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About eight years ago it was predicted theoretically that a charged chiral plasma could support
the propagation of the so-called chiral magnetic waves, which are driven by the anomalous chiral
magnetic and chiral separation effects. This prompted intensive experimental efforts in search
of signatures of such waves in relativistic heavy-ion collisions. In fact, several experiments have
already reported a tentative detection of the predicted signal, albeit with a significant background
contribution. Here, we critically reanalyze the theoretical foundations for the existence of the
chiral magnetic waves. We find that the commonly used background-field approximation is not
sufficient for treating the waves in hot chiral plasmas in the long-wavelength limit. Indeed, the
back-reaction from dynamically induced electromagnetic fields turns the chiral magnetic wave
into a diffusive mode. While the situation is slightly better in the strongly-coupled near-critical
regime of quark-gluon plasma created in heavy-ion collisions, the chiral magnetic wave is still

strongly overdamped due to the effects of electrical conductivity and charge diffusion.
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1. Introduction

Chiral relativistic plasmas can be realized in a number of physical systems at very high tem-
peratures and/or densities when the masses of fermions are negligible compared to the temperature
and/or chemical potential. Typical examples include the quark-gluon plasma in heavy-ion colli-
sions [1, 2, 3, 4], the primordial plasma in the early Universe [5, 6], and several types of degenerate
forms of matter in compact stars [7]. The pseudo-relativistic analogs of chiral plasmas can be
also found in Dirac and Weyl materials [8, 9, 10]. A distinctive feature of chiral plasmas is the
presence of an approximately conserved chiral charge, which comes in addition to the exactly con-
served electric charge (or the fermion number) and is violated only by the quantum chiral anomaly
[11,12].

The first studies of anomalous effects in chiral plasmas started several decades ago with a
series of pioneering papers by Vilenkin [13, 14, 15]. The recent revival of interest to the subject
was triggered by the realization that such effects could be observed via the angular correlations
of charged particles in relativistic heavy-ion experiments [16]. It was also suggested that chiral
anomalous effects could have profound effects on the evolution of magnetic fields in the early Uni-
verse [17, 18, 19]. The principle anomalous processes in magnetized chiral plasmas at nonzero
electric or chiral charge chemical potentials (i or us, respectively) are the chiral separation effect
(CSE) [15, 20] and the chiral magnetic effect (CME) [21]. The essence of the CSE is the induc-
tion of a nondissipative chiral current jogz = eBu/(27%) when p # 0, and the CME is similarly
characterized by the electric current joye = eBus/(27%) when ps # 0.

About eight years ago it was proposed that the interplay of the CSE and CME in chiral plasmas
can lead to the existence of a special type of gapless collective mode, which was called the chiral
magnetic wave (CMW) [22]. It was argued that the propagation of the CMW would be sustained
by alternating oscillations of the local electric and chiral charge densities that feed into each other.
Experimentally, the corresponding wave would manifest itself in heavy-ion collisions in the form
of quadrupole correlations of charged particles [23, 24]. Moreover, over the last several years, a
number of experimental detections of the predicted charge-dependent flow patterns have already
been reported [25, 26, 27, 28, 29].

In contrast to the original predictions, however, recently we found that the CMW should be a
diffusive mode in the weakly coupled plasma in the long-wavelength limit [30]. The novel aspect of
our analysis was the rigorous treatment of dynamical electromagnetism in chiral plasmas. Here we
review the details of the underlying physics responsible for turning the CMW into a diffusive mode.
Also, by making use of the lattice results for transport coefficients, we extend the earlier analysis to
the nonperturbative regime of the quark-gluon plasma in the range of temperatures between about
200 MeV and 350 MeV. Despite a relatively low electrical conductivity and diffusion coefficients,
our analysis shows that the CMW is an overdamped mode in the deconfined phase of quark-gluon
plasma almost in the whole range of realistic parameters. In fact, the only regime with a well
pronounced CMW might be realized in the case of a strongly coupled plasma under superstrong
magnetic fields.

