Evaluating testosterone as a phenotypic integrator: from tissues to individuals to species

S. E. Lipshutz<sup>a\*</sup>; E.M. George<sup>a,b</sup>; A.B. Bentz<sup>a,b</sup>; K. A. Rosvall<sup>a,b</sup>

a. Department of Biology, Indiana University, Bloomington, IN 47405, USA

b. Center for the Integrative Study of Animal Behavior, Indiana University, Bloomington, IN 47405, USA

\*Corresponding author at: Department of Biology, Indiana University, Bloomington, IN 47405, USA; slipshut@iu.edu

Hormones have the potential to bring about rapid phenotypic change; however, they are highly conserved over millions of years of evolution. Here, we examine the evolution of hormone-mediated phenotypes, and the extent to which regulation is achieved via independence or integration of the many components of endocrine systems. We focus on the sex steroid testosterone (T), its cognate receptor (androgen receptor) and related endocrine components. We pose predictions about the mechanisms underlying phenotypic integration, including coordinated sensitivity to T within and among tissues and along the HPG axis. We then assess these predictions with case studies from wild birds, asking whether gene expression related to androgenic signaling naturally covaries among individuals in ways that would promote phenotypic integration. Finally, we review how mechanisms of integration and independence vary over developmental or evolutionary time, and we find limited support for integration.

Keywords: integrated phenotype, testosterone, evolutionary constraint, evolutionary potential, androgen receptor, auto-regulation

# 1. Integration, independence, and testosterone

Phenotypic integration occurs when molecular, physiological, morphological, behavioral, or life history traits co-vary (Pigliucci 2003; Murren 2012). Integration is considered adaptive because co-expressed trait combinations can yield higher relative fitness than the alternative, when traits are decoupled (Sinervo and Svensson 1998; McGlothlin and Ketterson 2008). Thus, 'integrated phenotypes' typically refer to cases in which we observe strong correlations between two or more components of the phenotype that work well together— for example, courtship displays, aggression, and gametogenesis during social competition, versus offspring provisioning and reduced territorial aggression during parental care (Ketterson and Nolan 1999; Wingfield et al. 2001). There are many ways to conceptualize the degree of integration, all of which generally reflect patterns of covariation among phenotypic traits (Klingenberg 2008; Armbruster et al. 2014).

Hormones are a physiological component of the integrated phenotype, and they also may generate integration (Zera et al. 2007; Jaillais and Chory 2011; Martin et al. 2011; Hau et al. 2016). Much of the work on phenotypic integration in vertebrates has examined the hormone testosterone (T), focusing on higher vs. lower levels in circulation, both naturally and experimentally (Hau & Wingfield 2011; Ketterson & Nolan 1999; Wingfield et al. 2001). T has been linked with various socially or sexually selected traits (Sinervo and Svensson 1998; Kempenaers et al. 2008), and in driving the expression of such traits under different social or ecological contexts, T can mediate life history trade-offs (McGlothlin and Ketterson 2008). Although T levels fluctuate temporally (Williams 2008), there is also evidence that individual variation in T is repeatable (Pelletier et al. 2003; While et al. 2010, but see Jawor et al. 2007, Pavitt et al. 2015) and that T levels are heritable (Kempenaers et al. 2008), setting the stage for this hormone to play a role in phenotypic evolution (Hau and Goymann 2015; Cox et al. 2016).

Importantly for behavioral ecologists, T is also relatively inexpensive and straightforward to assay. It can be sampled from the blood of wild individuals that readily return to life as freely behaving animals shortly thereafter. However, the focus on T signal, rather than the many other endocrine components that influence the effects of T, oversimplifies its integrative power as a mediator of phenotypic change. This highlights an important evolutionary consideration, which is often ignored in behavioral ecology: the signaling capacity of a molecule is effective only within the system that generates and receives it (Dufty et al. 2002; Ball and Balthazart 2008; Kempenaers et al. 2008). As a standalone molecule, T is highly conserved (in fact, identical) in structure over millions of years of evolution (Adkins-Regan 2005). There is no gene for T; rather, the evolution of T-mediated traits depends upon the mechanisms that produce, regulate, and respond to T, i.e., the entire endocrine phenotype. Critically, our understanding of how the androgenic signaling system evolves in wild animals is limited.

Roughly a decade ago, two models were proposed to conceptualize how selection shapes the evolution of hormone-mediated traits, each with two non-mutually exclusive hypotheses. Hau (2007) proposed that hormone-mediated traits evolve via (a) evolutionary constraint, whereby life history trait combinations, hormone levels, and other components of endocrine systems are tightly linked and co-evolve in a conserved fashion across species, or (b) they evolve via evolutionary potential, in which hormone

signal (i.e. T levels) can evolve independently from hormone receptors, metabolism, conversion, co-factors, and so on. Ketterson et al. (2009) describes two related models as (a) *phenotypic integration*, the tight connection between hormone signals and hormonally mediated traits, and (b) *phenotypic independence*, the flexible uncoupling of these traits, which is proposed to be mediated by tissue-level differences in sensitivity to hormones. Ketterson and colleagues view integration as both a potential driver and constrainer of evolutionary change. For instance, integration could hasten phenotypic change if coordinated changes across many traits are adaptive in new environments, such that a single change in T levels would produce sweeping consequences. However, if the constellation of traits tightly integrated by T is no longer beneficial in a new environment, then divergence would be constrained. In contrast, one or another trait can become de-coupled from the otherwise integrated phenotype, for instance via changes in androgen sensitivity in a particular tissue, which would then facilitate change. Both Hau and Ketterson et al. consider these models as part of a continuum, a perspective that we carry forward below.

Here, we evaluate evidence for these hypotheses of independence vs. integration, focusing on putatively co-regulated components of the androgenic signaling system. We examine the expression patterns of many genes across multiple tissues, from non-model organisms in their natural environment. We begin by laying out predictions of phenotypic integration at the tissue level (§3), i.e. how endocrine mechanisms could generate organismal integration. We evaluate these predictions with novel network analyses assessing the degree of integration in datasets drawn from our own research on free-living birds (§4) in which we have measured many components of the endocrine phenotype across multiple tissues, in the same individuals (Rosvall et al. 2012; Bergeon Burns et al. 2013; Rosvall et al. 2013; Bergeon Burns et al. 2014; Bentz et al. 2019). We then examine how integration varies across scales: within or among individuals, between the sexes, and among species (§5). We close by highlighting challenges and next steps for applying this framework to evolutionary endocrinology (§6), to further build connections between behavioral ecology and evolutionary endocrinology in our shared endeavor to understand the evolution of integrated phenotypes.

### 2. Unpacking mechanisms of testosterone-mediated integration

T is produced in the gonad(s) and transported in the bloodstream to neural and peripheral tissues. In doing so, T is pleiotropic – it can coordinate expression of multiple traits via downstream effects on many organs, tissues, or cell populations (Lema and Kitano 2013). For instance, during the breeding season for many vertebrates, T influences suites of social and reproductive behaviors by activating key areas of the brain, as well as the muscles, gonads, and other peripheral tissues (Wingfield et al. 2001).

T-mediated traits are regulated by an endocrine system that has many names, including the androgenic signaling cascade (Fuxjager and Schuppe 2018), T production and response pathway (Hau and Wingfield 2011; Rosvall et al. 2016), T regime (Kempenaers et al. 2008), hormone control system (Adkins-Regan 2008), and endocrine phenotype (Cox et al. 2016), all of which generally refer to a network of interacting components that includes binding globulins, enzymes for steroid synthesis

and metabolism, T metabolites, hormone receptors, cofactors, response elements and their collective effect on downstream gene expression. Many consider T to be permissive, such that the precise amount in circulation may not be relevant, except to the degree that it exceeds a threshold above which it is likely to activate downstream effects (Hews and Moore 1997; Hau and Goymann 2015). Others find a dosedependent relationship between T and phenotypic traits (Bhasin et al. 2001), or nonlinear relationships. Thus, the phrase 'T-mediated traits' is not limited to traits that covary with circulating T levels per se, but it more accurately conveys that trait expression is influenced by one or more components of this system (see Ball and Balthazart 2008; Williams 2008).

