

1
2 **Pygmy mouse songs reveal anatomical innovations underlying acoustic signal elaboration**
3 **in rodents**

4
5 Tobias Riede¹ and Bret Pasch²

6
7 ¹Department of Physiology, Midwestern University Glendale, AZ, USA

8 ²Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA

9
10
11
12
13
14 **Acknowledgement:** We thank Nathaniel Mull for assistance in trapping animals in the field and
15 Bryan Carlin for assistance with recording animals in the laboratory. The study was funded by
16 the National Science Foundation IOS # 1755429 (BP) and # 1754332 (TR).

17
18 **Author contributions:** TR and BP both equally conceived the idea for the study, collected
19 samples, performed imaging and data acquisition, analyzed the results, wrote and revised the
20 manuscript.

21
22 **Data availability:** Derived 3D surfaces have been archived at Morphobank, project # 3638.

23
24 **Keywords:** vocal production; mammals; geometric morphometrics; contrast enhanced micro CT;
25 ultrasonic vocalization

27 **Summary statement**

28 Rodents produce a variety of vocalizations to mediate social interactions, yet little is
29 known about the mechanisms that facilitate and contribute to divergence in sound production.
30 Northern pygmy mice produce an elaborate song through laryngeal whistling supported by a
31 large air sac located inside the larynx, providing novel insight into the anatomical and
32 physiological basis of signal elaboration.

33

34

35

36 **Abstract**

37 Elaborate animal communication displays are often accompanied by morphological and
38 physiological innovations. In rodents, acoustic signals used in reproductive contexts are
39 produced by two distinct mechanisms, but the underlying anatomy that facilitates such
40 divergence is poorly understood. ‘Audible’ vocalizations with spectral properties between 500
41 Hz and 16 kHz are thought to be produced by flow-induced vocal fold vibrations, whereas
42 ‘ultrasonic’ vocalizations with fundamental frequencies above 19 kHz are produced by an
43 aerodynamic whistle mechanism. Baiomyine mice (genus *Baiomys* and *Scotinomys*) produce
44 complex frequency modulated songs that span these traditional distinctions and represent
45 important models to understand the evolution of signal elaboration. We combined acoustic
46 analyses of spontaneously vocalizing northern pygmy mice (*B. taylori*) mice in air and light gas
47 atmosphere with morphometric analyses of their vocal apparatus to infer the mechanism of vocal
48 production. Increased fundamental frequencies in heliox indicated that pygmy mouse songs are
49 produced by an aerodynamic whistle mechanism supported by the presence of a ventral pouch
50 and alar cartilage. Comparative analyses of the larynx and ventral pouch size among four
51 additional ultrasonic whistle-producing rodents indicate that the unusually low ‘ultrasonic’
52 frequencies (relative to body size) of pygmy mice songs are associated with an enlarged ventral
53 pouch. Additionally, mice produced shorter syllables while maintaining intersyllable interval
54 duration, thereby increasing syllable repetition rates. We conclude that while laryngeal anatomy
55 sets the foundation for vocal frequency range, variation and adjustment of central vocal motor
56 control programs fine tunes spectral and temporal characters to promote acoustic diversity within
57 and between species.

58

59

60 **Introduction**

61 Advertisement signals used in reproductive contexts are among the most diverse and
62 elaborate traits in the animal kingdom (Bradbury and Vehrencamp 2011). Understanding the
63 mechanisms of signal production is central to understanding how signals diversify and the
64 anatomical innovations that promote or constrain divergence. Indeed, recent work on traits used
65 in social communication provide important insights into the processes underlying phenotypic
66 evolution (e.g. Ord et al. 2013, Eliason et al. 2015, 2020).

67 Rodents produce diverse and complex vocal communication signals in a variety of social
68 interactions (Sales, Pye 1974; Brudzynski 2018; Dent et al. 2018). Many muroid rodents are able
69 to produce two distinct spectral ranges produced by divergent physical mechanisms (e.g., Pasch
70 et al. 2017). Currently, sounds with spectral properties between 500 Hz and 16 kHz (hereafter
71 ‘audible sounds’) are assumed to be produced by flow-induced vocal fold vibrations, whereas
72 sounds with fundamental frequencies between 19 - 100 kHz (hereafter ‘ultrasonic vocalizations,
73 USV’) are produced by a whistle mechanism (Riede 2018). This distinction is based on data
74 from laboratory mice (*Mus musculus*) and rats (*Rattus rattus*) and does not properly reflect the
75 large acoustic diversity among non-traditional rodent models (e.g., Miller and Engstrom 2007,
76 2011, Pasch et al. 2011, Pasch et al. 2017). The spectral boundary between the two production
77 mechanisms may not be as clear or mutually exclusive. Comparative data on vocal anatomy and
78 underlying production mechanisms is thus needed to provide insight into the evolution of
79 acoustic communication within the largest mammalian clade.

80 Current understanding of rodent vocal production mechanisms indicates that spectral
81 content is determined by laryngeal anatomy (Riede 2018). Ultrasonic whistle production appears
82 dependent upon the presence of an intra-laryngeal air sac (ventral pouch) as well as a small
83 cartilage (alar cartilage) that supports the ventral pouch entrance (Riede et al. 2017). The ventral
84 pouch and the alar cartilage are located rostral from the vocal folds and have been identified in a
85 few muroid rodents (laboratory mouse: *Mus*, laboratory rat: *Rattus*, and grasshopper mouse;
86 *Onychomys*: Riede et al. 2017). However, both structures were absent in a heteromyid rodent
87 (kangaroo rat; *Dipodomys*) that displays a limited vocal repertoire (Riede et al. 2017). Indeed,
88 alterations of the ventral pouch cause changes or disappearance of ultrasonic vocal capabilities
89 (Riede et al. 2017). Furthermore, muscle activity can regulate the position of the alar cartilage
90 and ventral pouch size to modulate spectral features of vocalization (Riede 2013). Altogether, the

91 ventral pouch appears critical for ultrasonic whistle production and its size is predicted to be
92 negatively associated with fundamental frequency of vocalizations (Riede et al. 2017).

93 Cricetid rodents in the subfamily Neotominae commonly produce audible (< 20 kHz)
94 vocalizations (Miller, Engstrom 2007, 2011). Animals often assume an upright posture and open
95 their mouths widely to generate loud vocalizations (Bailey 1931; Blair 1941; Packard 1960;
96 Hooper and Carleton 1976) used to attract mates and repel rivals (Campbell et al. 2019; Pasch et
97 al. 2011, 2013). Northern pygmy mice (*Baiomys taylori*) are crepuscular cricetid rodents that
98 inhabit arid grasslands, coastal prairie mixed scrub, post oak savanna, and mesquite–cactus
99 habitats from Texas to Mexico (Eshelman and Cameron 1987). The staccato-like song of pygmy
100 mice is described as a “high- pitched, barely-audible squeal” produced with head “thrust
101 forward and upward, stretching the throat” (Blair 1941, Packard 1960, Carleton 1980). Miller
102 and Engstrom (2007) reported that songs were produced by both sexes and not as elaborate as the
103 songs produced by sister taxa neotropical singing mice (*Scotinomys*; Pasch et al. 2011, 2013).
104 How such frequency modulated songs are produced is unknown but promises to provide
105 important insight into the evolution of signal elaboration in the largest radiation of mammals.

106 In this study, we used acoustic recordings in normal air and a light gas mixture to
107 determine the mode of vocal production of northern pygmy mouse songs. Use of gases that are
108 lighter or heavier than ambient air have a long tradition in the study of vocal production
109 mechanisms (e.g., Beil 1962; Nowicki 1987; Pasch et al. 2017). Sounds produced via a whistle
110 mechanism demonstrate a characteristic increase in fundamental frequency in helium atmosphere
111 that is distinct from the constancy of fundamental frequencies produced via flow-induced vocal
112 fold vibration (Spencer and Titze 2001). We then used contrast enhanced micro-CT imaging and
113 histology to characterize the laryngeal anatomy subserving such unique sound production.
114 Finally, we used geometric morphometrics to compare laryngeal differences within pygmy mice
115 and among closely related species to assess the contribution of larynx and ventral pouch size and
116 shape to acoustic diversity.

117 118 **Methods**

119 *Animals*

120 We captured northern pygmy mice near Rodeo, New Mexico, USA using Sherman live-
121 traps baited with sterilized bird seed. Mice were transferred in standard mouse cages to animal

122 facilities at Northern Arizona University, Flagstaff, AZ, USA, maintained on a 14 L:10 D cycle
123 ($21 \pm 2^\circ\text{C}$) and provided rodent chow, bird seed, and water *ad libitum*. A subset of animals was
124 transferred to Midwestern University, Glendale, AZ, USA, for heliox experiments and
125 morphological analysis. All procedures performed in studies involving animals were in
126 accordance with the ethical standards and approval of the Institutional Animal Care and Use
127 Committee at Midwestern University (MWU#2852) and Northern Arizona University (16-001
128 and 19-006) and guidelines of the American Society of Mammalogists (Sikes et al. 2016).
129 Animals were captured with permits from the New Mexico Department of Game and Fish (3562)
130 and the Arizona Game and Fish Department (607608).

131

132 *Acoustic recording, heliox experiments, and statistical analyses*

133 We recorded the mass and vocalizations of 10 wild-captured mice ($n = 5/\text{sex}$) over 10
134 days. Singly-housed mice in their home cage were placed in semi-anechoic coolers lined with
135 acoustic foam. We used 1/4" microphones (Type 40BE, G.R.A.S.) connected to preamplifiers
136 (Type 26 CB, G.R.A.S.) to obtain recordings 33.3 cm above the center of the focal mouse cage.
137 Microphone response was flat within ± 1.5 dB from 10 Hz to 50 kHz, and pre-amplifier response
138 was flat within ± 0.2 dB from 2 Hz to 200 kHz. Microphones were connected to a National
139 Instruments DAQ (USB 4431) sampling at 102.4 kHz to a desktop computer running MATLAB
140 (Version 2018a).

141 We used Avisoft SASLab Pro (version 5.2.13, Avisoft Bioacoustics, Germany; 1024-
142 point Fast Fourier Transform (FFT), 75% frame size, Hann window, frequency resolution 100
143 Hz, temporal resolution 93.75%, 0.625 ms) to automatically extract temporal (song duration) and
144 spectral (maximum, and minimum fundamental frequency, and frequency bandwidth averaged
145 across all notes in the song) parameters from each bandpass filtered (17.5-40.5 kHz) recording.