In the analysis below we use the units with ¢ = 1 and 7 = 1. The Minkowski metric is given
by guv = diag(1,—1,—1,—1) and the Levi-Civita tensor £*"*P is defined so that €% = 1.
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2. Hydrodynamic analysis of collective modes

By definition, the CMW is a collective mode in a locally equilibrated chiral plasma. The
corresponding dynamics is most naturally captured by using the framework of chiral hydrodynam-
ics [31], which provides a coarse-grained description of a system on sufficiently large distance
and time scales. The relevant degrees of freedom in such a regime are the conserved charges and
their currents. In the case of a single-flavor charged chiral plasma, in particular, they include the
energy-momentum tensor, as well as the fermion number (or electric charge) and chiral charge
four-currents that satisfy the appropriate continuity equations, i.e.,

HTHY = eF*j,, (2.1)
duj* =0, (2.2)
2
. e 7
dujs = —@F“VFW. (2.3)

(Note that here we use the fermion number current j*, which differs by a factor of e from the
electric current jgl = ej*.) For simplicity of presentation, in this section we will limit our discussion
to the case of a single-flavor plasma, but the generalization to a multi-flavor case is straightforward
(see Sec. 4 below).

By making use of the local fluid velocity u*, the energy-momentum tensor and both four-
currents can be decomposed into the longitudinal and transverse components as follows:

™" = eutu¥ — A*YP+ (Wu" +uth") + ", (2.4)
J* = nut 4+ vH, (2.5)
J§ = nsut + V&, (2.6)

where € = T*Vuyuy is the energy density, P = A, T*" /3 is the pressure, h* = A“O‘Taﬁuﬁ is the
energy flow (or, equivalently, the momentum density vector). The definitions of the fermion num-
ber and chiral charge densities are given by n = jHu, and ns = jél uy, respectively. The transverse
currents, v# = A"V, and vé‘ = A"V js ., are obtained by applying the projection operator A*Y =
gV —u*uY. Finally, mtY = A%T“B is the dissipative part of the energy-momentum tensor, which
is defined in terms of the traceless 4-index projection operator Aglvs = %AﬁAE + %AﬁA& —IAMVAp.

Since a collective motion in a charged plasma could provide an important feedback via dy-
namically induced electromagnetic fields, the above set of hydrodynamic equations should be also
supplemented by the Maxwell equations

O FVH =ejt — enbgu{fg, 2.7)

together with the Bianchi identity o, FV* = 0, where FHV = %S“V“ﬁFaﬁ is the dual field strength
tensor. Note that Eq. (2.7) captures both the Gauss and Ampere laws, and p* = —enbgu{;g accounts
for a possible background of electrically charged particles.

In order to give a self-contained presentation, let us start by briefly reviewing the key details
of the CMW dynamics for a chiral plasma obtained in Ref. [30]. Since the local vorticity plays no
vital role in the propagation of the CMW, we will consider only the case of a non-rotating plasma.
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In local equilibrium, such a plasma can be characterized by a pair of chemical potentials, {1 and fis,
and temperature 7. In addition, when the plasma is at rest in the laboratory frame, its equilibrium
hydrodynamic flow velocity is given by #* = (1,0,0,0).

We will assume that the background magnetic field points in the z direction, i.e., B4 = F*Vi, =
(0,0,0,B). As is clear, there should be no electric field in equilibrium, i.e., E# = F*Vi, = 0. Note
that, in large macroscopic systems with a nonzero average (i, the absence of the electric field also
implies the net electric neutrality. In general, the latter can be achieved by taking into account the
background electric charge of nonchiral particles, i.e., p* = —enbguﬁg, see Eq. (2.7) above.

The propagation of collective modes through a chiral plasma is generically accompanied by
the oscillations of all available dynamical parameters: the chemical potentials du and Sus, the
temperature 07, the flow velocity ou*, as well as the electric and magnetic fields 0E* and §B*. In
the linear approximation, it is justified to take them all in the form of plain waves, i.e., §X o< e~

As is easy to show, the time-components of all three vector quantities are nondynamical. In
fact, they can be shown to vanish identically, i.e., Su’ = B = §E° = 0, after taking into account
the constraints By, = u*E, = 0 and utu, = 1, as well as the explicit definition for the local
(oscillating) electromagnetic field strength tensor in the laboratory frame, i.e.,

F* = etVPy, (B + 8Bg) + SE*a" — " SE". (2.8)

After using the Maxwell equation (2.7), the linearized versions of the hydrodynamic equations
(2.1)—(2.3) can be rewritten in the following explicit form:

kode — ge(k- 5u) + 2Eko(B - 5u) — (k- 8h) — iecy(B-5E) = 0, (2.9)

geko6u - %k58 — &B(k - 5u)— Ex(B -k)Su -+ koSh+ i%"’ <k25u+ %k(k - 5u)>

— ienSE — iec(B x 6B) — ko(B x 5E) + (B-k)6B —k(B- 8B) = 0, (2.10)
koSn—n(k-8u) — (k-8v) = 0, (2.11)