Nuclear androgen receptors (AR) are one component of this system generating phenotypic variation. Once T or its more potent metabolite  $5\alpha$ -dihydrotestosterone (DHT) binds to AR, the steroid-receptor complex acts as a transcription factor, targeting the promotors of specific genes and regulating their expression (Hunter et al. 2018). AR expression is auto-regulated by T, and T can induce or suppress AR transcription in a tissue-specific manner (Nastiuk and Clayton 1994; Bagamasbad and Denver 2011; Hunter et al. 2018). T can also be converted into  $17\beta$ -estradiol (E2) via the enzyme aromatase (AROM). In fact, many of the well-studied behavioral effects of T are mediated via E2, which can bind to estrogen receptors (ER) or act via rapid activation of secondary messenger systems (Remage-Healey et al. 2018). T can also be synthesized locally from androgen precursors in many tissues, including the brain (London et al. 2009), adrenals (Soma et al. 2015), and other peripheral tissues (Schmidt et al. 2008). To the degree that locally produced T affects traits of interest via downstream conversion, binding, and/or transcription, selection can act on local tissue-specific control of hormonally mediated traits *independently* of levels of T in circulation.

The mechanistic significance of these many components and their target-specific effects is far from new to molecular endocrinology (Dufty et al. 2002; Schmidt et al. 2008). Until recently (Rosvall et al. 2012; Cox et al. 2016; Fuxjager and Schuppe 2018), however, behavioral ecology and evolutionary endocrinology have largely overlooked quantification of other components of androgenic signaling systems (i.e. beyond circulating T levels), despite discussion that one (or more) components may be mechanistic drivers of evolutionary change (Hau 2007; Ketterson 2009). Filling this knowledge gap will require that we examine multiple components of the endocrine phenotype and their interactions with morphological, behavioral and life history traits, both within populations and between species. After all, it is the system as a whole that produces the collective organismal traits visible to natural selection, influencing the probability of who lives or dies, who breeds and how much.

# 3. Predictions of phenotypic integration at the tissue level

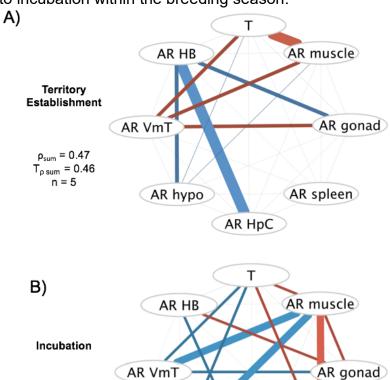
As summarized above, most work on T-mediated phenotypes focuses on connecting endocrine traits (here, T levels) with non-endocrine traits, such as morphology, physiology, and behavior, as they relate to life history trade-offs. Here we shift our focus under the skin, to describe non-mutually exclusive endocrine mechanisms that ought to influence the degree of phenotypic integration. We largely conceptualize full integration as *positive* co-variation among components of the endocrine system. However, we also expect negative co-variation due to the potential

for autoregulation, which can generate either positive or negative co-variation depending on abundance and the balance between positive vs. negative feedback (Hunter et al. 2018). Like Hau and Ketterson and colleagues, we view integration as a continuum, ranging from strong correlations among all parameters (integration), to only a few strong connections, to essentially none (independence).

One prediction of integration is that AR expression is linked among tissues, leading to the coordinated expression of multiple traits. Although not typically stated, such co-regulation most parsimoniously depends upon cross-tissue integration of sensitivity to T. Most simply, this would occur if some individuals have relatively higher levels of AR and others have lower levels of AR across tissues (e.g. brain, muscles, gonads; for an analogous perspective on glucocorticoids, see Lattin et al. 2015). This prediction need not be limited to AR, and could apply to other endocrine traits such as enzymatic steroid conversion (AROM, 5α-reductase), other steroid receptors (ER), and co-factors, among others. Relative abundance of AR could be manifest at the level of gene expression (mRNA), protein abundance, number of AR-immunoreactive neurons, and so on, although we do not distinguish among these possibilities here. Presumably having more AR across tissues would facilitate organismal integration, promoting for example, greater spermatogenesis, athleticism or activity, sexual behavior, and courtship, alongside higher T levels. At the other end of the spectrum, AR expression across tissues may be completely independent, with AR in each tissue varying independently of other tissues and T levels in circulation (Hunter et al. 2018).

A second prediction regarding the mechanisms underlying integration involves endocrine cascades, such that functionally related components are regulated in concert. For T, this would occur along the hypothalamic-pituitary-gonadal (HPG) axis, where an individual with high T levels also produces more GnRH from the hypothalamus, has more abundant GnRH-receptors in the pituitary, secretes more LH, and has more abundant LH-receptors in the gonad. This cascade-level integration might be extended further, with 'high responders' also having stronger negative feedback responses along multiple tiers of the HPG axis or greater metabolism of T in the liver.

A third prediction relates to whether different components of the T-production-response system are *integrated within a tissue* (sensu evolutionary constraint, Hau 2007). Although within-tissue integration or independence does not inherently link (or de-couple) multiple organismal traits across tissues, it nevertheless tells us how animals might regulate tissues independently from T, and it therefore has important implications for phenotypic integration. Full integration would occur when local steroidogenic capabilities (synthesis, conversion, and degradation) and hormone sensitivity (binding globulins, receptors, and cofactors) are coordinated within a tissue. Under this scenario, for instance, individuals with high AR within a particular brain area may also have higher AROM (converts T to E<sub>2</sub>), higher  $5\alpha$ -reductase (converts T to DHT), higher expression of specific co-factors, and may even activate more genes or to a greater degree, compared to other individuals with comparatively lower levels of these many components. Alternatively, these components may be independently regulated, perhaps allowing animals to shunt more hormone towards one pathway than another (e.g. androgenic vs. estrogenic, synthesis vs. metabolism, etc.).


### 4. Case Studies from wild birds and insights into integration vs. independence

Data that bear on co-variation of endocrine components are limited, and so we begin by reanalyzing mostly published data to evaluate cross-tissue and cross-cascade integration with T, capitalizing on data that we generated with colleagues over the last 10 years in multiple projects. Using these data, we begin to test the hypothesis that individual variation in T co-varies with other endocrine traits, including hormone receptors and enzymes that metabolize T, across multiple neural and peripheral tissues. We focus on individual variation because individual differences are the raw material of evolution (Williams 2008) and heritable individual differences are proportional to the potential for natural selection (reviewed in Cox et al. 2016). We employ a network approach where each node represents a trait and each edge represents Spearman's rank correlation coefficient (p) between two traits (Wilkins et al. 2015), thereby making it robust to outliers. We analyze connectivity within networks ( $\rho_{sum}$ ), which is the sum of the absolute value of p among all traits, i.e. the sum of connection strengths among nodes, divided by the number of possible connections to standardize for maximum potential integration. psum is akin to intramodular connectivity in weighted gene coexpression network analysis (Zhang and Horvath 2005). We also calculate Tpsum, which reflects connectivity between just T and all other traits. We visualize networks with cytoscape (Shannon et al. 2003), only displaying strong correlations ( $|p| \ge 0.7$ ). There are many ways to quantify network properties and we do not assert this approach is the only way; rather, these analyses are meant to serve as a spring-board for understanding how integration may or may not be generated and how it can vary over different timescales, from the developmental to the evolutionary.

In doing so, these examples begin to address whether and how integration changes across breeding stages within an animal's lifetime (Bentz et al. 2019), how males and females may differ in endocrine integration (Rosvall et al. 2012, 2013), and ultimately, how the degree of integration itself may change as populations and species diverge (Bergeon Burns et al. 2013; Bergeon Burns et al. 2014). With one exception (Figure 1a,b), these data are previously published and we simply re-analyze them in a network framework. One analysis includes new data on AR gene expression generated from additional tissues from animals sampled for another project (Bentz et al. 2019). For an overview of animal collection and gene expression methods, see SI Methods.

