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Abstract. In a formally unmixed Noetherian local ring, if the colength and multiplicity
of an integrally closed ideal agree, then R is regular. We deduce this using the relationship
between multiplicity and various ideal closure operations.

1. Introduction

Let (R,m) be a Noetherian local ring, I be an m-primary ideal, and M be a finitely
generated R-module of dimension d. The Hilbert–Samuel multiplicity of M with respect to
I is defined as

e(I,M) = lim
n→∞

d!`(M/InM)

nd
.

We simplify our notation by letting e(I) := e(I, R) and e(R) := e(m). The importance of the
Hilbert–Samuel multiplicity in the study of singularities comes from Nagata’s fundamental
theorem: a Noetherian local ring (R,m) is regular if and only if it is formally unmixed and
e(R) = 1. An ideal-theoretic concept naturally associated to multiplicity is integral closure.
Under mild assumptions on R, for a pair of ideals J ⊆ I we have equality e(I) = e(J) if and
only if I ⊆ J .

In this short note, we further the relationship between multiplicity and integral closure by
showing that in a formally equidimensional ring e(I) ≥ `(R/I) and characterizing that in a
formally unmixed ring the equality holds for some parameter ideal if and only if R is regular.
The latter is a vast generalization of Nagata’s theorem: we view his statement as e(m) =
`(R/m). These results are obtained by investigating the relationship between multiplicity
and various closure operations of parameter ideals. Let J be an ideal generated by a system
of parameters of R. We have the following containments of ideal closure operations under
mild assumptions:

J ⊆ J lim ⊆ J∗(in characteristic p > 0) ⊆ J.

The equalities between the multiplicity and the colength of these closures encode special
properties of R (again, under mild assumptions of R):

(1) e(J) = `(R/J) for all (or some) J if and only if R is Cohen–Macaulay;
(2) e(J) = `(R/J lim) for all (or some) J if and only if R is Cohen–Macaulay (Le–Nguyen

[5], Theorem 9);
(3) e(J) = `(R/J∗) for all (or some) J if and only if R is F-rational (Goto–Nakamura

[10], Corollary 10);
(4) e(J) = `(R/J) for some J if and only if R is regular (Corollary 12).
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We remark that, our main contribution, Corollary 12, also follows from the main result
of [21], if (R,m) is an excellent normal domain with an algebraically closed residue field.1

The point is that, under these assumptions of R, e(I) = `(R/I) for an integrally closed
m-primary ideal I implies e(m) = 1 by [21, Theorem 2.1] (using Theorem 6), and hence R
is regular by Nagata’s theorem. However, we do not see how to extend this approach to get
the full version of Corollary 12.
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2. Colength and multiplicity

The goal of this section is to prove Theorem 6. This theorem can be also deduced from
the methods in the next section. But we give an elementary approach here that avoids the
use of limit closure and big Cohen-Macaulay algebras.

We recall that a Noetherian local ring (R,m) is equidimensional (resp., unmixed) if
dimR/P = dimR for every minimal (resp., associated) prime P of R. In other words,
R is unmixed if it is equidimensional and (S1). We say that a Noetherian local ring R is

formally equidimensional (resp., unmixed) if R̂ is equidimensional (resp., unmixed). For an
ideal I ⊆ R and an element x ∈ R we use I : x∞ to denote ∪n(I : xn).

Definition 1. Let x1, . . . , xt be a sequence of elements in a Noetherian local ring R. We
define (x1, . . . , xt)

∞ inductively as follows:

(1) (x1)
∞ = (x1) + 0 : x∞1 if t = 1

(2) (x1, . . . , xt)
∞ = (xt) + (x1, . . . , xt−1)

∞ : x∞t if t > 1.

Example 2. The reader should be warned that this is not a closure operation on ideals, and
the result may depend on the order of elements. Consider R = k[[x4, x3y, xy3, y4]]. Then
x4, y4 form a system of parameters, but

(x4, y4)∞ = (x4, x6y2, y4) 6= (x4, x2y6, y4) = (y4, x4)∞.

We record the following properties.

Lemma 3. Let (R,m) be a Noetherian local ring of dimension d. For any sequence x1, . . . , xd,
(x1, . . . , xd)

∞ is either m-primary or the unit ideal.

Proof. If 0 : x∞1 is a proper ideal, i.e., x1 /∈
√

(0), then x1 is a regular element modulo 0 : x∞1 .
Hence dimR/(x1)

∞ < d and we are done by induction. �

1As pointed out in [17, Lemma 2.1], Watanabe’s result in [21] can be generalized to complete local domain
with an algebraically closed residue field.
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Lemma 4. Let (R,m) be a Noetherian local ring of dimension d and x1, . . . , xd be a system
of parameters. Then e((x1, . . . , xd)) = `(R/(x1, . . . , xd)

∞).