2
kodns —ns (k- Su) — (k- 8Vs) — i—— (B-8E) = 0. (2.12)

212
(Here we use the same notations as in Ref. [30].) Note that, for the visual clarity of equations,
we removed the bars over the equilibrium quantities. We also introduced the following shorthand
notations for the fluctuating parts of the momentum and current densities:

oh = lgTw(kx ou) +BoEg+ RSB, (2.13)

O T 1
Sv = ’7‘*’(k x 8u) + 50;B+ 0558 — izkdn + itnkodu+ —0g [SE+ (Sux B)], (2.14)

e

. 5 1
Svs = %(k x Su) + 863B + G5B — i§k6n5 +itnskodu+ -7 [SE+ (Su x B)].(2.15)

For completeness, let us note that the linearized Maxwell equations take the form

(k- 8E) + iedn + ieop(B - Su) = 0, (2.16)
(k x 8B) + koSE + ienbu + ie§v = 0, (2.17)
— (k x 8E) + k8B = 0, (2.18)

(k-8B) = 0. (2.19)
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As we see, after taking the Faraday’s law (2.18) into account, the dynamical oscillations of the
magnetic field B can be expressed in terms of the electric field SE, namely 6B = (k x 6E) /ko.
In such a form, the latter also automatically satisfies Eq. (2.19), provided ko # 0.

For simplicity, in this section we assume that all dissipative processes in the system are con-
trolled by the same phenomenological relaxation-time parameter 7. In the case of electrical con-
ductivity, for example, one can use ox ~ e>T) /3, where ¥ = dn/du is the fermion number sus-
ceptibility [32]. Similarly, the chiral counterpart of conductivity 62 can be given as op =~ e*ty/,
where ¥’ = dns/du [32].

In connection to the CMW dynamics, the most important transport coefficients are op =
epts/(2m?) and op = ep/(2%*), which originate from the chiral anomaly and are responsible for
the CME and CSE, respectively. For the definition of other transport coefficients (i.e., g, &y, O,
and G,f,) and their role in the dynamics of collective modes, see Ref. [30].

The complete analysis of the linearized system of equations is quite involved in general and
will not be repeated here. An interested reader is referred to the detailed study in Ref. [30]. Here it
will suffice to mention that the spectrum of propagating modes contains only the sound and Alfvén
waves in the regime of high temperature, and the plasmons and helicons at high density. All other
modes, including the CMW are strongly overdamped, or completely diffusive. In the rest of these
proceedings, we will concentrate our attention exclusively on the chiral magnetic wave and discuss
the underlying reasons for its overdamped nature.

3. Chiral magnetic wave in high temperature plasma

Since one of the most interesting applications of the CMW was proposed in the context of
relativistic heavy-ion collisions, it is instructive to start our analysis from the case of chiral plasma
in the regime of high temperature. In order to sort out the key details of underlying physics,
however, it will be illuminating to first consider the simplest case of a chiral plasma made of single
flavor massless fermions. It will be also instructive to start from the case of a weakly interacting
case (which is realized, for example, at sufficiently high temperatures). As we will see in Sec. 4, the
key details of the analysis are similar also in the nonperturbative regime of the strongly-interacting
quark-gluon plasma with several light flavors.

In order to model the conditions in the plasma produced by relativistic heavy-ion collisions,
where the typical values of the chemical potentials are much smaller than the temperature, it is
sufficient to set = s = 0 in our analysis. (For the quantitative effects of a small nonzero chemical
potential u in the high-temperature regime, see Ref. [30].) In the case of the vanishing chemical
potentials, the system of hydrodynamic equations takes the following simpler form:

kobe — ge(k- Su)=0, (3.1)

2 ekodu— %k&s e <k25u+ L 5u)> ~ ko(B x SE) + (B-k)5B — k(B 5B)

3 15 3 0, (32)
kodn — (B- K)o+ i§k26n - éGE(k .SE) — éag(k- (SuxB)) =0, (3.3)

2

T e
koSns — (B-k)66§+z§k26n5 —iz5(B-6E)=0. (3.4)
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The corresponding Maxwell equations read

(k-OE)+iedn = 0, (3.5)
kko(k -S0E) + %(kg —k?)SE + ieBSop + e§k6n +iog [SE+ (Su xB)] = 0, (3.6)
where we took into account that B = (k x 6E) /ko.

