure 1. Causal assessment of a river diversion through the use of counterfactuals determined from (a)
direct observation, (b) predictive inference, and (c) natural experiments. The causal effect of the diversion
(black arrows) is the difference between downstream flow (light blue) and the counterfactual (red). In this
simple case, the counterfactual of downstream flow could be taken directly from the observations of upstream
flow if there is no selection bias before and after #( (direct observation). If selection bias exists or such data
are not available, the counterfactual must be simulated (predictive inference) or inferred through the use of a
control (natural experiment). We argue that natural experiments merit increased consideration in hydrology
because they can offer valuable advantages over direct observation and predictive inference, which are more

commonly applied to hydrologic problems.

by leveraging known characteristics (e.g., events, rules, or processes) of the investigated sys-
tem, in order to identify treatment and control groups in a manner that is as good as random
[see Angrist and Pischke, 2008]. In the river diversion example, a natural experiment might
arise from the arbitrary nature of diversion rules (Figure 1c). If the diversion is turned ‘on’
and ‘off” following rules that are unrelated to streamflow and its drivers, the outcome is ar-
guably equivalent to that of the randomized experiment described above, where the diversion
is turned ‘on’ and ‘off’ at random. Natural experiments require that the observational data
meet specific criteria (i.e., an external and plausibly exogenous forcing), which sometimes
presents obstacles to their implementation. Nevertheless, natural experiments have long been
used for policy assessment in social and economic sciences [see Angrist and Pischke, 2008]
and evaluation of disturbances in ecology [Stewart-Oaten et al., 1986]. This type of approach
is also emerging in studies of coupled human-water systems [Miiller and Levy, 2019] includ-
ing transboundary water resources [Miiller et al., 2016] and water quality [Sigman, 2005;
Keiser and Shapiro, 2019], agricultural water use [Deryugina and Konar, 2017], effects of
global trade on water and nutrient use [Dang and Konar, 2018; Dang et al., 2018], and hy-
drologic consequences of land use change [Levy et al., 2018].

Here we use a natural experiment to attribute hydrologic change in the context of the
Ganges Water Agreement between India and Bangladesh [GOB and Gol, 1996]. The agree-
ment was signed in 1996 and allocates Ganges river flow to India and Bangladesh during
the dry season when streamflow is essential to both countries [Hossain, 1998]. Dry sea-
son streamflow is insufficient to meet the needs of both India and Bangladesh, and future
freshwater supply in the region will likely be further threatened due to increasing competi-
tion for irrigation supply and increasing abstraction in the upstream watershed [Mukherjee
et al., 2018]. The agreement expires in 2026, creating an immediate policy need to evalu-
ate its causal effect on both streamflow and salinity. Such an evaluation is hampered by the
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complexity and heterogeneity of socio-hydrologic processes throughout the basin and by the
absence of data directly upstream of the diversion. These obstacles make it challenging to
construct a counterfactual, either explicitly from observations (Figure 1a) or based on a fully
calibrated hydrologic model (Figure 1b). Instead, we utilize a natural experiment to infer the
causal effect of the treaty (similar to Figure 1c) by leveraging specific features of the agree-
ment, which preferentially allocates flow to India and Bangladesh in six alternating 10-day
periods, and properties of streamflow, including high autocorrelation in dry season. To illus-
trate the importance of careful treatment of causal relations, we also conduct a naive assess-
ment by estimating the effect of the treaty as the difference in streamflow before and after the
treaty was signed.

We use the results from the natural experiment to construct an ensemble of counter-
factual scenarios of streamflow (Sections 2.3) and river salinity (Section 2.4), and evaluate
these outcomes in relation to natural variability (Sections 3.1 and 3.2). We also show that the
naive approach would considerably overestimate the effect of the treaty compared with our
quasi-experimental approach. We conclude by evaluating results and discussing policy im-
plications (Section 4), and contextualizing the potential benefits of natural experiments and
counterfactuals for causal assessment of coupled human-water systems (Section 5).

2 Methods
2.1 The Ganges water sharing agreement

The Ganges river originates in the Himalayas of India and Nepal before flowing through
the Gangetic plain and arriving at Farakka barrage, where water is diverted into the Hooghly
distributary which flows south towards Kolkata. The Ganges continues east into Bangladesh,
joining the Brahmaputra and Meghna rivers, and finally discharges into the Bay of Bengal
(Fig. 2). The massive extent of the watershed encompasses considerable social and hydro-
logic complexity spanning multiple cultures and hydrologic regimes, with 600 million people
over an area of 1 million km? and 520 km? of streamflow per year on average. The hydrology
exhibits strong seasonality, with precipitation and streamflow driven by the summer Mon-
soon (June—September) and followed by an extended dry season (January—May).