First, we examined how the degree of phenotypic integration varies across breeding stages, focusing on T levels and AR gene expression in neural and peripheral tissues in female tree swallows (*Tachycineta bicolor*) (Figure 1a,b). Aggression in this system is an important predictor of a female's ability to acquire a nesting cavity (Rosvall 2008), with females engaging in acrobatic aerial chases, which can escalate to physical aggression (Stutchbury and Robertson 1987). Ovarian T production capabilities and circulating T levels are high during territorial establishment but lower during incubation and chick-rearing (George and Rosvall 2018; Bentz et al. 2019), and experimental work demonstrates that T promotes female aggression and mediates trade-offs with maternal behavior (Rosvall 2013a). Here, we measured AR gene expression across 3 peripheral tissues (ovary, spleen, muscle; Betnz et al. 2019) and 4 macro-dissected neural tissues (hypothalamus [hypo], ventromedial telencephalon [VmT], hippocampus [HpC], and hindbrain [HB]) using females that we collected during territorial establishment or incubation (Bentz et al. 2019; George and Rosvall unpublished data). Three clear patterns emerge from these data: (1) T levels are not consistently correlated with AR

gene expression across tissues, indicating tissue-specific patterns of autoregulation, (2) 259 AR gene expression in one tissue generally varies independently of AR gene 260 261 expression in other tissues, although (3) patterns of cross-tissue integration vary from 262 one breeding stage to the next. For instance, during territorial establishment, positive co-variation occurs between T, AR in pectoral muscle, AR in VmT (a socially responsive 263 264 brain area), and AR in gonad (Figure 1a). It is tempting to interpret this as an integrated 265 set of phenotypes that works well together (i.e. higher T alongside higher AR in neural 266 and peripheral tissues that affect social aggression during territorial establishment), but 267 we do not have behavioral data to address this directly. On the whole, these data 268 demonstrate that cross-tissue AR expression can become more integrated, as 269 environmental and physiological selection pressures shift from territorial establishment 270 to incubation within the breeding season.



AR hypo

Figure 1: Integration of T and AR gene expression across tissues and breeding stages. in female tree swallows (*Tachycineta bicolor*) during a) territorial establishment and b) incubation. Edge color indicates the direction of the correlation (positive = red, negative = blue) and line thickness indicates the strength (edge threshold is  $|p| \ge 0.7$ .  $\rho_{\text{sum}}$  represents the sum of |p| among nodes, divided by the number of possible node connections to standardize for maximum potential integration.  $T\rho_{\text{sum}}$  reflects the sum of |p| between T and all other nodes, divided by the number of possible node connections

AR spleen

AR HpC

271 272

273274

275

276277

278

 $\rho_{sum} = 0.64$   $T_{p sum} = 0.60$  n = 4

to T. Abbreviations: T = testosterone, AR = androgen receptor, VmT = ventromedial telencephalon, hypo = hypothalamus, HpC = hippocampus, HB = hindbrain.

Next, we evaluated evidence for cross-tissue integration in the brain, and how it varies between males and females. These data come from dark-eyed juncos of the Carolina subspecies (Junco hyemalis carolinensis). All individuals were captured and collected on their territories during the early-to-mid breeding season (see SI Methods). Females were in the incubation stage and males were in breeding condition, as evidenced by enlarged gonads. We measured AR, ER, and AROM gene expression in VmT, HYPO, and right posterior telencephalon (PT) because these brain areas have been implicated in the regulation of aggressive behavior (Rosvall et al. 2012). Network analyses show that across neural tissues, AR, ER, and AROM gene expression are not integrated with T for either sex (Figure 2a,b). There is some suggestion of within-tissue integration for both sexes (e.g. ER, AR, AROM in HYPO) and more so for males in the PT and VmT. Weaker integration in females supports the prediction that the independence of endocrine components could be an adaptive mechanism to minimize the costs of T (Rosvall 2013b). For females, a negative correlation of AROM in the VmT with ER in the PT suggests some negative feedback relating to E<sub>2</sub>, although without E<sub>2</sub> measurements, this is untested. On the whole, these results suggest independence across neural tissues, but integration within neural tissues for both sexes.

279

280

281 282

283

284

285

286

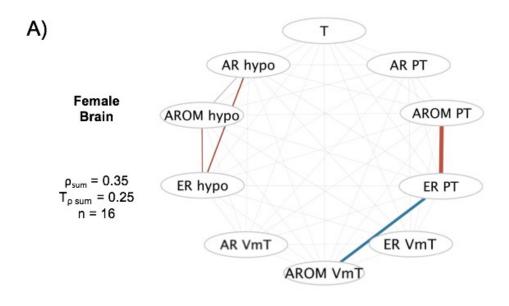
287

288

289

290

291


292

293

294

295

296



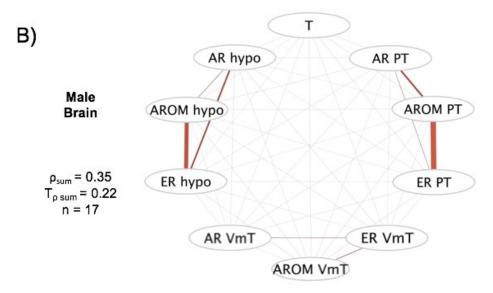



Figure 2: Integration of AR, ER, and AROM gene expression within and across neural tissues in Carolina dark-eyed junco (*Junco hyemalis carolinensis*) a) females and b) males. Edge color indicates the direction of the correlation (positive = red, negative = blue) and line thickness indicates the strength (edge threshold is  $|\rho| \ge 0.7$ ).  $\rho_{\text{sum}}$  represents the sum of the absolute value of  $|\rho|$  among nodes, divided by the number of possible node connections to standardize for maximum potential integration.  $T\rho_{\text{sum}}$  reflects the sum of the absolute value of  $|\rho|$  between T and all other nodes, divided by the number of possible node connections to T. Abbreviations: T = testosterone, AR = androgen receptor, ER = estrogen receptor, AROM = aromatase, VmT = ventromedial telencephalon, hypo = hypothalamus, PT = posterior telencephalon.

Finally, we compared two subspecies of junco that differ in multiple T-mediated traits, to explore how integration across the HPG axis may change over evolutionary time. We compared male dark-eyed juncos of the Carolina subspecies (*J. h. carolinensis*), with males of the larger, more aggressive, and more ornamented

314 congener, the white-winged junco (J. h. aikeni), which are thought to have diverged around the last glacial maximum (Friis et al. 2016). White-winged males elevate T more 315 rapidly and for a longer period of time following HPG axis stimulation (Rosvall et al. 316 317 2016). They also have more white on their tail feathers, a sexually selected trait, and are more aggressive in the number of flyovers during an STI, compared to Carolina 318 319 males (Bergeon Burns et al. 2014). In a previous study, we sampled these two 320 subspecies in a common aviary environment that used a photo-stimulatory day length to 321 mimic early spring conditions, when males have enlarged gonads (Bergeon Burns et al. 322 2014; Rosvall et al. 2013; see SI Methods). When individuals were injected with GnRH 323 and LH (counterbalanced and separated by a few days), they produced almost identical 324 levels of T each time. The amount of LH secreted in response to GnRH challenges was 325 unrelated to this gonadal output of T, and stimulated levels were largely unrelated to 326 baseline levels, perhaps consistent with the pulsatile secretion of LH. LH-receptor gene 327 expression in the testis (LHR gonad) and hypothalamic gene expression at the top of 328 the HPG axis (AR hypo, AROM hypo) also were uncorrelated with individual differences 329 in T production. Later work showed that testicular steroidogenic gene expression was a 330 significant predictor of T output in this system (Rosvall et al. 2016), highlighting that the 331 gonadal tier of this endocrine cascade (i.e. the testes) was integrated with T production. 332 When we combine these data in a network framework, this reveals only limited evidence 333 for integration along the HPG axis in either subspecies (Figure 3a,b), though future work 334 could examine more complex, non-linear relationships.

