

Using natural experiments and counterfactuals for causal assessment: River salinity and the Ganges water agreement

Gopal Penny^{1,2}, M. Shahjahan Mondal³, Subir Biswas³, Diogo Bolster^{1,2}, Jennifer L. Tank^{2,4},
Marc F. Müller^{1,2}

¹Department of Civil & Environmental Engineering & Earth Sciences, University of Notre Dame, USA

²Environmental Change Initiative, University of Notre Dame, USA

³Institute of Water and Flood Management, Bangladesh University of Engineering and Technology, Bangladesh

⁴Department of Biological Sciences, University of Notre Dame, USA

Key Points:

- Natural experiments and counterfactuals are promising tools for causal assessment
- We generate counterfactuals to assess the effect of the Ganges water treaty on streamflow and salinity
- The Ganges water treaty plays a modest yet important role reducing salinity in the delta in Bangladesh

15 **Abstract**

16 The effect of environmental policy on water resources is often challenging to evaluate
 17 due to dynamic interactions between people and water, particularly in data-scarce water-
 18 sheds. Increasing interactions between society and hydrology present a need to understand
 19 causal relations for improved assessment and prediction in complex human-water systems.
 20 Conventional approaches to causal assessment in hydrology are sometimes insufficient due
 21 to data-scarcity or system complexity. We argue that natural experiments present a promising
 22 and complementary avenue for assessing causal relations in such systems. In this spirit, we
 23 exploit a natural experiment to assess causal effects of the Ganges water treaty, between In-
 24 dia and Bangladesh, on streamflow and channel salinity in the Ganges delta in Bangladesh.
 25 We apply causal inference to assess the effect of the treaty on streamflow and use the re-
 26 sults to generate synthetic ensembles of streamflow and salinity under a realistic scenario
 27 (with the treaty) and a counterfactual scenario (without the treaty). We then use synthetic
 28 streamflow ensembles to model salinity ensembles. The Ganges water treaty increased dry
 29 season streamflow in Bangladesh by approximately 18%, and decreased channel salinity by
 30 approximately 10%. The treaty has the greatest effect on salinity in Bangladesh in the driest
 31 years, but the overall effect is small compared with natural variability. We show that our ap-
 32 proach accounts for natural hydrologic variability to accurately assess the causal effect of the
 33 treaty, compared with a naive approach which greatly overestimates the effect. This research
 34 demonstrates the value of natural experiments for causal assessment in coupled human-water
 35 systems.

37 **1 Introduction**

38 Human society has extensively modified rivers throughout the world [Ceola *et al.*,
 39 2019; Vörösmarty *et al.*, 2010], and incorporating anthropogenic interactions with the wa-
 40 ter cycle remains a major challenge in hydrology [Sivapalan *et al.*, 2012; Gleeson *et al.*,
 41 2019]. Many recent efforts have focused on understanding dynamic interactions and feed-
 42 backs between humans and water resources with the aim of developing new insights into the
 43 resilience, trajectories, and co-evolutionary behavior of coupled human-water systems [e.g.,
 44 Montanari *et al.*, 2013; Pande and Sivapalan, 2016; Penny and Goddard, 2018]. Integral
 45 to that effort is the need to identify and evaluate the causal mechanisms that produce hydro-
 46 logic change in heavily modified catchments [Ehret *et al.*, 2014]. This task is particularly
 47 urgent in regions undergoing rapid change and in need of an adequate policy response, often
 48 despite very limited observational data [Sivapalan *et al.*, 2014; Thompson *et al.*, 2013]. Accu-
 49 rately framing the causes of hydrologic change in these regions is critical to evaluate water
 50 resources interventions and predict water availability amidst rapid social and environmental
 51 change [Wine, 2018; Srinivasan *et al.*, 2016]. Causal assessment is therefore a critical task
 52 for hydrology but is fraught with challenges for a variety of reasons including the complex-
 53 ity of hydrologic processes [Savenije, 2009], limited observational data [Hrachowitz *et al.*,
 54 2013], and the issue of equifinality whereby an observed outcome could result from multi-
 55 ple, unobserved causal pathways [Beven, 2006]. These challenges are particularly vexing for
 56 causal assessment when considering scales pertinent to water management which must con-
 57 tent with considerable variability of climatic drivers, complexity of hydrologic processes,
 58 and landscape heterogeneity.

59 To illustrate these challenges, consider a simple example in which we want to estimate
 60 the effect of a river diversion, beginning at time t_0 , on streamflow downstream of the diver-
 61 sion (Figure 1). This generic example is non-trivial if the diversion behavior is unknown, a
 62 situation that is analogous to the case study of the Ganges river, introduced in Section 2.1. A
 63 simple yet naive approach to this problem would be to compare observed flow regimes down-
 64 stream of the diversion before and after the t_0 . Such an approach is “naive” because it does

65 not account for confounding factors or processes, such as changing rainfall or upstream water
66 use, that could affect the flow regime and bias the results.

67 An ideal experiment would circumvent the problem of confounding variables by re-
68 moving biases between treatment and control groups. Indeed, this is commonly done in other
69 fields (e.g., medical studies) through the use of randomized control trials, but a similar ap-
70 proach in hydrology is unlikely to succeed. In the example of the river diversion, *if* the days
71 in which the diversion operates could be randomly assigned, the difference in flow observa-
72 tions between the treatment (diversion is ‘on’) and control (diversion is ‘off’) could be inter-
73 preted as the causal effect of the diversion because all unobserved confounding factors would
74 be controlled for (or ‘averaged out’) through randomization [see *Angrist and Pischke*, 2008].
75 Unfortunately, such an approach is generally impractical in real water systems.

76 Because of the challenges noted above, hydrologists often consider causal effects in
77 terms of *counterfactuals*: hypothetical scenarios of what would have occurred under causal
78 conditions that differ from reality [Lewis, 1973, 2004]. The counterfactual theory of causa-
79 tion asserts that the causal effect of a driver is the difference between the actual outcome and
80 the hypothetical outcome of the counterfactual scenario in which the driver takes on a differ-
81 ent value or is excluded entirely. Counterfactuals are commonly used in hydrology to assess
82 causal relationships, typically through observing or modeling alternate scenarios.

83 For instance, in the river diversion scenario, the counterfactual for downstream flow
84 represents what downstream flow would be if the diversion did not exist. This counterfactual
85 could be determined from streamflow records directly upstream and downstream of the di-
86 version *if* such records are available because, absent the diversion, the two would be equal
87 (Figure 1a). In more complex scenarios, counterfactuals could be similarly constructed from
88 observations using results from paired catchment studies [Brown *et al.*, 2005], space-for-time
89 substitution [Wagener *et al.*, 2010], or large-sample hydrology [Gupta *et al.*, 2014]. How-
90 ever, observations of policy-relevant variables in hydrology are often challenging to obtain
91 [see *Hrachowitz *et al.*, 2013*], which motivates the use of models to bridge observation gaps
92 [Müller and Thompson, 2019] and assess causal relationships [Beven, 2012].

93 Models are commonly used in hydrology to generate counterfactuals and assess causa-
94 tion in a process of *predictive inference* [Ferraro *et al.*, 2019]. In predictive inference, mod-
95 els are created and calibrated to reproduce observations, after which drivers are manipulated
96 to assess the causal effect on outcome variables. Continuing with the river diversion exam-
97 ple, a counterfactual for downstream flow could be created by using a hydrologic model to
98 simulate streamflow in the absence of the diversion (Figure 1b), calibrating on downstream
99 observations before the diversion takes effect. The difference between the model (the coun-
100 terfactual) and observations (after t_0) is the causal effect of the diversion. Numerous ap-
101 proaches are available for generating plausible counterfactuals in hydrology [e.g., see *Ste-*
102 *dinger and Taylor*, 1982].

103 Despite its common application, however, causal assessment through predictive infer-
104 ence can be challenging to implement given the complexity of hydrologic processes and the
105 issue of equifinality [e.g., see *Savenije*, 2009]. For instance, observational data might be in-
106 adequate to sufficiently calibrate and validate the critical processes in a hydrologic model.
107 The equifinality thesis asserts that limited data not only affects the uncertainty of parameters,
108 but can also lead to uncertainty in the dominant hydrologic processes [Beven, 2006]. Fur-
109 thermore, in intensively modified catchments, these concerns are amplified by the fact that
110 human decision-making and water resources are mutually dependent and potentially nonsta-
111 tionary [Sivapalan and Blöschl, 2015]. A model calibrated before the diversion begins may
112 not be valid in the presence of the diversion, complicating predictive inference.