Flow availability in the Ganges is essential in both India and Bangladesh and the trans-
boundary river has been the subject of regional disputes for at least 65 years [Hossain, 1998].
Dry season flow has immediate effects on salinity, health, and economic well-being in both
countries [Hossain, 1998]. In India, flow in the Hooghly has important consequences for
Kolkata including siltation of the port [Ray, 1978] and salinity in drinking water [Ganguly
and Roy, 2018]. In Bangladesh, salinization poses great threats to health and livelihoods of
delta inhabitants [Salehin et al., 2018; Rahman et al., 2019], with much of the population at
risk of hypertension from excessive salt intake [Talukder et al., 2016], agrarian livelihoods
in danger [Mondal et al., 2019], the largest mangrove forest in the world, the Sundarbans,
at risk of disappearance, and salinization strongly associated with forced internal migration
[Chen and Mueller, 2018].

Beginning in 1975, a portion of Ganges flow has been diverted at Farakka barrage into
the Hooghly river to de-silt and sustain the port of Kolkata in India [Mirza, 2004]. Operation
of the barrage was governed by temporary agreements through 1988, followed by nearly 10
years absent agreement until the 1996 treaty was signed into effect for a period of 30 years
[Hossain, 1998]. The 1996 treaty (hereafter referred to as the treaty) covers the January 1—
May 31 period each year, with specific allocation requirements during six 10-day allocation
periods March 11 — May 10 (Table 1). As the treaty is due for renewal in 2026, a quantita-
tive estimate of the specific (causal) effect of the treaty on historical flow and salinity of the
Ganges is relevant and timely and will inform future predictions.
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Figure 2. Ganges watershed map. (left) The delta receives inflow from the Ganges, Brahmaputra, and
Meghna rivers. (right) Since the 1970s, a portion of Ganges water has been diverted at Farakka barrage into
the Hooghly river. Salinization due to low delta inflow is especially concerning in southwestern Bangladesh.
Data used in this study include streamflow records at Hardinge bridge and salinity records at Khulna and
Mongla stations. Dark blue channels indicate the extent of the HEC-RAS hydrodynamic mixing model
(Section 2.4).

Table 1. Ganges agreement flow allocation.

Inflow to Farakka Share of India  Share of Bangladesh

January 1 — May 31 (except allocation periods)

<70,000 cusec 50% 50%
70,000-75,000 cusec Remainder 35,000 cusec
>75,0000 cusec 40,000 cusec Remainder

Alternating 10-day allocation periods (March 11 — May 10)

Bangladesh allocation period Remainder 35,000 cusec
India allocation period 35,000 cusec ~ Remainder

A cusec is a cubic feet per second (0.028m°s™!)

2.2 Data Availability

At the time of this study, the availability of salinity and streamflow records were sparse,
especially along the main stem of the Ganges. As records of streamflow at Farakka bar-
rage were not available, we relied primarily on streamflow records at Hardinge bridge in
Bangladesh, 160 kilometers downstream of the barrage (Table 2). These daily streamflow
observations were not continuous, and in five years the dry season (January 1-May 31) con-
tained at least 20 consecutive days without any observational data. The remaining years con-
tained a maximum of three consecutive missing days within the dry season. The years with
20 or more consecutive missing days were included in our causal assessment of streamflow,
but removed from the synthetic streamflow dataset (see Section 2.3).

We had access to salinity records at Khulna station and six additional stations com-
prising the boundaries to the HEC-RAS model, including Mongla station (Table 2). We had
concerns over data integrity because the data contained unexpected extreme salinity (low or
high) in some years, exhibited a variable relationship between salinity and streamflow, and,
in 2014, salinity at Khulna station (upstream) exceeded salinity at Mongla station (down-
stream). However, these datasets were the only available resource for in situ salinity mea-
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Table 2. Data availability.

Location' Measurement ~ Availability
Hardinge bridge Streamflow 1985-20162
Khulna station Salinity 1988-2017°
Mongla station Salinity 2001-2011%
HEC-RAS boundaries (5)  Salinity 2014, 2017

1 All data obtained from the Bangladesh Water Development Board.
2 Years 1997, 2001-2003, and 2013 contained 20

or more consecutive missing days in dry season.

