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Abstract—Compiling high-level quantum programs to ma-
chines that are size constrained (i.e. limited number of quantum
bits) and time constrained (i.e. limited number of quantum
operations) is challenging. In this paper, we present SQUARE
(Strategic QUantum Ancilla REuse), a compilation infrastructure
that tackles allocation and reclamation of scratch qubits (called
ancilla) in modular quantum programs. At its core, SQUARE
strategically performs uncomputation to create opportunities for
qubit reuse.

Current Noisy Intermediate-Scale Quantum (NISQ) computers
and forward-looking Fault-Tolerant (FT) quantum computers
have fundamentally different constraints such as data local-
ity, instruction parallelism, and communication overhead. Our
heuristic-based ancilla-reuse algorithm balances these consider-
ations and fits computations into resource-constrained NISQ or
FT quantum machines, throttling parallelism when necessary.
To precisely capture the workload of a program, we propose
an improved metric, the “active quantum volume,” and use this
metric to evaluate the effectiveness of our algorithm. Our results
show that SQUARE improves the average success rate of NISQ
applications

by 1.47X. Surprisingly, the additional gates for uncomputation
create ancilla with better locality, and result in substantially fewer
swap gates and less gate noise overall. SQUARE also achieves an
average reduction of 1.5X (and up to 9.6X) in active quantum
volume for FT machines.

Index Terms—quantum computing, compiler optimization, re-
versible logic synthesis

I. INTRODUCTION

Thanks to recent rapid advances in physical implementation

technologies, quantum computing (QC) is seeing an exciting

surge of hardware prototypes from both academia and in-

dustry [1]–[4]. This phase of QC development is commonly

referred as the Noisy Intermediate-Scale Quantum (NISQ)

era [5]. Current quantum computers are able to perform on

the order of hundreds of quantum operations (gates) using

tens to hundreds of quantum bits (qubits). While modest in

scale, these NISQ machines are large and reliable enough to

perform some computational tasks. Looking beyond the NISQ

era, quantum computers will ultimately arrive at the Fault-

Tolerant (FT) era [6], [7], where quantum error correction is
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implemented to ensure operation fidelity is met for arbitrarily

large computations.

One major challenge, however, facing the QC community, is

the substantial resource gap between what quantum computer

hardware can offer and what quantum algorithms (for classi-

cally intractable problems) typically require. Space and time

resources in a quantum computer are extremely constrained.

Space is constrained in the sense that there will be a limited

number of qubits available, often further complicated by poor

connectivity between qubits. Time is also constrained because

qubits suffer from decoherence noise and gate noise. Too

many successive operations on qubits results in lower program

success rates.

Due to space and time constraints, it is critical to find effi-

cient ways to compile large programs into programs (circuits)

that minimize the number of qubits and sequential operations

(circuit depth). Several options have been proposed [8]–[14].

Among the options, one approach not yet well studied is to

coordinate allocation and reclamation of qubits for optimal

reuse and load balancing [15]. Reclaiming qubits, however,

comes with a substantial operational cost. In particular, to

obey the rules of quantum computation, before recycling a

used qubit, additional gate operations need to be applied to

“undo” part of its computation.

In this paper, we propose the first automated compila-

tion framework for such strategic quantum ancilla reuse

(SQUARE) in modular quantum programs that could be read-

ily applied to both NISQ and FT machines. SQUARE is a

compiler that automatically determines places in a program to

perform such uncomputation in order to manage the trade-offs

in qubit savings and gate costs and to optimize for the overall

resource consumption.

Optimally choosing reclamation points in a program is

crucial in minimizing resource consumption. This is because

reclaiming too often can result in significant time cost (due to

more gates dedicated to uncomputation). Likewise, reclaiming

too seldom may require too many qubits (e.g. fail to fit the

program in the machine). For example, Figure 1 shows how

qubit usage changes over time for the modular exponentia-
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tion step in Shor’s algorithm [16]. Unfortunately, finding the

optimal points in a program for reclaiming qubit could get

extremely complex [17], [18]. An efficient qubit reuse strategy

will play a pivotal role in enabling the execution of programs

on resource-constrained machines.

To precisely estimate the workload of a computational

task, we propose a resource metric called “active quantum

volume” (AQV) that evaluates the “liveness” of qubit during

the lifetime of the program, which we will formally introduce

in Section III-B. This is inspired by the concept of “quantum

volume” introduced by IBM [19], a common measure for

the computational capability of a quantum hardware device,

based on parameters such as number of qubits, number of

gates, and error probability. AQV is a metric that measures the

volume of resource required by a program when executing on a

target hardware, which can therefore serve as an minimization

objective for the allocation and reclamation strategies.

The contributions of our work are:

• We present a heuristic-based compilation framework,

called SQUARE, for optimizing qubit allocation and

reclamation in modular reversible programs. It leverages

the knowledge of qubit locality as well as program

modularity and parallelism.

• We introduce a resource metric, active quantum volume

(AQV), that calculates the “liveness” of qubits over the

lifetime of a program. This new metric allows us to quan-

tify the effectiveness of various optimization strategies, as

well as to characterize the volume of resources consumed

by different computational tasks.

• Our approach fits computations into resource-constrained

NISQ machines by strategically reusing qubits. Surpris-

ingly, adding gates for uncomputation can improve the

fidelity of a program rather than impair it, as it creates

ancilla with better locality, leading to substantially fewer

swap gates and thus less gate noise. SQUARE improves

the success rate of NISQ applications by 1.47X on

average.

• Our approach has broad applicability from NISQ to FT

machines. SQUARE achieves an average reduction of

1.5X (and up to 9.6X) in active quantum volume for FT

systems.

The rest of the paper is organized as follows: Section II

briefly discusses the basics of quantum computation and com-

pilation of reversible arithmetic to quantum circuits, as well

as related work in both classical and quantum compilation.

Section III illustrate the central problem of allocation and

reclamation of ancilla tackled in this paper and the general idea

of our solution. Section IV describes in detail the techniques

that make up our proposed algorithm. Section V evaluates

the performance of the algorithm on an array of benchmarks

under the NISQ and FT architectures. Finally, Section VI sum-

marizes and then highlights challenges awaiting satisfactory

solutions.
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Fig. 1: Qubit usage over time for Modular Exponentiation. The

shaded area under the curve corresponds to the active quantum

volume of this application. The blue curve, representing a

balance between qubit reclamation and uncomputation, has the

lowest area and is the best option.