113 As an alternative, we advocate the use of natural experiments to assess causal rela-
114 tionships and generate plausible counterfactuals. Natural experiments differ from traditional
115 approaches to causal assessment in hydrology in that they seek to mimic ideal experiments

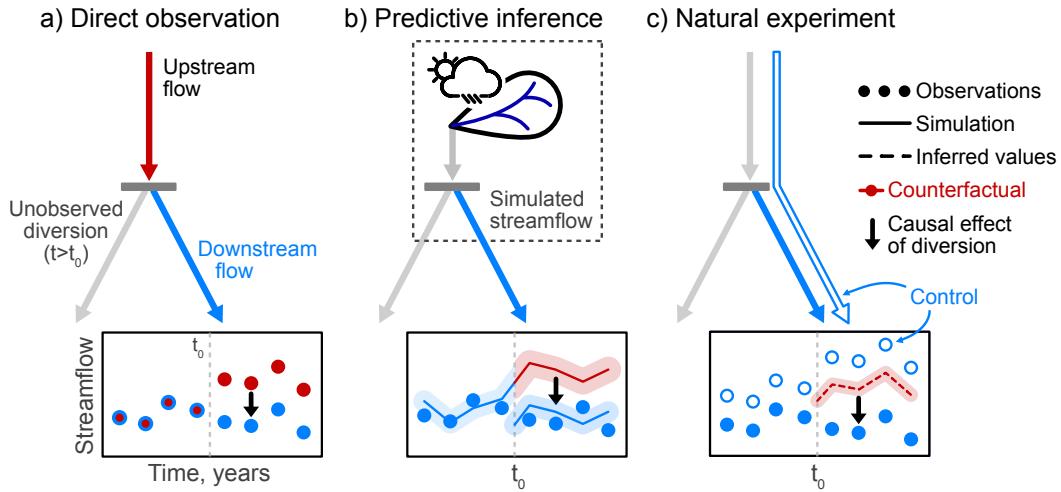


Figure 1. Causal assessment of a river diversion through the use of counterfactuals determined from (a) direct observation, (b) predictive inference, and (c) natural experiments. The causal effect of the diversion (black arrows) is the difference between downstream flow (light blue) and the counterfactual (red). In this simple case, the counterfactual of downstream flow could be taken directly from the observations of upstream flow *if* there is no selection bias before and after t_0 (direct observation). If selection bias exists or such data are not available, the counterfactual must be simulated (predictive inference) or inferred through the use of a control (natural experiment). We argue that natural experiments merit increased consideration in hydrology because they can offer valuable advantages over direct observation and predictive inference, which are more commonly applied to hydrologic problems.

by leveraging known characteristics (e.g., events, rules, or processes) of the investigated system, in order to identify treatment and control groups in a manner that is *as good as random* [see *Angrist and Pischke, 2008*]. In the river diversion example, a natural experiment might arise from the arbitrary nature of diversion rules (Figure 1c). If the diversion is turned ‘on’ and ‘off’ following rules that are unrelated to streamflow and its drivers, the outcome is arguably equivalent to that of the randomized experiment described above, where the diversion is turned ‘on’ and ‘off’ at random. Natural experiments require that the observational data meet specific criteria (i.e., an external and plausibly exogenous forcing), which sometimes presents obstacles to their implementation. Nevertheless, natural experiments have long been used for policy assessment in social and economic sciences [see *Angrist and Pischke, 2008*] and evaluation of disturbances in ecology [Stewart-Oaten *et al.*, 1986]. This type of approach is also emerging in studies of coupled human-water systems [Müller and Levy, 2019] including transboundary water resources [Müller *et al.*, 2016] and water quality [Sigman, 2005; Keiser and Shapiro, 2019], agricultural water use [Deryugina and Konar, 2017], effects of global trade on water and nutrient use [Dang and Konar, 2018; Dang *et al.*, 2018], and hydrologic consequences of land use change [Levy *et al.*, 2018].

Here we use a natural experiment to attribute hydrologic change in the context of the Ganges Water Agreement between India and Bangladesh [GOB and GoI, 1996]. The agreement was signed in 1996 and allocates Ganges river flow to India and Bangladesh during the dry season when streamflow is essential to both countries [Hossain, 1998]. Dry season streamflow is insufficient to meet the needs of both India and Bangladesh, and future freshwater supply in the region will likely be further threatened due to increasing competition for irrigation supply and increasing abstraction in the upstream watershed [Mukherjee *et al.*, 2018]. The agreement expires in 2026, creating an immediate policy need to evaluate its causal effect on both streamflow and salinity. Such an evaluation is hampered by the

150 complexity and heterogeneity of socio-hydrologic processes throughout the basin and by the
 151 absence of data directly upstream of the diversion. These obstacles make it challenging to
 152 construct a counterfactual, either explicitly from observations (Figure 1a) or based on a fully
 153 calibrated hydrologic model (Figure 1b). Instead, we utilize a natural experiment to infer the
 154 causal effect of the treaty (similar to Figure 1c) by leveraging specific features of the agree-
 155 ment, which preferentially allocates flow to India and Bangladesh in six alternating 10-day
 156 periods, and properties of streamflow, including high autocorrelation in dry season. To illus-
 157 trate the importance of careful treatment of causal relations, we also conduct a naive assess-
 158 ment by estimating the effect of the treaty as the difference in streamflow before and after the
 159 treaty was signed.

160 We use the results from the natural experiment to construct an ensemble of counter-
 161 factual scenarios of streamflow (Sections 2.3) and river salinity (Section 2.4), and evaluate
 162 these outcomes in relation to natural variability (Sections 3.1 and 3.2). We also show that the
 163 naive approach would considerably overestimate the effect of the treaty compared with our
 164 quasi-experimental approach. We conclude by evaluating results and discussing policy im-
 165 plications (Section 4), and contextualizing the potential benefits of natural experiments and
 166 counterfactuals for causal assessment of coupled human-water systems (Section 5).

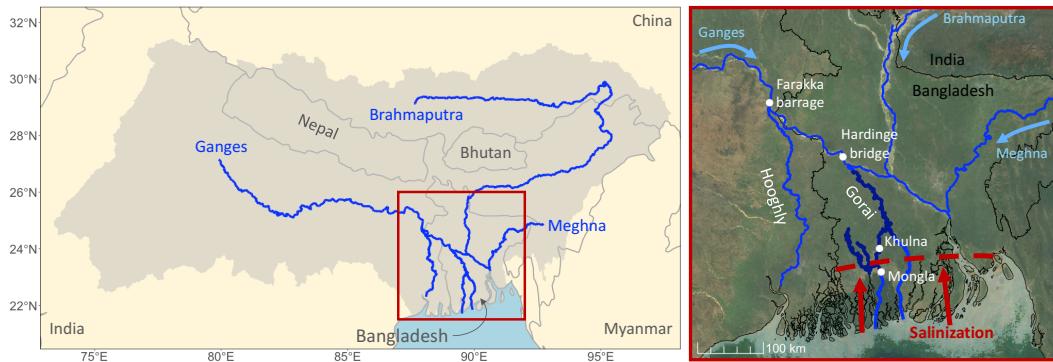
167 2 Methods

168 2.1 The Ganges water sharing agreement

169 The Ganges river originates in the Himalayas of India and Nepal before flowing through
 170 the Gangetic plain and arriving at Farakka barrage, where water is diverted into the Hooghly
 171 distributary which flows south towards Kolkata. The Ganges continues east into Bangladesh,
 172 joining the Brahmaputra and Meghna rivers, and finally discharges into the Bay of Bengal
 173 (Fig. 2). The massive extent of the watershed encompasses considerable social and hydro-
 174 logic complexity spanning multiple cultures and hydrologic regimes, with 600 million people
 175 over an area of 1 million km² and 520 km³ of streamflow per year on average. The hydrology
 176 exhibits strong seasonality, with precipitation and streamflow driven by the summer Mon-
 177soon (June–September) and followed by an extended dry season (January–May).

178 Flow availability in the Ganges is essential in both India and Bangladesh and the trans-
 179 boundary river has been the subject of regional disputes for at least 65 years [Hossain, 1998].
 180 Dry season flow has immediate effects on salinity, health, and economic well-being in both
 181 countries [Hossain, 1998]. In India, flow in the Hooghly has important consequences for
 182 Kolkata including siltation of the port [Ray, 1978] and salinity in drinking water [Ganguly
 183 and Roy, 2018]. In Bangladesh, salinization poses great threats to health and livelihoods of
 184 delta inhabitants [Salehin *et al.*, 2018; Rahman *et al.*, 2019], with much of the population at
 185 risk of hypertension from excessive salt intake [Talukder *et al.*, 2016], agrarian livelihoods
 186 in danger [Mondal *et al.*, 2019], the largest mangrove forest in the world, the Sundarbans,
 187 at risk of disappearance, and salinization strongly associated with forced internal migration
 188 [Chen and Mueller, 2018].

195 Beginning in 1975, a portion of Ganges flow has been diverted at Farakka barrage into
 196 the Hooghly river to de-silt and sustain the port of Kolkata in India [Mirza, 2004]. Operation
 197 of the barrage was governed by temporary agreements through 1988, followed by nearly 10
 198 years absent agreement until the 1996 treaty was signed into effect for a period of 30 years
 199 [Hossain, 1998]. The 1996 treaty (hereafter referred to as *the treaty*) covers the January 1–
 200 May 31 period each year, with specific allocation requirements during six 10-day allocation
 201 periods March 11 – May 10 (Table 1). As the treaty is due for renewal in 2026, a quantita-
 202 tive estimate of the specific (causal) effect of the treaty on historical flow and salinity of the
 203 Ganges is relevant and timely and will inform future predictions.



189 **Figure 2.** Ganges watershed map. (left) The delta receives inflow from the Ganges, Brahmaputra, and
 190 Meghna rivers. (right) Since the 1970s, a portion of Ganges water has been diverted at Farakka barrage into
 191 the Hooghly river. Salinization due to low delta inflow is especially concerning in southwestern Bangladesh.
 192 Data used in this study include streamflow records at Hardinge bridge and salinity records at Khulna and
 193 Mongla stations. Dark blue channels indicate the extent of the HEC-RAS hydrodynamic mixing model
 194 (Section 2.4).