3 Missing data from 1990, 1994, 2000, 2004, and 2009-2012.

4 Missing data from 2004.

surements and, in general, they exhibited self consistency such that salinity increased and
peaked in dry season and variability was within allowable tolerance. We note that the rela-
tionship between salinity and streamflow exhibited a notable change in 2013-2015 (see Sec-
tion S2, Figure S2). Because this change was unlikely related to the 1996 treaty, we focused
our salinity analysis on years prior to 2013 wherever possible.

2.3 Causal inference and streamflow counterfactual

In order to generate a counterfactual and assess the effect of the Ganges treaty on stream-
flow, we employ a natural experimental approach similar to difference-in-differences designs
used by economists [Angrist and Pischke, 2008] and Before-After-Control-Impact (BACI)
studies used by ecologists [Stewart-Oaten et al., 1986; Underwood, 1994]. This approach is
used for causal inference in a particular type of natural experiment where a treatment (here,
the treaty) is imposed on only one of two comparable groups at a particular point in time
[see Angrist and Pischke, 2008; Miiller and Levy, 2019]. The causal effect of the treatment
(AX{reatment) is evaluated as:

AXlreatmem = (XT,p()xt - XT,pre) - (XC,post - XC,pre),

where X is the considered outcome, averaged across observation units, for the treatment (7)
and control (C) groups before (pre) and after (post) treatment. In effect, the change in the
control group (Xc,post — Xc,pre) controls for the change that would have occurred in the
treatment group in the absence of treatment. The critical assumption is that observation units
in the treatment group would have followed the same trajectory as the control group if the
treatment had not been applied. This requirement is formalized in the stable unit treatment
value assumption (SUTVA), which stipulates two components: (i) no interference among
units where the treatment of some units affects the treatment of others, and (ii) no hidden
treatments or unobserved variables affecting the potential outcomes of the experimental
units. The ideal control would therefore capture all non-random variability and nonstation-
arity within the system and allow analysis to proceed as if the units of observation were ran-
domly assigned to the treatment or control category, such that the only difference between
groups is the effect of the treatment itself.

To evaluate the Ganges treaty (i.e., the treatment), we assigned daily streamflow records
(the evaluated outcome) into treatment and control groups. Flows during allocation periods
(March 11-May 10) were assigned to the treatment group to evaluate the average effect of
the treaty, and the control group was comprised of streamflow records 20 days before (Feb
19-Mar 10) and after (May 11-May 31) the allocation periods. The SUTVA assumption
requires that the March 11 and May 10 dates in the treaty are arbitrary and exogenous, mean-
ing that they are not, themselves, determined by any hydrologic considerations at the rele-
vant time scales. In other words, it should make no difference from a hydrology perspective
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that the the bounds fall on any particular day around March 11 and May 10. Evidence from
historical negotiations suggests that political considerations (not hydrologic ones) were in-
voked when determining these dates [Hossain, 1998], and streamflow recession analysis indi-
cated similar trajectories of dry-season streamflow before and after the implementation of the
treaty (see SI, Section S1).

Formally, we operationalize the difference-in-differences approach and estimate the
effect of the agreement on streamflow with the linear regression

InQ = ap + @;D; + @, Dy + @peasDy Dy + &

where In Q is the logarithm of daily streamflow observations, D, is a ‘dummy’ variable
equal to 1 for observations after 1996 (i.e., after the treaty was signed) and O otherwise,

D, is 1 for observations in the treatment group and O for the control group, and ¢ is the er-
ror term. The regression coefficients represent the intercept (), the Time Effect (a;), the
Group Effect (), and the treatment effect (asrcqs). We specify two separate regressions

to assess the causal effect of the treatment: (1) a specification as described in Equation 1,
and (2) a similar specification that differentiates the effect of the agreement during the India
and Bangladesh allocation periods, so that the group term consists of two dummy variables
(D, = {Dy,IN, Dy gp }) with distinct regression coefficients. The error term & in Equation
1 represents regression errors, which we assume are uncorrelated with the treatment but cor-
related within each year. We therefore clustered errors by year, such that the variance co-
variance matrix X;; takes a value of o? if i and j were observed during the same year and

0 otherwise. Regression coefficients @; were estimated using ordinary least squares (OLS)
and clustered standard errors o~ using the ‘sandwich’ approach [specifications 1 and 2, see
Williams, 2000]. The causal effect of the treatment on streamflow was assessed by consid-
ering the sign, amplitude, and statistical significance (student-t test) of the regression coeffi-
cient Qypeqs.

