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Abstract. By reduction to a generalized Sturm Liouville problem, we establish spectral stability
of hydraulic shock profiles of the Saint-Venant equations for inclined shallow-water flow, over the full
parameter range of their existence, for both smooth-type profiles and discontinuous-type profiles
containing subshocks. Together with work of Mascia-Zumbrun and Yang-Zumbrun, this yields
linear and nonlinear H2 ∩ L1 → H2 stability with sharp rates of decay in Lp, p ≥ 2, the first
complete stability results for large-amplitude shock profiles of a hyperbolic relaxation system.
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1. Introduction

In this paper, building on work of [YZ, JNRYZ], we study spectral stability of hydraulic shock
profiles of the (inviscid) Saint-Venant equations for inclined shallow-water flow:

(1.1)

∂th+ ∂xq = 0,

∂tq + ∂x

(
q2

h
+

h2

2F 2

)
= h− |q|q

h2
,

where h denotes fluid height; q = hu total flow, with u fluid velocity; and F > 0 the Froude number,
a nondimensional parameter depending on reference height/velocity and inclination.

Equations (1.1) are the standard ones used in the hydraulic engineering literature to describe
flow in a dam spillway or other inclined channel; see [BM, Je, Br1, Br2, Dr, JNRYZ, YZ] and
references therein. They have the form of a 2×2 hyperbolic system of balance laws [L, W, Bre, Da],

with relaxation terms h − |q|q
h2

on the righthand side of (1.1)(ii) representing the balance between
gravitational force and turbulent bottom friction (modeled following Chezy’s formula as propor-
tional to velocity squared [Dr, BM]). The associated equlibrium (or “relaxed”) model, obtained by

setting q = q∗(h) := h3/2 so that gravity and friction exactly cancel, is the scalar conservation law

(1.2) ∂th+ ∂xq∗(h) = 0,

a generalized Burgers equation.
As noted by Jeffreys [Je], there is an important distinction between the hydrodynamically sta-

ble case 0 < F < 2 and the hydrodynamically unstable case F > 2. In the former case, the
subcharacteristic condition of Whitham is satisfied [W, L], and constant, equilibirum solutions
(h, q) ≡ (h0, q∗(h0)) of (1.1) are stable under perturbation (the definition of hydrodynamic stabil-
ity); moreover, the behavior under nonlinear perturbation is approximately governed by (1.2). For
F > 2, constant solutions are always unstable and behavior is quite different, featuring pattern
formation and onset of complex dynamics [Dr]. Indeed, this dichotomy between hydrodynamically
stable and unstable regimes is typical of general relaxation systems [W, L, JK].
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Figure 1. Hydraulic shock profiles with F = 1.5, HL = 1 and (a) HR = 0.2; (b)
HR = 9

8+2
√
7
; (c) HR = 0.8, reproduced from [YZ] with permission of the authors.

Following [YZ], we here focus on the hydrodynamically stable case 0 < F < 2, and associated
hydraulic shock profile solutions

(1.3) (h, q)(x, t) = (H,Q)(x− ct), lim
z→−∞

(H,Q)(z) = (HL, QL), lim
z→+∞

(H,Q)(z) = (HR, QR),

analogous to shock wave solutions of the equlibrium system (1.2). These are piecwise smooth
traveling-wave solutions satisfying the Rankine-Hugoniot jump and Lax entropy conditions [Sm,
Da, Bre, La] at any discontinuities. Their existence theory reduces to the study of an explicitly
solvable scalar ODE with polynomial coefficients [YZ]; it is described completely as follows.

Proposition 1.1 ([YZ]). Let (HL, HR, c) be a triple for which there exists an entropy-admissible
shock solution in the sense of Lax [La] with speed c of (1.2) connecting left state HL to right state
HR, i.e., HL > HR > 0 and c[H] = [q∗(H)]. Then, there exists a corresponding hydraulic shock
profile (1.3) with QL = q∗(HL) and QR = q∗(HR) precisely if 0 < F < 2. The profile is smooth for

HL > HR > HL
2F 2

1+2F+
√
1+4F

, and nondegenerate in the sense that c is not a characteristic speed of

(1.1) at any point along the profile. For 0 < HR < HL
2F 2

1+2F+
√
1+4F

, the profile is nondegenerate and

piecewise smooth, with a single discontinuity consisting of an entropy-admissible shock of (1.1). At

the critical value HR = HL
2F 2

1+2F+
√
1+4F

, HR is characteristic, and there exists a degenerate profile

that is continuous but not smooth, with discontinuous derivative at HR.

Typical profiles of each type (smooth, degenerate, piecewise smooth) are displayed in Figure 1.

1.1. Main results. We now turn to the discussion of stability, and our main results. Linearizing
(1.1) about a smooth profile (H,Q) following [MZ1], we obtain eigenvalue equations

(1.4) Av′ = (E − λId−Ax)v,

where

(1.5) A =

[ −c 1
H
F 2 − Q2

H2
2Q
H − c

]
, E =

[
0 0

2Q2

H3 + 1 − 2Q
H2

]
.