204 **Table 1.** Ganges agreement flow allocation.

Inflow to Farakka	Share of India	Share of Bangladesh
<i>January 1 – May 31 (except allocation periods)</i>		
<70,000 cusec	50%	50%
70,000-75,000 cusec	Remainder	35,000 cusec
>75,000 cusec	40,000 cusec	Remainder
<i>Alternating 10-day allocation periods (March 11 – May 10)</i>		
Bangladesh allocation period	Remainder	35,000 cusec
India allocation period	35,000 cusec	Remainder

A cusec is a cubic feet per second ($0.028m^3s^{-1}$)

2.2 Data Availability

206 At the time of this study, the availability of salinity and streamflow records were sparse,
 207 especially along the main stem of the Ganges. As records of streamflow at Farakka bar-
 208 rage were not available, we relied primarily on streamflow records at Hardinge bridge in
 209 Bangladesh, 160 kilometers downstream of the barrage (Table 2). These daily streamflow
 210 observations were not continuous, and in five years the dry season (January 1–May 31) con-
 211 tained at least 20 consecutive days without any observational data. The remaining years con-
 212 tained a maximum of three consecutive missing days within the dry season. The years with
 213 20 or more consecutive missing days were included in our causal assessment of streamflow,
 214 but removed from the synthetic streamflow dataset (see Section 2.3).

216 We had access to salinity records at Khulna station and six additional stations com-
 217 prising the boundaries to the HEC-RAS model, including Mongla station (Table 2). We had
 218 concerns over data integrity because the data contained unexpected extreme salinity (low or
 219 high) in some years, exhibited a variable relationship between salinity and streamflow, and,
 220 in 2014, salinity at Khulna station (upstream) exceeded salinity at Mongla station (down-
 221 stream). However, these datasets were the only available resource for *in situ* salinity mea-

215

Table 2. Data availability.

Location ¹	Measurement	Availability
Hardinge bridge	Streamflow	1985-2016 ²
Khulna station	Salinity	1988-2017 ³
Mongla station	Salinity	2001-2011 ⁴
HEC-RAS boundaries (5)	Salinity	2014, 2017

¹ All data obtained from the Bangladesh Water Development Board.

² Years 1997, 2001–2003, and 2013 contained 20 or more consecutive missing days in dry season.

³ Missing data from 1990, 1994, 2000, 2004, and 2009–2012.

⁴ Missing data from 2004.

222
223
224
225
226

surements and, in general, they exhibited self consistency such that salinity increased and peaked in dry season and variability was within allowable tolerance. We note that the relationship between salinity and streamflow exhibited a notable change in 2013–2015 (see Section S2, Figure S2). Because this change was unlikely related to the 1996 treaty, we focused our salinity analysis on years prior to 2013 wherever possible.

227

2.3 Causal inference and streamflow counterfactual

In order to generate a counterfactual and assess the effect of the Ganges treaty on streamflow, we employ a natural experimental approach similar to *difference-in-differences* designs used by economists [Angrist and Pischke, 2008] and Before-After-Control-Impact (BACI) studies used by ecologists [Stewart-Oaten *et al.*, 1986; Underwood, 1994]. This approach is used for causal inference in a particular type of natural experiment where a treatment (here, the treaty) is imposed on only one of two comparable groups at a particular point in time [see Angrist and Pischke, 2008; Müller and Levy, 2019]. The causal effect of the treatment ($\Delta X_{treatment}$) is evaluated as:

$$\Delta X_{treatment} = (X_{T,post} - X_{T,pre}) - (X_{C,post} - X_{C,pre}),$$

228
229
230
231
232
233
234
235
236
237
238
239
240

where X is the considered outcome, averaged across observation units, for the treatment (T) and control (C) groups before (pre) and after ($post$) treatment. In effect, the change in the control group ($X_{C,post} - X_{C,pre}$) controls for the change that would have occurred in the treatment group in the absence of treatment. The critical assumption is that observation units in the treatment group would have followed the same *trajectory* as the control group if the treatment had not been applied. This requirement is formalized in the stable unit treatment value assumption (SUTVA), which stipulates two components: (i) no interference among units where the treatment of some units affects the treatment of others, and (ii) no hidden treatments or unobserved variables affecting the potential outcomes of the experimental units. The ideal control would therefore capture all non-random variability and nonstationarity within the system and allow analysis to proceed as if the units of observation were randomly assigned to the treatment or control category, such that the only difference between groups is the effect of the treatment itself.

241
242
243
244
245
246
247
248

To evaluate the Ganges treaty (i.e., the treatment), we assigned daily streamflow records (the evaluated outcome) into treatment and control groups. Flows during allocation periods (March 11–May 10) were assigned to the treatment group to evaluate the average effect of the treaty, and the control group was comprised of streamflow records 20 days before (Feb 19–Mar 10) and after (May 11–May 31) the allocation periods. The SUTVA assumption requires that the March 11 and May 10 dates in the treaty are arbitrary and exogenous, meaning that they are not, themselves, determined by any hydrologic considerations at the relevant time scales. In other words, it should make no difference from a hydrology perspective

249 that the the bounds fall on any particular day around March 11 and May 10. Evidence from
 250 historical negotiations suggests that political considerations (not hydrologic ones) were in-
 251 volved when determining these dates [Hossain, 1998], and streamflow recession analysis indi-
 252 cated similar trajectories of dry-season streamflow before and after the implementation of the
 253 treaty (see SI, Section S1).

254 Formally, we operationalize the difference-in-differences approach and estimate the
 255 effect of the agreement on streamflow with the linear regression

$$\ln Q = \alpha_0 + \alpha_\tau D_\tau + \alpha_\gamma D_\gamma + \alpha_{treat} D_\gamma D_\tau + \varepsilon \quad (1)$$

256 where $\ln Q$ is the logarithm of daily streamflow observations, D_τ is a ‘dummy’ variable
 257 equal to 1 for observations after 1996 (i.e., after the treaty was signed) and 0 otherwise,
 258 D_γ is 1 for observations in the treatment group and 0 for the control group, and ε is the er-
 259 ror term. The regression coefficients represent the intercept (α_0), the Time Effect (α_τ), the
 260 Group Effect (α_γ), and the treatment effect (α_{treat}). We specify two separate regressions
 261 to assess the *causal* effect of the treatment: (1) a specification as described in Equation 1,
 262 and (2) a similar specification that differentiates the effect of the agreement during the India
 263 and Bangladesh allocation periods, so that the group term consists of two dummy variables
 264 ($D_\gamma = \{D_{\gamma,IN}, D_{\gamma,BD}\}$) with distinct regression coefficients. The error term ε in Equation
 265 1 represents regression errors, which we assume are uncorrelated with the treatment but cor-
 266 related within each year. We therefore clustered errors by year, such that the variance co-
 267 variance matrix Σ_{ij} takes a value of σ^2 if i and j were observed during the same year and
 268 0 otherwise. Regression coefficients α_i were estimated using ordinary least squares (OLS)
 269 and clustered standard errors σ^2 using the ‘sandwich’ approach [specifications 1 and 2, see
 270 Williams, 2000]. The causal effect of the treatment on streamflow was assessed by consid-
 271 ering the sign, amplitude, and statistical significance (student-t test) of the regression coeffi-
 272 cient α_{treat} .

273 In order to demonstrate the value of the difference-in-differences causal inference ap-
 274 proach, we estimated the effect of the treaty in two additional regression specifications using
 275 a *naive* approach in which we excluded data from the control period and used only data from
 276 the allocation periods. The regression output in these cases represents a simple comparison
 277 of streamflow before and after the treaty was signed. These regressions included (3) a speci-
 278 fication with only the time effect, $\ln Q = \alpha_0 + \alpha_\tau D_\tau$, and (4) a specification that captured the
 279 before-after comparison in the differentiated group periods, $\ln Q = \alpha_0 + \alpha_\gamma D_\gamma + \alpha_{treat} D_\gamma D_\tau$,
 280 with $D_\gamma = \{D_{\gamma,IN}, D_{\gamma,BD}\}$. These naive specifications 3 and 4 mimic the causal specifi-
 281 cations 1 and 2, respectively, but cannot be used for causal assessment because they do not
 282 account for unobserved drivers through the use of a control.

283 Lastly, we used a similar framework to generate 1000 realizations of synthetic stream-
 284 flow time series with the agreement (the “treated” scenario) and without the agreement (the
 285 “counterfactual” scenario). For this purpose, we defined a fifth regression specification (5)
 286 which included the regression variables from specification (2) as well as year fixed effects
 287 to control for interannual climate variations, and quadratic calendar days to control for sea-
 288 sonal variability. The latter was modeled as a parabola that captures the stream recession in
 289 dry season and recovery at the beginning of wet season. Because the focus is now on pre-
 290 diction, these added controls increase prediction accuracy while preserving the causal infer-
 291 ence results from the (more parsimonious) specification (2). Coefficients from specification
 292 (5) were estimated using generalized least squares with cluster-robust standard errors at the
 293 annual level [Cameron *et al.*, 2011]. Coefficient estimates were then used to generate 1000
 294 random realizations of synthetic streamflow timeseries at Hardinge bridge, with the agree-
 295 ment ($\{\alpha_{treat,IN}, \alpha_{treat,BD}\} \neq 0$) and without the agreement ($\{\alpha_{treat,IN}, \alpha_{treat,BD}\} = 0$) (see
 296 Appendix A for details). These two ensembles excluded years with 20 or more consecutive
 297 missing days (Table 2). We used both ensembles of synthetic streamflow time series as in-
 298 puts to the salinity model to assess the effect of the agreement on river salinity (Section 2.4).