In order to demonstrate the value of the difference-in-differences causal inference ap-
proach, we estimated the effect of the treaty in two additional regression specifications using
a naive approach in which we excluded data from the control period and used only data from
the allocation periods. The regression output in these cases represents a simple comparison
of streamflow before and after the treaty was signed. These regressions included (3) a speci-
fication with only the time effect, In Q = a¢ + a;D,, and (4) a specification that captured the
before-after comparison in the differentiated group periods, InQ = ag + @, D, + @rearDy D+,
with D, = {D, ;n,D, pp}. These naive specifications 3 and 4 mimic the causal specifi-
cations 1 and 2, respectively, but cannot be used for causal assessment because they do not
account for unobserved drivers through the use of a control.

Lastly, we used a similar framework to generate 1000 realizations of synthetic stream-
flow time series with the agreement (the “treated” scenario) and without the agreement (the
“counterfactual” scenario). For this purpose, we defined a fifth regression specification (5)
which included the regression variables from specification (2) as well as year fixed effects
to control for interannual climate variations, and quadratic calendar days to control for sea-
sonal variability. The latter was modeled as a parabola that captures the stream recession in
dry season and recovery at the beginning of wet season. Because the focus is now on pre-
diction, these added controls increase prediction accuracy while preserving the causal infer-
ence results from the (more parsimonious) specification (2). Coefficients from specification
(5) were estimated using generalized least squares with cluster-robust standard errors at the
annual level [Cameron et al., 2011]. Coefficient estimates were then used to generate 1000
random realizations of synthetic streamflow timeseries at Hardinge bridge, with the agree-
ment ({a'treat,IN, a’treat,BD} * 0) and without the agreement ({atreat,IN, atreat,BD} = O) (see
Appendix A for details). These two ensembles excluded years with 20 or more consecutive
missing days (Table 2). We used both ensembles of synthetic streamflow time series as in-
puts to the salinity model to assess the effect of the agreement on river salinity (Section 2.4).

(D
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2.4 Salinity model and counterfactual

The difference-in-differences approach taken for streamflow (Section 2.3) was not
amenable to salinity because we were unable to identify an adequate control period that
would adhere to SUTVA. River salinity in the delta accumulates throughout the dry season,
so that salinity on any given day is the cumulative effect of complex mixing processes within
the delta over the course of the dry season. Selecting an adequate control would be neces-
sary to adhere to the “no hidden treatments” assumption of SUTVA, but selection of such
a control would likely violate the “no interference” assumption because the rate of salinity
accumulation depends on both streamflow levels and salinity gradients, which complicates
any definition of treatment and control groups. For these reasons, we utilized a more conven-
tional predictive inference approach to understand the effect of the treaty on salinity, build-
ing a HEC-RAS transport model [USACE, 2016] to simulate salinity within a portion of the
delta. This approach relies on the intuition that the Ganges treaty only affected river salinity
through its effect on streamflow. The cost of such an approach is that we must assume that
the model sufficiently captures the dynamic processes and boundary conditions that affect
salinity so that the model is accurate even when applied to the hypothetical counterfactual
scenarios.

The natural experimental approach for streamflow and the predictive inference ap-
proach for salinity were complimentary. The synthetic streamflow data generated from re-
gression specification (5) were used to generate synthetic salinity within the delta, and both
synthetic datasets (streamflow and salinity) were necessary boundary conditions for the
HEC-RAS model. We used a one-dimensional mixing model to generate the synthetic salin-
ity data from streamflow data. The model included discharge and first order exchange to sim-
ulate salinity concentration (C) at Khulna station (where salinity data is available) as a func-
tion of streamflow at Hardinge Bridge (Qg):

dC

= —aQuC + be™19H (Cp - C),

where Cp = 35ppt is downstream (ocean) salinity and parameters a, b, and d are calibra-
tion constants. The two terms on the right-hand side of the equation represent discharge and
first order exchange, respectively. The exchange term be~42# decreases (or increases) with
higher (or lower) streamflow as the channel becomes dominated by inflow (or tidal oscilla-
tions).