After carefully examining the general structure of the above coupled set of equations, we find
that the system can be factorized into two blocks. In particular, the independent variables in one of
the blocks can be chosen as follows: Su, dus, (k-0E), (B-0E), and ((k x B) - du). This is the
block that describes the would-be CMW among other eigenmodes.

Because of the specific dependence of the CSE and CME currents on the magnetic field, i.e.,
josg = 1eB/(27?) and jome = pseB/(27?), the propagation of the CMW is most prominent in the
direction of the magnetic field. This is also clear from Egs. (3.3) and (3.4), where the CSE and
CME are captured by the terms proportional to (B -k). For the purposes of our study, therefore,
it is sufficient to concentrate only on the case with the wave vector k parallel to the background
magnetic field B. Then, the equations for the CMW greatly simplify, i.e.,

|
k05n—kB5GB+i§k25n— " 65kSE. = 0, 3.7)
e
5 .T.» . e’
k()5l’l5 — kB6GB +l§k 51’15 — 12—77:285EZ = 07 (38)
kSE, +iedn = 0. (3.9)

It might be instructive to emphasize that these equations do not contain any dependence on the
oscillations of the fluid velocity du. This is the consequence of assuming k || B and is not true in
general for the CMW with an arbitrary direction of propagation.

After taking into account the explicit expressions for the number density and chiral charge
density susceptibilities, y = dn/du and )5 = dns/d s, in the high-temperature plasma we find

663 e 3e
_ _ .1
ons 2n2ys  2mAT? (3-10)
5
003 e 3 G.11)

on  2my 272

By making use of these relations, and eliminating the electric field §E, with the help of Gauss’s
law (3.9), we then derive the following system of equations:

T oo . 3eBk
(k()"‘lgk +lGE> 5n—W5n5 = O7 (312)
3eBk &B T
(2 L7 s <k '—k2)5 — 0. 3.13
<2yr2T2+27r2k> nt (ko tiz ns (3.13)
By solving the corresponding characteristic equation, we finally obtain the spectrum of collective
modes

() OF OF 3eB 2 2 e2T? T 5
k' =—i—d+i—/1 - | —— k —i=k-. 3.14
0 IR <7r2T26E><+3> '3 3.14)
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It might be appropriate to mention here that a similar dependence of the CMW energy on the
electrical conductivity was also obtained in Ref. [33]. As is clear, the collective modes are diffusive
when the expression under the square root is positive, i.e., when the following condition is satisfied:

eB 3¢B e2T?
— k4 ey=——/k? 1. 3.15
T20E/X X5 tex m2T20 + 3 < 3-15)

For the long wavelength modes with k < eT, this inequality is easily satisfied in sufficiently hot

plasmas and/or for sufficiently weak background magnetic fields.

In fact, in the case of weakly coupled plasmas, Eq. (3.15) always holds true when the hy-
drodynamic limit is realized. Indeed, at weak coupling, the validity of hydrodynamics implies
the following hierarchy of scales: Iy < Ig < Imfp < A, where I; ~ 1/T is de Broglie wavelength,
Ip = 1/+/eB is the magnetic length, Infp > T~ 1;/€?* is the particle mean free path, and A; ~ 27 /k is
the characteristic wavelength of the hydrodynamic modes. Note also that the electrical conductivity
scales as o ~ T /(e*Ine™") at weak coupling [34].

The situation in the near-critical regime of the quark-gluon plasma created in the relativistic
heavy-ion collisions is not as simple, however. First of all, because of strong coupling, there is no
clear separation between the relevant length scales, I; ~ 5. Additional complications arise from
the fact that the plasma is created in a rather small region of space. Nevertheless, the hydrodynamic
description is expected to be suitable for such finite-size fireballs of quark-gluon plasma. The
quantitative analysis of the corresponding case will be presented in Sec. 4.