299 **2.4 Salinity model and counterfactual**

300 The difference-in-differences approach taken for streamflow (Section 2.3) was not
 301 amenable to salinity because we were unable to identify an adequate control period that
 302 would adhere to SUTVA. River salinity in the delta accumulates throughout the dry season,
 303 so that salinity on any given day is the cumulative effect of complex mixing processes within
 304 the delta over the course of the dry season. Selecting an adequate control would be neces-
 305 sary to adhere to the “no hidden treatments” assumption of SUTVA, but selection of such
 306 a control would likely violate the “no interference” assumption because the rate of salinity
 307 accumulation depends on both streamflow levels and salinity gradients, which complicates
 308 any definition of treatment and control groups. For these reasons, we utilized a more conven-
 309 tional predictive inference approach to understand the effect of the treaty on salinity, build-
 310 ing a HEC-RAS transport model [USACE, 2016] to simulate salinity within a portion of the
 311 delta. This approach relies on the intuition that the Ganges treaty *only* affected river salinity
 312 through its effect on streamflow. The cost of such an approach is that we must assume that
 313 the model sufficiently captures the dynamic processes and boundary conditions that affect
 314 salinity so that the model is accurate even when applied to the hypothetical counterfactual
 315 scenarios.

316 The natural experimental approach for streamflow and the predictive inference ap-
 317 proach for salinity were complimentary. The synthetic streamflow data generated from re-
 318 gression specification (5) were used to generate synthetic salinity within the delta, and both
 319 synthetic datasets (streamflow and salinity) were necessary boundary conditions for the
 320 HEC-RAS model. We used a one-dimensional mixing model to generate the synthetic salin-
 321 ity data from streamflow data. The model included discharge and first order exchange to sim-
 322 ulate salinity concentration (C) at Khulna station (where salinity data is available) as a func-
 323 tion of streamflow at Hardinge Bridge (Q_H):

$$\frac{dC}{dt} = -aQ_H C + be^{-dQ_H}(C_D - C), \quad (2)$$

324 where $C_D = 35\text{ppt}$ is downstream (ocean) salinity and parameters a , b , and d are calibra-
 325 tion constants. The two terms on the right-hand side of the equation represent discharge and
 326 first order exchange, respectively. The exchange term be^{-dQ_H} decreases (or increases) with
 327 higher (or lower) streamflow as the channel becomes dominated by inflow (or tidal oscilla-
 328 tions).

329 The mixing model was calibrated on Khulna salinity across all years through 2008 in
 330 which data were available and nearly continuous, both for streamflow at Hardinge bridge and
 331 salinity at Khulna station (Table 2). Our calibration therefore captures the period in which
 332 dredging of Gorai channel was initiated [beginning in 1998, *de Groot and van Groen*, 2001],
 333 but not any changes in the relationship between Hardinge streamflow and Khulna salinity oc-
 334 ccurring after 2008 (see Section 2.2). The physical model was validated using a leave-one-out
 335 approach across the same years used for calibration (see Section S2 for details). The vali-
 336 dated physical model was forced by the ensembles of synthetic streamflow (treated and coun-
 337 terfactual) to simulate corresponding ensembles of salinity at Khulna, and these ensembles
 338 were extrapolated to salinity at the boundaries of the HEC-RAS domain (Appendix B).

339 The HEC-RAS model was calibrated manually in two steps, using only observed data
 340 from 2014 and 2017 (see Section S3 and Figure S3 for further details). The hydrodynamic
 341 model was first calibrated by fitting Manning’s roughness coefficient using observed water
 342 level in the Gorai channel (see Fig. 2), with a reasonable Nash Sutcliffe Efficiency (NSE=0.81).
 343 The dispersal coefficient of the salinity mixing model was then calibrated using observed
 344 salinity data at Khulna station (NSE=0.82). These calibrated coefficients were used to simu-
 345 late the spatial and temporal distribution of salinity, as forced by the ensemble-median real-
 346 ization of synthetic streamflow and salinity for the treaty and counterfactual scenarios.

347 **3 Results**348 **3.1 Causal effect of the agreement on streamflow**

349 Table 3 reports the regression results describing the effect of the Ganges treaty on
 350 streamflow, with columns 1–2 corresponding to the causal difference-in-differences regres-
 351 sion specifications, columns 3–4 corresponding to the naive specifications, and column 5 cor-
 352 responding to the specification used to generate synthetic data, as described in Section 2.3.
 353 The effect of the treaty is captured by the Treatment Effect, except in column 3 which eval-
 354 uates the effect of the treaty as the post-treaty Time Effect. Because the dependent variable
 355 was specified as $\ln Q$, the estimated coefficient for each effect can be interpreted as a percent
 356 change (divided by 100) in streamflow during the considered period due to the treaty.

357 The Ganges treaty resulted in an $8.2 \pm 7.4\%$ (Mean \pm Standard error) increase (statisti-
 358 cally insignificant) in streamflow in the combined allocation periods (Table 3, Column 1).
 359 When differentiating between India and Bangladesh allocation periods, the treaty produced
 360 an $18.5 \pm 7.6\%$ increase (statistically significant) in the Bangladesh periods and a $-1.6 \pm 8.5\%$
 361 decrease (statistically insignificant) in streamflow in the India periods (Column 2). The ef-
 362 fect of the treaty is similar in the regression with fixed effects (Column 5). This suggests that
 363 our results are robust to interannual (e.g., climate driven) streamflow variability. By com-
 364 parison, the naive approach exaggerates the effect of the treaty, estimating a 36% increase in
 365 streamflow in the combined allocation periods (Column 3) and 46% and 26% increases in
 366 the Bangladesh and India allocation periods, respectively (Column 4).

367 In specifications 1 and 2, the Time Effect corresponds to the increase in streamflow
 368 in the control period before and after the treaty was signed. In other words, streamflow in-
 369 creased by $27.8 \pm 10.9\%$ (statistically significant) in the control period, which explains the
 370 discrepancy between the causal and naive estimates. The naive specifications estimate the *net*
 371 change in streamflow in the allocation periods before and after the treaty, whereas the causal
 372 specifications estimate the change in streamflow *relative* to the control (e.g., $46.3\% - 27.8\%$
 373 $= 18.5\%$ increase in the Bangladesh allocation period). The increase in streamflow during
 374 the control period reflects the non-stationary hydrology of the river and has important impli-
 375 cations for the interpretation of results, which we discuss further in Section 4.1.

376 In both causal specifications (Table 3, columns 1–2), the Group Effect (α_g) was neg-
 377 ative. This is consistent with the decline in streamflow during the allocation periods which
 378 coincided with the driest part of the year. The group effect is diminished when fixed effects
 379 are included (Column 5), because the inclusion of Day and Day² captures most of the dry
 380 season recession and recovery of the hydrograph.

382 The regression specification with fixed effects (Table 3, Column 5) was used to gener-
 383 ate synthetic streamflow with the agreement (“treated” scenario) and without the agreement
 384 (“counterfactual” scenario). Synthetic streamflow reproduced observed intra-annual stream-
 385 flow variability with an R^2 coefficient of 0.75, suggesting that the model captures the most
 386 relevant sources of variability. The synthetic 95% prediction interval contained nearly all ob-
 387 servations (see Figure 3, blue). Similarly, the synthetic counterfactual data (without treaty)
 388 reproduced observed streamflow variability outside of the allocation periods (Figure 3, red).
 389 The regression model used to generate synthetic streamflow explicitly captured interannual
 390 climate variations by controlling for year fixed effects (Figure 4). As a consequence, syn-
 391 thetic flow data reproduced annual flow volumes during the Bangladesh and India allocation
 392 periods (Figure 4, blue line vs. black dots). In contrast, counterfactual (without treaty) flows
 393 clearly deviated from observations during the Bangladesh allocation periods (Figure 4, red
 394 line vs. black dots), indicating the effect of the treaty. Note that these deviations were greater
 395 when observed streamflow was lower, highlighting that the minimum allocation requirement
 396 in the agreement had the strongest effect in the driest years. Results also suggest that the net
 397 effect of the agreement (given by the difference between long-term mean values of the syn-

Table 3. Linear regressions: Effect of the Ganges treaty on downstream flow.