The mixing model was calibrated on Khulna salinity across all years through 2008 in
which data were available and nearly continuous, both for streamflow at Hardinge bridge and
salinity at Khulna station (Table 2). Our calibration therefore captures the period in which
dredging of Gorai channel was initiated [beginning in 1998, de Groot and van Groen, 2001],
but not any changes in the relationship between Hardinge streamflow and Khulna salinity oc-
curring after 2008 (see Section 2.2). The physical model was validated using a leave-one-out
approach across the same years used for calibration (see Section S2 for details). The vali-
dated physical model was forced by the ensembles of synthetic streamflow (treated and coun-
terfactual) to simulate corresponding ensembles of salinity at Khulna, and these ensembles
were extrapolated to salinity at the boundaries of the HEC-RAS domain (Appendix B).

The HEC-RAS model was calibrated manually in two steps, using only observed data
from 2014 and 2017 (see Section S3 and Figure S3 for further details). The hydrodynamic
model was first calibrated by fitting Manning’s roughness coeflicient using observed water
level in the Gorai channel (see Fig. 2), with a reasonable Nash Sutcliffe Efficiency (NSE=0.81).
The dispersal coefficient of the salinity mixing model was then calibrated using observed
salinity data at Khulna station (NSE=0.82). These calibrated coefficients were used to simu-
late the spatial and temporal distribution of salinity, as forced by the ensemble-median real-
ization of synthetic streamflow and salinity for the treaty and counterfactual scenarios.
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3 Results
3.1 Causal effect of the agreement on streamflow

Table 3 reports the regression results describing the effect of the Ganges treaty on
streamflow, with columns 1-2 corresponding to the causal difference-in-differences regres-
sion specifications, columns 3—4 corresponding to the naive specifications, and column 5 cor-
responding to the specification used to generate synthetic data, as described in Section 2.3.
The effect of the treaty is captured by the Treatment Effect, except in column 3 which eval-
uates the effect of the treaty as the post-treaty Time Effect. Because the dependent variable
was specified as In Q, the estimated coefficient for each effect can be interpreted as a percent
change (divided by 100) in streamflow during the considered period due to the treaty.

The Ganges treaty resulted in an 8.2+7.4% (Mean + Standard error) increase (statis-
tically insignificant) in streamflow in the combined allocation periods (Table 3, Column 1).
When differentiating between India and Bangladesh allocation periods, the treaty produced
an 18.5+7.6% increase (statistically significant) in the Bangladesh periods and a -1.6+8.5%
decrease (statistically insignificant) in streamflow in the India periods (Column 2). The ef-
fect of the treaty is similar in the regression with fixed effects (Column 5). This suggests that
our results are robust to interannual (e.g., climate driven) streamflow variability. By com-
parison, the naive approach exaggerates the effect of the treaty, estimating a 36% increase in
streamflow in the combined allocation periods (Column 3) and 46% and 26% increases in
the Bangladesh and India allocation periods, respectively (Column 4).

In specifications 1 and 2, the Time Effect corresponds to the increase in streamflow
in the control period before and after the treaty was signed. In other words, streamflow in-
creased by 27.8+10.9% (statistically significant) in the control period, which explains the
discrepancy between the causal and naive estimates. The naive specifications estimate the net
change in streamflow in the allocation periods before and after the treaty, whereas the causal
specifications estimate the change in streamflow relative to the control (e.g., 46.3% - 27.8%
= 18.5% increase in the Bangladesh allocation period). The increase in streamflow during
the control period reflects the non-stationary hydrology of the river and has important impli-
cations for the interpretation of results, which we discuss further in Section 4.1.

In both causal specifications (Table 3, columns 1-2), the Group Effect (a,) was neg-
ative. This is consistent with the decline in streamflow during the allocation periods which
coincided with the driest part of the year. The group effect is diminished when fixed effects
are included (Column 5), because the inclusion of Day and Day? captures most of the dry
season recession and recovery of the hydrograph.

The regression specification with fixed effects (Table 3, Column 5) was used to gener-
ate synthetic streamflow with the agreement (“treated” scenario) and without the agreement
(“counterfactual” scenario). Synthetic streamflow reproduced observed intra-annual stream-
flow variability with an R? coefficient of 0.75, suggesting that the model captures the most
relevant sources of variability. The synthetic 95% prediction interval contained nearly all ob-
servations (see Figure 3, blue). Similarly, the synthetic counterfactual data (without treaty)
reproduced observed streamflow variability outside of the allocation periods (Figure 3, red).
The regression model used to generate synthetic streamflow explicitly captured interannual
climate variations by controlling for year fixed effects (Figure 4). As a consequence, syn-
thetic flow data reproduced annual flow volumes during the Bangladesh and India allocation
periods (Figure 4, blue line vs. black dots). In contrast, counterfactual (without treaty) flows
clearly deviated from observations during the Bangladesh allocation periods (Figure 4, red
line vs. black dots), indicating the effect of the treaty. Note that these deviations were greater
when observed streamflow was lower, highlighting that the minimum allocation requirement
in the agreement had the strongest effect in the driest years. Results also suggest that the net
effect of the agreement (given by the difference between long-term mean values of the syn-
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Table 3. Linear regressions: Effect of the Ganges treaty on downstream flow.