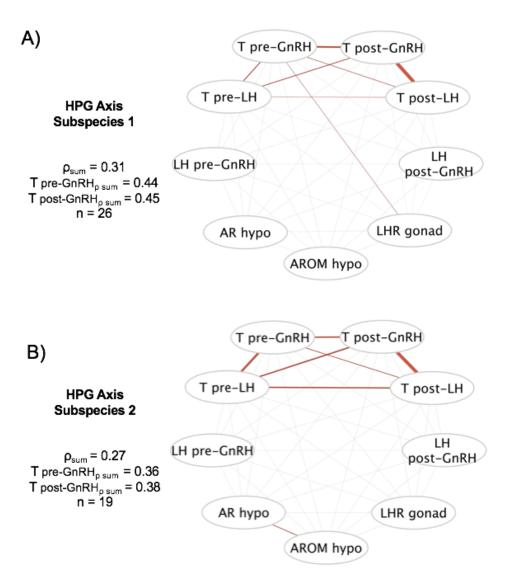



Figure 3: Integration of HPG axis in male juncos from a) the Carolina subspecies (*J. h. carolinensis*) and b) white-winged subspecies (*J. h. aikeni*), which are more aggressive and elevate T more rapidly following HPG axis stimulation. Edge color indicates the direction of the correlation (positive = red, negative = blue) and line thickness indicates the strength (edge threshold is  $|\rho| \ge 0.7$ ).  $\rho_{\text{sum}}$  represents the sum of the absolute value of  $|\rho|$  among nodes, divided by the number of possible node connections to standardize for maximum potential integration.  $T\rho_{\text{sum}}$  reflects the sum of the absolute value of  $|\rho|$  between T and all other nodes, divided by the number of possible node connections to T. Abbreviations: T = testosterone, AR = androgen receptor, hypo = hypothalamus, LH = luteinizing hormone, GnRH = gonadotropin-releasing hormone.

These novel network analyses provide limited support for integration of T with components of the endocrine phenotype across tissues and endocrine cascades. Interestingly, we found some support for within-tissue integration of endocrine phenotypes in the brain (Figure 2a,b).

# 5. Scales of integration: individuals to sexes to species

## 5.1 Integration and independence within a lifetime

Whether and how individual variation in endocrine parameters relates to other organismal traits (e.g. behavior, morphology) is a key question in evolutionary endocrinology (Ball and Balthazart 2008; Kempenaers et al. 2008; Williams 2008; Rosvall et al. 2012). Research linking individual variation in baseline T levels with behavior, however, has been met with limited success (Adkins-Regan 2005), perhaps due to the inherently flexible secretion of T (Kempenaers et al. 2008). Experimental stimulation of the HPG axis with exogenous GnRH injections has mitigated these concerns by flooding the HPG axis with GnRH and quantifying an individual's maximal T output after a standardized waiting period. Results are nonetheless mixed: T levels produced in response to GnRH injections are correlated with suites of T-mediated traits. including territorial aggression, parental care, and ornamentation in dark-eved juncos (McGlothlin et al. 2008), but they are not correlated with parenting or aggression in Northern cardinals (Cardinalis cardinalis) (DeVries et al. 2012). T responses to GnRH challenge also track morph-related differences in T-mediated traits in male whitethroated sparrows (Zonotrichia albicollis) (Spinney et al. 2006) and side-blotched lizards (Uta stansburiana) (Mills et al. 2008), but average T responses to GnRH do not differ among morphs in male red-backed fairy-wrens (Malarus melanocephalus) (Barron et al. 2015) or Gouldian finches (Erythrura gouldiae) (Cain and Pryke 2017). Thus, the capacity to elevate T levels does not necessarily predict organismal trait integration among individuals within species.

For decades, it has been clear that T-mediated traits differ even among individuals with putatively equal amounts of T in circulation (Grunt & Young 1952), with researchers pointing to other (non-T) components of androgenic signaling system (Ball and Balthazart 2008). More recently, inter-individual differences in behavior have been correlated with variation in measures of neural sensitivity to T or its metabolites (Goodson et al. 2012; Rosvall et al. 2012; Horton et al. 2014). These patterns often differ among brain areas (Trainor et al. 2006), indirectly suggesting that tissue-level sensitivity to sex steroids is not fully integrated across behaviorally relevant brain areas, similar to what we find in both tree swallows (Figure 1a,b) and dark-eyed juncos (Figure 1c,d).

T also may have different effects on individuals at different times, suggesting plasticity in the degree of integration. One interesting example comes from the redbacked fairy wren, in which T affects a different set of integrated traits in young (typically dull in plumage) vs. old (typically bright) males. Bright vs. dull plumage males differ in many social-reproductive behaviors, though young bright males do not share the full suite of behaviors seen in older bright males (Karubian 2002; Webster et al. 2008; Dowling and Webster 2017). T implants administered to young males also induce molt into the full bright plumage (Lindsay et al. 2011) but older males molt into bright plumage despite low T levels in circulation. Morphs also do not differ in their T production potential (Barron et al. 2015). These patterns not only suggest that T plays some role in inducing molt into bright plumage and coordinating other components of the integrated phenotype, but they also imply that: (1) the specific combination of T-sensitive traits may vary with age and (2) this effect might be mediated via age- and/or

morph-related differences in how tissues respond to T. Together, these patterns suggest that cross-tissue integration of AR expression may vary across and individual's lifetime, although this is an empirical question ripe for testing.

Seasonal comparisons likewise present compelling evidence for plasticity in the integrating potential of T. For example, aggression and T co-vary in the breeding season, but are decoupled in the non-breeding season when T levels are low (Demas et al. 2007). Some studies suggest that T implants or AR blockage may affect traits in different ways during breeding vs. non-breeding life history stages as well (e.g. Smith et al. 1997; Sperry et al. 2010). Seasonal patterning of AR and AROM gene expression also varies among brain tissues and in relation to T (Canoine et al. 2007; Wacker et al. 2010), allowing at least semi-independent regulation of the effects of T across the body. Likewise, our assessment of AR gene expression across neural and peripheral tissues in female tree swallows (Figure 1a,b) suggests that integration is flexible and can change over different breeding stages.

# 5.2 Sex differences in integration and independence from T

Male and female T levels are typically correlated among species, suggesting that female T secretion is shaped by correlated responses to selection acting on males (Møller et al. 2005; Mank 2007; Goymann and Wingfield 2014), but the optimal level of T secretion may differ for each sex (Ketterson et al. 2005). Females also have all components of the androgenic signaling system (Staub and De Beer 1997), and they may experience selection to decouple certain traits from the effects of circulating T, which could be achieved by decreasing T sensitivity in some tissues but not others, thereby facilitating behavioral insensitivity to T at relevant life history stages such as parental care (Lynn 2008; Sperry et al. 2010).

Past research provides some support for sex-specific patterns of covariation in phenotypic traits, though not universally so. For example, in both male and female darkeyed juncos, the ability to produce T (i.e. hormonal response to GnRH injection) predicts individual differences in territorial aggression (McGlothlin et al. 2007; Cain and Ketterson 2012). However, baseline T levels only predict aggression in males in this system, whereas neural sensitivity to sex steroids predicts aggression in both sexes (Rosvall et al. 2012). Similarly, in the White's skink (*Egernia whitii*), T secretion predicts aggression in males but not in females (While et al. 2010). In masked boobies (Sula dactylatra), however, boldness, melanization, and T levels were more strongly intercorrelated in females than males (Fargallo et al. 2014). Similarly, Maruska and Fernald (2010), working on the peripheral auditory system in cichlids (Astatotilapia burtoni), report greater co-variation of circulating androgens and AR, ER, and AROM in females compared to males. These examples suggest that there may be sex differences in the mechanisms underlying one or another trait; however, it is less clear whether one sex is generally more integrated than the other or whether the sexes generate integrated phenotypes in different ways, both of which are key questions for future research.