II. BACKGROUND AND RELATED WORK

A. Basics of Quantum Computing

Quantum computers are devices that harness quantum me-

chanics to store and process information. For this paper, we

highlight three of the basic rules derived from the principles

of quantum mechanics:

• Superposition rule: A quantum bit (qubit) can be in a

quantum state of a linear combination of 0 and 1: |ψ〉 =
α |0〉 + β |1〉, where α and β are complex amplitudes

satisfying |α|2 + |β|2 = 1.

• Transformation rule: Computation on qubits is accom-

plished by applying a unitary quantum logic gate that

maps from one quantum state to another. This process is

reversible and deterministic.

• Measurement rule: Measurement or readout of a qubit

|ψ〉 = α |0〉 + β |1〉 collapses the quantum state to

classical outcomes: |ψ′〉 = |0〉 with probability |α|2 and

|ψ′〉 = |1〉 with probability |β|2. This is irreversible and

probabilistic.

1) Reversibility constraints.: The above three rules give

rise to the potential computing power that quantum computers

possess, but at the same time, they impose strict constraints

on what we can do in quantum computation. For example,

the transformation rule implies that any quantum logic gate

we apply to a qubit has to be reversible. The classical AND

gate in Figure 2 is not reversible because we cannot recover

the two input bits based solely on one output bit. To make it

reversible, we could introduce a scratch bit, called ancilla, to

store the result out-of-place, as in controlled-controlled-NOT

gate (or Toffoli gate) in Figure 2. Note that we use the

terminology “ancilla” in its most general sense–it is not limited

to error correction ancilla, but rather, any (physical or logical)

qubits used as scratch space for computation. As the arithmetic

complexity scales up when tackling difficult computational

problems, we quickly see extensive usage of ancilla bits in

our circuits due to this reversibility constraint.
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AND gate Toffoli gate

Fig. 2: Circuit diagram for the irreversible AND gate and the

reversible Toffoli gate.

B. Synthesizing Reversible Arithmetic

For small arithmetic logic, algorithms exist to directly

synthesize reversible circuits from the truth-table of the desired

function [20]–[22] and with templates [23]. This typically

works well for small low-level combinational functions, but

not for functions with internal states [24]. As the complexity

of the arithmetic in an algorithm scales up, modularity quickly

becomes convenient, and in many cases necessary. That is, to

construct high-level arithmetic, we need to build up from small

modular subroutines.

In reversible logic synthesis and optimization, besides mak-

ing our circuit for the reversible function contain as few gates

as possible, we would also like to minimize the amount of

scratch memory (i.e. number of ancilla bits) used in the circuit.

Fortunately, there is a way to recycle ancilla bits for later reuse.

For a circuit that makes extensive use of scratch memory,

managing the allocation and reclamation of the ancilla bits

becomes critical to producing an efficient implementation of

the function.

1) Role of reversible arithmetic in quantum algorithms.:

Reversible arithmetic plays a pivotal role in many known

quantum algorithms. The advantage of quantum algorithms

is thought to stem from their ability to pass a superposi-

tion of inputs into a classical function at once, whereas a

classical algorithm can only evaluate the function on single

input at a time. Many quantum algorithms involve computing

classical functions, which must be embedded in the form of

reversible arithmetic subroutines in quantum circuits. For ex-

ample, Shor’s factoring algorithm [16] uses classical modular-

exponentiation arithmetic, Grover’s searching algorithm [25]

also implements its underlying search problem as an oracle

subroutine, and the HHL algorithm for solving linear sys-

tem of equations contains an expensive reciprocal step [26].

These reversible arithmetic subroutines are typically the most

resource-demanding computational components of the entire

quantum circuit.

C. Compiling Quantum Circuits to Target Architecture

As discussed above, there are several options for obtaining

a synthesized classical reversible circuit. The next step is

to compile it down to a sequence of instructions that a

quantum machine recognizes and natively supports, that is to

resolve architectural constraints. This means considering the

following two aspects:

1) Instruction set. There are certain quantum logic gates that

are supported in a given device architecture. In most cases,

this gate set is “Clifford+T” gates, comprised of the CNOT

gate, NOT gate (or X gate), Hadamard gate (or H gate) and

T gate. This is a common set for most of today’s gate-based

quantum hardware prototypes, as well as for large-scale fault-

tolerant machines (e.g. with surface code error correction).

Given a classical reversible circuit, we can replace each gate

with its quantum counter-part. In particular, NOT gates and

CNOT gates can be directly implemented as quantum gates.

For Toffoli gates, algorithms exist that decompose them

into a sequence of Clifford+T gates [27]–[31]. At lower level,

some instruction sets are proposed to offer direct control over

the target hardware [32].

2) Qubit communication. Multi-qubit quantum gates are im-

plemented by interacting the operand qubits with one another.

At the physical level, building large-scale quantum machines

with all-to-all qubit connectivity is shown to be extremely

challenging. The latest effort from IonQ [33] offers a machine

with 11 fully-connected qubits using trapped-ion technology.

Superconducting machines, for instance those by IBM [3]

and Rigetti [34], typically have much lower connectivity. Any

scalable proposal would involve an architecture of limited

qubit connectivity and a model for resolving long-distance

interactions. As a consequence, interacting qubits that are not

directly connected would induce communication costs.

1) Difference between NISQ and FT machines.: Depending

on the topology of the architecture and the model for resolving

two-qubit interactions, communication costs will differ. In the

context of a NISQ machine, the most frequently used approach

to resolve a long-distance two-qubit gate is through swaps,

where two (physical) qubits are moved closer by performing

a chain of swap gates that connects them. Each SWAP gate

consists of three CNOT gates. The time to complete a swap

chain is proportional to the length of the chain. In a FT

machine, a logical qubit is encoded by a number of physical

qubits. A logical operation is specified by a sequence of

physical operations on its physical qubits. For instance, for

surface code implementation, physical qubits form a 2D grid

with every data qubit connected to its four nearest neighbors

through stabilizer ancillas. In essence, a logical operation is

defined by specifying how the stabilizer ancillas interact with

the data qubits. In particular, a logical two-qubit gate can be

defined by braiding1 which creates a path between logical

qubits, where the stabilzer ancillas along the path do not

interact with their neighbors [37], [38]. Although it can extend

to arbitrary length and shape in constant time, two braids are

not allowed to cross. We refer interested readers to [7], [39]

for excellent tutorial.