Proof. This is clear if d = 1, since R/(0 : x∞1 ) is Cohen–Macaulay and dim(0 : x∞1 ) = 0. If
d > 1, then by the associativity and additivity formula for multiplicity (see [19]),

e((x1, . . . , xd), R) =
∑
P

e((x2, . . . , xd), R/P ) e(x1, RP ) =
∑
P

e((x2, . . . , xd), R/P )`(RP/(x1)
∞)

= e((x2, . . . , xd), R/(x1)
∞),

where P ranges over all minimal primes of (x1) such that dimR/P = dimR/(x1). Therefore
we are done by induction on d. �

Remark 5. Let (R,m) be a Noetherian local ring and let S = R̂(t) := R̂[t]m[t]. We note that
S is complete, has an infinite residue field, and is a faithfully flat R-algebra such that mRS
is the maximal ideal of S. It follows that `R(R/I) = `S(S/IS) for every m-primary ideal
and, thus, e(I) = e(IS). Moreover, if I is integrally closed in R then IS is integrally closed
in S. This follows from [18, Lemma 8.4.2 (9)], which allows us to pass to R(t), and the fact

that there is one-to-one correspondence between m-primary ideals in R and R̂, so if IR̂ is a
reduction of a larger ideal, then I is a reduction too.

Theorem 6. Let (R,m) be a formally equidimensional Noetherian local ring. Then for every
m-primary integrally closed ideal I we have e(I) ≥ `(R/I).

Proof. We may pass from R to R(t) without changing the colength and the integral closedness
of I. Thus we assume that R has an infinite residue field. Let (x1, . . . , xd) be a minimal
reduction of I. By Lemma 4, it is enough to show that (x1, . . . , xd)

∞ ⊆ I. This is a
consequence of colon-capturing ([20], [18, Theorem 5.4.1]). Namely, it is clear that (x1)

∞ =

(x1) + 0 : x∞1 ⊆ (x1), and for i > 1 we can use induction to see that

(x1, . . . , xi)
∞ = (xi) + (x1, . . . , xi−1)

∞ : x∞i ⊆ (xi) + (x1, . . . , xi−1) : x∞i ⊆ (x1, . . . , xi). �

Example 7. The equidimensionality assumption in Theorem 6 is necessary. Let R =
k[[x, y, z]]/(xy, xz) and consider the ideal (xn, y, z). One can check that this ideal is in-
tegrally closed, has multiplicity 1, and colength n.

3. Limit closure, integral closure, and the main result

In this section we study a relation between multiplicity and the colength of limit closure,
and we prove our main result. As a byproduct of our methods, we also recover some results
in [5] and [10].

Definition 8. Let (R,m) be a Noetherian local ring and let x1, . . . , xd be a system of
parameters of R. The limit closure of (x1, . . . , xd) in R is defined as

(x1, . . . , xd)
limR =

⋃
n≥0

(xn+1
1 , . . . , xn+1

d ) :R (x1 · · · xd)
n.

We will write (x1, . . . , xd)
lim if R is clear from the context.
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We note that (x1, . . . , xd)
lim/(x1, . . . , xd) is the kernel of the natural map R/(x1, . . . , xd)→

Hd
m(R): since Hd

m(R) = lim−→n

R
(xn

1 ,...,x
n
d )

with connection map multiplication by x1 · · · xd, z ∈
R/(x1, . . . , xd) maps to 0 in Hd

m(R) if and only if z(x1 · · · xd)
n ∈ (xn+1

1 , . . . , xn+1
d ) for some n,

that is, z ∈ (x1, . . . , xd)
lim. In particular, limit closure of an ideal generated by a system of

parameters is independent of the choice of the generators. In general, limit closure is hard to
study: Hochster’s monomial conjecture/theorem simply says that (x1, . . . , xd)

lim is not the
unit ideal. This was proved by Hochster in the equal characteristic case [12] and was proved
by André in mixed characteristic [1].

The next theorem is a crucial ingredient towards proving our main result. It follows from
[5, Theorem 3.1]. But we provide a different and simpler proof.

Theorem 9. Let (R,m) be a Noetherian local ring of dimension d. Then for every system
of parameters x1, . . . , xd, we have

e((x1, . . . , xd)) ≥ `(R/(x1, . . . , xd)
lim).

Moreover, if R is unmixed and is a homomorphic image of a Cohen–Macaulay ring, then
the equality holds for one (equivalently, all) system of parameters if and only if R is Cohen–
Macaulay.