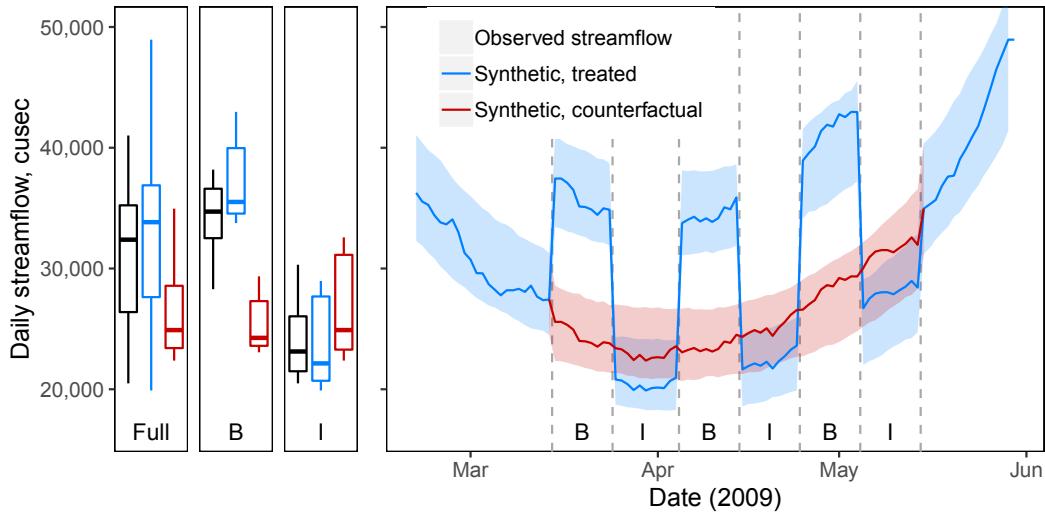
		Dependent variable:				
		Log streamflow at Hardinge Bridge (Bangladesh)				
		Causal		Naive		Synthetic
		(1)	(2)	(3)	(4)	(5)
Treatment Effect (Ganges treaty)	BD Alloc. Period		0.185** (0.076)		0.463*** (0.131)	0.208*** (0.074)
	IN Alloc. Period		-0.016 (0.083)		0.262* (0.146)	-0.001 (0.082)
	Combined	0.082 (0.074)				
Group Effect	BD Alloc. Period			-0.343*** (0.065)		-0.086* (0.051)
	IN Alloc. Period			-0.297*** (0.069)	0.045** (0.019)	-0.082 (0.054)
	Combined		-0.320*** (0.066)			
Time Effect	(post-treaty)	0.278** (0.109)	0.278** (0.109)	0.360*** (0.136)		0.816*** (0.044)
Intercept		6.855*** (0.091)	6.855*** (0.091)	6.536*** (0.115)	6.513*** (0.118)	8.420*** (0.232)
Covariates		None	None	None	None	Fixed effects [‡]
Observations		2,623	2,623	1,616	1,616	2,623
R ²		0.215	0.226	0.163	0.181	0.750

Note:

*p<0.1; **p<0.05; ***p<0.01

Standard errors were clustered by year in all regressions

[‡]Regression covariates included fixed effects for year, day, day²



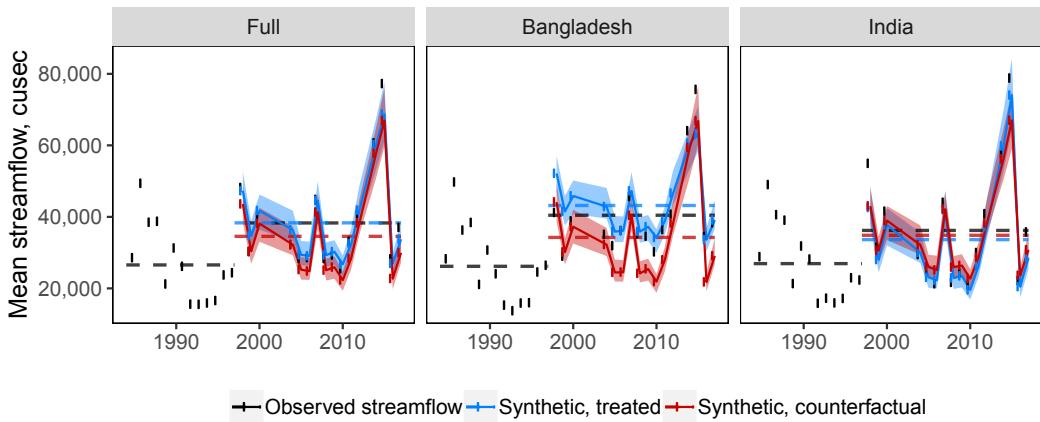
400 **Figure 3.** Dry season streamflow timeseries at Hardinge bridge in 2009. The shaded areas indicate 95%
 401 prediction intervals around daily streamflow. The high and low 10-day periods follow the 10-day allocation
 402 periods alternating between India and Bangladesh. Boxplots show within-year variability of daily data during
 403 the full March 11–May 10 period and for Bangladesh and India allocation periods, respectively.

398 synthetic streamflow with and without the agreement) was notably smaller than the variability in
 399 annual streamflow (Figure 4).

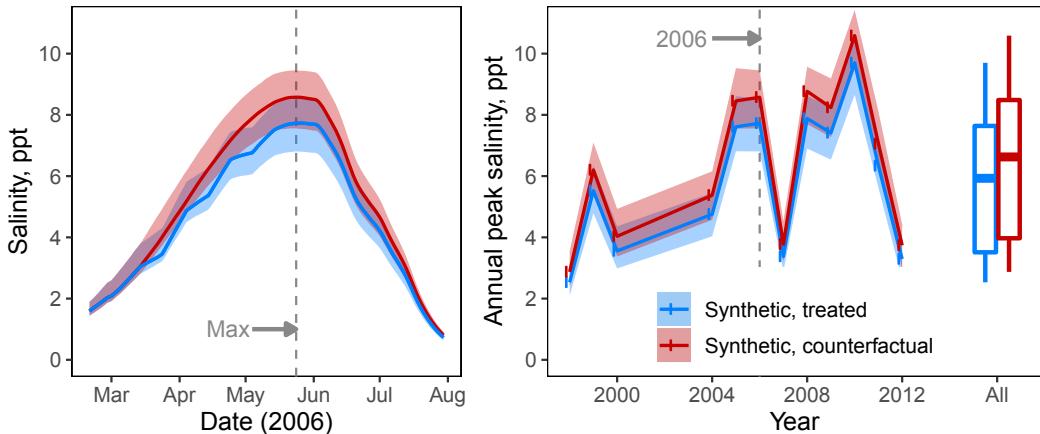
408 3.2 Causal effect of the agreement on salinity

409 Synthetic flows with the agreement gave rise to salinity levels that were smaller than
 410 those caused by counterfactual synthetic flows (without the agreement). The agreement re-
 411 duced salinity levels by 9.8% for the entire allocation period (March 11–May 10), and by
 412 13.1% at the end of the allocation periods (May 10). The absolute reductions in salinity were
 413 considerably larger when salinity was higher. These reductions resulted primarily from the
 414 slower rate of salinity intrusion during Bangladesh allocation periods. Although the allo-
 415 cation periods ended May 10, salinity typically peaked May 22–25 (Figure 5a). Similar to
 416 streamflow, the average effect of the agreement (10%) was considerably smaller than the
 417 overall interannual variability of peak salinity (Figure 5b).

418 The HEC-RAS model highlighted intra-annual and interannual variability in salin-
 419 ity intrusions from the Bay of Bengal (Figure 6). Freshwater discharge, (given by salinity
 420 ≤ 1 ppt) extended fully into the delta at the beginning of the treaty period, but receded con-
 421 siderably into the Gorai channel during the allocation periods. Brackish water (salinity=2
 422 ppt) exhibited similar behavior, with sharp salinity gradients towards the end of dry season.
 423 An indicative drinking water salinity limit of 5 ppt intruded upstream of Khulna at the end
 424 of the allocation period and even further on the date of maximum intrusion (note that there
 425 is no official salinity guideline for drinking water [Rahman *et al.*, 2019]). The effect of the
 426 agreement on intrusion distance was small compared with the interannual variability in the
 427 allocation period and subsequent date of maximum intrusion (Figure 6b).



404 **Figure 4.** Dry season streamflow at Hardinge bridge including the annual average of daily flow from (a)
 405 the full period Mar 10–May 10, (b) Bangladesh allocation periods, and (c) India allocation periods. The thick
 406 dashed lines represent the long-term mean and shaded ribbons indicate the annual mean of the 95% daily
 407 prediction interval.



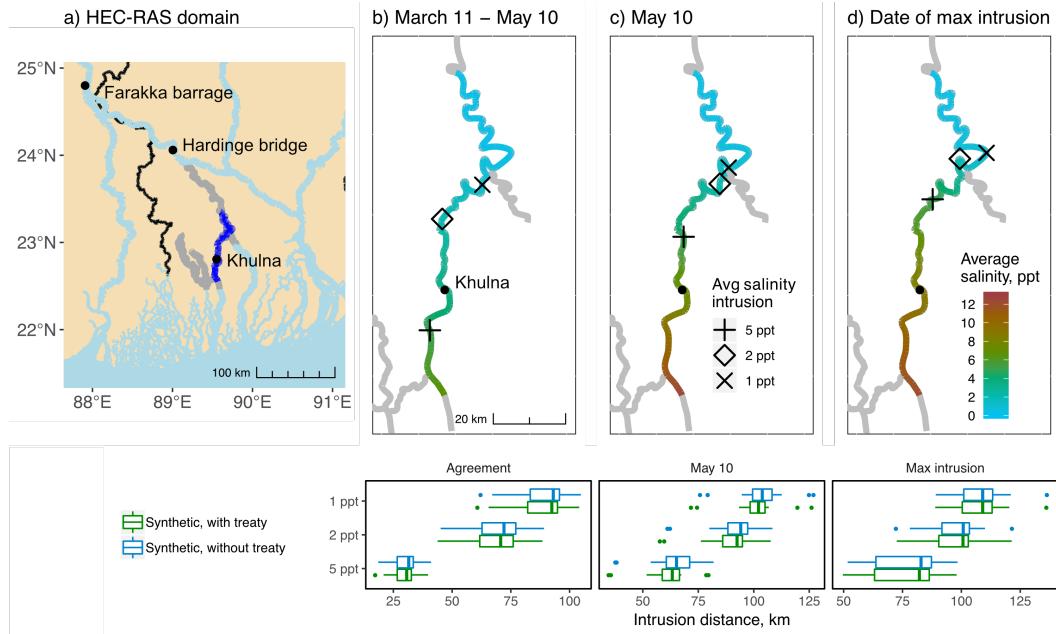
418 **Figure 5.** Delta salinization at Khulna station, with (treated) and without (counterfactual) the agreement.
 419 The change in salinity due to the agreement was less than natural variability, but greater when salinity was
 420 high due to low streamflow.