Although our proposed SQUARE approach is designed

to optimize for compiling large quantum algorithms onto

medium- to large-scale systems with hundreds or thousands

of qubits, we demonstrate that NISQ machines can benefit

1The focus of this study is on braiding, but other schemes such as lattice
surgery [35], [36] exists for resolving two-qubit interactions on surface code,
which may expose different communication tradeoffs.
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from SQUARE optimizations significantly as well. As such,

Section V will include experiments that sweep a large range

of system sizes (from tens to thousands of qubits), assuming

architectures with their appropriate communication models

(e.g. swaps and braiding). The one key difference between

swaps and braids is that the time to complete a swap chain

is proportional to the length of swap, whereas the time to

complete a braid is proportional to the number of crossings

with other braids.

D. Reclaiming Ancilla Qubits via Uncomputation

Reclaiming qubits is the process of returning them to their

original |0〉 state for future reuse. Due to entanglement, this

process could be costly; ancilla qubits that are entangled with

data qubits will alter the data qubits’ state if they are reset or

measured. Fortunately, uncomputation, introduced by Bennett

[40], is the process for undoing a computation in order to

remove the entanglement relationship between ancilla qubits

and data qubits from previous computations. Figure 3 (left

pane) illustrates this process. In that circuit diagram, the Uf

box denotes the circuit that computes a classical function f .

The garbage produced at the end of Uf is cleaned up by storing

the output elsewhere and then undoing the computation.

This uncomputation approach has two potential limitations:

firstly, if uncomputation is not done appropriately, we need to

pay for the additional gate cost, and secondly, it only works

if the circuit Uf implements classical reversible logic - i.e.

can be implemented with Toffoli gate alone, optionally

with NOT gate and CNOT gate. Quantum algorithms contain

non-classical gates such as Hadamard gate, phase gate and T

gate; this work focuses on the part in quantum algorithms that

computes classical functions (usually arithmetics) which can

be implemented without those gates. As discussed in Section

II-B1, classical reversible logic plays a large part of most

quantum algorithms.

Related work on optimization of qubit allocation and recla-

mation in reversible programs dates back to as early as [17],

[41], where they propose to reduce qubit cost via fine-grained

uncomputation at the expense of increasing time. Since then,

more [18], [42]–[44] have followed in characterizing the

complexity of reclamation for programs with complex modular

structures. Recent work in [24], [45] show that knowing

the structure of the operations in Uf can also help identify

bits that may be eligible for cleanup early. A more recent

example [46] improves the reclamation strategy for straight-

line programs using a SAT-based algorithm. Some of the above

work emphasizes on identifying reclamation opportunities in

a flat program, whereas our focus is on coordinating multiple

reclamation points in a larger modular program.

E. Reclaiming Qubits via Measurement and Reset

If ancilla qubits have already been disentangled from the

data qubits, we can directly reclaim them by performing a

measurement and reset. We can save the number of qubits, by

moving measurements to as early as possible in the program,

so early that we can reuse the same qubits after measurement

for other computation. Prior art [47], [48] has extensively

studied this problem and proposed algorithms for discovering

such opportunities.

This measurement-and-reset (M&R) approach also has lim-

itations: firstly, a near-term challenge for NISQ hardware is

to support fast qubit reset. Without it, reusing qubits after

measurement could be costly or, in many cases, unfeasible.

The state-of-the-art technique for resetting a qubit on a NISQ

architecture is by waiting long enough for qubit decoherence

to happen naturally, typically on the order of milliseconds for

superconducting machines [3], significantly longer than the

average gate time around several nanoseconds. FT architec-

tures have much lower (logical) measurement overhead (that

is roughly the same as that of a single gate operation), and

thus are more amenable to the M&R approach. Secondly, qubit

rewiring as introduced in [48] works only if measurements can

be done early in a program, which may be rare in quantum

algorithms – measurements are absent in many program (such

as arithmetic subroutines) or only present somewhere deep in

the circuit. M&R of a qubit is allowed only after all entangled

results are no longer needed, whereas uncomputation can

be done partially for any subcircuit. As such, unlike the

uncomputation approach, M&R does not actively create qubit

reuse opportunities.

F. Related Work in Classical Compilation

Some similarities can be seen in register allocation in clas-

sical computing. In that setting, we assign program variables

to a limited number of registers in the CPU for fast access.

Variables that are not stored in register may be moved to and

from RAM, as a process called “register spilling”. The analysis

of live variable and register reuse can be very similar to

that of qubits. For instance, our heuristic-based methodology

is inspired by register allocation in GPU/distributed systems

where communication cost needs to be minimized, and by the

technique “rematerialization” that reduces the register pressure

(i.e. number of registers in use at any point in time) by

recomputing some variables instead of storing them to mem-

ory. But the trade-offs in qubit allocation and reclamation are

unique, which we will introduce as “recursive recomputation”

and “qubit reservation” in Section III-C. Finding the optimal

strategy for register allocation, and similarly for qubit reuse,

is known to be a hard problem [42], [49]. Luckily, we are

able to transfer some general insights from the rich history of

classical register allocation optimization to solve the problems

in qubit allocation and reclamation.

The connection made between qubit reuse and classical

register allocation [50]–[52] allows us to inherit some of the

intuitions from a wealth of classical literature. Nonetheless,

the uncomputation/reuse/locality trade-offs we face are fairly

unique. Indeed, rematerialization [53] is very much like qubit

reclamation, in that they both aim to lower active register-

s/qubits at the expense of computation, yet it does not exhibit

the same exponential recomputation cost, nor is the increase

in the live-range of variables from the recomputing step the

same as qubit reservation caused by not uncomputing. We

573



Fig. 3: (a) Ancilla qubit reclamation via uncomputation. Each horizontal line is a qubit. Each solid box contains reversible

gates. Qubits are highlighted red for the duration of being garbage. (b) Illustration for Eager and Lazy strategies with their

respective issues – recursive recomputation and qubit reservation. Each dashed box denotes a function call containing the

enclosed gates. The allocation and reclamation points have been marked as blue circles in the circuit.

also gained general insights from numerous techniques in code

scheduling [54], [55], and thread-level parallelism [56].