146 Student's t-tests were used to compare body mass, number of songs, and acoustic
147 parameters between females and males in JMP Pro (Version 14.1.0, SAS Institute, Inc., Cary,
148 N.C., USA). We used a Bonferroni correction to control for multiple ($n= 5$) comparisons
149 (corrected $\alpha = 0.01$). We also assessed if repeatability of acoustic parameters differed between
150 the sexes by calculating intraclass correlation coefficients (ICC; Wolak et al. 2013) using the
151 ICC R package (version 2.3.0, Wolak 2013) in R version 3.6.1 (R Core Team 2019). Acoustic
152 parameters were considered repeatable if the 95% confidence interval of ICC values excluded

153 zero, and similar between sexes if confidence intervals overlapped one another. Values are
154 reported as mean \pm standard deviation in text.

155 Songs of six additional animals (3 songs/sex/treatment) were recorded in normal air and a
156 heliox atmosphere. Individual mice were placed in a standard mouse cage. The cage was
157 equipped with bedding, food, and water. Heliox gas (80% He, 20% O₂) was injected into the
158 cage at flow rates between 20-40 L/min through a 12 mm wide tube placed into the cage wall
159 near the floor. Predicted effects of light gas concentrations were estimated with a small whistle
160 placed at the floor of the cage and connected externally by a silastic tube. The whistle was blown
161 and recorded at regular intervals in order to monitor the heliox concentration. The ratio of the
162 frequency of the whistle in air and in heliox allowed an estimation of the expected effect for any
163 given heliox concentration.

164 Three randomly selected syllables (from the first, second, and last third of the song) from
165 each song were analyzed for minimum (F0 min), maximum (F0 max) fundamental frequency,
166 syllable duration, and relative amplitude of the first and second harmonic of the fundamental
167 frequency. While conducting the experiments, we noticed that the temporal characteristics of
168 songs changed in heliox. Therefore, we measured syllable repetition rate, syllable duration, and
169 intersyllable intervals (i.e., the duration between two adjacent syllables) for three songs in
170 normal air and in heliox. Syllable repetition rate was calculated by dividing the number of
171 syllables within a song by song duration. Syllable duration and intersyllable intervals were
172 averaged over all syllables of a song. Acoustic differences between normal air and heliox songs
173 were assessed with paired t-tests.

174

175 *Histology, CT scanning and 3D rendition of the larynx*

176 Ten mice (5/sex) were euthanized with isoflurane and then transcardially perfused first
177 with saline solution followed by 10% buffered formalin. Larynges were dissected and placed in
178 10% buffered formalin phosphate (SF100-4; Fisher Scientific) for two days.

179 Four specimens (2/sex) were used to prepare histological sections. Mid-membranous
180 coronal sections (5 mm thick) were stained with haematoxylin-eosin for a general overview. We
181 also attempted to use Masson's Trichrome (TRI) for collagen fiber stain and Elastica-Van
182 Gieson (EVG) for elastic fiber stain. However, pygmy mouse vocal folds are small (see below),
183 and we were unsuccessful in collecting a sufficient sample size of mid-membranous sections for

184 different stains in each individual. Sections were scanned with an Aperio CS 2 slide scanner and
185 processed with Imagescope software (v. 8.2.5.1263; Aperio Tech.).

186 Two specimens (1/sex) were whole-body scanned at 50 μm resolution. Larynges from
187 these two individuals and four additional mice (3/sex) were also x-rayed at 5 μm resolution.
188 First, tissues were transferred from the formalin solution to 99% ethanol. Tissues were then
189 stained in 1% phosphotungstic acid (PTA) (Sigma Aldrich, 79690) in 70% ethanol. After 5 days,
190 the staining solution was renewed and the tissue was stained for another 5 days. After staining,
191 specimens were placed in a custom-made acrylic tube and scanned in air. CT scanning was done
192 using a Skyscan 1172 (Bruker). Reconstructed image stacks were then imported into AVIZO
193 software (version Lite 9.0.1). Laryngeal cartilages and the border between the airway and soft
194 tissues of the larynx in the CT scans were traced manually. This approach provided outlines of
195 the cartilaginous framework and the airway. Derived 3D surfaces of all six specimen have been
196 archived at Morphobank (O'Leary, Kaufman 2012), project # 3638.

197

198 *Geometric morphometric analysis of laryngeal shape*

199 We investigated whether the laryngeal size or shape of *Baiomys* mice were sexually
200 dimorphic using a geometric morphometric (GM) approach. 3D surfaces of three male and three
201 female laryngeal cartilages were used to quantify shape using curve and surface landmarks.
202 Landmarks were placed on surface renderings using the 'geomorph' package, Version 3.0.5.
203 (Adams et al. 2017) for the R software package (R Development Core Team 2008). Fixed
204 landmarks were placed along the cartilage border and supplemental by 100 surface
205 semilandmarks, which were placed with help of an interactive function to build a template of 3D
206 surface semilandmarks. In order to compare cartilage shape, a generalized Procrustes analysis
207 was used to remove variation related to position, size, and orientation. Next, we employed a
208 series of principal components analyses (PCA), to summarize the main patterns of shape
209 variance in the data. The procedure used here has been previously established (Borgard et al.
210 2019).

211 Centroid size was used to estimate overall size for each cartilage. Centroid size is the
212 square root of the sum of squared distances of each landmark from the center of the cartilage.
213 The location is obtained by averaging the x , y and z coordinates of all landmarks (Zelditch et al.,
214 2004).

215 For comparative analyses, we used data from laboratory mice (*Mus musculus*), laboratory
216 rats (*Rattus rattus*), and grasshopper mice (*Onychomys* spp.) published previously by Borgard et
217 al. 2019. To assess whether laryngeal cartilage shape exhibited sex differences in pygmy mice,
218 we performed a multivariate analysis of variance (MANOVA) on the PC 1 and PC 2 scores for
219 each cartilage.

220

221 **Results**

222

223 *Baseline acoustic recording*

224 Long-distance songs consisted of repeated frequency modulated syllables (Figure 1A).
225 All song parameters were repeatable within individuals and between the sexes (Table 1). We
226 found no sex differences in mass (females: 9.95 ± 1.1 g; males: 9.22 ± 0.8 g; $t_8 = -1.23$, $P = 0.25$)
227 nor number of songs produced (females: 53 ± 52.3 songs; males: 162.8 ± 134.6 songs; $t_8 = 1.69$,
228 $P = 0.13$; Table 1) despite males showing higher variation in song rate (range: 84-401 songs)
229 than females (range: 5-132 songs). Males produced longer songs with slightly lower minimum F_0
230 and larger frequency bandwidths compared to females (Table 1). (female song duration ICC:
231 0.19, 95% CI, 0.06-0.68; male song duration ICC: 0.13, 95% CI, 0.05-0.56).

232

233 *Heliox experiments*

234 Both maximum and minimum F_0 increased in heliox (paired t -test, Max F_0 : $t = -10.0$, $p <$
235 0.001; Min F_0 : $t = -14.1$, $p < 0.001$) compared to normal air (Figure 1B - D). However, the
236 amplitude of higher harmonics ($2F_0$) in normal air and in heliox relative to F_0 at the center of
237 syllables did not differ (paired t -test, $t = -1.3$, $p = 0.261$; Figure 1E).

238 While song duration and intersyllable intervals did not differ between normal air and
239 heliox (paired t -test, song duration: $t = 0.70$, $p = 0.513$; intersyllable interval: $t = 0.61$, $p = 0.566$;
240 Figure 2 A and B), other temporal features of the song changed in heliox. Syllable duration
241 decreased significantly (paired t -test, $t = 5.5$, $p < 0.01$) and, since intersyllable intervals were
242 unaltered, syllable repetition rate increased (paired t -test, $t = -4.6$, $p < 0.01$) (Figure 2 C and D).
243 Figures 2 E and F show individual syllable durations over the course of three songs in normal air
244 and in heliox, for a male and a female mouse, respectively. Syllable duration decreased by $15 \pm$
245 6.7% (mean \pm stdev) and syllable repetition rate increased $10.5 \pm 4.4\%$, yet the number of

246 syllables per song did not change significantly (# syllables_{AIR} = 28.9 ± 4.6; (# syllables_{HELIOX} =
247 29.5 ± 6.9; $t = 0.88$, $p = 0.422$) (Figure 2F).

248

249 *Pygmy mouse vocal morphology*

250 The membranous portion of a vocal fold (captured by six subsequent sections in Figure
251 3A – F) refers to the soft tissue that starts at the vocal process of the arytenoid cartilage and ends
252 where the vocal fold attaches to the interior of the thyroid cartilage. The ventral section of the
253 membranous portion of the vocal fold is re-enforced with cartilaginous tissue and is continuous
254 with the alar cartilage and epiglottis. Consequently, the cartilaginous free, membranous portion
255 of the vocal fold is very short ($< 150 \pm 24 \mu\text{m}$; $n = 4$). The membranous portion of the vocal
256 fold is composed of thyroarytenoid muscle, lamina propria, and epithelium. The lamina propria
257 of the membranous portion is comprised of a thick layer (up to $110 \pm 1.5 \mu\text{m}$ SD) of collagen
258 and elastic fibers (Figure 3G).

259 The ventral pouch of *Baiomys* is large with a medially-positioned portion rostral from the
260 vocal folds (Figure 4A). Additionally, pockets connected to the medial portion extend laterally
261 from each vocal fold, causing a unique morphology of the ventral portion of the vocal fold
262 unprecedented in the mammalian larynx (e.g., Negus 1949; Schneider 1964). The vocal fold is
263 very thin and membranous (Figures 3 C-F). The alar cartilage forms the edge of the entrance into
264 the ventral pouch. Figures 3 H and I illustrate the cartilage. Histological sections demonstrate
265 that the cartilage is associated with the epiglottis (Figure 3 I).