437 4 Discussion

438 4.1 Endogeneity and causal inference

439 Careful consideration of causal inference in an empirical context is necessary to isolate
 440 the effect of the agreement from potential confounding sources of hydrologic change. The
 441 effect of the treaty cannot be estimated by simply comparing streamflow before and after the
 442 treaty because any changes could be caused by confounding factors not associated with the
 443 treaty, such as precipitation or land use change. Indeed, such a naive approach overestimates
 444 the effect of the treaty by 28%, which is the change in streamflow within the control period.

445 The critical challenge to our empirical approach was the identification of an appropri-
 446 ate control period such that the control and treatment groups would have followed similar
 447 trajectories in the absence of the treaty in order to meet the criteria of SUTVA. The “no in-



431 **Figure 6.** Maps of delta salinization (top) and boxplots of salinity intrusion distance (bottom). (a)
432 HEC-RAS model domain (gray) and location of salinity profile maps (dark blue) situated in the Ganges-
433 Brahmaputra-Meghna delta. (b) Average salinity during the allocation period, Mar 11–May 10, including
434 intrusion of freshwater (1 ppt), brackish water (2 ppt), and suggested upper bound for drinking water (5 ppt).
435 (c) Average salinity at the end of the agreement period, May 10. (d) Average salinity on the date of maximum
436 intrusion.

448 “terference” assumption is realized through clustering of daily streamflow observations within
449 each year. The “no hidden treatments” assumption is affirmed by two arguments: (i) we as-
450 sume India acts in its own interest and does not unnecessarily suppress its streamflow allo-
451 cation at the start of dry season, which is supported by (ii) comparable dry season recession
452 constants before and after the treaty, indicating similar diversion rates by India in the dry sea-
453 son before the allocation periods (i.e., January 1–March 10, see Table S2). The finding that
454 dry season streamflow increased *independent* of the treaty is further justified by the fact that
455 streamflow increased in both November and December by 37% (Table S1), *outside* the period
456 governed by the treaty (January 1–May 31). The statistically significant increase in stream-
457 flow in the control period since the signing of the treaty (Time effect in Table 3, columns 1–
458 2) likely results from an observed increase in precipitation in October and earlier snowmelt
459 in May, both of which are unrelated to the treaty. In other words, the control period functions
460 exactly as it should by isolating the agreement from other unobserved, nonstationary hydro-
461 logic processes.

462 4.2 Data scarcity and non-stationarity

463 Empirical assessment of salinity in this scenario is impractical due to limited availabil-
464 ity of high-integrity data, pushing us towards a modeling approach to assess the causal effect
465 of the treaty on salinity. The parsimonious salinity model attributed a 10% decrease in salin-
466 ity to the agreement and the HEC-RAS model predicted a small decrease in salinity intrusion
467 distances. Using streamflow to model the effect of the agreement on salinity was complicated
468 by multiple challenges. The available data were sparse and irregularities within the dataset
469 suggested possible concerns with data integrity which we were forced to accept because of
470 lack of alternatives. Additionally, predictions are challenged by the fact that the Ganges delta

471 is in constant flux due to erosion, sedimentation, and other anthropogenic processes includ-
 472 ing dredging, land use change, groundwater pumping, and aquaculture practices [e.g., see
 473 *Rahman et al.*, 2019; *Mondal et al.*, 2019].

474 In particular, validation of the mixing model (Section S2) suggests a nonstationary
 475 relationship between streamflow at Hardinge bridge and salinity at Khulna station, most no-
 476 ticeable after 2013 (Figure S2). We exclude these years from our analysis but note the likeli-
 477 hood of non-negligible interannual variability in other years and the fact that the only avail-
 478 able calibration data for five of the HEC-RAS boundaries came from 2014, a year in which
 479 high salinity at Khulna station exceeded downstream salinity at Mongla station. Although
 480 this increase could have been influenced by a variety of factors, understanding the causes
 481 of this variability is nonessential and the most important factor for the purpose of estimat-
 482 ing the effect of the treaty is that we have adequately reproduced the effect of streamflow at
 483 Hardinge bridge on salinity within the delta. In this regard, our analyses indicate a reason-
 484 able fit between the model and predictions (see Section S2) suggesting that we adequately
 485 capture the signal of the agreement even if we do not reproduce the observed variability of
 486 salinity. Lastly, there is a possibility that our need to attenuate salinity at the HEC-RAS do-
 487 main boundaries could have resulted in an underestimate of the effect on salinity within the
 488 HEC-RAS model, meaning that the results for salinity could be slightly conservative.

489 4.3 Policy implications

490 The agreement alone is unlikely to resolve the issue of salinization because there is not
 491 enough streamflow in dry season to prevent salinity intrusion in both the Hooghly and Gorai
 492 distributaries, especially in dry years. The effect of the agreement is considerably smaller
 493 than natural variability in the system, meaning that excessive salinity in some years will be
 494 followed by tolerable salinity in other years. Nevertheless, the agreement plays an important
 495 but non-dominant role in reducing salinity in the delta despite the fact that the agreement was
 496 not specifically designed to minimize salinization.

497 In the context of the expiration of the current agreement in 2026, upcoming negotia-
 498 tions should carefully consider the effect of the agreement on future salinity within the delta.
 499 From a research perspective, it will be very important to understand (i) how the agreement
 500 affects flow availability in conjunction with variable and nonstationary streamflow at Farakka
 501 barrage, (ii) the relationship between flow allocation and downstream salinity, and (iii) the ef-
 502 fect of variability of streamflow and other hydrologic processes on salinity levels in the delta.
 503 The lack of available data to evaluate such relationships presents multiple methodological
 504 challenges. The research herein presents a solution to some of these challenges, but further
 505 research on (i-iii) guided by our work should be conducted to provide information to negotia-
 506 tors as they prepare to extend or re-negotiate the current agreement.

507 5 Conclusions

508 We estimated the causal effect of a policy change (the Ganges water treaty) on stream-
 509 flow and salinity in a data-limited environment through the use of a natural experiment and
 510 synthetic counterfactual scenarios. Our analyses produced three main findings pertaining to
 511 the Ganges water treaty: (i) the treaty increased streamflow in Bangladesh during Bangladesh
 512 allocation periods by 18%, (ii) the increased streamflow produced a 10% decline in channel
 513 salinity in the delta, and (iii) the salinity intrusion distance was slightly reduced but natural
 514 variability greatly exceeded the effect of the treaty. Future research should explore how the
 515 agreement could be modified to better achieve the objectives of both countries in terms of
 516 flow availability and water quality.

517 The use of natural experiments is common in other disciplines (e.g., economics and
 518 ecology) but has rarely been applied within hydrologic sciences. The value of this approach
 519 can be understood by comparison with more conventional approaches to causal assessment

520 in hydrology. Indeed, before settling on this methodology, we considered multiple alternative
 521 approaches to generating a counterfactual and assessing the effect of the Ganges treaty on
 522 streamflow. For instance, we could have used a naive comparison of streamflow before and
 523 after the agreement but, as we show, such an approach would have greatly exaggerated the ef-
 524 fect of the treaty on streamflow. We had hoped to utilize direct observations of flow upstream
 525 and downstream of Farakka barrage, but were unable to obtain the necessary upstream data.
 526 We also considered using a hydrologic model to simulate streamflow in the Ganges river,
 527 but we had concerns about using such a large scale model to simulate dry season streamflow
 528 in the absence of calibration data upstream of Farakka barrage. In other words, the natural
 529 experiment we describe for assessing streamflow provided a solution where other, more com-
 530 mon approaches would have had considerable shortcomings.

531 Accelerating interdependencies between society and hydrology create an imperative
 532 to understand the relationships between humans and water, including causal mechanisms
 533 driving change within and across systems. The predominant methodological approaches in
 534 hydrology sometimes fall short because of limitations of hydrologic modeling or scarcity of
 535 data [Clark *et al.*, 2015], and new empirical approaches are needed to assess nonstationarity
 536 in complex human-water systems. Studies that emphasize the use of natural experiments
 537 show considerable promise and can be assimilated with commonly accepted approaches in
 538 hydrology [e.g., observation and simulation, Müller *et al.*, 2017] as well as other approaches
 539 to causal assessment [e.g., the method of multiple hypotheses, Srinivasan *et al.*, 2015; Penny
 540 *et al.*, 2018]. Paradigms from causal inference that emphasize empirical design and analysis
 541 present a useful alternative for hydrologists to evaluate and attribute change.