Dependent variable:

Log streamflow at Hardinge Bridge (Bangladesh)

Causal Naive Synthetic
(1) @ 3) @) 5)
Treatment Effect ~ BD Alloc. Period 0.185** 0.463*** 0.208***
(Ganges treaty) (0.076) (0.131) 0.074)
IN Alloc. Period -0.016 0.262* —-0.001
(0.083) (0.146) (0.082)
Combined 0.082
(0.074)
Group Effect BD Alloc. Period —0.343" -0.086"
(0.065) (0.051)
IN Alloc. Period —0.297** 0.045* -0.082
(0.069) (0.019) (0.054)
Combined -0.320"*
(0.066)
Time Effect (post-treaty) 0.278™ 0.278™ 0.360"** 0.816™*
(0.109) (0.109) (0.136) (0.044)
Intercept 6.855*** 6.855*** 6.536*** 6.513*** 8.420***
(0.091) (0.091) (0.115) (0.118) (0.232)
Covariates None None None None Fixed effects?
Observations 2,623 2,623 1,616 1,616 2,623
R2 0.215 0.226 0.163 0.181 0.750
Note: “p<0.1; *p<0.05; **p<0.01

Standard errors were clustered by year in all regressions

fRegression covariates included fixed effects for year, day, day?
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Figure 3. Dry season streamflow timeseries at Hardinge bridge in 2009. The shaded areas indicate 95%
prediction intervals around daily streamflow. The high and low 10-day periods follow the 10-day allocation
periods alternating between India and Bangladesh. Boxplots show within-year variability of daily data during

the full March 11-May 10 period and for Bangladesh and India allocation periods, respectively.

thetic streamflow with and without the agreement) was notably smaller than the variability in
annual streamflow (Figure 4).

3.2 Causal effect of the agreement on salinity

Synthetic flows with the agreement gave rise to salinity levels that were smaller than
those caused by counterfactual synthetic flows (without the agreement). The agreement re-
duced salinity levels by 9.8% for the entire allocation period (March 11-May 10), and by
13.1% at the end of the allocation periods (May 10). The absolute reductions in salinity were
considerably larger when salinity was higher. These reductions resulted primarily from the
slower rate of salinity intrusion during Bangladesh allocation periods. Although the allo-
cation periods ended May 10, salinity typically peaked May 22-25 (Figure 5a). Similar to
streamflow, the average effect of the agreement (10%) was considerably smaller than the
overall interannual variability of peak salinity (Figure 5b).

The HEC-RAS model highlighted intra-annual and interannual variability in salin-
ity intrusions from the Bay of Bengal (Figure 6). Freshwater discharge, (given by salinity
< 1 ppt) extended fully into the delta at the beginning of the treaty period, but receded con-
siderably into the Gorai channel during the allocation periods. Brackish water (salinity=2
ppt) exhibited similar behavior, with sharp salinity gradients towards the end of dry season.
An indicative drinking water salinity limit of 5 ppt intruded upstream of Khulna at the end
of the allocation period and even further on the date of maximum intrusion (note that there
is no official salinity guideline for drinking water [Rahman et al., 2019]). The effect of the
agreement on intrusion distance was small compared with the interannual variability in the
allocation period and subsequent date of maximum intrusion (Figure 6b).
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The change in salinity due to the agreement was less than natural variability, but greater when salinity was

high due to low streamflow.

4 Discussion

4.1 Endogeneity and causal inference

Careful consideration of causal inference in an empirical context is necessary to isolate
the effect of the agreement from potential confounding sources of hydrologic change. The
effect of the treaty cannot be estimated by simply comparing streamflow before and after the
treaty because any changes could be caused by confounding factors not associated with the
treaty, such as precipitation or land use change. Indeed, such a naive approach overestimates
the effect of the treaty by 28%, which is the change in streamflow within the control period.