266 The thyroid cartilage consists of a left and right lamina each with a rostral and caudal
267 horn (Figure 5A-D). The rostral horn is narrow and pointed. The rostro-ventral margin of the
268 thyroid bends dorsally, toward the laryngeal lumen forming a *Bulla thyroidea* (Figure 5D). The
269 ventral pouch is embedded in this bulla. A small cartilaginous protuberance is present on the
270 medial surface of the thyroid cartilage in a caudal midsagittal position (Figure 5B). The structure
271 consists of highly mineralized cartilage that protrudes into the laryngeal lumen. Vocal folds
272 attach to the thyroid cartilage via this protuberance.

273 The cricoid cartilage (Figure 5 E-H) forms a complete ring with a broad plate dorsally
274 and a narrow band laterally and ventrally. The arytenoid cartilages form triangular shaped
275 structures with a vocal process, a short muscular process and a long and narrow dorsal process
276 (aka *apex*) (Figure 5 I-L). The epiglottis (Figure 5 M-P) forms a small sheet bending towards the

277 airway. Most notable is the structure at the caudal end of the epiglottis, which is described as alar
278 cartilage in other species. In *Mus*, *Rattus* and *Onychomys*, the alar cartilage was a separate
279 structure without connection to another laryngeal cartilage (Riede et al. 2017). In *Baiomys*, the
280 alar cartilage supports the entrance into the ventral pouch and is moved by fibers from the
281 thyroarytenoid muscle. Unlike in *Mus*, *Rattus* or *Onychomys*, the alar cartilage is tightly
282 connected with the epiglottis in *Baiomys*.

283 The length of oral and pharyngeal cavity (vocal tract length measured between vocal fold
284 and tip of incisivi) measured 16 and 17 mm in a female and male specimen, respectively, for
285 which the whole body was scanned before the larynx was excised for high-resolution scanning.

286

287 *Analysis of larynx size and shape*

288 Laryngeal size represents an important source of spectral differences in animal
289 vocalizations. We therefore investigated the size and shape of laryngeal cartilages as well as the
290 ventral pouch. First, we tested for morphological differences between sexes in *Baiomys*, and then
291 compared larynx size of *Baiomys* to *Mus*, *Rattus* and *Onychomys* in order to explain the
292 fundamental frequency of *Baiomys* songs.

293 Neither the size of the four laryngeal cartilages nor any of the ventral pouch dimensions
294 demonstrated sexual dimorphism in *Baiomys* (Table 2). Cartilage shape was also not different
295 between the sexes. None of the four cartilages exhibited separation of their shape along the first
296 or second principal component (PC 1 and PC 2) (thyroid cartilage: $F_{1,3} = 0.88$, $p=0.21$; Wilk's
297 $\Lambda = 0.82$; cricoid cartilage: $F_{1,3} = 0.89$, $p=0.21$; Wilk's $\Lambda = 0.82$; arytenoid cartilage: $F_{1,3} =$
298 0.85 , $p=26$; Wilk's $\Lambda = 0.78$; epiglottis: $F_{1,3} = 0.64$, $p=0.84$; Wilk's $\Lambda = 0.51$) (Figure 6 A-D).

299 Compared to three other species, *Baiomys* possesses a very large and unusually shaped
300 ventral pouch (Figure 7 A-D). Overall larynx size remains linked to body size (Figure 7 E-H).
301 All four cartilages scaled with negative allometry against body mass. Interestingly, the size of the
302 ventral pouch, a structure which is located inside the larynx, is not linked to larynx size or body
303 size (Figure 7 I – J). However, ventral pouch dimension, in particular its latero-lateral width,
304 appears to be associated with the fundamental frequency among the four species (Figure 7 K).

305

306 **Discussion**

307 Our findings indicate that the elaborate singing behavior of baiomyine mice arises from a
308 unique laryngeal morphology that facilitates aerodynamic whistle production. In particular, a
309 large air sac termed the ventral pouch and a robust alar cartilage is associated with the production
310 of fundamental frequencies through an aerodynamic whistle. In rodents, presence of a ventral
311 pouch and alar cartilage are associated with ultrasonic whistle production, and damage to the alar
312 cartilage and ventral pouch compromises whistle fidelity (Riede et al. 2017). Our current
313 findings further support the association between the presence of a ventral pouch and alar
314 cartilage with the ability to produce ultrasonic vocalizations by an aerodynamic whistle
315 mechanism. More specifically, comparative analyses indicate that ventral pouch size is
316 associated with fundamental frequency, allowing relatively small species to produce low
317 frequency songs independent of body size. Our findings provide important insight into the
318 anatomical innovations that facilitate signal elaboration.

319 The relatively low fundamental frequencies of pygmy mouse songs are remarkable
320 because they are among the smallest rodents (8-12 g; Wilson and Reeder 2005). The songs
321 extend to the lowest aerodynamic whistle frequency recorded among four species for which
322 anatomical information and light gas experiments have informed our understanding of the vocal
323 production mechanisms. From one perspective, pygmy mouse ultrasonic whistles overlap the
324 audible calls of grasshopper mice, a genus that is larger in mass (32 - 38g) and produces long-
325 distance vocalizations using vocal fold vibrations (Pasch and Riede 2017). Conversely, pygmy
326 mouse frequencies also overlap with the lowest ultrasonic frequencies reported for laboratory
327 rats (19 kHz; Brudzynski et al. 1993; Wright et al. 2010), which are 10-20 times larger than
328 pygmy mice (250 to 500 g; Wilson and Reeder 2005). In addition, pygmy mouse song
329 frequencies are much lower than those of laboratory mouse (*Mus musculus*) songs (Holy and
330 Guo 2005), a species that is slightly larger (25 to 50 g; Wilson and Reeder 2005), but whose
331 ventral pouch is much smaller than *Baiomys* (Riede et al. 2017; herein). Thus, while the overall
332 size of the vocal apparatus appears to scale linearly with body size (Figure 7 E-H), dimensions of
333 the ventral pouch uncouples the relationship between body size and size-dependent acoustic
334 features (Figure I-K).

335 The fundamental frequency of USVs depends on glottal airflow velocity, the distance
336 between the glottal and alar edge, and ventral pouch volume (Riede et al. 2017). Our data
337 suggest that laryngeal cartilage size scaled allometrically with body size but was not associated

338 with vocal frequencies. In contrast, ventral pouch size was inversely related to maximum and
339 minimum fundamental frequency across species and likely explains the low frequency range of
340 *Biomys* songs. While the ventral pouch did not explain sexual dimorphism of acoustic features
341 in the songs of pygmy mice, the slight difference (2 kHz) in spectral content between the sexes
342 may be too minimal to detect with our methodology. Alternatively, sex differences in muscle
343 tension may contribute to laryngeal shape and size differences that mediate vocal output (Riede
344 2013).

345

346 *Air sacs, ventricles, bullae, and ventral pouches*

347 Side branches or cavities branching off of the main upper airway above and below the
348 laryngeal valve are common in mammals and birds (e.g., King, McLelland 1984; Riede et al.
349 2008). Such rigid or inflatable cavities serve to amplify sound levels, modify existing resonance
350 properties, or introduce an additional resonance frequency (Riede et al. 2008; deBoer 2009). In
351 rodents, the air sac or ventral pouch is different than airsacs in nonhuman primates, cervids, and
352 birds. Whereas non-rodent airsacs can branch off of the airway above or below the glottis, the
353 rodent ventral pouch is always positioned rostral to the glottis, embedded inside the thyroid
354 cartilage lumen, and supported by cartilaginous structures. The alar cartilage or modifications of
355 the epiglottis reinforce the entrance and lateral wall of the ventral pouch. Riede et al. (2017)
356 suggested that the alar edge of the reinforced entrance acts like the blade or labium of the air hole
357 of a recorder. The glottal airflow is guided over the ventral pouch entrance and hits the alar edge
358 which opposes the glottis, generating pressure fluctuations that presumably excite resonances
359 inside the ventral pouch. In addition, the alar cartilage is associated with a small body of muscle
360 fibers branching off from the thyroarytenoid muscle, and activity of this muscle is precisely
361 associated with fundamental frequency features of vocalizations (Riede 2013). Together, our
362 anatomical findings suggest that the dimensions of rodent ventral pouch, unlike other airsacs, are
363 precisely controlled.

364

365 *Vocal-respiratory coordination*

366 Most heliox studies in bioacoustics focus on spectral analysis because resultant patterns
367 are indicative of underlying production mechanisms. We hypothesize that heliox experiments
368 can also inform our understanding of vocal-respiratory coordination. In particular, we found that

369 pygmy mouse syllables were shorter in duration in heliox than in air. Our findings are in
370 accordance with heliox-induced shortening of vocalizations in grasshopper mice (*Onychomys*;
371 Pasch et al. 2017) and common marmosets (*Callithrix jacchus*; Zhang, Ghazanfar 2018) that
372 both produce vocalizations by airflow-induced vocal fold vibration. The magnitude of the effect
373 was similar among species (*Baiomys*, 15%; *Onychomys*, 19%; *Callithrix*, 11%). We speculate
374 that the lower density of inhaled heliox affects laryngeal aerodynamics by an eased gas flow
375 through the constricted glottal valve during vocal production (Sundberg 1981). Consequently, a
376 slightly reduced air volume is available during expiration to decrease syllable duration.
377 Confirmation of this hypothesis will require further experimentation with varying concentrations
378 of light gas and/or use of heavy gas.

379 Our findings provide further insight into vocal-respiratory coordination when
380 contextualized in relation to recent work in another baiomysine rodent (Alston's singing mouse;
381 *Scotinomys teguina*) that produces a similar repetitive song (e.g., Campbell et al. 2010; Pasch et
382 al. 2011). Okobi et al. (2019) found that cooling of the orofacial motor cortex decreased the rate
383 of change of syllable duration without affecting the duration of individual syllables. While not
384 explicitly stated, cooling appears to do so by increasing the duration of the inhalation phase (i.e.
385 intersyllable intervals), which directly contrasts our heliox findings that show an impact on the
386 expiratory phase (syllable duration) without changing intersyllable intervals. Together, available
387 data suggest that songs emerge from a motor pattern coded by a central pattern generator in the
388 brainstem (Tschida et al. 2019) whose timing is modulated by cortical control of breathing
389 (specifically the inhalation phase) (Okobi et al. 2019). Differences in the acoustic output,
390 however, can also simply be the result of mechanical constraints of the peripheral organ, for
391 example laryngeal aerodynamics that are sensitive to airflow (this study). Integration of
392 laryngeal and breathing movements coupled with a detailed understanding of vocal organ
393 morphology and laryngeal aerodynamics provides a fuller understanding of the nature of rodent
394 acoustic signals and their evolution.