Proof. The first assertion is well-known (for example, see [4, Lemma 2.3]). The point is that,

by Lech’s formula [19], e((x1, . . . , xd)) = limn→∞
`(R/(xn

1 ,...,x
n
d ))

nd . We can filter R/(xn
1 , . . . , x

n
d)

by nd ideals generated by monomials in x1, . . . , xd, and it is easy to check that each factor
maps onto R/(x1, . . . , xd)

lim.2

Now we prove the second assertion. We may assume the residue field of R is infinite. We
proceed by induction on d. If d = 1 the assertion is obvious. If d = 2, the statement follows
from [6, Theorem 1.5].3 Now we assume d ≥ 3, it follows from [7, Proposition 4.16] that if
z ∈ (x1, . . . , xd) is general, then R′ := R/zR is equidimensional and (S1) on the punctured
spectrum. Let S = R′/H0

m(R′). We know that S is unmixed. Since H0
m(R′) has finite length

and z is a general element in (x1, . . . , xd), we have

e((x1, . . . , xd), S) = e((x1, . . . , xd), R
′) = e((x1, . . . , xd)).

Replacing x1, . . . , xd−1 if necessary, we may assume that x1, . . . , xd−1, z form a system of
parameters of R, and thus x1, . . . , xd−1 form a system of parameters on R′ and S. By [6,

2For example, if d = 1, the we have a filtration (xn
1 ) ⊆ (xn−1

1 ) ⊆ · · · ⊆ (x1) ⊆ R, the i-th factor

(xi
1)/(xi+1

1 ) ∼= R/(xi+1
1 : xi

1), since (xi+1
1 : xi

1) ⊆ (x1)lim by definition, (xi
1)/(xi+1

1 ) � R/(x1)lim. In the
general case, each factor looks like (J, xn1

1 · · ·x
nd

d )/J ∼= R/(J : xn1
1 · · ·x

nd

d ) where J is an m-primary ideal

generated by monomials xj1
1 · · ·x

jd
d in x1, . . . , xd such that ji > ni for some i, i.e., at least one exponent

is bigger than that appearing in xn1
1 · · ·x

nd

d . Now for every y ∈ J : (xn1
1 · · ·x

nd

d ), we have yxn1
1 · · ·x

nd

d =∑
aj1...jdx

j1
1 · · ·x

jd
d . Pick n that is larger than all ni and multiply this equation by xn−n1

1 · · ·xn−nd

d we

get y(x1 · · ·xd)n =
∑

aj1...jdx
j1+n−n1

1 · · ·xjd+n−nd

d ∈ (xn+1
1 , . . . , xn+1

d ) by the assumptions on ji. Hence

y ∈ (x1, . . . , xd)lim and thus R/(J : xn1
1 · · ·x

nd

d ) � R/(x1, . . . , xd)lim.
3Note that the “unmixed” assumption in [6, Theorem 1.5] means formally unmixed in our context, and if

R is a homomorphic image of a Cohen–Macaulay ring, then R is unmixed implies R is formally unmixed [2,
Theorem 2.1.15].
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Theorem 1.2 and Proposition 2.7] , we know that (x1, . . . , xd−1)
limR′S = (x1, . . . , xd−1)

limS .
Moreover, if r ∈ (xn+1

1 , . . . , xn+1
d−1 , z) : (x1 · · · xd−1)

n, then

r(x1 · · · xd−1z)n ⊆ zn(xn+1
1 , . . . , xn+1

d−1 , z) ⊆ (xn+1
1 , . . . , xn+1

d−1 , z
n+1).

This implies that the pre-image of (x1, . . . , xd−1)
limR′ in R is contained in (x1, . . . , xd)

limR .
Thus we have

e((x1, . . . , xd), S) ≥ `(S/(x1, . . . , xd−1)
limS) = `(R′/(x1, . . . , xd−1)

limR′ )

≥ `(R/(x1, . . . , xd)
limR) = e((x1, . . . , xd)) = e((x1, . . . , xd), S)

and so we must have equalities all over. Therefore S is Cohen–Macaulay by the induction
hypothesis, and it follows that Hi

m(R′) ∼= Hi
m(S) = 0 for 0 < i < dimS = dimR′.

Finally, since R is unmixed, z is a regular element, so the sequence

0→ R
×z−→ R→ R′ = R/zR→ 0

is exact and induces the exact sequence

0→ H0
m(R/zR)→ H1

m(R)
×z−→ H1

m(R)→ 0.