Experimental treatment with T is an especially useful test of the hypothesis that T affects suites of traits differently in males and females. T treatment sometimes produces 'male-typical' courtship behaviors and morphological changes in females (Hausberger et al. 1995; Day et al. 2007; Cox et al. 2015; Lindsay et al. 2016), suggesting that sexual dimorphism is due to sex biases in T production. In female brown anoles (*Anolis* 

sagrei), phenotypic integration among T-mediated traits including growth, metabolic rate, and dewlap characteristics is minimal in juveniles with low T, but strong in juveniles with experimentally elevated T (Cox et al. 2016). The potential for T to initiate sexual differentiation of multiple traits at critical periods in young individuals implicates the organizational effects of T during development (Adkins-Regan 2008; Cain et al. 2013; Cox et al. 2017; Lofeu et al. 2017) in addition to activating changes to suites of traits in adults. Other research demonstrates sex-specific effects of T on downstream gene activity (Peterson et al. 2013; Peterson et al. 2014; Cox et al. 2017), with greater modularity in genomic responses in females than males (van Nas et al. 2009), consistent with the prediction that T-mediated traits could be more independent in females (Lynn 2008; Rosvall 2013b).

### 5.3 Integration and independence across species

Evidence linking T secretion and life history traits among species is mixed (Oliveira et al. 2002; Hirschenhauser and Oliveira 2006; Garamszegi et al. 2008; Hau et al. 2010; Goymann and Wingfield 2014; Miles et al. 2018). This is perhaps unsurprising, considering that expression of T-mediated traits depends on so much more than the level of T in circulation. However, few studies examine these multiple endocrine components alongside other organismal traits. In one such species comparison of Sceloporus lizards, S. undulatus males have blue belly patch signals, are more aggressive, have higher T and also have more hypothalamic AR cell counts than whitepatched females, whereas in the closely related *S. virgatus*, both sexes have white patches and similar levels of T, hypothalamic AR, and aggression (Hews et al. 2012). This suggests that the degree of integration may vary among species, in sometimes sex-dependent ways. Similar implications stem from comparisons of two subspecies of white-shouldered fairy-wrens (*M. alboscapulatus*) that differ in female ornamentation: females from the ornamented population are more aggressive and have higher T, whereas males exhibit subspecific differences in ornamentation and aggression, but not T levels in circulation (Enbody et al. 2018).

Further support for evolutionary variation in integration comes from recent studies of the musculo-skeletal system, which can influence the performance of gestural displays. For example, activation of AR in the scapulohumeralis caudalis muscle produces a 'roll-snap' courtship display in the golden-collared manakin (*Manacus vitellinus*) (Fuxjager et al. 2017). Critically, AR expression in this wing muscle is associated with motor complexity of courtship displays across manakin species (Fuxjager et al. 2015). In another example in anoles, species that perform high rates of pushup displays and locomotor movements have a greater proportion of bicep nuclei positive for AR expression (Johnson et al. 2018), and there was a moderately significant correlation between species-average T levels and AR expression. Notably, these studies utilized phylogenetic comparative methods, allowing robust linkages between endocrine traits (here, AR) and behavioral traits. An exciting extension could explore how multiple components of androgenic signaling systems evolve independently or in concert to produce morphological and behavioral trait variation across taxa.

Recent examination of AR and cofactor expression across multiple tissues and species provides some of the best data on cross-tissue integration of endocrine

phenotypes. Fuxjager and Schuppe (2018), looking at 4 tissues including liver, pectoralis muscle, eye, and testis in 3 different species, find no consistent pattern of AR expression with SRC1 and NCOR1 cofactor expression within or across tissues, suggesting independence across tissues. For male golden-collared manakins, AR expression levels are similar in the wing muscles and spinal cord but not in the testes (Fuxjager et al. 2015). In male Bornean rock frogs with a foot-flagging display, AR expression in leg muscles and spinal cord were higher than in non-flagging species (Mangiamele et al. 2016). However, there were no AR differences in brain or larynx tissue across species, and no consistent species variation in AR across all tissues. Together, these studies suggest substantial variation in cross-tissue AR integration among species, implying independence of tissue-specific T sensitivity rather than autoregulation of AR and T across tissues.

#### 6. Conclusions and future directions

Testosterone and the traits it mediates have captivated biologists for decades. Nowhere is this more apparent than in the nexus of behavioral ecology with endocrinology, where evolutionary endocrinologists are investigating both proximate and ultimate questions about integrated phenotypes in free-living animals. Our review evaluates previously unmet predictions of this line of work, most critically that varying T levels are associated with other components of the androgenic signaling system across the organism, in ways that would promote phenotypic integration. This sort of 'obligate' integration, in which T coordinates the same traits in the same way across developmental or evolutionary timescales, stands in contrast to the data we review here. We report limited evidence for integration across tissues or along endocrine cascades (e.g. AR integration among neural and peripheral tissues, integration of different components of the HPG axis). We also find that the degree of integration may vary within an animal's lifetime, further supporting the view that multiple components of the complex endocrine phenotype can vary independently and flexibly to bring about behavioral or morphological diversity.

In closing, we propose three initiatives that will help to distill this complexity towards new insight. First, as this special issue highlights, T is among many hormones thought to be phenotypic integrators and drivers of evolutionary change. However, it is an open question whether or how T-mediated integration differs from that of glucocorticoids, insulin-like growth factor, and others. Will these more metabolic hormones that affect life-death functioning yield greater potential for integration than T? Or, is the relative lack of integration across the organism a more common phenomenon shared by many hormones? Limited evidence to date suggests perhaps so (Lattin et al. 2015), but this is another empirical question ripe for testing. Second, experimental work has not sufficiently addressed whether T-mediated integration is indeed adaptive. Considering the degree of cross-tissue independence described above, it may be fruitful to further de-integrate organisms, e.g. via tissue-specific RNAi (Casasa and Moczek 2018) or hormonal manipulations that cannot cross the blood-brain barrier (e.g. AR antagonist bicalutamide, Fuxjager et al. 2013), thereby changing the suite of traits affected by circulating hormones. Finally, the relative lack of within population integration we report here (i.e. among-individual co-variation between components of the endocrine phenotype) stands in contrast to other examples of phenotypic integration

across sexes and species (Hews et al. 2012; Cox et al. 2017; Johnson et al. 2018; Mangiamele et al. 2016). Perhaps by examining linear co-variation, we have missed integration by more complex endocrine components that act more permissively on trait expression (Hews and Moore 1997). The variety of potential relationships between T and phenotypic traits suggests that an absence of linear correlations does not necessarily indicate independence, but rather that integration can be complex, and multiple models should be tested in the future. Another potential reason for this mismatch between correlative individual comparisons (within-group) and categorical evolutionary comparisons (across-group) is that current trait values of standing phenotypic variation differ from patterns that emerge over larger developmental or evolutionary scales. Functional individual variation in endocrine systems has received less attention than comparisons among groups, despite calls for more studies over a decade ago (Williams 2008). As these data continue to accumulate across a broad phylogenetic scale, our understanding of endocrine mechanisms and their role in phenotypic evolution will only improve, making this an exciting time for evolutionary endocrinology.

Acknowledgements: All authors thank collaborators ED Ketterson and CM Bergeon Burns for allowing us to re-analyze published data from prior work on dark-eyed juncos, which would not have been possible without support from numerous field sites, facilities, students, and field technicians. For the tree swallow work, we thank EK Dossey, AN Bishop, Indiana University Research and Teaching Preserve, and the Center for Genomics and Bioinformatics. KAR is grateful to MJ Webster and J Karubian for hearty discussion of integration and evolution, and especially to ED Ketterson for inspiring this work and providing constructive feedback, both during early growth of these ideas over the years and during more recent discussions as this manuscript developed. Funding for this work came from: NIH (F32HD068222, T32HD049336), and NSF (IOS-0820055; IOS-1656109, DBI-0851607 and DBI-1460949).