It is instructive to study the physical reasons for the diffusive nature of the collective modes
in Eq. (3.14) in the case of chiral plasmas at sufficiently high temperature and/or sufficiently weak
background magnetic fields, i.e., when the expression on the left-hand side of Eq. (3.15) is much
smaller than 1. Out of the two modes in Eq. (3.14), the first one has a smaller imaginary part, i.e.,

. 2 22
(+) i 3eB , eT T
ky'~——| == k —izk 1
0 or <2ir2T2> ( T3 )7EY (3-16)

and describes the chiral charge diffusion, with a small admixture of an induced electric charge,

Sntt) ~ —i——— _knl"). (3.17)

The other mode has a larger imaginary part, which is determined almost completely by the electrical
conductivity, i.e.,

. 2 272
(-) : i 3eB 5 eT T o

ko >~ — — | == k —i=k 3.18
0 FTIET G <2n2T2> < T3)7hY (.15)

and describes the electric charge diffusion, with a small admixture of an induced chiral charge,

_ 3eB eT?

Sl ~ i k n), 3.19
s T hnT2ep < T ) " (3-19)
Clearly, neither of the two modes resembles the conventional CMW with the expected dispersion
relation k(()CMW) = +vemwk, where veyw = 3eB/ (22 T?) obtained in the background-field approx-

imation [22]. As discussed in detail in Ref. [30], the dramatic difference is the result of carefully
taking dynamical electromagnetism into account. In fact, it is the high electrical conductivity of
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the plasma that plays the most important role. This can be explicitly verified by considering the
limit og — 0 in Egs. (3.7) and (3.8). In such a formal limit, the dispersion relations become

k) = i% K2+ ? - igkz, when og — 0. (3.20)
These describe a pair of propagating CMW modes, although they are not the conventional ones
because of a nonzero energy gap in the spectrum. The origin of the gap can be traced to the last
term on the left-hand side of Eq. (3.8), which is the usual chiral anomaly term proportional to
BOE;. It gives a nontrivial contribution after the Gauss law (3.9) is taken into account. So, strictly
speaking, the gap is the result of dynamical electromagnetism as well. Note that the gap in the
energy spectrum of the CMW was also found in the context of Weyl semimetals in Ref. [35].
From a physics viewpoint, the detrimental role of electrical conductivity on the propagation of
the CMW can be relatively easily understood. The fundamental time scale for the CMW is set by
the CSE and CME, which convert the oscillating electric and chiral charge densities into each other.
The corresponding time is tomw ~ 272T2/(3eBk). However, at sufficiently high temperatures
and/or low magnetic fields, this is much longer than the time scale for screening of the electric
charge fluctuations due to the electrical conductivity, tsr ~ O ', As a result, any local charge
perturbation dissipates much quicker than the time it takes to produce a substantial chiral charge
imbalance to sustain the CMW.

4. Chiral magnetic wave in heavy-ion collisions

As we mentioned in the previous section, in the case of strongly coupled quark-gluon plasma
created in the relativistic heavy-ion collisions, the analysis is not so simple because there is no clear
separation between the relevant length scales in the problem. One also has to take into account the
effects associated with a small size of the system, its finite life-time, and to use realistic values
for the transport coefficients. Here we perform the corresponding study in the nonperturbative
regime of the quark-gluon plasma by using the transport coefficients obtained in lattice calculations
[36, 37, 38].

Let us start by writing down the complete set of chiral hydrodynamic equations for the plasma
made of two light quark flavors,

oujy =0, 4.1)
2.2
e“q "
T 7
a‘u.]f’s = _WF‘LVF[J\M (42)
WTH = eF*Y qrjrv, 4.3)
f

where f = u,d, and the quark charges are ¢, = 2/3 and g; = —1/3. Note that the total electric
current is given in terms of the individual flavor number density currents as follows: jf;] =eY.rqf j}l.
For simplicity, we ignore the effects of the strange quark, which is considerably more massive than
the two light quarks. It can be checked, however, that the results do not change much even if the
strange quarks are included either as (i) an additional massless flavor that contributes to both sets
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of continuity relations (4.1) and (4.2), or (ii) as a sufficiently massive flavor that contributes to
Eq. (4.1), but not to Eq. (4.2).

The complete set of linearized equations that describes the longitudinal CMW in the multi-
flavor quark-gluon plasma reads

kodn; — %anﬁs +iD K2 Sny — %oﬂ KSE. = 0, (4.4)
koSn s — gif;z]; Sny+iDk*Snys — i%BSEZ =0, 4.5)
k8E.+ie) q;8ns = 0, (4.6)
7
where we used the following relations:
Sop, = ;iﬂf; Lys = 27:2‘;2(’5 Snys, (4.7)
803 ; = 55 0Hs = 22621;]»5”’” 4.8)

which are given in terms of the fermion number and chiral charge susceptibilities x = dny/d iy
and Xfs5 = 8nf’5/8uf75.