III. KEY IDEA AND MOTIVATION

This paper focuses primarily on reusing qubits via un-

computation, and discusses the significance of our proposed

strategy in current noisy intermediate-scale quantum (NISQ)

and future fault-tolerant (FT) architectures. Prior work such as

[24] follows two basic strategies: “Eager” cleanup and “Lazy”

cleanup, as illustrated in Figure 3.

Baseline 1 “Eager”: Recursive Recomputation. Eager re-

claims qubits at the end of every function. In the example of

Figure 3, Eager performs uncomputation at the end of both Uf

and Ug . When reclaiming ancilla qubits in such programs with

nested functions, the uncompute step of the caller would have

to repeat everything inside of its callee, including the callee’s

uncompute step. This hierarchical structure will consequently

lead to re-computation of the callees, as marked in Figure 3.

More formally, for a hierarchical program with ℓ levels, in

the worst case, recomputation causes the number of steps to

increase by a factor of 2ℓ. We call this exponential blowup

phenomenon “recursive recomputation”. That is why the 2-

level program in Figure 3 has roughly 4 times more steps as

the original circuit. This factor will play a crucial role in our

heuristic design.

Baseline 2 “Lazy”: Qubit Reservation. Lazy reclaims qubits

only at the top-level function. In Figure 3, this means only Ug

is uncomputed, but not Uf . Lazy can sometimes be a preferred

strategy because it avoids the wasted recomputation2. In other

words, it is sometimes beneficial to temporarily leave the

garbage of callees, and uncompute the garbage by their callers.

This is equivalent to inlining the callee into the caller, and

letting the caller handle the reclamation of all ancilla qubits.

However, with the benefit of the avoided recomputation comes

2There are exceptions, such as recursive Fourier sampling, where recom-
putation cannot be avoided and is required for correctness [57].

the cost of “qubit reservation”. The ancilla qubits from callee

are reserved or blocked out from any reuse until the end of

the caller. This can be seen at the bottom right of the example

in Figure 3. The garbage qubit from Uf stays as garbage until

almost the end of U−1
g , whereas in the Eager case, it is cleaned

up right away.

A. Overview of SQUARE Algorithm

Most existing qubit reuse algorithms [17], [24], [41] em-

phasize on the asymptotic qubit savings, and commonly

make an ideal assumption that machines have all-to-all qubit

connectivity (i.e. no locality constraint). Since all qubits are

considered identical, a straightforward way to keep track of

qubits is to maintain a global pool, sometimes referred to as

the ancilla heap. Ancilla qubits are pushed to the heap when

they are reclaimed, and popped off when they are allocated,

for instance in a last-in-first-out (LIFO) manner. In this ideal

model, we can simply track qubit usage by counting the

total number of fresh qubits ever allocated during the lifetime

of a program. However, leading proposals of NISQ and FT

quantum architectures have far stricter locality constraints.

Our Strategic QUantum Ancilla REuse (SQUARE) algo-

rithm is highly motivated by the lesson that communication

can be a determinant factor for qubit allocation and reclama-

tion. Take the NISQ architecture as an example. We make

the following two novel observations. Firstly, same algorithm

needs different strategies for different machine connectivity.

In Figure 5, a benchmark named Belle (whose details can

be found in Section V-A) prefers Eager strategy on a 2-

D lattice topology (with swaps), but Lazy strategy on a

fully-connected topology (without swaps). Secondly, and most

counter-intuitively, adding uncomputation gates can improve

overall circuit fidelity, if done properly. With careful allocation

and reclamation, the expense of additional uncomputation

gates is compensated by the reduction of communication cost.

This is because uncomputation allows us to create ancilla with
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Fig. 4: Our Strategic Quantum Ancilla Reuse (SQUARE) compilation flow. SQUARE takes as input a Scaffold [58] program

(see sample code in Figure 6) and produces an executable that simulates the dynamics of qubit allocation/reclamation and gate

scheduling, which can then prints out an optimized schedule of quantum gate instructions.

Fig. 5: Locality constraint changes the desired reclamation

strategy. Results are based on a synthetic benchmark “Belle”.

Lower active quantum volume (defined in Section III-B) is

better. Belle performs better on a lattice machine with Eager

strategy, while preferring Lazy when operating on a fully-

connected machine.

better locality, resulting in fewer swap gates and less overall

gate noise.

Now we discuss how SQUARE finds the strategies for

allocation and reclamation.

1) Locality-Aware Allocation (LAA).: We present the

Locality-Aware Allocation (LAA) heuristic in the SQUARE

algorithm that prioritizes qubits according to their locations

in the machine. At a high level, LAA chooses qubits from

the ancilla heap by balancing three main considerations –

communication, serialization, and area expansion.

When deciding which qubits to allocate and reuse, our

heuristic-based algorithm assigns priorities to all qubits. The

priorities are weighted not only by the communication over-

head of two-qubit interactions but also by their potential

impact to the parallelism of the program. Reusing qubits adds

data dependencies to a program and thus serializes computa-

tion (which is similar to how reusing register names could lead

to false data dependencies and serialization), but not reusing

qubits expands the area of active qubits and thus increases the

communication overhead between them. Recall from Section

II-C1, communication have different tradeoffs under NISQ and

FT architectures. We will make this distinction in terms of our

heuristics clearer in Section IV-C.

2) Cost-Effective Reclamation (CER).: The Cost-Effective

Reclamation (CER) heuristic makes uncomputation decisions

with a simple cost-benefit analysis: at each potential reclama-

tion point, we estimate and compare two quantities:

• C1: cost of uncomputation and reclaiming ancilla qubits;

• C0: cost of no uncomputation and leaving garbage qubits.

CER balances the cost of recursive recomputation and qubit

reservation as discussed in Section II-D. To do so, we need an

efficient way to accurately estimate the C1 and C0 quantities.

In particular, the decision of child function affects not only

the cost of itself, but also the cost of parent function. If a child

function decides to uncompute, the additional gate costs need

to be duplicated should its parent decide to uncompute as well.