542 A: Generating synthetic streamflow ensembles

543 Generating synthetic ensembles of streamflow at Hardinge bridge required a model
 544 that captured properties of the variability and autocorrelation of streamflow. Synthetic log-
 545 transform daily flows were drawn from the following distribution:

$$\ln Q \sim \mathcal{N}(\ln \hat{Q}, \Sigma_{GLS}), \quad (\text{A.1})$$

546 where $\mathcal{N}(\cdot, \cdot)$ designates the normal distribution and $\ln \hat{Q}$ are deterministic predictions of the
 547 linear model in Equation 1 with and without ($\alpha_{treat} \equiv 0$) the treaty. The variance-covariance
 548 matrix Σ_{GLS} captures the serial correlation of streamflow at the daily time scale but neglects
 549 correlations at the interannual time scale:

$$\Sigma_{ij} = \begin{cases} \sigma^2 \rho^{|i-j|} & \text{if } i \text{ and } j \text{ observed in same year} \\ 0 & \text{otherwise} \end{cases}$$

550 The variance σ^2 , autocorrelation coefficient ρ , and regression coefficients α_i used to gener-
 551 ate synthetic streamflow were jointly estimated using generalized least squares (GLS). The
 552 GLS-estimated coefficients were finally used to generate an ensemble of 1,000 instances of
 553 synthetic streamflow time series for the 1985–2016 period, and a corresponding counterfac-
 554 tual without the treaty ($\alpha_{treat} \equiv 0$) using the model in Equation A.1.

555 B: Extrapolation to HEC-RAS domain boundaries

556 We assumed that salinity C evolves linearly along stream reaches ($C = ax + b$, where
 557 x is a distance along the stream) to obtain salinity at the six HEC-RAS model boundaries.
 558 We smoothed salinity at Khulna and Mongla station using a 30-day moving average, and then
 559 using a first-order linear regression to calibrate the coefficients (a, b) for each day. The coef-
 ficients were used to translate daily salinity at Khulna station to Mongla station, attenuating
 high salinity to ensure no values exceeded ocean salinity (35 ppt). We then translated salin-
 ity at Mongla to each of the other five HEC-RAS boundaries following the same approach
 but with a fixed ratio (i.e., $b = 0$). The simulated boundary salinity datasets (treated and

560 counterfactual) were then used as time-varying boundary conditions in the HEC-RAS model.
561 We validated this approach by comparing the original synthetic salinity at Khulna with the
562 HEC-RAS model output at Khulna, with sufficient agreement ($R^2=0.71$). We also attempted
563 calibrating Mongla station using a fixed ratio ($C = ax$), but this led to considerable over-
564 estimates of salinity. Allowing a non-zero intercept ($b \neq 0$) dampened the the effect of the
565 agreement but more accurately reproduced observed salinity at Mongla station.

566 **Acknowledgments**

567 This research has been conducted under a collaborative project between Bangladesh
568 University of Engineering and Technology (BUET) and the University of Notre Dame, USA.
569 Funding from the Keough School of Global Affairs, the Notre Dame Environmental Change
570 Initiative, and Notre Dame Research is acknowledged. Penny, Bolster, and Müller acknowl-
571 edge support from National Science Foundation under Grant No. ICER 1824951. Stream-
572 flow and salinity data used in this study are available for purchase from the Bangladesh Wa-
573 ter Development Board.

574 **References**

575 Angrist, J. D., and J.-S. Pischke (2008), *Mostly harmless econometrics: An empiricist's companion*, Princeton university press.

576 Beven, K. (2006), A manifesto for the equifinality thesis, *Journal of Hydrology*, 320(1-2), 18–36, doi:10.1016/j.jhydrol.2005.07.007.

577 Beven, K. (2012), Causal models as multiple working hypotheses about environmental processes, *Comptes Rendus Geoscience*, 344(2), 77–88, doi: <https://doi.org/10.1016/j.crte.2012.01.005>.

578 Brown, A. E., L. Zhang, T. A. T. A. McMahon, A. W. Western, and R. A. Vertessy (2005), A review of paired catchment studies for determining changes in water yield resulting from alterations in vegetation, *Journal of Hydrology*, 310(1-4), 28–61, doi: 10.1016/j.jhydrol.2004.12.010.

579 Cameron, A. C., J. B. Gelbach, and D. L. Miller (2011), Robust inference with multiway clustering, *Journal of Business & Economic Statistics*, 29(2), 238–249.

580 Ceola, S., F. Laio, and A. Montanari (2019), Global scale human pressure evolution imprints on sustainability of river systems, *Hydrology and Earth System Sciences Discussions*, (May), 1–20, doi:10.5194/hess-2019-227.

581 Chen, J., and V. Mueller (2018), Coastal climate change, soil salinity and human migration in Bangladesh, *Nature Climate Change*, 8(11), 981–985, doi:10.1038/s41558-018-0313-8.

582 Clark, M. P., Y. Fan, D. M. Lawrence, J. C. Adam, D. Bolster, D. J. Gochis, R. P. Hooper, M. Kumar, L. R. Leung, D. S. Mackay, R. M. Maxwell, C. Shen, S. C. Swenson, and X. Zeng (2015), Improving the representation of hydrologic processes in Earth System Models, *Water Resources Research*, doi:10.1002/2015WR017096.

583 Dang, Q., and M. Konar (2018), Trade openness and domestic water use, *Water Resources Research*, 54(1), 4–18.

584 Dang, Q., M. Konar, and P. Debaere (2018), Trade openness and the nutrient use of nations, *Environmental Research Letters*, doi:10.1088/1748-9326/aaebcb.

585 de Groot, J. K., and P. van Groen (2001), The Gorai: Re-excavation project, *Terra et Aqua*.

586 Deryugina, T., and M. Konar (2017), Impacts of crop insurance on water withdrawals for irrigation, *Advances in Water Resources*, doi:10.1016/j.advwatres.2017.03.013.

587 Ehret, U., H. V. Gupta, M. Sivapalan, S. V. Weijs, S. J. Schymanski, G. Blöschl, A. N. Gelfan, C. Harman, A. Kleidon, T. A. Bogaard, D. Wang, T. Wagener, U. Scherer, E. Zehe, M. F. P. Bierkens, G. Di Baldassarre, J. Parajka, L. P. H. Van Beek, A. Van Griensven, M. C. Westhoff, and H. C. Winsemius (2014), Advancing catchment hydrology to deal with predictions under change, *Hydrology and Earth System Sciences*, 18(2), 649–671, doi:10.5194/hess-18-649-2014.

588 Ferraro, P. J., J. N. Sanchirico, and M. D. Smith (2019), Causal inference in coupled human and natural systems, *Proceedings of the National Academy of Sciences*, 116(12), 5311–5318, doi:10.1073/pnas.1805563115.

589 Ganguly, D., and S. Roy (2018), Water-supply alarm in rising salinity of Hooghly.

590 Gleeson, T., L. W. Erlandsson, S. C. Zipper, M. Porkka, F. Jaramillo, D. Gerten, I. Fetzer, S. E. Cornell, L. Piemontese, L. Gordon, T. Oki, M. Sivapalan, Y. Wada, K. A. Brauman, M. F. P. Bierkens, B. Lehner, P. Keys, M. Kummu, S. Dadson, T. J. Troy, W. Steffen, M. Falkenmark, J. S. Famiglietti, O. Sciences, S. R. Centre, G. Science, U. States, S. P. Road, M. Building, and C. Gifford (2019), The water planetary boundary: a roadmap to illuminate water cycle modifications in the Anthropocene, *Water Resources Research*.

591 GOB, and GoI (1996), Treaty between the Government of the People's Republic of Bangladesh and the Government of the Republic of India on sharing of the Ganges water at Farakka, *Tech. rep.*, The Government of the People's Republic of Bangladesh and The Government of the Republic of India, Dhaka.

592 Gupta, H. V., C. Perrin, G. Blöschl, A. Montanari, R. Kumar, M. Clark, and V. Andréassian (2014), Large-sample hydrology: A need to balance depth with breadth, *Hydrology and Earth System Sciences*, 18(2), 463–477, doi:10.5194/hess-18-463-2014.

627 Hossain, I. (1998), Bangladesh-India relations: The ganges water-sharing treaty and beyond,
 628 *Asian Affairs: An American Review*, 25(3), 131–150, doi:10.1080/00927679809601449.

629 Hrachowitz, M., H. H. G. Savenije, G. Blöschl, J. J. McDonnell, M. Sivapalan, J. W.
 630 Pomeroy, B. Arheimer, T. Blume, M. P. Clark, U. Ehret, F. Fenicia, J. E. Freer, A. Gelfan,
 631 H. V. Gupta, D. A. Hughes, R. W. Hut, A. Montanari, S. Pande, D. Tetzlaf, P. A. Troch,
 632 S. Uhlenbrook, T. Wagener, H. C. Winsemius, R. A. Woods, E. Zehe, C. Cudennec, and
 633 Others (2013), A decade of Predictions in Ungauged Basins (PUB)—a review, *Hydrological sciences journal*, 58(6), 1198–1255, doi:10.1080/02626667.2013.803183.

634 Keiser, D. A., and J. S. Shapiro (2019), Consequences of the clean water act and the demand
 635 for water quality, *Quarterly Journal of Economics*, doi:10.1093/qje/qjy019.