In the continuity relations for the flavor number charge, we also used the partial flavor con-
tributions to the electrical conductivity, i.e., O y = co-ezq;T. Note that the total conductivity og
takes the form

or =Y 0rp=coCinT, (4.9)
7

where C.,, = ¢’} f q} =5¢?/9 ~ 5.1 x 1072, where we took into account the definition of the fine
structure constant, e?/(471) = 1/137. In the case of deconfined quark-gluon plasma, the numeri-
cal coefficient c; was obtained in lattice calculations [36, 37, 38]. According to the most recent
calculation [38], its value ranges from about c; /=~ 0.111 at T = 200 MeV to about cs ~ 0.316 at
T =350 MeV, see Table 1. In the study of collective modes below, we will use these lattice values
for the transport coefficients.

T ‘ Co ‘ Cy ‘ CcD
200 MeV | 0.111 | 0.804 | 0.758
235 MeV | 0.214 | 0.885 | 1.394
350 MeV | 0.316 | 0.871 | 1.826

Table 1: Numerical values of coefficients cg, ¢y, and cp at three fixed temperatures obtained from lattice
calculations in Ref. [38].

We will also use the lattice results for the light-flavor number density susceptibilities x s and
the diffusion coefficients D [36, 37, 38], i.e.,

X =y, (4.10)
cp

Dy = 2 4.11

f = 3T (4.11)
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where the values of numerical coefficients are flavor independent (for the light u- and d-quarks) and

are given in Table 1. Note that the Stefan-Boltzmann expression for the susceptibility is }SB)

T2 /3. We will assume that the chiral charge susceptibility is the same as the fermion number one,
ie., Xrs5s=Xr-

While the structure of Eqs. (4.4)—(4.6) is very similar to Egs. (3.7)—(3.9), one should note that
the total number of coupled equations is larger because the fermion number and chiral charges for
each flavor satisfy independent continuity relations. With a larger number of equations, unfortu-
nately, the characteristic equation becomes more complicated and no simple analytical solutions
can be presented. Nevertheless, by making use of the intuition gained in the simpler model in
Sec. 3, it is straightforward to check numerically that the underlying physics remains essentially
the same.

In application to quark-gluon plasma created in heavy-ion collisions, it is important to take
into account a relatively small size of the system. Such a size plays an important role as it sets an
upper bound for the wavelengths of collective modes that could be realized, i.e., Ax < R, where R
is the system size. This implies, in turn, that there is an unavoidable lower bound for the values
of wave vectors, k 2 27/R. In the numerical analysis below, we will assume that the size of the
system lies between about 12 fm and 24 fm. This would translate into an infrared cutoff for the
possible wave vectors of about 100 MeV at R ~ 12 fm and 50 MeV at R ~ 24 fm.

Of course, there is also an upper bound for the values of wave vectors of collective modes. It
is set by the inverse mean free part of the system. In the case of the deconfined quark-gluon plasma
in the near-critical region, the latter is likely to be of the order of 1 fm or so. For our purposes,
however, it will be sufficient to consider the wavelength A; > 2 fm, which translates into the upper
limit for the wave vectors £ < 600 MeV.

The numerical analysis reveals that there are two pairs of overdamped collective modes. The
dispersion relations for both modes take the following general form:

kS = B, (k) — iT,(k), with n=1,2, (4.12)

where E,(k) and I',(k) are real and imaginary parts of the energies of collective modes. It is
interesting to note that, in the long wavelength regime, one of the modes is the usual CMW, while
the other corresponds to electrically neutral oscillations with n; ~ 2n,. The numerical results for
the corresponding dispersion relations are summarized in Fig. 1, where we show the dependence of
the real parts of the energies, as well as the ratios of the real to imaginary parts, on the wave vector
k for three fixed values of temperature 7' = 200 MeV, 235 MeV, and 350 MeV, and for three fixed
values of the background magnetic field, i.e., eB = (50 MeV)?, (100 MeV)?, and (200 MeV)?.
The numerical data is presented for the wave vectors in the range 50 MeV < k < 620 MeV, which
corresponds to a rather wide window of the wavelengths, 2 fm < A < 24 fm. For the data in the
gray shaded regions at small values of k, the values of the wavelengths lie between A; ~ 24 fm and
A &~ 12 fm. Most likely, these are already unrealistically large, but we decided to presented the
corresponding results for completeness.