This was illustrated in Section III-C as the phenomenon we

called “recomputation”. Thus, we should take the level of the

function into account when we make the decision. The total

cost of a uncomputation, C1, can be expressed as:

C1 = Nactive ×Guncomp × S × 2ℓ (1)

where Nactive is the number of active qubits, Guncomp is

the number of gates for uncomputation (including those in

all children functions), ℓ is the level of the child function in

the program call graph, and S is the communication factor.

Details can be found in Section IV-D.

Now, suppose a function does not uncomputing/reclaiming

ancilla, the next chance to reclaim them is when its parent

function uncomputes. Thus, we want to estimate the cost of

holding the ancilla live until the parent’s uncompute block is

executed. The cost, C0, can be approximated as:

C0 = Nanc ×Gp × S ×
√

(Nactive +Nanc)/Nactive (2)

where Nanc is the number of ancillae held by the function,

Gp is the number of gates from the current function to the

parent’s uncompute function. The term under the square root

sign captures the effect of ‘area expansion”, which we will

discuss in greater detail in Section IV-D.

575



B. Active Quantum Volume

To accurately estimate the workload of a program, we define

the active quantum volume (AQV) of a program as:

VA =
∑

q∈Q

∑

(ti,tf )∈Tq

(tf − ti)

where Q is the set of all qubits in the system, and Tq is

a sequence of pairs {(t0i , t
0
f ), (t

1
i , t

1
f ), . . . , (t

|Tq|−1
i , t

|Tq|−1
f )}.

Each pair corresponds to a qubit usage segment, that is we

denote tki and tkf as the allocation time and reclamation time

of the kth time that qubit q is being used, respectively. AQV is

high when a large number of qubits stay “live” (in-use) during

the execution; thus, the higher the AQV, the more costly it is

to execute on that target machine.

The key to this metric is in the term “active”. In particular,

we exclude the time that a reclaimed qubit spends in the

heap from volume calculation, because it has been restored

to the |0〉 state (ground state), which does not suffer from

the decoherence noise as an excited state does. Hence, AQV

serves as a minimization objective in SQUARE. There are a

few practical advantages for using AQV over other resource

metrics:

1) AQV is a better measure of the exposure to errors

than the space×time metric (i.e. number of qubits times

circuit depth) [39], [59]. The more time a qubit stays

live, the more susceptible it is to noise from its sur-

roundings. We show lower AQV yields higher success

rate in Section V-C.

2) Unlike qubit count, gate count, or circuit depth, AQV

allows us to more accurately model “liveness” of qubits

on a machine (i.e. which qubits are actively carrying

information and performing computation as opposed to

staying in ground state unused). [60] and [61] shows

that keeping a preferred subset of qubits live can boost

program success rate.

3) IBM’s quantum volume (QV) [19] characterizes the

amount of computational resource a quantum device

offers, AQV measures the portion of resource being

actively utilized by a program on the device.

C. Compilation Tool Flow of SQUARE

In a nutshell, our SQUARE compilation algorithm takes

as input a Scaffold program [58] and produces an optimized

schedule of all of its quantum instructions. This is accom-

plished through what is known as the “instrumentation-driven”

approach, also used in [62], which allows us to pre-simulate

the control flow in a quantum program. This works because all

inputs are known at compile time for most quantum programs,

so we can use their known control flow to simulate resource

usage.

Figure 4 illustrates in detail the compilation flow for

SQUARE. It consists of three main components: 1) an easy-

to-use syntactical construct compatible within the Scaffold

language, 2) a qubit allocation heuristic, and 3) a qubit

reclamation heuristic.

Under the hood, an input program first goes through

an initial compilation step, where each Allocate() and

Free() instruction is replaced by a classical function call

(such as in C/C++) that implements the heuristic algorithm.

Each quantum gate is replaced by a classical function that

resolves the connectivity constraints of its operand qubits and

then schedules the gate to the earliest time step possible. As

a result, we have obtained an executable for the classical

control flow of the quantum program. The compiler maintains

an ancilla heap (i.e. pool of reclaimed qubits) that stores all

the reclaimed ancilla qubits. Future allocations can therefore

choose to pop from the ancilla heap or initialize brand new

qubits. One of the key contributions of our work is a heuristic

that makes such decisions.

D. Complexity of SQUARE

SQUARE is a heuristic-based greedy algorithm. It makes

allocation and reclamation decisions as they appear in pro-

gram order. As a result, it takes time that scales linearly to

the number of reclamation points in a program. Consider a

program with nested functions – all decisions in the callees

are made prior to that of the caller, so when deciding for the

caller function, the cost of uncomputation is deterministic and

easy to estimate. On the flip side, we could end up in a sub-

optimal situation where callee’s decisions are made neglecting

the potential burden for uncomputing its caller.

The computational complexity of qubit reclamation via

uncomputation has been studied. It has been shown that, for

programs with linear sequential dependency graph, we can

use the reversible pebbling game to approach this problem

[46]. However, finding the optimal points in a program with

hierarchical structure is PSPACE complete [42]. For a program

with ℓ levels and d callees per function, there can be as many

as dℓ possible reclamation points in the worst case. We could

be dealing with 2d
ℓ

different combinations of reclamation

decisions. So clearly, the naı̈ve way for finding the optimal

strategy by exhaustively enumerating all possible decisions is

far from efficient.

IV. IMPLEMENTATION DETAILS OF SQUARE

In this section, we describe the implementation details

of the components of SQUARE algorithm, including the

expressive syntactical construct in the Scaffold programming

language [58] that exposes the optimization opportunities, the

instrumentation-driven LLVM [62] that translates the quantum

program into a classical executable, and details of the locality-

aware allocation heuristics and the cost-effective reclamation

heuristics that we left out from Section III-A.