The critical challenge to our empirical approach was the identification of an appropri-
ate control period such that the control and treatment groups would have followed similar
trajectories in the absence of the treaty in order to meet the criteria of SUTVA. The “no in-
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terference” assumption is realized through clustering of daily streamflow observations within
each year. The “no hidden treatments” assumption is affirmed by two arguments: (i) we as-
sume India acts in its own interest and does not unnecessarily suppress its streamflow allo-
cation at the start of dry season, which is supported by (ii) comparable dry season recession
constants before and after the treaty, indicating similar diversion rates by India in the dry sea-
son before the allocation periods (i.e., January 1-March 10, see Table S2). The finding that
dry season streamflow increased independent of the treaty is further justified by the fact that
streamflow increased in both November and December by 37% (Table S1), outside the period
governed by the treaty (January 1-May 31). The statistically significant increase in stream-
flow in the control period since the signing of the treaty (Time effect in Table 3, columns 1-
2) likely results from an observed increase in precipitation in October and earlier snowmelt
in May, both of which are unrelated to the treaty. In other words, the control period functions
exactly as it should by isolating the agreement from other unobserved, nonstationary hydro-
logic processes.

4.2 Data scarcity and non-stationarity

Empirical assessment of salinity in this scenario is impractical due to limited availabil-
ity of high-integrity data, pushing us towards a modeling approach to assess the causal effect
of the treaty on salinity. The parsimonious salinity model attributed a 10% decrease in salin-
ity to the agreement and the HEC-RAS model predicted a small decrease in salinity intrusion
distances. Using streamflow to model the effect of the agreement on salinity was complicated
by multiple challenges. The available data were sparse and irregularities within the dataset
suggested possible concerns with data integrity which we were forced to accept because of
lack of alternatives. Additionally, predictions are challenged by the fact that the Ganges delta
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is in constant flux due to erosion, sedimentation, and other anthropogenic processes includ-
ing dredging, land use change, groundwater pumping, and aquaculture practices [e.g., see
Rahman et al., 2019; Mondal et al., 2019].

In particular, validation of the mixing model (Section S2) suggests a nonstationary
relationship between streamflow at Hardinge bridge and salinity at Khulna station, most no-
ticeable after 2013 (Figure S2). We exclude these years from our analysis but note the likeli-
hood of non-negligible interannual variability in other years and the fact that the only avail-
able calibration data for five of the HEC-RAS boundaries came from 2014, a year in which
high salinity at Khulna station exceeded downstream salinity at Mongla station. Although
this increase could have been influenced by a variety of factors, understanding the causes
of this variability is nonessential and the most important factor for the purpose of estimat-
ing the effect of the treaty is that we have adequately reproduced the effect of streamflow at
Hardinge bridge on salinity within the delta. In this regard, our analyses indicate a reason-
able fit between the model and predictions (see Section S2) suggesting that we adequately
capture the signal of the agreement even if we do not reproduce the observed variability of
salinity. Lastly, there is a possibility that our need to attenuate salinity at the HEC-RAS do-
main boundaries could have resulted in an underestimate of the effect on salinity within the
HEC-RAS model, meaning that the results for salinity could be slightly conservative.

4.3 Policy implications

The agreement alone is unlikely to resolve the issue of salinization because there is not
enough streamflow in dry season to prevent salinity intrusion in both the Hooghly and Gorai
distributaries, especially in dry years. The effect of the agreement is considerably smaller
than natural variability in the system, meaning that excessive salinity in some years will be
followed by tolerable salinity in other years. Nevertheless, the agreement plays an important
but non-dominant role in reducing salinity in the delta despite the fact that the agreement was
not specifically designed to minimize salinization.

In the context of the expiration of the current agreement in 2026, upcoming negotia-
tions should carefully consider the effect of the agreement on future salinity within the delta.
From a research perspective, it will be very important to understand (i) how the agreement
affects flow availability in conjunction with variable and nonstationary streamflow at Farakka
barrage, (ii) the relationship between flow allocation and downstream salinity, and (iii) the ef-
fect of variability of streamflow and other hydrologic processes on salinity levels in the delta.
The lack of available data to evaluate such relationships presents multiple methodological
challenges. The research herein presents a solution to some of these challenges, but further
research on (i-iii) guided by our work should be conducted to provide information to negotia-
tors as they prepare to extend or re-negotiate the current agreement.