#### References

536

537

538

539

540

541

542

543

544

545

546 547

548

549

550

551

552 553

554

555 556

557

558 559

560

561 562

563

564 565

566 567

568

569

570

571

572

573

574

575

576

- Adkins-Regan E. 2005. Hormones and Animal Social Behavior. Princeton, NJ: Princeton University Press.
- Adkins-Regan E. 2008. Review. Do hormonal control systems produce evolutionary inertia? Philos. Trans. R. Soc. Lond. B. Biol. Sci. 363:1599–1609.
- Armbruster WS, Pelabon C, Bolstad GH, Hansen TF. 2014. Integrated phenotypes: understanding trait covariation in plants and animals. Philos. Trans. R. Soc. B Biol. Sci. 369:20130245.
- Ball GF, Balthazart J. 2008. Individual variation and the endocrine regulation of behaviour and physiology in birds: a cellular/molecular perspective. Philos. Trans. R. Soc. B Biol. Sci. 363:1699-1710.
- Bagamasbad, P., Denver, R.J., 2011. Mechanisms and significance of nuclear receptor auto- and cross-regulation. Gen. Comp. Endocrinol. 170, 3-17.
- 578 Barron DG, Webster MS, Schwabl H. 2015. Do androgens link morphology and 579 behaviour to produce phenotype-specific behavioural strategies? Anim. Behav. 580 100:116-124. 581
  - Bentz AB, Dossey EK, Rosvall KA. 2019. Tissue-specific gene regulation corresponds

- with seasonal plasticity in female testosterone. Gen. Comp. Endocrinol. 270:26–34.
- Bergeon Burns CM, Rosvall KA, Hahn TP, Demas GE, Ketterson ED. 2014. Examining sources of variation in HPG axis function among individuals and populations of the dark-eyed junco. Horm. Behav. 65:179–187.
  - Bergeon Burns CM, Rosvall KA, Ketterson ED. 2013. Neural steroid sensitivity and aggression: comparing individuals of two songbird subspecies. J. Evol. Biol. 26:820–831.
  - Bhasin S, Woodhouse L, Casaburi R, Singh AB, Bhasin D, Berman N, Chen X, Yarasheski KE, Magliano L, Dzekov C, et al. 2001. Testosterone dose-response relationships in healthy young men. Am. J. Physiol. Endocrinol. Metab. 281:E1172-81.
  - Cain KE, Bergeon Burns CM, Ketterson ED. 2013. Testosterone production, sexually dimorphic morphology, and digit ratio in the dark-eyed junco. Behav. Ecol. 24:462–469.
  - Cain KE, Ketterson ED. 2012. Competitive females are successful females; phenotype, mechanism and selection in a common songbird. Behav. Ecol. Sociobiol. 66:241–252.
  - Cain KE, Pryke SR. 2017. Testosterone production ability predicts breeding success and tracks breeding stage in male finches. J. Evol. Biol. 30:430–436.
  - Canoine V, Fusani L, Schlinger B, Hau M. 2007. Low Sex Steroids, High Steroid Receptors: Increasing the Sensitivity of the Nonreproductive Brain. Dev. Neurobiol. 67:57–67.
  - Casasa S, Moczek AP. 2018. Insulin signalling's role in mediating tissue-specific nutritional plasticity and robustness in the horn-polyphenic beetle Onthophagus taurus. Proc. R. Soc. B 285:20181631.
  - Cordes MA, Stevenson SA, Driessen TM, Eisinger BE, Riters L V. 2015. Sexually-motivated song is predicted by androgen-and opioid-related gene expression in the medial preoptic nucleus of male European starlings (Sturnus vulgaris). Behav. Brain Res. 278:12–20.
  - Cox CL, Hanninen AF, Reedy AM, Cox RM. 2015. Female anoles retain responsiveness to testosterone despite the evolution of androgen-mediated sexual dimorphism. Funct. Ecol. 29:758–767.
  - Cox RM, Cox CL, McGlothlin JW, Card DC, Andrew AL, Castoe TA. 2017. Hormonally Mediated Increases in Sex-Biased Gene Expression Accompany the Breakdown of Between-Sex Genetic Correlations in a Sexually Dimorphic Lizard. Am. Nat. 189:315–332.
- 619 Cox RM, McGlothlin JW, Bonier F. 2016. Hormones as Mediators of Phenotypic and 620 Genetic Integration: An Evolutionary Genetics Approach. Integr. Comp. Biol. 621 56:126–137.
- Day LB, Fusani L, Hernandez E, Billo TJ, Sheldon KS, Wise PM, Schlinger BA. 2007.
  Testosterone and its effects on courtship in golden-collared manakins (Manacus vitellinus): Seasonal, sex, and age differences. Horm. Behav. 51:69–76.
- Demas GE, Cooper MA, Albers HE, Soma KK. 2007. Novel Mechanisms Underlying
  Neuroendocrine Regulation of Aggression: A Synthesis of Rodent, Avian, and
  Primate Studies BT Handbook of Neurochemistry and Molecular Neurobiology:

- Behavioral Neurochemistry, Neuroendocrinology and Molecular Neurobiology. In: Lajtha A, Blaustein JD, editors. Boston, MA: Springer US. p. 337–372. DeVries MS, Winters CP, Jawor JM. 2012. Testosterone elevation and response to
  - DeVries MS, Winters CP, Jawor JM. 2012. Testosterone elevation and response to gonadotropin-releasing hormone challenge by male northern cardinals (Cardinalis cardinalis) following aggressive behavior. Horm. Behav. 62:99–105.
  - Dowling J, Webster MS. 2017. Working with what you've got: unattractive males show greater mate- guarding effort in a duetting songbird. Biol. Lett. 13:20160682.
  - Dufty AM, Clobert J, Møller AP. 2002. Hormones, developmental plasticity and adaptation. Trends Ecol. Evol. 17:190–196.
  - Enbody ED, Boersma J, Schwabl H, Karubian J. 2018. Female ornamentation is associated with elevated aggression and testosterone in a tropical songbird. Behav. Ecol. 29:1056–1066.
  - Fargallo JA, Velando A, López-Rull I, Gañán N, Lifshitz N, Wakamatsu K, Torres R. 2014. Sex-specific phenotypic integration: endocrine profiles, coloration, and behavior in fledgling boobies. Behav. Ecol. 25:76–87.
  - Friis G, Aleixandre P, Rodríguez-Estrella R, Navarro-Sigüenza AG, Milá B. 2016. Rapid postglacial diversification and long-term stasis within the songbird genus Junco: phylogeographic and phylogenomic evidence. Mol. Ecol. 25:6175–6195.
  - Fuxjager MJ, Eaton J, Lindsay WR, Salwiczek LH, Rensel MA, Barske J, Sorenson L, Day LB, Schlinger BA. 2015. Evolutionary patterns of adaptive acrobatics and physical performance predict expression profiles of androgen receptor but not oestrogen receptor in the forelimb musculature. Funct. Ecol. 29:1197–1208.
  - Fuxjager MJ, Longpre KM, Chew JG, Fusani L, Schlinger BA. 2013. Peripheral androgen receptors sustain the acrobatics and fine motor skill of elaborate male courtship. Endocrinology 154:3168–3177.
  - Fuxjager MJ, Miles MC, Goller F, Petersen J, Yancey J. 2017. Androgens support male acrobatic courtship behavior by enhancing muscle speed and easing the severity of its tradeoff with force. Endocrinology 158:4038–4046.
  - Fuxjager MJ, Schuppe ER. 2018. Androgenic signaling systems and their role in behavioral evolution. J. Steroid Biochem. Mol. Biol. 184:47–56.
  - Garamszegi L, Hirschenhauser K, Bókony V, Eens M, Hurtrez-Boussès S, Møller A, Oliveira R, Wingfield J. 2008. Latitudinal Distribution, Migration, and Testosterone Levels in Birds. Am. Nat. 172:533–546.
  - George EM, Rosvall KA. 2018. Testosterone production and social environment vary with breeding stage in a competitive female songbird. Horm. Behav. 103:28–35.
  - Goodson JL, Wilson LC, Schrock SE. 2012. To flock or fight: Neurochemical signatures of divergent life histories in sparrows. Proc. Natl. Acad. Sci. 109:10685–10685.
  - Goymann W, Wingfield JC. 2014. Male-to-female testosterone ratios, dimorphism, and life history What does it really tell us? Behav. Ecol. 25:685–699.
  - Hau M. 2007. Regulation of male traits by testosterone: Implications for the evolution of vertebrate life histories. BioEssays 29:133–144.
  - Hau M, Casagrande S, Ouyang JQ, Baugh AT. 2016. Glucocorticoid-Mediated Phenotypes in Vertebrates: Multilevel Variation and Evolution. Elsevier Ltd.
- Hau M, Goymann W. 2015. Endocrine mechanisms, behavioral phenotypes and plasticity: known relationships and open questions. Front. Zool. 12:1–15.
- Hau M, Ricklefs RE, Wikelski M, Lee KA, Brawn JD. 2010. Corticosterone, testosterone