A. Syntactical Construct

In order to express the opportunities for qubit allocation and

reclamation optimizations, we augment the high-level Scaffold

[58] programming language with an additional syntactical

construct: Compute-Store-Uncompute Code Blocks. As shown

in Figure 6, the keywords “Allocate” and “Free” are used

to express the locations of qubit allocation and reclamation

576



1 #include "qalloc.h"

2

3 void fun1(qbit* in, qbit* out) {

4 qbit anc[1];

5 Allocate(anc, 1);

6 Compute {

7 Toffoli(in[0], in[1], in[2]);

8 CNOT(in[2], anc[0]);

9 Toffoli(in[1], in[0], anc[0]);

10 }

11 Store {

12 CNOT(anc[0], out[0]);

13 }

14 Uncompute{

15 // Invoke Inverse() to populate

16 // Or write out explicitly:

17 Toffoli(in[1], in[0], anc[0]);

18 CNOT(in[2], anc[0]);

19 Toffoli(in[0], in[1], in[2]);

20 }

21 Free(anc, 1);

22 }

23

24 int main () {

25 qbit new[4]; // declare name

26 Allocate(new, 4); // allocate qubits

27 fun1(new, &new[3]);

28 return 0;

29 }

Fig. 6: Format of compute-store-uncompute construct for qubit

allocation and reclamation. Shown here an example function

(fun1) that allocates and reclaims an ancilla qubit.

respectively. To enable automation in the optimizations, the

compiler needs additional information about the code struc-

ture. By writing a Compute code block, the program now

has explicitly specified the set of instructions that belong to

forward computation. Optionally, programmer can choose to

automatically generate the content of the Uncompute block

by invoking Inverse().

Under the hood, the compiler will replace each Allocate

and Free instruction with an invocation to our heuristic

algorithms. Depending on the reclamation decision, it will

either execute or skip the uncomputation step accordingly.

B. Instrumentation-Driven Compilation

In this section, we illustrate a number of advantages of

the instrumentation-drive approach over the conventional pass-

drive approach used in most quantum compilers.

The traditional pass-driven approach for compiling and

optimizing quantum programs is done by sending a high-level

quantum program through multiple layers of transformations,

each of which completes a different task. For instance, we

have transformations to resolve classical control structures

(e.g. loop unrolling and module inlining), explore circuit

optimizations (e.g. commutativity and parallelism), satisfy

architectural constraints (e.g. qubit connectivity), assign qubit

mappings, and perform gate scheduling, etc. One of the po-

tential limitations in this approach is that each transformation

performs independently, and in some cases even conflicts with

each other [54]. So it is very hard to jointly optimize for

some correlated problems such as mapping and scheduling.

Algorithm Description

Eager Reclaim qubits whenever possible, as shown in Section III.

Lazy
Only reclaim qubits from the top level in the program
call graph, as shown in Section III.

SQUARE
Combines Locality-aware allocation (LAA) and
Cost-effective reclamation (CER). See Section III-A.

TABLE I: List of compiler configurations.

Techniques such as feedback loops could in some cases work

well in practice.

Two main reasons that the instrumentation-driven approach

may be a more natural fit for our purpose are: the dynamic

nature of our optimization and compilation time scalability.

Recall from Section III-C, our compilation tool flow produces

an executable that allows us to dynamically optimize for the

allocation and reclamation of qubits in reversible programs

with parallel and modular structures. In the next section, we

illustrate the details of our heuristic algorithms and how they

are integrated in the compilation tool flow.

C. Allocation Policy Details

The allocation policy is most concerned about the commu-

nication overhead of two-qubit operations in a program.

• Under NISQ architecture, communication between two

qubits is accomplished by move one qubit to another via

a series of swaps. So swap distance is a direct measure of

the locality. The higher the distance, the longer it takes

for a chain of swaps to complete.

• The concept of locality can be trickier in a FT archi-

tecture. Communication is accomplished via braiding.

Braids can have arbitrary length or shape, but they are

not allowed to cross. As [37] shows, average braid length

and average braid spacing are both strongly correlated

with the number of braid crossings. So we can reduce

communication overhead by moving interacting qubits

closer and moving non-interacting qubits far apart.

When there are fewer qubits available than requested (due

to either the maximum qubit constraint or a shortage in

the ancilla heap), we mark the allocation as pending, and

proceed to schedule all non-dependent, parallel computation

and reclamation. Allocation requests are not fulfilled until

sufficient ancilla qubits have been reclaimed.

D. Reclamation Policy Details

The reclamation policy dictates what and when ancilla

qubits get recycled. The decisions rely heavily on three main

considerations: qubit savings, uncomputation gate count, and

communication overhead. In Section III-A2, we have dis-

cussed how SQUARE balances between qubit savings and gate

count. Now we present further details on how to estimate the

communication factor in Equation 1 and 2.

• NISQ architecture: We use the average swap-chain length

per gate as the estimate for S. This is obtained from the

history of swap chains during the compile time simulation

– we keep a running average of the number of swaps for
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the gates we scheduled, and use it as an estimate for the

subsequent gates in the same module.

• Fault-tolerant (FT) architecture: We use average braiding

conflicts per gate as the estimate for S. The communica-

tion latency due to braid routing is estimated (similarly

as [37]) by factoring in the average braid length, average

braid spacing, and number of crossings.

Since “qubit reservation” causes the active qubit area to be

expanded, leading to higher communication overhead, the mul-

tiplicative factor
√

(Nactive +Nanc)/Nactive aims to estimate

the swap or braid length increase due to the expansion.

Algorithm 1 and 2 are pseudo-code of SQUARE, im-

plementing LAA and CER respectively. Procedures under

namespace LLVM are functions that operate on the LLVM

IR. In particular, get interact qubits() obtains the set of

qubits with which the allocated qubits interact by look-

ing ahead in the code block. gen uncompute block() and

rm uncompute block() conditionally expands or deletes the

code block under Uncompute{} (as shown in Figure 6). clos-

est qubit in heap() and closest qubit new() look for avail-

able qubits to reuse from the heap and from new qubits,

respectively. Both functions return the candidate qubits and

scores. The scores are calculated based on the communication,

serialization, and area expansion, as described in Sec IV-C. We

select the qubits with minimum scores until the requested n
qubits are allocated.