636 Levy, M., A. Lopes, A. Cohn, L. Larsen, and S. Thompson (2018), Land use change in-
 637 creases streamflow across the arc of deforestation in brazil, *Geophysical Research Letters*,
 638 45(8), 3520–3530.

639 Lewis, D. (1973), *Counterfactuals*, Harvard University Press, Cambridge, MA.

640 Lewis, D. (2004), Causation as influence, *The Journal of Philosophy*, 97(4), 182–197.

641 Mirza, M. (2004), *The Ganges water diversion: Environmental effects and Implications*, 373
 642 pp., Kluwer Academic Publishers, Dordrecht / Boston / London.

643 Mondal, S. M., M. T. Islam, D. Saha, M. S. S. Hossain, P. K. Das, and R. Rahman (2019),
 644 Agricultural Adaptation Practices to Climate Change Impacts in Coastal Bangladesh, in
 645 *Confronting Climate Change in Bangladesh*, pp. 7–21, Springer, Cham, doi:10.1007/978-
 646 3-030-05237-9_2.

647 Montanari, A., G. Young, H. Savenije, D. Hughes, T. Wagener, L. Ren, D. Koutsoyan-
 648 nis, C. Cudennec, E. Toth, S. Grimaldi, G. Blöschl, M. Sivapalan, K. Beven, H. Gupta,
 649 M. Hipsey, B. Schaeffli, B. Arheimer, E. Boegh, S. Schymanski, G. Di Baldassarre, B. Yu,
 650 P. Hubert, Y. Huang, A. Schumann, D. Post, V. Srinivasan, C. Harman, S. Thompson,
 651 M. Rogger, A. Viglione, H. McMillan, G. Characklis, Z. Pang, and V. Belyaev (2013),
 652 “Panta Rhei—Everything Flows”: Change in hydrology and society—The IAHS Sci-
 653 entific Decade 2013–2022, *Hydrological Sciences Journal*, 58(6), 1256–1275, doi:
 654 10.1080/02626667.2013.809088.

655 Mukherjee, A., S. N. Bhanja, and Y. Wada (2018), Groundwater depletion causing reduction
 656 of baseflow triggering Ganges river summer drying, *Scientific Reports*, 8(1), 12,049, doi:
 657 10.1038/s41598-018-30246-7.

658 Müller, M., and S. Thompson (2019), A value-based model selection approach for environ-
 659 mental random variables, *Water Resources Research*, 55(1), 270–283.

660 Müller, M. F., and M. C. Levy (2019), Complementary vantage points: integrating hydrology
 661 and economics for sociohydrologic knowledge generation, *Water Resources Research*, doi:
 662 10.1029/2019WR024786.

663 Müller, M. F., J. Yoon, S. M. Gorelick, N. Avisse, and A. Tilmant (2016), Impact of the Syr-
 664 ian refugee crisis on land use and transboundary freshwater resources, *Proceedings of the*
 665 *National Academy of Sciences*, 113(52), 14,932–14,937, doi:10.1073/pnas.1614342113.

666 Müller, M. F. M. F., M. C. M. C. Müller-Itten, and S. M. Gorelick (2017), How Jordan and
 667 Saudi Arabia are avoiding a tragedy of the commons over shared groundwater, *Water Re-
 668 sources Research*, 53(7), 5451–5468, doi:10.1002/2016WR020261.

669 Pande, S., and M. Sivapalan (2016), Progress in socio-hydrology: a meta-analysis of chal-
 670 lenges and opportunities, *Wiley Interdisciplinary Reviews: Water*, 4(4), e1193, doi:
 671 10.1002/wat2.1193.

672 Penny, G., and J. Goddard (2018), Resilience principles in socio-hydrology: A case-study
 673 review, *Water Security*, 4-5, doi:10.1016/j.wasec.2018.11.003.

674 Penny, G., V. Srinivasan, I. Dronova, S. Lele, and S. Thompson (2018), Spatial characteriza-
 675 tion of long-term hydrological change in the Arkavathy watershed adjacent to Bangalore,
 676 India, *Hydrology and Earth System Sciences*, 22, 595–610, doi:10.5194/hess-22-595-2018.

677 Rahman, M. M., G. Penny, M. S. Mondal, M. H. Zaman, A. Kryston, M. Salehin, Q. Nahar,
 678 M. S. Islam, D. Bolster, J. L. Tank, and M. F. Müller (2019), Salinization in large river
 679 deltas: Drivers, impacts and socio-hydrological feedbacks, *Water Security*, 6(February),
 680

681 100,024, doi:10.1016/j.wasec.2019.100024.

682 Ray, J. K. (1978), The Farakka Agreement, *International Studies*, 17(2), 235–246, doi:
683 10.1177/002088177801700201.

684 Salehin, M., M. M. A. Chowdhury, D. Clarke, S. N. Shahjahan Mondal, M. Jahiruddin, and
685 A. Haque (2018), Mechanisms and drivers of soil salinity in coastal Bangladesh, *Ecosys-
686 tem Services for Well-Being in Deltas*, p. 333.

687 Savenije, H. H. G. (2009), HESS Opinions "The art of hydrology", *Hydrology and Earth
688 System Sciences*, 13(2), 157–161, doi:10.5194/hess-13-157-2009.

689 Sigman, H. (2005), Transboundary spillovers and decentralization of environmental policies,
690 *Journal of Environmental Economics and Management*, doi:10.1016/j.jeem.2004.10.001.

691 Sivapalan, M., and G. Blöschl (2015), Time scale interactions and the coevolution of humans
692 and water, *Water Resources Research*, 51(9), 6988–7022.

693 Sivapalan, M., H. H. G. Savenije, and G. Blöschl (2012), Socio-hydrology: A new science of
694 people and water, doi:10.1002/hyp.8426.

695 Sivapalan, M., M. Konar, V. Srinivasan, A. Chhatre, A. Wutich, C. A. Scott, J. L. Wescoat,
696 and I. Rodriguez-Iturbe (2014), Socio-hydrology: Use-inspired water sustainability sci-
697 ence for the Anthropocene, *Earth's Future*, 2(4), 225–230, doi:10.1002/2013EF000164.

698 Srinivasan, V., S. Thompson, K. Madhyastha, G. Penny, K. Jeremiah, and S. Lele (2015),
699 Why is the Arkavathy River drying? A multiple-hypothesis approach in a data-scarce re-
700 gion, *Hydrology and Earth System Sciences*, 19(4), 1905–1917, doi:10.5194/hessd-12-25-
701 2015.

702 Srinivasan, V., M. Sanderson, M. Garcia, M. Konar, G. Blöschl, and M. Sivapalan (2016),
703 Prediction in a socio-hydrological world, *Hydrological Sciences Journal*, 62(3), 338–345,
704 doi:10.1080/02626667.2016.1253844.

705 Stedinger, J. R., and M. R. Taylor (1982), Synthetic streamflow generation: 1. model verifi-
706 cation and validation, *Water resources research*, 18(4), 909–918.

707 Stewart-Oaten, A., W. W. Murdoch, and K. R. Parker (1986), Environmental impact assess-
708 ment: "pseudoreplication" in time?, *Ecology*, 67(4), 929–940.

709 Talukder, M. R. R., S. Rutherford, D. Phung, M. Z. Islam, and C. Chu (2016), The effect of
710 drinking water salinity on blood pressure in young adults of coastal Bangladesh, *Environ-
711 mental pollution*, 214, 248–254.

712 Thompson, S. E., M. Sivapalan, C. J. Harman, V. Srinivasan, M. R. Hipsey, P. Reed,
713 A. Montanari, and G. Blöschl (2013), Developing predictive insight into changing water
714 systems: use-inspired hydrologic science for the Anthropocene, *Hydrology and Earth Sys-
715 tem Sciences*, 17(12), 5013–5039, doi:10.5194/hess-17-5013-2013.

716 Underwood, A. (1994), On beyond baci: sampling designs that might reliably detect environ-
717 mental disturbances, *Ecological applications*, 4(1), 3–15.

718 USACE (2016), HEC-RAS River Analysis System, User's Manual, Version 5.0, *Tech. rep.*,
719 U.S. Army Corps of Engineers, Davis.

720 Vörösmarty, C. J., P. B. McIntyre, M. O. Gessner, D. Dudgeon, A. Prusevich, P. Green,
721 S. Glidden, S. E. Bunn, C. A. Sullivan, C. R. Liermann, Others, and P. M. Davies (2010),
722 Global threats to human water security and river biodiversity., *Nature*, 467(7315), 555–
723 561, doi:10.1038/nature09549.

724 Wagener, T., M. Sivapalan, P. a. Troch, B. L. McGlynn, C. J. Harman, H. V. Gupta, P. Ku-
725 mar, P. S. C. Rao, N. B. Basu, and J. S. Wilson (2010), The future of hydrology: An
726 evolving science for a changing world, *Water Resources Research*, 46(5), W05,301, doi:
727 10.1029/2009WR008906.

728 Williams, R. L. (2000), A note on robust variance estimation for cluster-correlated data, *Bio-
729 metrics*, 56(2), 645–646.

730 Wine, M. L. (2018), Under non-stationarity securitization contributes to uncertainty
731 and Tragedy of the Commons, *Journal of Hydrology*, 568(July 2018), 716–721, doi:
732 10.1016/j.jhydrol.2018.11.044.