- and life-history strategies of birds. Proc. R. Soc. B:3203–3212.
- Hau M, Wingfield JC. 2011. Evolutionary variability and phenotypic plasticity in testosterone signaling pathways. In: Mechanisms of Life History Evolution: The Genetics and Physiology of Life History Traits and Trade-Offs. p. 349–361.
  - Hausberger M, Henry L, Richard MA. 1995. Testosterone-induced Singing in Female European Starlings (Sturnus vulgaris). Ethology 99:193–208.
  - Hews DK, Haraa E, Anderson MC. 2012. Sex and species differences in plasma testosterone and in counts of androgen receptor-positive cells in key brain regions of Sceloporus lizard species that differ in aggression. Gen. Comp. Endocrinol. 176:493–499.
  - Hews DK, Moore MC. 1997. Hormones and Sex-Specific Traits: Critical Questions. In: Beckage NE, editor. Parasites and Pathogens: Effects On Host Hormones and Behavior. Boston, MA: Springer US. p. 277–292.
  - Hirschenhauser K, Oliveira RF. 2006. Social modulation of androgens in male vertebrates: Meta-analyses of the challenge hypothesis. Anim. Behav. 71:265–277.
  - Horton BM, Hudson WH, Ortlund EA, Shirk S, Thomas JW, Young ER, Zinzow-Kramer WM, Maney DL. 2014. Estrogen receptor α polymorphism in a species with alternative behavioral phenotypes. Proc. Natl. Acad. Sci. 111:1443–1448.
  - Hunter I, Hay CW, Esswein B, Watt K, McEwan IJ. 2018. Tissue control of androgen action: The ups and downs of androgen receptor expression. Mol. Cell. Endocrinol. 465:27-35.
  - Husak JF, Lovern MB. 2014. Variation in steroid hormone levels among Caribbean Anolis lizards: endocrine system convergence? Horm. Behav. 65:408–415.
  - Jaillais Y, Chory J. 2011. Unraveling the paradoxes of plant hormone signaling integration. Nat Struct Mol Biol 17:642–645.
  - Johnson MA, Kircher BK, Castro DJ. 2018. The evolution of androgen receptor expression and behavior in Anolis lizard forelimb muscles. J. Comp. Physiol. A Neuroethol. Sensory, Neural, Behav. Physiol. 204:71–79.
  - Karubian J. 2002. Costs and benefits of variable breeding plumage in the red-backed fairy-wren. Evolution (N. Y). 56:1673–1682.
  - Kempenaers B, Peters A, Foerster K. 2008. Sources of individual variation in plasma testosterone levels. Philos. Trans. R. Soc. B Biol. Sci. 363:1711–1723.
  - Ketterson ED, Atwell JW, McGlothlin JW. 2009. Phenotypic integration and independence: Hormones, performance, and response to environmental change. Integr. Comp. Biol. 49: 365-379.
- Ketterson ED, Nolan Jr. V, Sandell M. 2005. Testosterone in Females: Mediator of
   Adaptive Traits, Constraint on Sexual Dimorphism, or Both? Am. Nat. 166:S85–
   S98.
- Ketterson ED, Nolan V. 1999. Adaptation, Exaptation, and Constraint: A Hormonal Perspective. Am. Nat. 154:S4–S25.
- Ketterson ED, Nolan V Jr. 1992. Hormones and life histories: an integrative approach.
  Am. Nat. 140: S33-S62.
- 717 Klingenberg CP. 2008. Morphological Integration and Developmental Modularity. Annu. 718 Rev. Ecol. Evol. Syst. 39:115–132.
- Jawor JM, McGlothlin JW, Castos JM, Greives TJ, Snajdr EA, Bentley GE, Ketterson

- ED. 2007. Testosterone response to GnRH in a female songbird varies with stage of reproduction: implications for adult behavior and maternal effects. Funct. Ecol. 21: 767-775.
  - Lattin CR, Keniston DE, Reed JM, Romero LM. 2015. Are Receptor Concentrations Correlated Across Tissues Within Individuals? A Case Study Examining Glucocorticoid and Mineralocorticoid Receptor Binding. Endocrinology 156:1354–1361.
    - Lema SC, Kitano J. 2013. Hormones and phenotypic plasticity: Implications for the evolution of integrated adaptive phenotypes. Curr. Zool. 59:506–525.
    - Lindsay WR, Barron DG, Webster MS, Schwabl H. 2016. Testosterone activates sexual dimorphism including male-typical carotenoid but not melanin plumage pigmentation in a female bird. J. Exp. Biol. 219:3091–3099.
    - Lindsay WR, Webster MS, Schwabl H. 2011. Sexually Selected Male Plumage Color Is Testosterone Dependent in a Tropical Passerine Bird, the Red-Backed Fairy-Wren (Malurus melanocephalus). PLoS One 6.
    - Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408.
    - Lofeu L, Brandt R, Kohlsdorf T. 2017. Phenotypic integration mediated by hormones: associations among digit ratios, body size and testosterone during tadpole development. BMC Evol. Biol. 17:175.
    - Lynn SE. 2008. Behavioral insensitivity to testosterone: why and how does testosterone alter paternal and aggressive behavior in some avian species but not others? Gen. Comp. Endocrinol. 157:233–240.
    - Mangiamele LA, Fuxjager MJ, Schuppe ER, Taylor RS, Hödl W, Preininger D. 2016. Increased androgenic sensitivity in the hind limb muscular system marks the evolution of a derived gestural display. Proc. Natl. Acad. Sci. 113:5664–5669.
    - Mank JE. 2007. The Evolution of Sexually Selected Traits and Antagonistic Androgen Expression in Actinopterygiian Fishes. Am. Nat. 169:142–149.
  - Martin LB, Liebl AL, Trotter JH, Richards CL, McCoy K, McCoy MW. 2011. Integrator networks: illuminating the black box linking genotype and phenotype. Integr. Comp. Biol. 51:514–527.
  - Maruska KP, Fernald RD. 2010. Steroid receptor expression in the fish inner ear varies with sex, social status, and reproductive state. BMC Neurosci. 11:58.
  - McGlothlin JW, Jawor JM, Greives TJ, Casto JM, Phillips JL, Ketterson ED. 2008. Hormones and honest signals: males with larger ornaments elevate testosterone more when challenged. J. Evol. Biol. 21:39–48.
  - McGlothlin JW, Jawor JM, Ketterson ED. 2007. Natural Variation in a Testosterone-Mediated Trade-Off between Mating Effort and Parental Effort. Am. Nat. 170:864–875.
  - McGlothlin JW, Ketterson ED. 2008. Hormone-mediated suites as adaptations and evolutionary constraints. Philos. Trans. R. Soc. B Biol. Sci. 363:1611–1620.
- Miles MC, Vitousek MN, Husak JF, Johnson MA, Martin LB, Taff CC, Zimmer C, Lovern MB, Fuxjager MJ. 2018. Standing Variation and the Capacity for Change: Are Endocrine Phenotypes More Variable Than Other Traits? Integr. Comp. Biol. 58:751–762.