395

396 *Conclusions*

397 Ultimately, understanding how acoustic characters evolve requires knowledge of how
398 signals are produced. Our findings indicate that diversity in the size of a unique laryngeal
399 structure termed the vocal pouch is associated with extreme divergence in fundamental

400 frequencies of ultrasonic whistles. Thus, the traditional approach of categorizing vocal signals
401 by spectral range into “audible” (up to 16 kHz) and “ultrasonic” (above 19 kHz) vocalizations
402 requires revision. Indeed, the challenge of differentiating ‘audible’ and ‘ultrasonic’ vocalizations
403 in rodents has been noted (e.g., Grimsley et al. 2016; Kalcounis-Rueppell 2010, 2018; Miller and
404 Engstrom 2007, 2011, 2012). A production-based definition that distinguishes between flow-
405 induced vocal fold vibration and aerodynamic whistles provides a more robust framework to
406 explore diversification of rodent voices. Heliox experiments confirmed that the ultrasonic songs
407 in pygmy mice are aerodynamic whistles and can reach low into the ‘sonic’ frequency range.
408 Other species may have adaptations that may extend the spectral range of whistles to low
409 frequencies (this study) or the range of flow-induced vocal fold vibrations into exceptionally
410 high spectral regions (e.g., Titze et al. 2018). The study also informs our understanding of the
411 vocal production mechanism which requires precise coordination between three systems (larynx,
412 breathing, and vocal tract). Aerodynamics at the vocal folds (vibrating or not) are determined
413 not only by the coordination of the three systems but also by the laryngeal morphology and
414 biomechanical properties.

415 Altogether, the current study demonstrates that rodents are a promising system for understanding
416 how mechanisms of complex behaviors like vocal production may promote or constrain
417 divergence.

418

419

420 **References**

421 Adams, D. C., Collyer, M. L., Kaliontzopoulou, A., and Sherratt, E. (2017). Geomorph: Software
422 for geometric morphometric analyses. R package version 3.0.5. (<https://cran.r-project.org/package=geomorph>.)

423

424 Bailey, V. (1931). Mammals of New Mexico. *N. Amer. Fauna.* 53, 422 pp.

425 Beil, R.G. (1962). Frequency analysis of vowels produced in a helium-rich atmosphere. *J Acoust*
426 *Soc Am* 34, 347-349.

427 Blair, F. (1941). Observations on the life history of *Baiomys taylori subater*. *J. Mammal.*, 22,
428 378-383.

429 Borgard, H., Baab, K., Pasch, B., and Riede, T. (2019). The shape of sound: A geometric
430 morphometrics approach to larynx morphology. *J Mammal. Evol.*,
431 <https://doi.org/10.1007/s10914-019-09466-9>

432 Bradbury, J.W., and Vehrencamp, S.L. (2011). Principles of animal communication (2nd
433 edition). Sunderland, MA: Sinauer Associates.

434 Brudzynski, S.M., Bihari, F., Ociepa, F., and Fu, X. 1993. Analysis of 22 kHz ultrasonic
435 vocalization in laboratory rats: long and short calls. *Physiol Behav.*, 54, 215–221.

436 Brudzynski, S.M. (2018). Handbook of Ultrasonic Vocalization. A Window into the Emotional
437 Brain. Volume 25.

438 Campbell, P., Pasch, B., Pino, J.L., Crino, O.L., Phillips, M., and Phelps, S. (2010), Geographic
439 variation in the songs of Neotropical singing mice: testing the relative importance of drift and
440 local adaptation. *Evolution*, 64: 1955–1972.

441 Campbell, P., Arévalo, L., Martin, H., Chen, C., Sun, S., Rowe, A.H., Webster, M.S., Searle,
442 J.B., and Pasch, B. (2019.) Vocal divergence is concordant with genomic evidence for strong
443 reproductive isolation in grasshopper mice (*Onychomys*). *Ecol. Evol.*, 9, 12886-12896.

444 Carleton, M.D. (1980). Phylogenetic relationships in neotomine-peromyscine rodents
445 (Muroidea) and a reappraisal of the dichotomy within New World Cricetinae. *Miscell.*
446 *Publ., Museum of Zool., Univ. of Michigan*, 157, 1-146.

447 Dent, M.L., Fay, R.R., and Popper, A.N. (2018). Rodent Bioacoustics. Springer Handbook of
448 Auditory Research book series (SHAR, volume 67).

449 Eliason, C.M., Maia, R., Parra, J.L., and Shawkey, M.D. (2020). Signal evolution and
450 morphological complexity in hummingbirds. *Evol.*, 74, 447-458.

451 Eliason, C.M., Maia, R., and Shawkey, M.D. (2015). Modular color evolution facilitated by a
452 complex nanostructure in birds. *Evol.*, 69, 357-367.

453 Eshelman, B. D., and Cameron, G. N. (1987). *Baiomys taylori*. Mammal. Species, 285, 1-7.

454 Grimsley, J., Sheth, S., Vallabh, N., Grimsley, C.A., Bhattal, J., and Latsko, M. (2016).
455 Contextual modulation of vocal behavior in mouse: newly identified 12 kHz “mid-
456 frequency” vocalization emitted during restraint. *Front. Behav. Neurosci.*, 10, 38.

457 Hooper, E.T., and Carleton, M. D. (1976). Reproduction, growth and development in two
458 contiguously allopatric rodent species, genus *Scotinomys*. *Misc. Publ. Mus. Zool., Univ.*
459 *Mich.*, 151, 1-52.

460 Holy T.E., and Guo Z (2005). Ultrasonic songs of male mice. *PLoS Bio*, 3, e386.

461 Kalcounis-Rueppell, M.C., Petric, R., Briggs, J.R., Carney, C., Marshall, M.M., Willse, J.T.,
462 Rueppell, O., Ribble, D.O., and Crossland, J.P. (2010). Differences in ultrasonic
463 vocalizations between wild and laboratory California mice (*Peromyscus californicus*).
464 *PloS one*, 5, e9705.

465 Kalcounis-Rueppell, M.C., Petric, R., and Marler, C. (2018). The bold, silent type: predictors of
466 ultrasonic vocalizations in the genus *Peromyscus*. *Front. Ecol. Evol.*, 6, 198.

467 Light, J., Ostroff, M., and Hafner, D. (2016). Phylogeographic assessment of the northern pygmy
468 mouse, *Baiomys taylori*. *J. Mammal.*, 97, 1081-1094.

469 Miller, J.R., and Engstrom, M.D. (2007). Vocal stereotypy and singing behavior in Baiomyine
470 mice. *J. Mammal.*, 88, 1447-1465.

471 Miller, J.R., and Engstrom, M.D. (2010). Stereotypic vocalizations in harvest mice
472 (*Reithrodontomys*): Harmonic structure contains prominent and distinctive audible,
473 ultrasonic, and non-linear elements. *J. Acoust. Soc. Am.*, 128, 1501-1512.

474 Miller, J.R., and Engstrom, M.D. (2012). Vocal stereotypy in the rodent genera *Peromyscus* and
475 *Onychomys* (Neotominae): taxonomic signature and call design. *Bioacoustics*, 21, 193-
476 213.

477 Negus, V.E. (1949). The comparative anatomy and physiology of the larynx. New York:
478 Grune&Stratton, Inc.

479 Nowicki, S. (1987). Vocal tract resonances in oscine bird sound production: Evidence from
480 birdsongs in a helium atmosphere. *Nature*, 325, 53-55.

481 O'Leary, M.A. and Kaufman, S.G. (2012). MorphoBank 3.0: Web application for morphological
482 phylogenetics and taxonomy. <http://www.morphobank.org>

483 Okobi, Jr., D.E., Banerjee, A., Matheson, A.M.M., Phelps, S.M., and Long, M.A. 2019. Motor
484 cortical control of vocal interaction in neotropical singing mice. *Science*, 683, 983-988.

485 Ord, T.J., Collar, D.C., and Sanger, T.J. (2013). The biomechanical basis of evolutionary change
486 in a territorial display. *Func. Ecol.*, 27, 1186-1200.

487 Pasch, B., George, A.S., Hamlin, H.J., Guillette, L.J., and Phelps, S.M. (2011). Androgens
488 modulate song effort and aggression in Neotropical singing mice. *Horm. Behav.*, 59, 90-97.

489 Pasch, B., Bolker, B.M., and Phelps, S.M. (2013). Interspecific dominance via vocal interactions
490 mediates altitudinal zonation in neotropical singing mice. *Am. Nat.*, 182, E161-E173.

491 Pasch, B., Tokuda, I.T., and Riede, T. (2017). Grasshopper mice employ distinct vocal
492 production mechanisms in different social contexts. *Proc. Roy. Soc. Lond. B*, 284, 20171158.

493 Packard, R.L. (1960). Speciation and evolution of the pygmy mice, genus *Baiomys*. *Univ of
494 Kansas Publ. Museum of Nat. Hist.* 9, 579-670.

495 Riede, T. (2013). Stereotypic laryngeal and respiratory motor patterns generate different call
496 types in rat ultrasound vocalization. *J Exp Zool A*, 319, 213–224.

497 Riede, T., Borgard, H.L., and Pasch, P. (2017). Laryngeal airway reconstruction indicates that
498 rodent ultrasonic vocalizations are produced by an edge-tone mechanism. *Royal Soc. Open
499 Sci.*, 4, 170976.

500 Riede, T. (2018). Peripheral vocal motor dynamics and combinatory call complexity of
501 ultrasonic vocal production in rats. In *Handbook of Ultrasonic Vocalization*, edited by
502 Stefan M. Brudzynski; Elsevier series 'Handbook of Behavioral Neuroscience', Vol 25,
503 pp. 45-60.

504 Sales, G.D., and Pye, D. (1974). Ultrasonic communication by animals. Chapman & Hall,
505 London, United Kingdom.

506 Schneider, R. (1964). Der Larynx der Säugetiere. *Handbuch der Zoologie*, 5(7), 1–128. Titze,
507 I., Riede, T., Mau, T. (2016). Predicting achievable fundamental frequency ranges in
508 vocalization across species. *PLoS Comput Biol*, 2, e1004907.