Because R is unmixed, H1
m(R) has finite length. The sequence above then implies that

H0
m(R/zR) = 0. Thus R/zR is Cohen–Macaulay, so R is Cohen–Macaulay. �

Using limit closure we recover the main result of [10, Theorem 1.2], see also [3, Corollary
1.9 and Remark 1.10].

Corollary 10. Let (R,m) be an equidimensional Noetherian local ring of characteristic p > 0
which is a homomorphic image of a Cohen–Macaulay ring. Then for any system of parame-
ters x1, . . . , xd of R we have e((x1, . . . , xd)) ≥ `(R/(x1, . . . , xd)

∗). Moreover, if, in addition,
R is unmixed, then the equality holds for one (equivalently, all) system of parameters if and
only if R is F-rational.

Proof. The first assertion follows from Theorem 9 and colon-capturing: (x1, . . . , xd)
lim ⊆

(x1, . . . , xd)
∗, see [16, Theorem 2.3 and Remark 5.4]. If R is unmixed and equality holds,

then by Theorem 9, R is Cohen–Macaulay and thus e((x1, . . . , xd)) = `(R/(x1, . . . , xd)).
Hence (x1, . . . , xd) = (x1, . . . , xd)

∗, so R is F-rational by [8, Proposition 2.2]. �

We next show that limit closure is contained in the integral closure in all characteristics
using the existence of big Cohen–Macaulay algebras.

Theorem 11. Let (R,m) be a formally equidimensional Noetherian local ring, then for every
system of parameters x1, . . . , xd we have

(x1, . . . , xd)
lim ⊆ (x1, . . . , xd).

Proof. We may assume that R is complete. To check whether an element is in the integral
closure, it is enough to check this modulo every minimal prime of R. Since R is equidimen-
sional, x1, . . . , xd is still a system of parameters modulo every minimal prime of R. So if r
is in (x1, . . . , xd)

lim, then this is also true modulo every minimal prime of R. Therefore we
reduce to the case that R is a complete local domain.
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Now let B be a big Cohen–Macaulay R-algebra, whose existence follows from [14] and
[15] in equal characteristic, and from [1] (see also [11]) in mixed characteristic. If r ∈
(x1, . . . , xd)

lim, then r ∈ (xt
1, . . . , x

t
d) :R (x1 · · · xd)

t−1 for some t. It follows that

r ∈
(
(xt

1, . . . , x
t
d) :B (x1 · · · xd)

t−1) ∩R = (x1, . . . , xd)B ∩R,

since x1, . . . , xd is a regular sequence on B.
Thus it is enough to prove that (x1, . . . , xd)B ∩ R is contained in (x1, . . . , xd). In fact,

JB ∩ R is contained in J for every ideal J of R: since R is a complete local domain and B
is a big Cohen–Macaulay algebra, B is a solid R-algebra in the sense of [13, Corollary 10.6],
thus JB ∩ R is contained in the solid closure of J , but solid closure is always contained in
the integral closure by [13, Theorem 5.10]. �

Corollary 12. Let (R,m) be a Noetherian local ring that is formally equidimensional. Then
for every m-primary integrally closed ideal I, we have e(I) ≥ `(R/I). Moreover, if, in
addition, R is formally unmixed and equality holds for some I, then R is regular.

Proof. We may assume that R is complete with an infinite residue field by Remark 5. Let
(x1, . . . , xd) be a minimal reduction of I. By Theorem 9 and Theorem 11,

e(I) = e((x1, . . . , xd)) ≥ `(R/(x1, . . . , xd)
lim) ≥ `(R/I).

Now if R is formally unmixed and e(I) = `(R/I), then e((x1, . . . , xd)) = `(R/(x1, . . . , xd)
lim)

so by Theorem 9, R is Cohen–Macaulay. But then e((x1, . . . , xd)) = `(R/(x1, . . . , xd)) and
hence I = (x1, . . . , xd), so R is regular by [9, Corollary 2.5]. �

We would like to note that [9, Theorem 1.1] shows that an integrally closed m-primary
parameter ideal in a regular ring (R,m) has the form xn

1 , x2, . . . , xd where x1, . . . , xd are
minimal generators of m.

Example 13. One might ask that, in a formally unmixed Noetherian local ring (R,m),

whether (x1, . . . , xd)
lim = (x1, . . . , xd) for a system of parameters already implies R is regular.

However this is not true in general: Let R = k[[a, b, c, d]]/(a, b)∩ (c, d). Then R is complete,
unmixed, has dimension 2, with e(R) = 2 and H1

m(R) ∼= k. Let (x, y) be a minimal reduction

of m. It follows from [6, Theorem 1.5] that `(R/(x, y)lim) = 1, so (x, y)lim = m = (x, y).
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