- 766 Mills SC, Hazard L, Lancaster L, Mappes T, Miles D, Oksanen TA, Sinervo B. 2008. 767 Gonadotropin Hormone Modulation of Testosterone, Immune Function, 768 Performance, and Behavioral Trade-Offs among Male Morphs of the Lizard Uta 769 stansburiana. Am. Nat. 171.
- 770 Møller AP, Garamszegi LZ, Gil D, Hurtrez-Boussès S, Eens M. 2005. Correlated 771 evolution of male and female testosterone profiles in birds and its consequences. 772 Behav. Ecol. Sociobiol. 58:534-544.
  - Murren CJ. 2012. The integrated phenotype. Integr. Comp. Biol. 52:64–76.
  - van Nas A, Guhathakurta D, Wang SS, Yehya N, Horvath S, Zhang B, Ingram-drake L, Chaudhuri G, Schadt EE, Drake TA, et al. 2009. Elucidating the Role of Gonadal Hormones in Sexually Dimorphic Gene Coexpression Networks. Endocrinology 150:1235-1249.
  - Nastiuk, K.L., Clayton, D.F., 1994. Seasonal and tissue specific regulation of canary androgen receptor messenger ribonucleic acid. Endocrinology 134, 640-649
  - Oliveira RF, Hirschenhauser K, Carneiro LA, Canario AVM. 2002. Social modulation of androgen levels in male teleost fish. Comp. Biochem. Physiol. Part B 132:203-215.
  - Pavitt A, Walling C, Mostl E, Pemberton J, Kruuk L. 2015. Cortisol but not testosterone is repeatable and varies with reproductive effort in wild red deer stags. Gen. Comp. Endocrinol. 222:62-68.
  - Pelletier F, Bauman J, Festa-Bianchet M. 2003. Fecal testosterone in bighorn sheep (Ovis canadensis): behavioural and endcrine correlates. Can. J. Zool. 81: 1678-1684.
  - Peterson MP, Rosvall KA, Choi J-H, Ziegenfus C, Tang H, Colbourne JK, Ketterson ED. 2013. Testosterone Affects Neural Gene Expression Differently in Male and Female Juncos: A Role for Hormones in Mediating Sexual Dimorphism and Conflict. PLoS One 8:e61784.
  - Peterson MP, Rosvall KA, Taylor CA, Lopez JA, Choi J, Ziegenfus C, Tang H, Colbourne JK, Ketterson ED. 2014. Potential for sexual conflict assessed via testosterone-mediated transcriptional changes in liver and muscle of a songbird. J. Exp. Biol.:507-517.
  - Pigliucci M. 2003. Phenotypic integration: studying the ecology and evolution of complex phenotypes. Ecol. Lett. 6:265-272.
  - Rosvall KA. 2008. Sexual selection on aggressiveness in females: evidence from an experimental test with tree swallows. Anim. Behav. 75:1603–1610.
  - Rosvall KA. 2013a. Life History Trade-Offs and Behavioral Sensitivity to Testosterone: An Experimental Test When Female Aggression and Maternal Care Co-Occur. PLoS One 8.
- 804 Rosvall KA. 2013b. Proximate perspectives on the evolution of female aggression: good 805 for the gander, good for the goose? Philos. Trans. R. Soc. B Biol. Sci. 806 368:20130083.
- Rosvall KA, Bergeon Burns CM, Barske J, Goodson JL, Schlinger BA, Sengelaub DR, Ketterson ED. 2012. Neural sensitivity to sex steroids predicts individual differences in aggression: implications for behavioural evolution. Proc. R. Soc. B 810 Biol. Sci. 279:3547-3555.
- 811 Rosvall KA, Bergeon Burns CM, Jayaratna SP, Ketterson ED. 2016. Divergence along

774 775

776

777

778

779

780

781

782

783

784

785

786 787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802 803

807

808

- the gonadal steroidogenic pathway: Implications for hormone-mediated phenotypic evolution. Horm. Behav. 84:1–8.
- Rosvall KA, Bergeon CM, Hahn TP, Ketterson ED. 2013. Sources of variation in HPG axis reactivity and individually consistent elevation of sex steroids in a female songbird. Gen. Comp. Endocrinol. 194:230–239.
  - Schmidt KL, Pradhan DS, Shah AH, Charlier TD, Chin EH, Soma KK. 2008.

    Neurosteroids, immunosteroids, and the Balkanization of endocrinology. Gen. Comp. Endocrinol. 157:266–274.
  - Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504.
  - Sinervo B, Svensson E. 1998. Mechanistic and Selective Causes of Life History Trade-Offs and Plasticity. Oikos 83:432–442.
  - Smith GT, Brenowitz EA, Wingfield JC. 1997. Roles of photoperiod and testosterone in seasonal plasticity of the avian song control system. J. Neurobiol. 32:426–442.
  - Soma KK, Rendon NM, Boonstra R, Albers HE, Demas GE. 2015. DHEA effects on brain and behavior: Insights from comparative studies of aggression. J. Steroid Biochem. Mol. Biol. 145:261–272.
  - Sperry TS, Wacker DW, Wing JC. 2010. The role of androgen receptors in regulating territorial aggression in male song sparrows. Horm. Behav. 57:86–95.
  - Spinney L, Bentley GE, Hau M. 2006. Endocrine correlates of alternative phenotypes in the white-throated sparrow (Zonotrichia albicollis). Horm. Behav. 50:762–771.
  - Staub NL, De Beer M. 1997. The role of androgens in female vertebrates. Gen. Comp. Endocrinol. 108:1–24.
  - Stutchbury BJ, Robertson RJ. 1987. Signaling subordinate and female status: Two hypotheses for the adaptive significance of subadult plumage in female Tree Swallows. Auk 104:717–723.
  - Trainor BC, Greiwe KM, Nelson RJ. 2006. Individual differences in estrogen receptor α in select brain nuclei are associated with individual differences in aggression. Horm. Behav. 50:338–345.
  - Virgin EE, Rosvall KA. 2018. Endocrine-immune signaling as a predictor of survival: A prospective study in developing songbird chicks. Gen. Comp. Endocrinol. 267:193–201.
  - Wacker DW, Wingfield JC, Davis JE, Meddle SL. 2010. Seasonal changes in aromatase and androgen receptor, but not estrogen receptor mRNA expression in the brain of the free-living male song sparrow, Melospiza melodia morphna. J. Comp. Neurol. 518:3819–3835.
  - Webster MS, Varian CW, Karubian J. 2008. Plumage color and reproduction in the red-backed fairy-wren: Why be a dull breeder? Behav. Ecol. 19:517–524.
- While GM, Isaksson C, McEvoy J, Sinn DL, Komdeur J, Wapstra E, Groothuis TGG.
  2010. Repeatable intra-individual variation in plasma testosterone concentration
  and its sex-specific link to aggression in a social lizard. Horm. Behav. 58:208–
  213.
- Wilkins MR, Shizuka D, Joseph MB, Hubbard JK, Safran RJ. 2015. Multimodal signalling in the North American barn swallow: a phenotype network approach.
- Williams TD. 2008. Individual variation in endocrine systems: moving beyond the

| 858 | 'tyranny of the Golden Mean.' Philos. Trans. R. Soc. B Biol. Sci. 363:1687–1698.      |
|-----|---------------------------------------------------------------------------------------|
| 859 | Wingfield JC, Lynn S, Soma KK. 2001. Avoiding the "costs" of testosterone: ecological |
| 860 | bases of hormone-behavior interactions. Brain. Behav. Evol. 57:239–251.               |
| 861 | Zera AJ, Harshman LG, Williams TD. 2007. Evolutionary Endocrinology: The              |
| 862 | Developing Synthesis between Endocrinology and Evolutionary Genetics. Annu.           |
| 863 | Rev. Ecol. Evol. Syst. 38:793–817.                                                    |
| 864 | Zhang B, Horvath S. 2005. A General Framework for Weighted Gene Co-Expression         |
| 865 | Network Analysis. Stat. Appl. Genet. Mol. Biol. 4.                                    |
| 866 |                                                                                       |