Algorithm 1 Allocate: Locality-Aware Allocation

Input: Number of qubits n
Output: Set of qubits S

1: I ← LLVM::get interact qubits()
2: S ← ∅;
3: for i ← 1 to n do
4: q1, score1 ← closest qubit in heap(I)
5: q2, score2 ← closest qubit new(I)
6: if score1 ≤ score2 then
7: S ← S ∪ {q1}
8: else
9: S ← S ∪ {q2}

10: end if
11: end for

Algorithm 2 Free: Cost-Effective Reclamation

Input: Number of qubits n, Set of qubits S

1: C1 ← cost of uncomputation
2: C0 ← cost of no uncomputation
3: if C1 ≤ C0 then
4: LLVM::gen uncompute block()
5: heap push(n,S)
6: else
7: LLVM::rm uncompute block()
8: LLVM::transfer to parent(n,S)
9: end if

V. EVALUATION

A. Benchmarks

Table II lists the QC benchmarks and brief description in our

study. These benchmarks are reversible arithmetic functions

Name Description

RD53 Input weight function with 5 inputs and 3 outputs.
6SYM Function with 6 inputs and 1 output.
2OF5 Output is 1 if number of 1s in its input equals two.

ADDER4 4-bit in-place controlled-addition3.
Jasmine-s Small and shallow instance of synthetic benchmark Jasmine.
Elsa-s Small and shallow instance of synthetic benchmark Elsa.
Belle-s Small and shallow instance of synthetic benchmark Belle.

ADDER32 32-bit in-place controlled-addition.
ADDER64 64-bit in-place controlled-addition.
MUL32 32-bit out-of-place controlled-multiplier.
MUL64 64-bit out-of-place controlled-multiplier.

MODEXP Modular exponentiation function4.

SHA2 Cryptographic hash function5.

SALSA20 Stream cipher core function6.

Jasmine Shallowly nested synthetic function7.
Elsa Heavy workload and shallowly nested synthetic function.
Belle Light workload and deeply nested synthetic function.

TABLE II: Characteristics of benchmark programs.

or applications that use ancilla qubits. Since ancilla qubits are

expensive in both NISQ and FT architectures, it is crucial

to reuse ancilla qubits and improve the success rate of a

program. The first 4 benchmarks (RD53, 6SYM, 2OF5, and

ADDER4) are small arithmetic functions suitable for executing

on NISQ systems (10 - 100 qubits). The rest of the benchmarks

are medium to large functions that are more demanding in

computational resources than current NISQ systems can offer.

The number of qubits they use, for instance, is on the order

of hundreds or thousands. For the last three benchmarks, we

construct random synthetic circuits (Jasmine, Elsa, and Belle)

with different characteristics in their program structures. In

particular, a benchmark is parameterized by the size and shape

of its program call graph using 5 variables: number of nested

levels, max number of callees per function, max number of

input qubits per function, max number of ancilla qubits per

function, maximum number of gates per function.

B. Experimental Setup

All compilation experiments are carried out on Intel Core

i7-3960X (3.3GHz, 64GB RAM), implemented in the quantum

compiler framework ScaffCC [58] version 4.0. Noise simula-

tions use Intel E5-2680v4 (28-core, 2.4GHz, 64GB RAM),

performed using the IBM Qiskit software [66]. Table I lists

the ancilla reuse algorithms in our study. Eager and Lazy are

two baselines that appear commonly in prior work. SQUARE

is our Strategic QUantum Ancilla REuse algorithm.

3The adders are based on the Cucarro adder [63], [64].
4Modular exponentiation is an important subroutine used in Shor’s factoring

algorithm [16].
5SHA2 contains multiple rounds of in-place modular additions and bit

rotations, based on the implementation from [24]. When used as an oracle
in Grover’s algorithm [25], we can find hash collisions more efficiently, and
thereby reduce the security of the hash function.

6Salsa20 involves 20 rounds of 4 parallel modules. Each module modifies 4
words with modular additions, XOR operations, and bit rotations. The Salsa20
stream cipher uses the Salsa20 core function to encrypt data. [65] Salsa family
functions have been popularly adopted for TLS in places like the Chrome
browser and OpenSSH.

7Qubits and gates are randomly assigned.
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Fig. 7: QC architecture boundary.

The rest of the section are divided up into three main

parts (Figure 7) – experimental results on NISQ architecture

(Section V-C) with 2D lattice of physical qubits and nearest-

neighbor connectivity as commonly used in [3], [67], [68],

on NISQ-FT boundary architecture (Section V-D) with same

architecture model but on larger benchmarks, and on FT

architecture (Section V-E) with surface code error corrected

logical qubits [37], [69].

C. NISQ Experiments

Although SQUARE was initially designed to improve the

performance of large-scale applications, we find that reclaim-

ing ancilla reduces program footprint and thus swap count due

to communication on NISQ machines. In this section, we give

analytic and noise simulation results that quantify the fidelity

gains from this reduced swap count. To make noise simulation

tractable, we focus on small benchmarks and introduce small

versions of our 3 synthetic benchmarks as in Table II.

1) AQV Analysis: For our NISQ benchmarks, Figure 8a

and Table III show the characteristics of the compiled QC

programs with different compiling policy. With the Eager

compiling policy, the programs use the fewest qubits, but it

may cost too many gates to reuse the ancilla qubits. SQUARE

finds the balance between qubit uses and gate costs. We show

the AQV comparison in Figure 8a. The AQV is reduced when

we apply LAA that allocates the closest qubits, reducing the

number swaps. When full SQUARE is applied, AQV is further

reduced because of reduction in uncompute cost.

2) Program Success Rate by Analytical Model: Program

success rates in our evaluation are estimated by a worst-case

analysis using qubit decoherences and gate errors. Multiplying

the single-qubit/two-qubit gate success rates and the probabil-

ity of qubit coherence from Table IV, we observe an average

improvement by 1.47X w.r.t Eager and 1.07X w.r.t. Lazy. With

strategic uncompuptation by SQUARE, programs use fewer

qubits and improve overall chance of success. In reality, this

worst case analysis may neglect program structures and noise

cancellation. Results are even more positive in the next section

where we perform noise simulation.