509 Spencer, M.L., and Titze, I.R. (2001). An investigation of a modal-falsetto register transition
510 hypothesis using heliox gas. *J. Voice*, 15, 15–24.

511 Sundberg J. (1981). Formants and fundamental frequency control in singing. An experimental
512 study of coupling between vocal tract and vocal source. *Acoustica*, 49,48-54.

513 Tschida, K., Michael, V., Takato, J., Han, B.X., Zhao, S., Sakurai, K., Mooney, R., and Wang, F.
514 (2019). A specialized neural circuit gates social vocalizations in the mouse. *Neuron*, 103, 1–
515 14.

516 Wilson, D. E., and Reeder, D. M. (eds.). (2005). Mammal Species of the World: A Taxonomic
517 and Geographic Reference. 3rd edition. Johns Hopkins University Press, Baltimore,
518 Maryland.

519 Wolak, M.E., Fairbairn, D.J., and Paulsen, Y.R. (2012). Guidelines for estimating repeatability.
520 *Methods Ecol. Evol.*, 3, 129-137.

521 Wright, J.M., Gourdon. J.C., and Clarke, P.B.S. (2010). Identification of multiple call categories
522 within the rich repertoire of adult rat 50-kHz ultrasonic vocalizations: effects of
523 amphetamine and social context. *Psychopharmacology*, 211, 1–13.

524 Zelditch, M.L., Lundrigan, B.L., and Garland, T. Jr. (2004). Developmental regulation of skull
525 morphology. I. Ontogenetic dynamics of variance. *Evol. Dev.*, 6, 194-206.

526 Zhang, Y.S., and Ghazanfar, A.A. (2018). Vocal development through morphological
527 computation. *PLoS Biol.*, 16, e2003933.

528 **Table 1:** Average (\pm standard deviation) parameters and repeatability estimates for female and
 529 male northern pygmy mice (*Baiomys taylori*) vocalizations (n = 5/sex). Bolded *P* values reflect
 530 significance following a Bonferroni correction for multiple comparisons.

Parameter	female	male	df	t	P	Repeatability (95% C.I.)
						All, females, males
Body mass (g)	9.95 \pm 1.1	9.22 \pm 0.8	8	-1.23	0.25	-
Number of songs	53 \pm 52.3	162.8 \pm 134.6	8	1.69	0.13	-
Duration (s)	3.4 \pm 0.4	4.9 \pm 0.5	8	4.99	0.001	0.37 (0.21-0.66) 0.19 (0.06-0.68) 0.13 (0.05-0.56)
Maximum fundamental frequency (kHz)	33.8 \pm 2.2	33.1 \pm 1.3	8	-0.68	0.52	0.63 (0.44-0.85) 0.77 (0.54-0.97) 0.61 (0.36-0.93)
Minimum fundamental frequency (kHz)	23.5 \pm 1.9	21.0 \pm 1.0	8	-2.51	0.046	0.63 (0.44-0.85) 0.66 (0.4-0.94) 0.44 (0.22-0.87)
Fundamental frequency bandwidth (kHz)	10.4 \pm 0.5	12.1 \pm 1.3	8	2.58	0.048	0.65 (0.47-0.86) 0.1 (0.03-0.53) 0.59 (0.33-0.92)

531

532

533 **Table 2:** Average (\pm standard deviation) parameters for female and male northern pygmy mice
 534 (*Baiomys taylori*) laryngeal cartilage size (n = 3/sex). CS, centroid size; LL, latero-lateral; VD,
 535 ventro-dorsal; CC, crano-caudal; A1, distance between glottis and alar edge of ventral pouch
 536 entrance.

Parameter	female	male	df	F	P
Log ₁₀ (CS Thyroid cartilage)	4.03 \pm 0.01	4.03 \pm 0.01	1, 6	0.17	0.70
Log ₁₀ (CS Cricoid cartilage)	3.85 \pm 0.01	3.85 \pm 0.01	1, 6	0.01	0.99
Log ₁₀ (CS Arytenoid cartilage)	3.43 \pm 0.03	3.42 \pm 0.01	1, 6	0.09	0.93
Log ₁₀ (CS Epiglottis)	3.49 \pm 0.03	3.43 \pm 0.04	1, 6	3.7	0.13
Ventral Pouch LL (mm)	963 \pm 116	935 \pm 38	1, 6	0.15	0.71
Ventral Pouch VD (mm)	355 \pm 71	386 \pm 28	1, 6	0.50	0.52
Ventral Pouch CC (mm)	876 \pm 38	856 \pm 95	1, 6	0.11	0.75
Ventral Pouch A1 (mm)	568 \pm 164	550 \pm 173	1, 6	0.18	0.90

537

538

539 **Table 3:** Pearson correlation coefficients for three spectral parameters and body mass, laryngeal
 540 size and ventral pouch size. The correlation between the latero-lateral (LL) dimension of the
 541 ventral pouch and minimal fundamental frequency reached the greatest association.

	F0 Min	F0 Max	F0 Mean
Log10(body mass)	R = -0.33, P = 0.67	R = 0.40, P = 0.60	R = 0.28, P = 0.72
Log ₁₀ (CS Thyroid)	R = -0.29, P = 0.71	R = 0.41, P = 0.59	R = 0.29, P = 0.71
Log ₁₀ (CS Cricoid)	R = -0.29, P = 0.71	R = 0.44, P = 0.56	R = 0.32, P = 0.68
Log ₁₀ (CS Arytenoid)	R = -0.24, P = 0.75	R = 0.49, P = 0.51	R = 0.37, P = 0.63
Log ₁₀ (CS Epiglottis)	R = 0.29, P = 0.71	R = 0.73, P = 0.27	R = 0.67, P = 0.33
VP-LL	R = -0.87, P = 0.13	R = -0.52, P = 0.48	R = -0.61, P = 0.39
VP-DV	R = -0.42, P = 0.58	R = 0.20, P = 0.79	R = 0.09, P = 0.91
VP-CC	R = -0.54, P = 0.46	R = 0.15, P = 0.85	R = 0.02, P = 0.98
VP-A1	R = -0.07, P = 0.97	R = 0.64, P = 0.36	R = 0.54, P = 0.46

542

543

544 Figure Captions

545

546 **Figure 1:** **A:** Representative spectrograms of a female and a male northern pygmy mouse
547 (*Baiomys taylori*) long-distance vocalization (song). The song consists of multiple frequency
548 modulated syllables. **B:** Representative songs of a pygmy mouse in air and in a helium-oxygen
549 mixture (heliox). Note the increase in fundamental frequency in heliox. Y-axis is different than
550 in A. **C:** Minimum fundamental frequency ($F_{0\text{MIN}}$) for 6 animals in air in heliox; **D:** maximum
551 fundamental frequency ($F_{0\text{MAX}}$) for 6 animals in air in heliox; **E:** relative amplitude (ratio of
552 2 F_0/F_0) for 3 songs in $n = 3$ females (F1 – F3) and 3 males (M1 – M3).

553

554

555 **Figure 2:** Temporal features of song in air and heliox. **A:** Song duration, **B:** intercall intervals,
556 **C:** syllable duration and **D:** syllable repetition rate over the entire song. Shown are means and
557 standard deviations. Syllable duration was consistently shorter in heliox. **E** and **F** shows syllable
558 durations across three songs in air and three in heliox for a female (**E**) and a male (**F**).

559

560

561 **Figure 3:** Coronal serial sections through the larynx of a male pygmy mouse (**A – F**, dorsal to
562 ventral). The sections are 50 microns apart. In **B**, there is still part of the arytenoid cartilage
563 present in the vocal fold. The membranous portion of the vocal fold (i.e., no cartilage present) is
564 shown in **D** and **E**. Then, in **F**, cartilage is present which is part of the alar cartilage. The lateral
565 pocket of the ventral pouch is visible in sections **C** through **F**. The inset in **B** is magnified in **G**.
566 The inset in **F** is magnified in **H**. **I:** The image is taken from a section subsequent to **F**. It shows
567 that the cartilage in the vocal fold is part of the alar cartilage. Furthermore it shows that the alar
568 cartilage is connected to the epiglottis.

569 Scale bar in **F** applies to **A – F**. Scale bar in **H** applies to **H** and **I**. E, epiglottis; T, thyroid
570 cartilage; VF, vocal fold; TA, thyroarytenoid muscle; LP, lamina propria of the vocal fold.

571

572

573 **Figure 4:** **A:** Lateral view of a mid-sagittal section through the 3D reconstruction of laryngeal
574 cartilages and laryngeal airway of a male pygmy mouse. The dashed line indicates the position of

575 the cranial edge of the vocal fold. **B**: CT image of midsagittal view of a female pymy mouse
576 larynx. **C – E**: Three-dimensional surface rendition of the airway in four different views. A,
577 arytenoid cartilage; E, epiglottis; T, thyroid cartilage; VP, ventral pouch; C, cricoid cartilage.