5 Conclusions

We estimated the causal effect of a policy change (the Ganges water treaty) on stream-
flow and salinity in a data-limited environment through the use of a natural experiment and
synthetic counterfactual scenarios. Our analyses produced three main findings pertaining to
the Ganges water treaty: (i) the treaty increased streamflow in Bangladesh during Bangladesh
allocation periods by 18%, (ii) the increased streamflow produced a 10% decline in channel
salinity in the delta, and (iii) the salinity intrusion distance was slightly reduced but natural
variability greatly exceeded the effect of the treaty. Future research should explore how the
agreement could be modified to better achieve the objectives of both countries in terms of
flow availability and water quality.

The use of natural experiments is common in other disciplines (e.g., economics and
ecology) but has rarely been applied within hydrologic sciences. The value of this approach
can be understood by comparison with more conventional approaches to causal assessment
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in hydrology. Indeed, before settling on this methodology, we considered multiple alternative
approaches to generating a counterfactual and assessing the effect of the Ganges treaty on
streamflow. For instance, we could have used a naive comparison of streamflow before and
after the agreement but, as we show, such an approach would have greatly exaggerated the ef-
fect of the treaty on streamflow. We had hoped to utilize direct observations of flow upstream
and downstream of Farakka barrage, but were unable to obtain the necessary upstream data.
We also considered using a hydrologic model to simulate streamflow in the Ganges river,

but we had concerns about using such a large scale model to simulate dry season streamflow
in the absence of calibration data upstream of Farakka barrage. In other words, the natural
experiment we describe for assessing streamflow provided a solution where other, more com-
mon approaches would have had considerable shortcomings.

Accelerating interdependencies between society and hydrology create an imperative
to understand the relationships between humans and water, including causal mechanisms
driving change within and across systems. The predominant methodological approaches in
hydrology sometimes fall short because of limitations of hydrologic modeling or scarcity of
data [Clark et al., 2015], and new empirical approaches are needed to assess nonstationarity
in complex human-water systems. Studies that emphasize the use of natural experiments
show considerable promise and can be assimilated with commonly accepted approaches in
hydrology [e.g., observation and simulation, Miiller et al., 2017] as well as other approaches
to causal assessment [e.g., the method of multiple hypotheses, Srinivasan et al., 2015; Penny
et al., 2018]. Paradigms from causal inference that emphasize empirical design and analysis
present a useful alternative for hydrologists to evaluate and attribute change.

A: Generating synthetic streamflow ensembles

Generating synthetic ensembles of streamflow at Hardinge bridge required a model
that captured properties of the variability and autocorrelation of streamflow. Synthetic log-
transform daily flows were drawn from the following distribution:

InQ ~N(nQ,2gLs), (A.])

where N(-, -) designates the normal distribution and In Q are deterministic predictions of the
linear model in Equation 1 with and without (@;,.q; = 0) the treaty. The variance-covariance
matrix X s captures the serial correlation of streamflow at the daily time scale but neglects
correlations at the interannual time scale:

_ Jo?p!=lif i and j observed in same year
Yo otherwise

The variance o2, autocorrelation coefficient p, and regression coefficients ; used to gener-

ate synthetic streamflow were jointly estimated using generalized least squares (GLS). The

GLS-estimated coefficients were finally used to generate an ensemble of 1,000 instances of

synthetic streamflow time series for the 1985-2016 period, and a corresponding counterfac-

tual without the treaty (@;,.q; = 0) using the model in Equation A.1.

B: Extrapolation to HEC-RAS domain boundaries

We assumed that salinity C evolves linearly along stream reaches (C = ax + b, where
x is a distance along the stream) to obtain salinity at the six HEC-RAS model boundaries.
We smoothed salinity at Khulna and Mongla station using a 30-day moving average, and then
using a first-order linear regression to calibrate the coefficients (a, b) for each day. The coef-
ficients were used to translate daily salinity at Khulna station to Mongla station, attenuating
high salinity to ensure no values exceeded ocean salinity (35 ppt). We then translated salin-
ity at Mongla to each of the other five HEC-RAS boundaries following the same approach
but with a fixed ratio (i.e., b = 0). The simulated boundary salinity datasets (treated and
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counterfactual) were then used as time-varying boundary conditions in the HEC-RAS model.
We validated this approach by comparing the original synthetic salinity at Khulna with the
HEC-RAS model output at Khulna, with sufficient agreement (R?>=0.71). We also attempted
calibrating Mongla station using a fixed ratio (C = ax), but this led to considerable over-
estimates of salinity. Allowing a non-zero intercept (b # 0) dampened the the effect of the
agreement but more accurately reproduced observed salinity at Mongla station.
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