In order to obtain the numerical results in Fig. 1, we used the lattice data for the transport
coefficients from Ref. [38]. In this connection, it should be noted that the three selected choices
of the temperature, 7 = 200 MeV, 235 MeV, and 350 MeV, correspond to 1.097,, 1.277,, and
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Figure 1: The real parts of the energies (left panels) and the ratios of the real to imaginary parts of the
energies (right panels) of the CMW-type collective modes at three fixed values of temperature. The three
rows of panels show the results for three choices of the magnetic field, i.e., eB = (50 MeV)Q, (100 MeV)Q,
and (200 MeV)?, respectively. In the gray shaded regions, the wavelengths lie outside the range 2 fm < A, <
12 fm. The actual results are plotted down to the wave vectors as small as k ~ 50 MeV, which corresponds
to Ay < 24 fm.

1.97; in the notation of Ref. [38], where 7. ~ 185 MeV is the deconfinement critical temperature
obtained from the position of the peak in the Polyakov loop susceptibility.

As is clear from the results in Fig. 1, all CMW-type modes are overdamped, although not
always completely diffusive. This differs somewhat from the case of the very high temperature
and/or weak magnetic field considered in Sec. 3. In fact, we find that this is largely due to the
combination of the following two effects: (i) a relatively small electrical conductivity of the quark-
gluon plasma in the near-critical region of temperatures and (ii) substantial charge diffusion effects
for all wave vectors allowed by the small size of the system, i.e., kK = 50 MeV.
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Because of a nonzero electrical conductivity, we find that one of the CMW modes becomes
diffusive when the magnetic fields are not very strong and the wave vectors are not too large. Note
that this is qualitatively consistent with the condition in Eq. (3.15) in Sec. 3. Indeed, as we see from
the top row of panels in Fig. 1, one of the modes is diffusive (i.e., its real part of the energy is zero)
in the whole range of wave vectors shown, when the field is not very strong, eB = (50 MeV)?,
but the temperature is high, 7 = 350 MeV. Even with decreasing the temperature, one of the
modes still remains diffusive at sufficiently small wave vectors, namely below k ~ 279 MeV at
T =235 MeV and below k£ ~ 79 MeV at T = 200 MeV. With increasing the magnetic field, as
we see from the second and third rows of panels in Fig. 1, the range with one diffusive mode is
pushed to smaller values of the wave vectors. For example, at eB = (100 MeV)2, the CMW is
diffusive below k ~ 341 MeV at T = 350 MeV and below k ~ 64 MeV at T = 235 MeV. In fact,
only at the smallest value of temperature, 7 = 200 MeV, the real part of the energy is nonzero in
the whole range of allowed wave vectors. Nevertheless, the corresponding value of the real part
remains considerably smaller than the imaginary part. In fact, as we see from the third row of
panels in Fig. 1, the diffusive regime of the CMW is not completely avoided even in a rather strong
magnetic field if the temperature stays sufficiently high. Indeed, at eB = (200 MeV)?, one of the
modes is still diffusive below k ~ 73 MeV at T = 350 MeV. Only at sufficiently low temperatures,
the CMW gradually revives and becomes a propagating mode at such an extremely strong field.

The existence/absence of a completely diffusive mode in the spectrum can be easily investi-
gated in the whole range of relevant model parameters. In the plane of wave vectors and magnetic
field, the corresponding regions are presented graphically in Fig. 2 for the three different values of
temperatures. In the shaded regions (below the “critical” lines), the spectrum contains a diffusive
mode. It should be pointed out that the corresponding regions agree qualitatively with the validity
of the condition in Eq. (3.15).

As we see from the numerical results in Fig. 1, the collective modes are overdamped for all
magnetic fields with the values of up to eB ~ (100 MeV)?, i.e., even if they are not completely
diffusive. Indeed, the ratios of the real to imaginary parts of the energies E,(k)/I', (k) are less than
1 in the whole range of the wave vectors down to the smallest values allowed by the system size,
i.e., k >~ 50 MeV, which corresponds to A; =~ 24 fm. It easy to figure out that such strong damping
cannot be explained by the effects of the electrical conductivity alone.