578

579

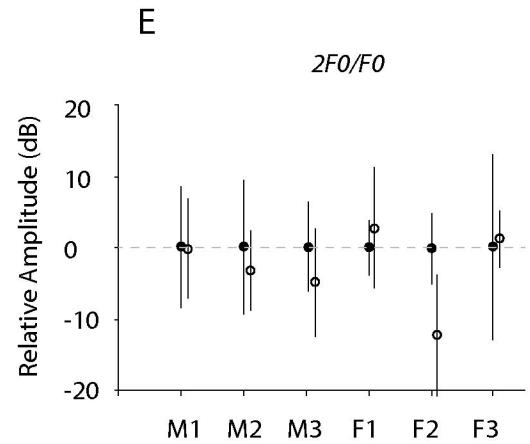
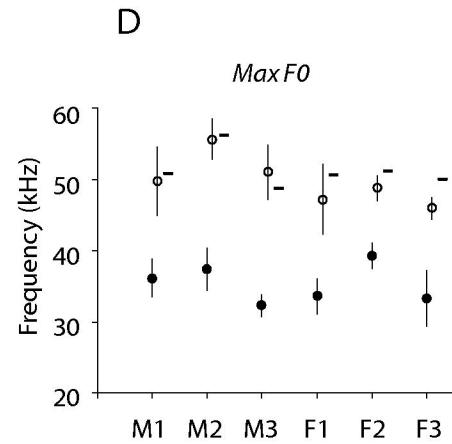
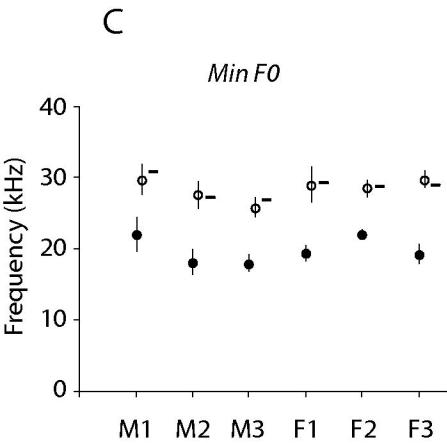
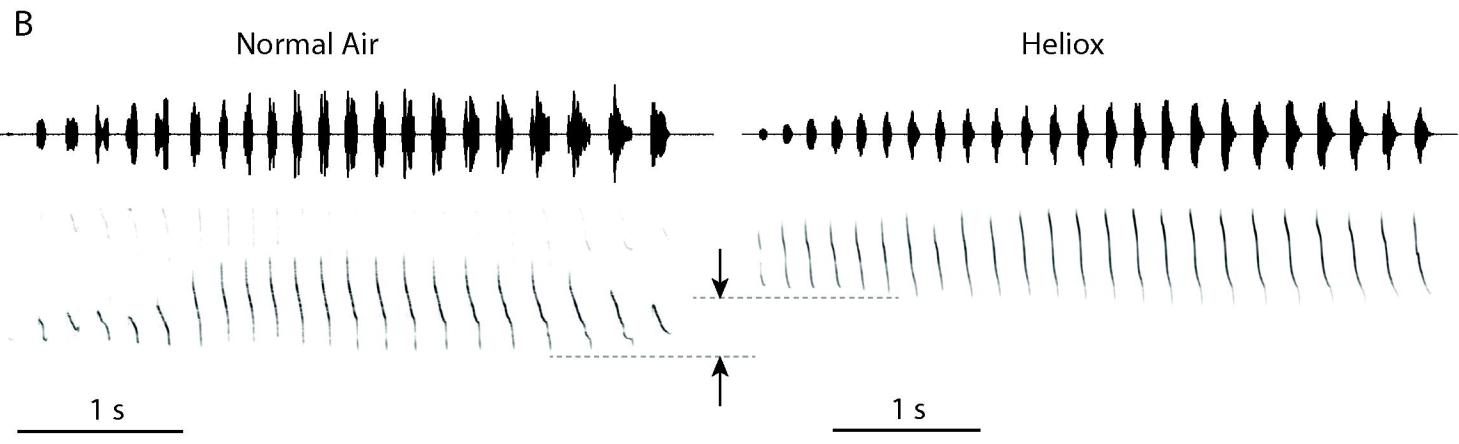
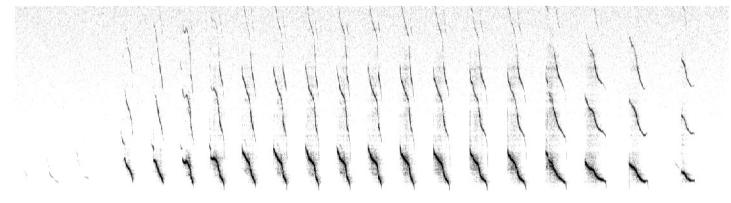
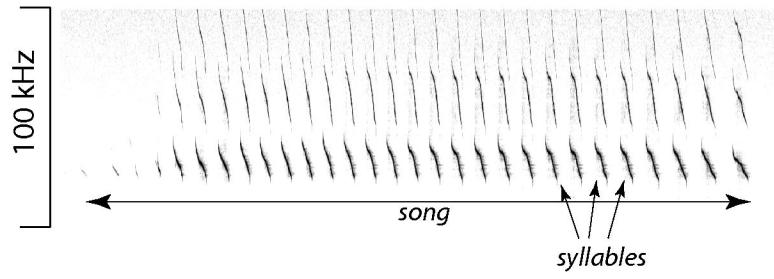
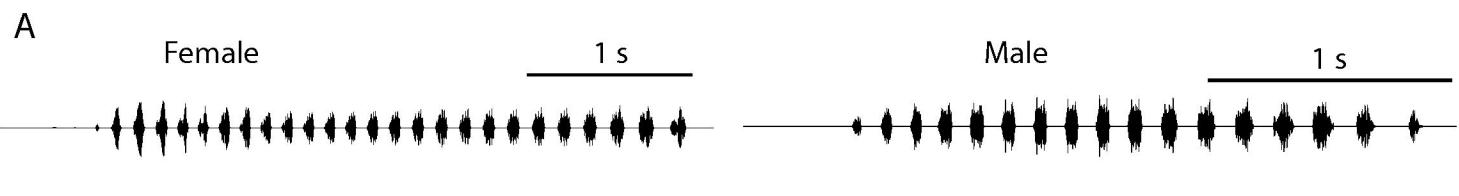
580 **Figure 5**: Three dimensional surface renditions of laryngeal cartilages of a male northern pygmy
581 mouse. A-D: thyroid cartilage. E-H: cricoid cartilage I-L: arytenoid cartilage. M-P: Epiglottis

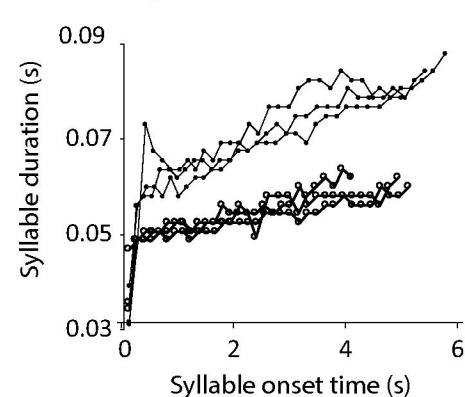
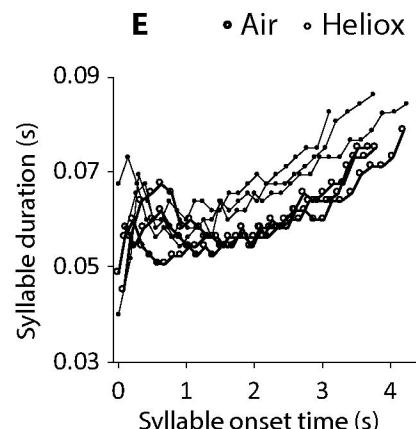
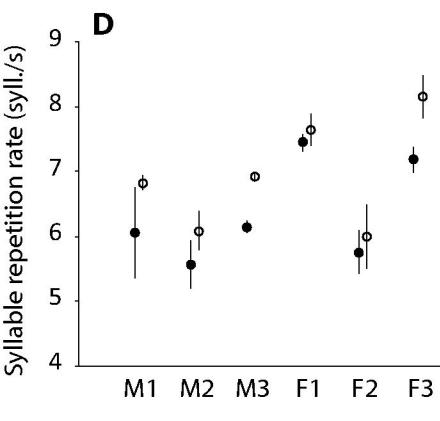
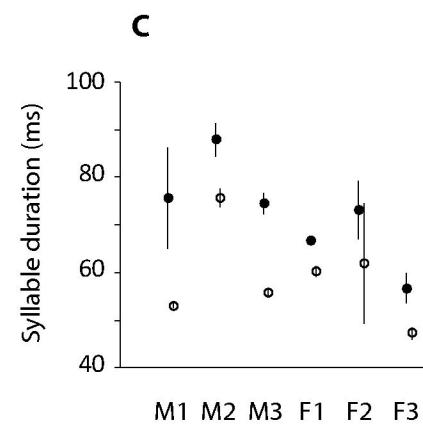
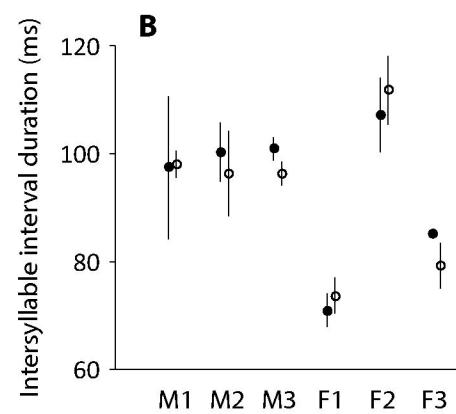
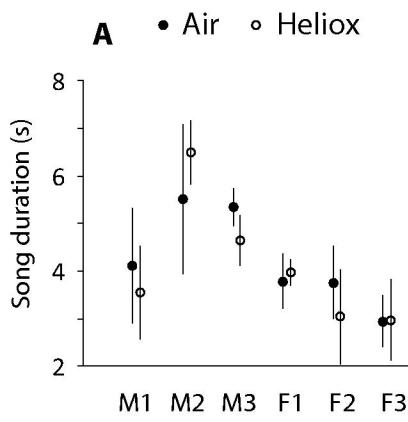
582