3) Noise Simulations: All simulations in our evaluation

use IBM Qiskit Aer simulator [66] with noise mod-

els from the qiskit.providers.aer.noise library –

depolarize_noise for single-qubit and two-qubit gate

Benchmarks Policy # Gatesa # Qubits Circuit Depth # Swaps

Lazy 536 19 395 462

RD53 Eager 1064 10 878 633

SQUARE 932 11 635 370

Lazy 648 19 456 654

6SYM Eager 1293 11 1279 1247

SQUARE 1078 12 731 520

Lazy 708 18 723 759

2OF5 Eager 1410 8 2374 1728

SQUARE 1176 10 952 385

Lazy 656 18 787 725

ADDER4 Eager 1184 12 1139 748

SQUARE 920 14 715 421

Lazy 275 16 232 73

Jasmine-s Eager 1226 5 1055 327

SQUARE 510 8 427 128

Lazy 163 15 787 725

Elsa-s Eager 501 8 438 163

SQUARE 254 13 223 85

Lazy 220 14 202 69

Belle-s Eager 712 6 574 113

SQUARE 294 9 266 89

a Here # Gates does not include swap gates (listed in a separate column).

TABLE III: NISQ benchmarks compilation results.

# Qubits ǫsingle ǫtwo T1 (µs) T2 (µs)

IBM-Sup [3], [70] 20 < 1% < 2% 55 60

IonQ-Trap [33] 79 < 1% < 2% > 106 > 106

Our Simulation < 20 0.1% 1% 50 70

TABLE IV: Error rates on real devices and noise models on

our simulation.

noises, and thermal_relaxation for T1/T2 relaxations

to account for qubit decoherence. Table IV shows the pa-

rameters in our simulation, compared against those in real

devices. Figure 8c shows the results from simulation; each data

point is obtained from 8192 shots of noisy circuit simulation.

We use total variation distance dTV , to compare measurement

outcomes of noisy circuits with those of ideal ones; it’s a com-

mon measure for QC experiments [71]–[73]. We observe that

SQUARE achieves lowest distance for almost all benchmarks

compared to Eager or Lazy.

4) Applicability of SQUARE to NISQ Machines: Table III

and Figure 8b together show the impact of uncomputation

on circuit fidelity. SQUARE finds a balanced middle-ground

between qubit savings and gate costs by strategically uncom-

puting its functions. Surprisingly, when comparing Lazy with

SQUARE, the additional gates for uncomputation reduces the

total number of operations, thanks to a substantial reduction in

swap gates, as ancilla qubits with better locality are actively re-

claimed and reused. Uncomputation also dis-entangles garbage

qubits from output qubits, preventing noise from propagating.

Furthermore, SQUARE retains most of the qubit savings as

Eager does. Overall, SQUARE achieves high success rate

using fewer qubits than Lazy.

D. NISQ-FT Boundary Experiments

The boundary between NISQ and fault-tolerant architec-

tures are far from clear. For completeness, we analyzed the

performance of the SQUARE algorithm assuming medium-

scale machines (with 100-10000 qubits) is built without error
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(a) Active quantum volume. (Lower AQV is better.) (b) Worst-case analytical model. (Higher success
rate is better.)

(c) Realistic noise simulation using IBM Qiskit

Aer simulator. (Lower total variation distance is
better.)

Fig. 8: Impact of SQUARE optimizations on NISQ applications. All benchmarks use fewer than 20 qubits; SQUARE stands

out as a strategy that uses substantially fewer qubits while maintaining high application success rate.

Fig. 9: AQV results on medium-scale non-error-corrected quantum systems. Numbers on the chart correspond to the normalized

AQV values of the SQUARE algorithm.

Fig. 10: AQV results on fault-tolerant quantum systems.

correction. Figure 9 shows the AQV results with different

compiling policies, and the normalized AQVs of SQUARE are

labeled. We observe significant AQV savings by SQUARE,

reducing the AQV by a factor of 6.9X on average when

compared to the Lazy policy.

E. Fault-Tolerant (FT) Experiments

The FT experiments share the set of benchmarks used in the

NISQ-FT experiments, but use braiding for communication. To

do so, we build and integrate a braid simulator in SQUARE to

precisely calculate the communication overhead for executing

a program on a surface-code error-corrected architecture.

Following prior work [37]–[39], we assume logical qubits

on the surface are laid out in a 2-D array, with sufficient

distance between qubits. The separation between qubits serves

as channels, allowing other qubits to braid through. So in

our simulator, we associate one site per qubit and channels

wide enough for a single qubit to braid through. Furthermore,

different single-qubit gates have different time cost.

We substitute the swap-chain generation procedure in the

SQUARE’s gate scheduler with a braid generation procedure.

In particular, when a CNOT gate is scheduled, we first find a

route between the operand qubits, and then check if it crosses

with other ongoing braids. It is queued until its route has been

cleared.

As shown in Figure 10, SQUARE significantly reduces

AQV in all applications under the FT system environment.

Comparing to Lazy policy, SQUARE achieve 44.08% AQV

reduction on average, and up to 89.66% reduction.
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VI. CONCLUSION

We have presented an automated compilation tool flow

that manages the allocation and reclamation of qubits in

reversible program with modular structures. We choose a

dynamic heuristic-based approach to tackle the challenges,

proving how we can use the knowledge of qubit locality and

program structure to our advantage to efficiently compile high-

level arithmetic for a resource-constrained machine. That is

accomplished by SQUARE via cost-effective uncomputation.

In this process, we introduce a resource metric, AQV, that

quantifies the amount of resource utilized by a given com-

putational task. It allows us to measure and compare the

effectiveness of various compiler optimization designs.

The core of our optimization tool flow is the allocation

and reclamation heuristics, which predict the cost of uncom-

putation based on information such as qubit savings, gate

overheads, potential reuse, and decisions in children modules

in the program call graph. Our methodology is shown to

be effective on a suite of benchmarks, including common

arithmetic functions and synthetic programs with arbitrary

structures. We evaluate SQUARE on NISQ systems and FT

systems. The results show that our study has practical value

for not only current NISQ devices but also future FT systems.

Our work bridges qubit reclamation and classical register

allocation, which allows us to adapt ideas in the heuristic

design from classical literature. Much remains to be explored

– what other intuitions from classical compilation can be used

to optimize qubit allocation and reclamation.

This work relies on heuristics to seek a balance between

minimal ancilla usage and minimal gate complexity. It remains

an interesting open problem on whether the strategy can

achieve information-theoretical lower bound asymptotically.

Such asymptotic analysis has been explored at gate level (such

as for multi-control not gate) or for some small arithmetic

functions (such as adders); it would be a natural extension

to study the asymptotic behavior of various uncomputation

strategies at systems level (e.g. with communication costs).
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