As it turns out, the charge diffusion also contributes substantially to the strong damping of
the collective modes in a wide range of wave vectors. This is despite the fact that, in the strongly
coupled quark-gluon plasma in the near-critical regime, the diffusion coefficient takes a rather small
value, Dy ~ 1/(2nT), see Eq. (4.11) and Table 1. By taking into account that the wave vector is
bound from below by the inverse system size, however, one can easily see that the relevant modes
are subject to a sizable damping.

5. Conclusion

In these proceedings, we critically reanalyzed the dynamics responsible for the anomalous
CMW. We found that the corresponding mode is strongly overdamped almost in all realistic regimes
of hot plasmas after the effects of dynamical electromagnetism and charge diffusion are carefully
taken into account.
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Figure 2: The graphical representation of the parameter space regions (shaded) where one of the modes
becomes completely diffusive. Different colors (and line types) represent the results for three fixed values of
temperature.

At sufficiently high temperatures and/or low magnetic fields, the propagation of the long-
wavelength CMW is badly disrupted by the high electrical conductivity or that causes a rapid
screening of the electric charge fluctuations. Because of such screening on the time scale 7y =~
o ! the chiral magnetic and separation effects, which operate on the time scales of order fcyw =~
2m%T? /(3eBk), do not get a chance to initiate the CMW. In such a regime, the corresponding mode
is completely diffusive.

In the case of the nonperturbative quark-gluon plasma created in relativistic heavy-ion colli-
sions, the situation is slightly more complicated because of a relatively low electrical conductivity
and a limited range of the wave vectors allowed by the small system size. In order to study the
quantitative properties of the anomalous collective modes in such a regime, we used the nonpertur-
bative results for transport coefficients obtained in lattice calculations [38]. The latter reveal that
the electrical conductivity and charge diffusion are relatively small in the regime of near-critical
temperatures relevant for the heavy-ion experiments. Nevertheless, we still find that all CMW-type
collective modes are strongly overdampled for the magnetic fields up to about eB = (100 MeV)?
and for the whole range of wave vectors allowed by the finite size of the system.

In connection to the quark-gluon plasma created in heavy-ion collisions, we find that even the
relatively small electrical conductivity plays an important role and turns the long-wavelength modes
into purely diffusive ones at sufficiently low magnetic fields and/or sufficiently high temperatures.
However, such a regime has a limited applicability for the relevant wave vectors allowed by the
finite size of the system. By taking a rather relaxed estimate for the size, i.e., R < 24 fm, we
found that the wave vectors are bound from below by k 2> 50 MeV. Then, the effects of the charge
diffusion (which grow quadratically with k) become very important and, in fact, often play the
leading role in damping the collective modes.
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In the end, the combined effects of the electrical conductivity and charge diffusion cause a
strong damping of the CMW in all realistic regimes possible in the heavy-ion collisions. This
means that there are no theoretical foundations to expect that the CMW can exist and produce
the quadrupole charged-particle correlations [23, 24]. By noting that a tentative detection of the
charge-dependent flows has already been reported [25, 26, 27, 28, 29], we must conclude that the
corresponding observation is unlikely to be connected with the CMW, or any anomalous physics
for that matter. This might explain, in fact, why the experimental effort to extract the signal from
the background appears to be so difficult [28, 29].

In the end, it might be instructive to emphasize that here we used the hydrodynamic description
for the collective modes. While very powerful, such an approach has some limitations. It assumes
that a local equilibrium is established in plasma. It is not applicable, therefore, for the descrip-
tion of collective modes with sufficiently short wavelengths. In the case of the CMW-type modes
propagating along the direction of the magnetic field, however, there is a hope that the description
could be extended even down to relatively short wavelengths that are comparable to or less then the
particle mean free path. The reason for this is rooted in the structure of the hydrodynamics equa-
tions for the CMW, which happen to be completely decoupled from the fluid flow velocity. From a
technical viewpoint, these appear to be the same equations that come from the chiral kinetic theory
and remain valid down to much shorter length scales.

Last but not least, it should be emphasized that here we demonstrated that the CMW is strongly
overdamped or even diffusive in almost all regimes of hot plasmas relevant for heavy-ion physics
and the early Universe. There exists, however, one special regime in which the CMW is likely to
remain a well-pronounced propagating mode. The corresponding regime is realized in the ultra-
quantum limit with the superstrong magnetic field, eB > T?. In such a case, the dynamics is
dominated by the lowest Landau level and all dissipative processes are strongly suppressed, while
the efficiency of the CSE and CME is maximal.
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