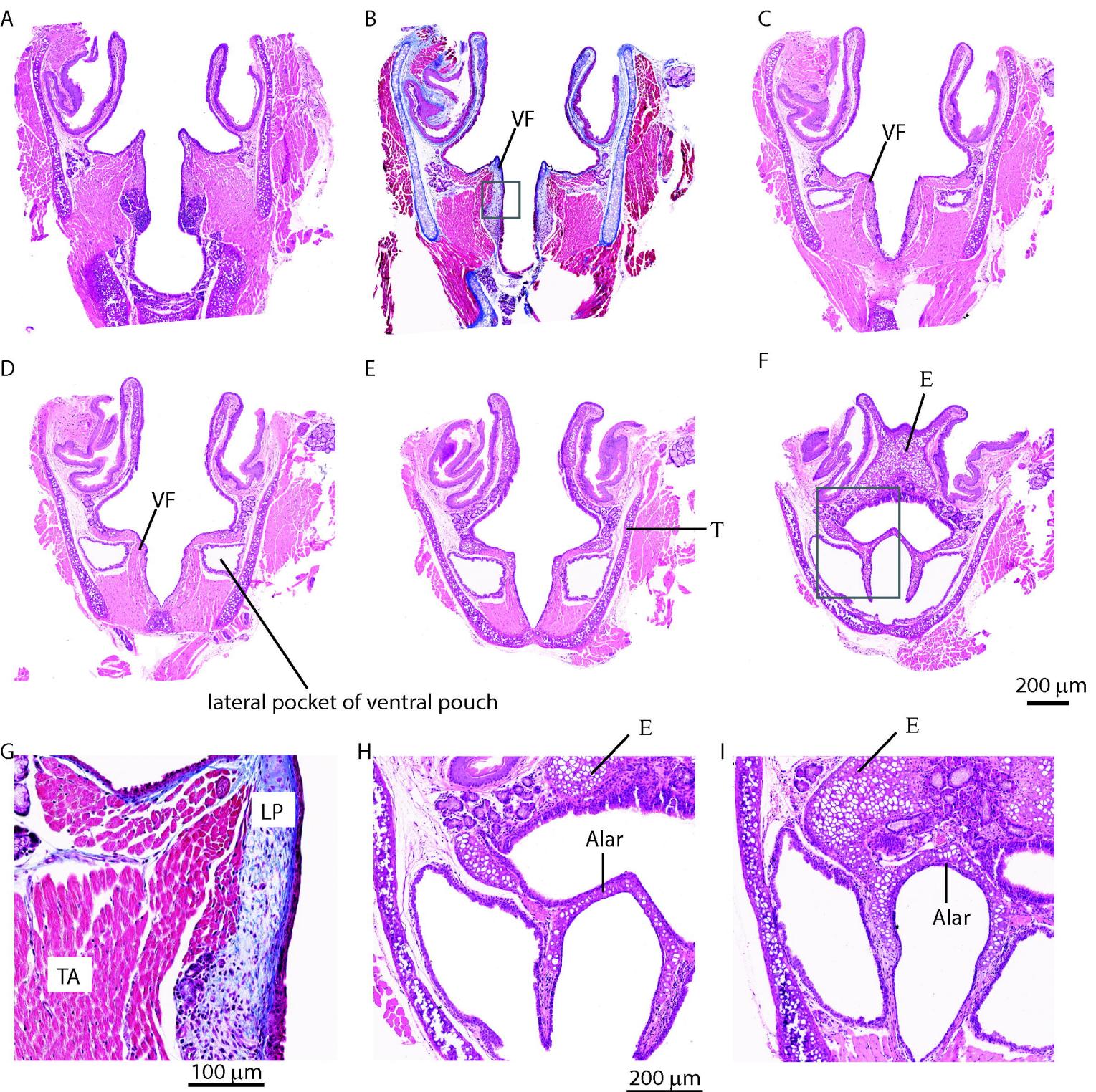
583

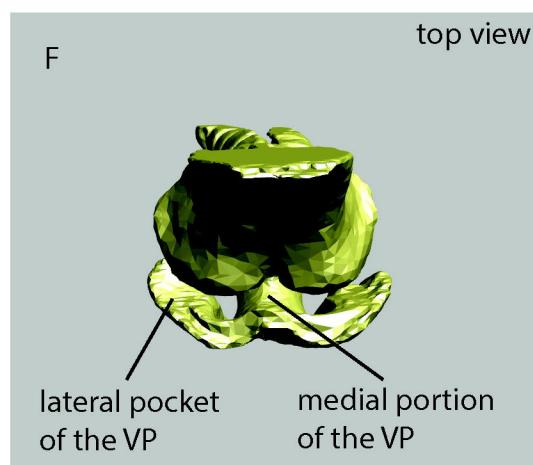
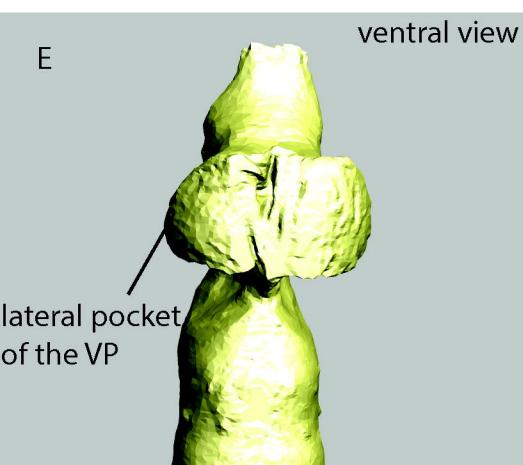
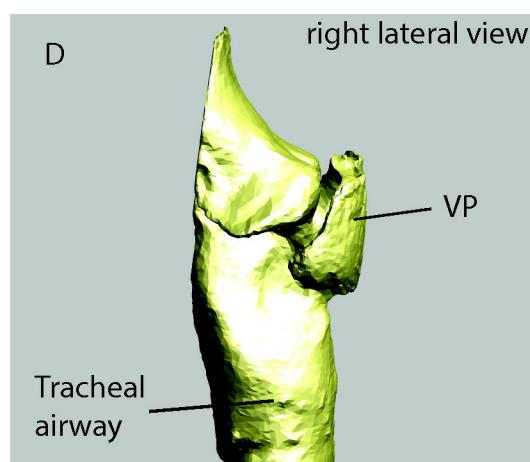
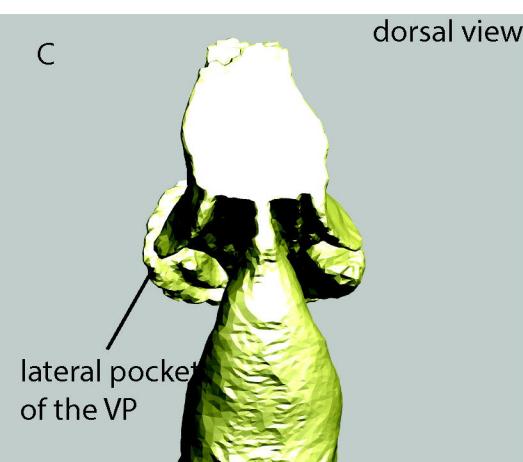
584 **Figure 6: A-D**: Principal component analysis of the Procrustes shape coordinates from curve and
585 surface semilandmarks. Each point represents the cartilage shape of one individual (closed
586 circles males; open circles females). **E-H**: Relationships between cartilage size (measures as
587 ‘centroid size) and body mass.

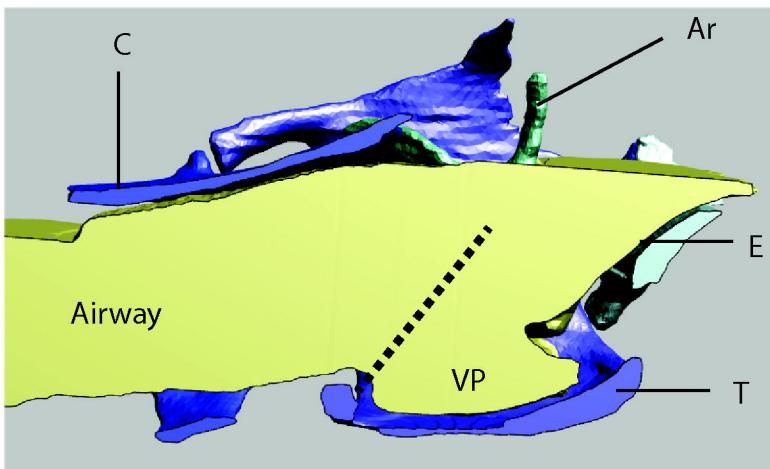
588

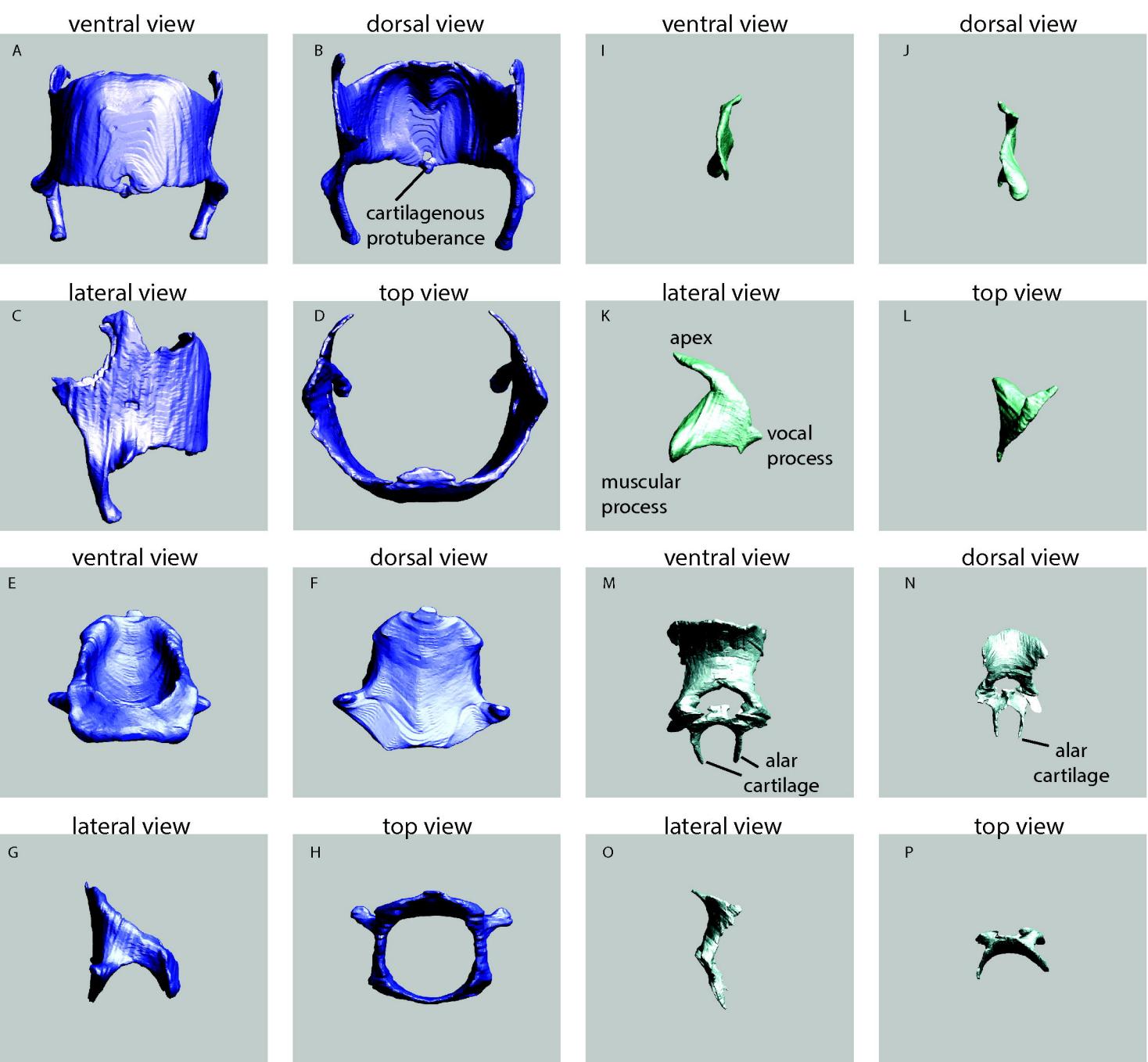







589

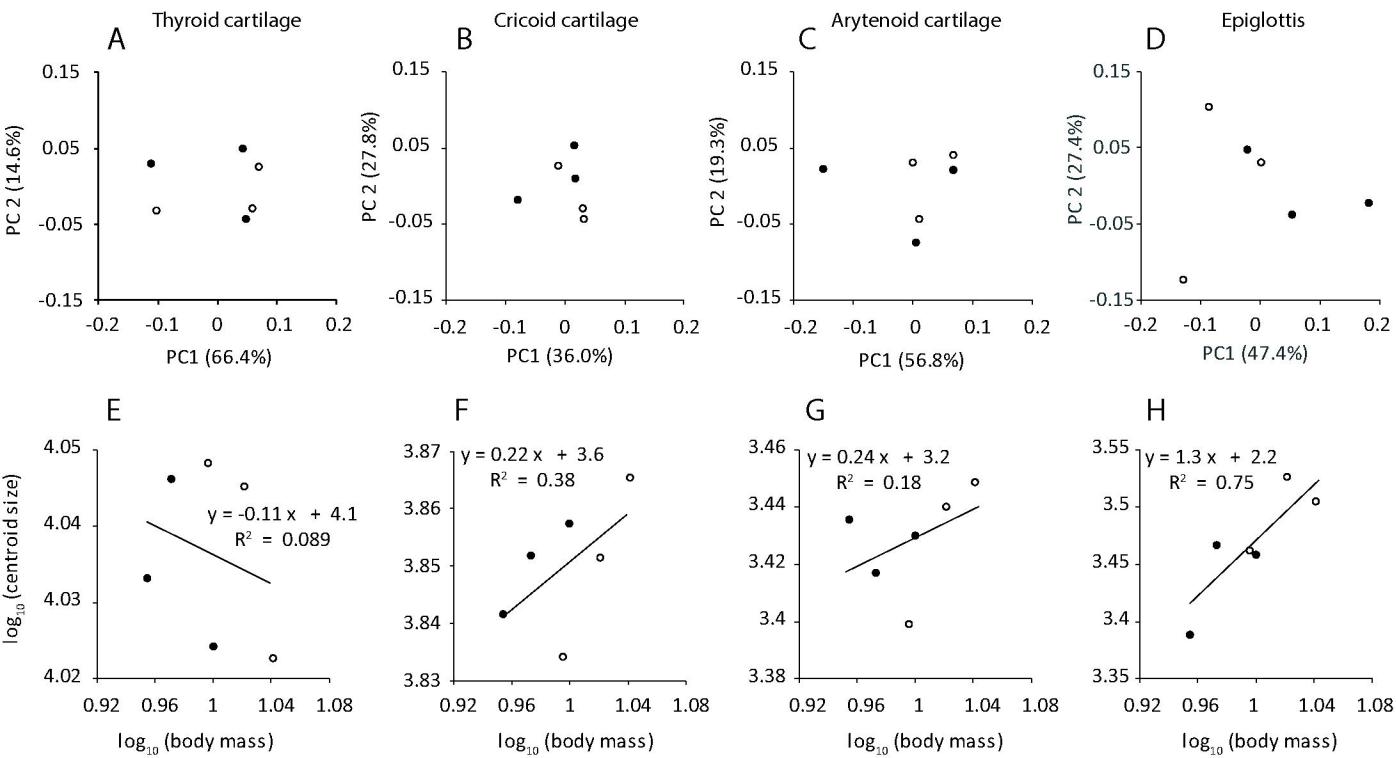






590 **Figure 7: Baiomys** possesses large ventral pouch. **A – D**: Cranio-caudal views of the ventral
591 pouch of four rodent species which produce ultrasonic whistles. Solid black bars are 1 mm. **E -**
592 **H**: Relationships between body mass and centroid size of thyroid, cricoid, arytenoid cartilage
593 and epiglottis.

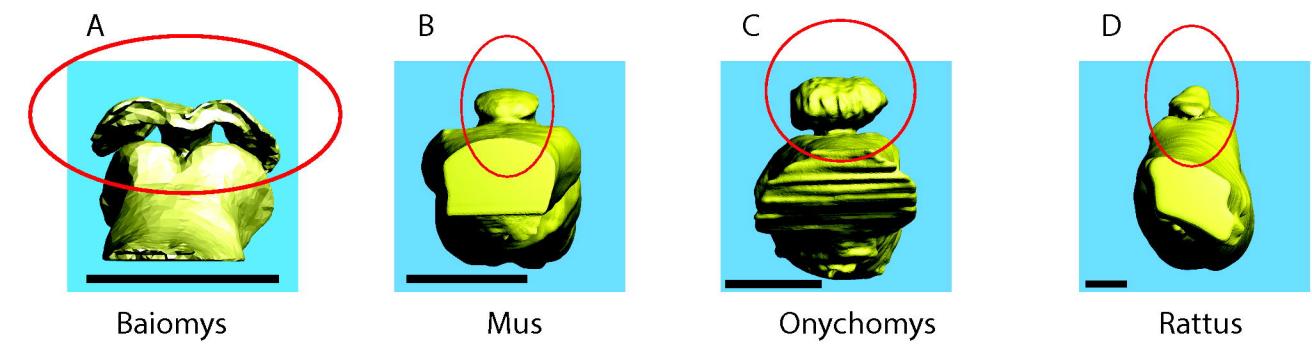

594 Relationships between minimum fundamental frequency of ultrasonic vocalizations and body
595 mass (**I**), between body mass and ventral pouch size (latero-lateral dimension) (**J**), and between
596 ventral pouch size and minimum fundamental frequency (**K**).

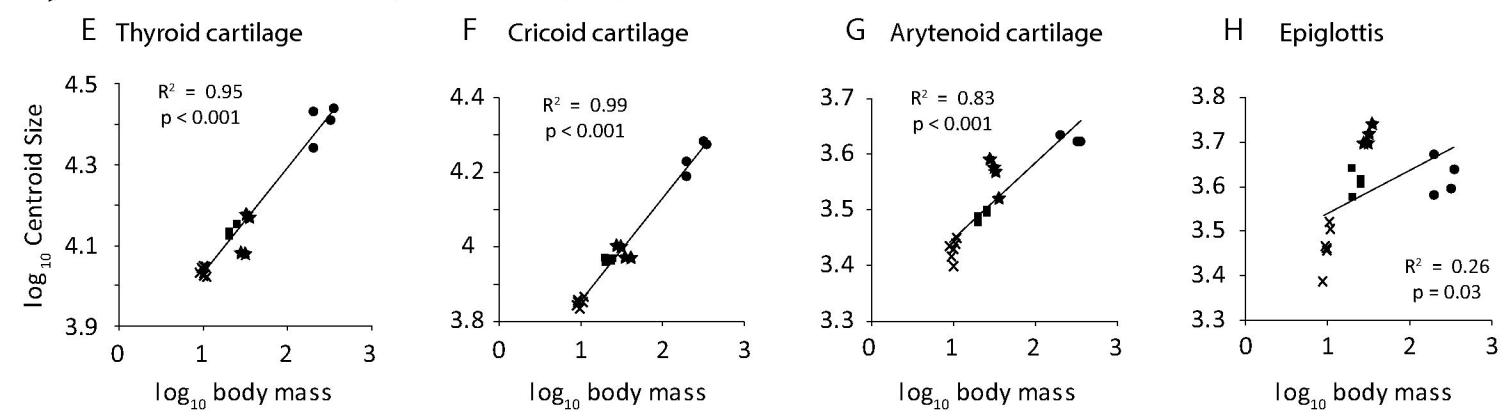





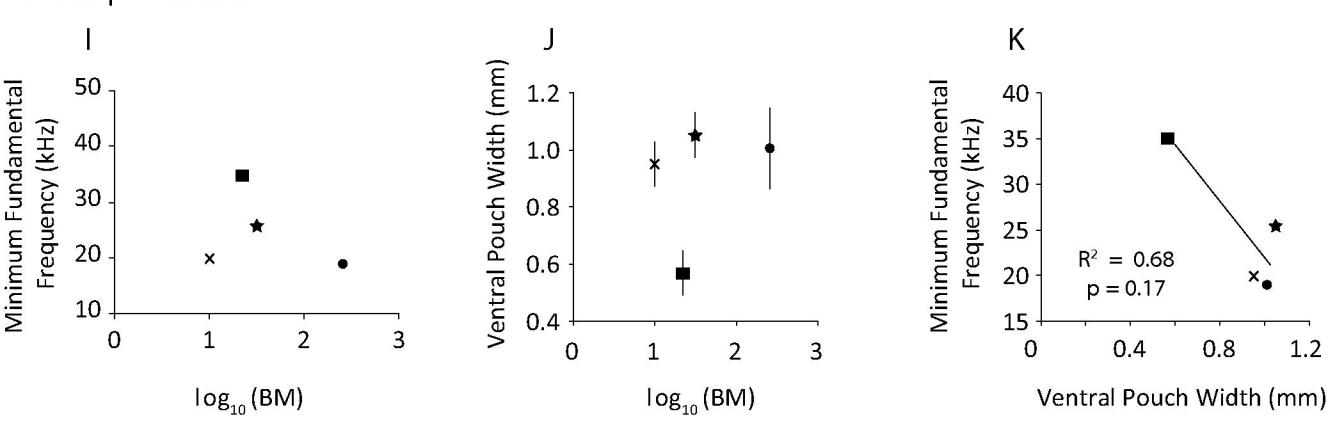

597


598








Ventral pouch shape

Larynx size

Ventral pouch size