It is shown in [YZ] that essential spectrum of L := −A∂x−∂xA+E is confined to {λ : <λ < 0}∪{0},
with an embedded eigenvalue at λ = 0. Moreover, it is shown that the embedded eigenvalue at
λ = 0 is of multiplicity one in a generalized sense defined in terms of an associated Evans function
defined as in [AGJ, GZ, MZ1]. It follows by the general theory of [MZ2] relating generalized, or
Evans-type, spectral stability to linearized and nonlinear stability, that smooth hydraulic shock
profiles are nonlinearly orbitally stable so long as they are weakly spectrally stable in the sense that
there exist no decaying solutions of (1.4) on {λ : <λ ≥ 0} \ {0}.

The discontinuous case is more complicated, involving a free boundary with transmission/evolution
conditions given by the Rankine-Hugoniot jump conditions. However, following the approach of
Erpenbeck-Majda [Er1, Er2, Ma] for the study of such problems in the context of shocks and det-
onations, one may deduce a generalized eigenproblem consisting of the same ODE (1.4), but posed
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on the negative half-line x ∈ (−∞, 0) with boundary condition

(1.6) [λW −R(W )]⊥ ·A(0−)v(0−) = 0,

where W := (H,Q)T and [h] := h(0+)−h(0−) denotes jump in h across x = 0; see [YZ] for further
details. Similarly as in the smooth case, it is shown in [YZ] that essential spectrum of L with
boundary condition (1.6) is confined to {λ : <λ < 0}∪ {0}, with an embedded eigenvalue at λ = 0,
of multiplicity one in a generalized sense defined by an associated Evans-Lopatinsky function. It
follows by the general theory of [YZ] that discontinuous hydraulic shock profiles are nonlinearly
orbitally stable so long as they are weakly spectrally stable in the sense that there exist no decaying
solutions of (1.4)-(1.6) on {λ : <λ ≥ 0} \ {0}.

In summary, by the analytical results of [MZ2, YZ], the question of nonlinear stability of hy-
draulic shock profiles has been reduced in both smooth and discontinuous case to determination of
weak spectral stability, or nonexistence of eigenvalues λ 6= 0 with <λ ≥ 0 of eigenvalue problem (1.4)
on the whole- or half-line, respectively. The weak spectral stability condition was verified numeri-
cally in [YZ] for both smooth and piecewise smooth profiles by extensive Evans/Evans-Lopatinsky
function computations across the entire parameter range of existence, indicating linearized and non-
linear stability. However, the computation was done with ordinary machine rather than interval
arithmetic, and this conclusion though decisive falls short of rigorous proof.

In the present work, we establish the following theorem verifying analytically the conclusions
obtained numerically in [YZ], from which nonlinear stability then follows by the results of [MZ2, YZ].

Theorem 1.2. Nondegenerate hydraulic shock profiles of the Saint-Venant equations (1.1) are
weakly spectrally stable, across the entire range of existence described in Proposition 1.1.

Proof. This follows by Corollaries 3.2 and 4.6 below. �

Corollary 1.3 ([MZ2, YZ]). Nondegenerate hydraulic shock profiles of (1.1) are linearly and non-
linearly orbitally stable. Specifically, let W = (H,Q) be a hydraulic shock profile (1.3), and v0 be an
initial perturbation supported away from any discontinuity of W and of norm ε sufficiently small
in Hs ∩ L1, s ≥ 2. Then, for initial data W̃0 := W 0 + v0, there exists a global solution W̃ of (1.1)
and a phase shift η, satisfying for 2 ≤ p ≤ ∞:

(1.7)

‖W̃ (·, t)−W (· − ct+ η(t))‖Hs ≤ Cε(1 + t)−1/4,

‖W̃ (·, t)−W (· − ct+ η(t))‖Lp ≤ Cε(1 + t)−(1/2)(1−1/p),

|η̇(t)| ≤ Cε(1 + t)−(1/2).

Theorem 1.2 and Corollary 1.3 together represent the first complete analytical stability result
for large-amplitude shock profiles of a quasilinear relaxation system1 and the first for discontinuous
shock profiles of a relaxation system of any kind.

1.2. Discussion and open problems. A general approach to stability of traveling waves in
systems of conservation and balance laws is the “divide and conquer” algorithm described in,
e.g., [Z1, Z2, Z3], wherein “Lyapunov-type” theorems relating spectral to linearized and nonlinear
stability are established in a very general setting, then spectral stability is verified in a problem-
specific way, whether by numerics, asymptotics, or special structure of the equations. Useful
topological criteria involving various “stability indices” are often explicitly computable as necessary
conditions, leading to analytical instability results for large-amplitude waves of quite general systems
[GZ, Z1, Z2]. By comparison, complete global stability results as in, e.g., [CGS, JX, Z4, MW, HLZ,
LW], are quite rare, exploiting special nonlinear structure of the system under consideration.

1 Profiles of the semilinear Jin-Xin relaxation model [JX] are stable for arbitrary amplitude, by L1-
contraction/comparison [MZ1].
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The special structure exploited here is that the eigenvalue system (1.4) may be reduced to a
scalar second-order system of generalized Sturm-Liouville type. Specifically, following the general
approach described in Section 2.2, the eigenvalue system (1.4) originating from any 2×2 relaxation
system may converted to a scalar second-order equation

(1.8) Lw = λα(x)w + λ2β(x)w, w ∈ C,

where L is a (fixed) second-order scalar operator with real-valued coefficients and α and β are
real. For the specific case treated here, we find that, by a further Liouville transformation, we may
arrange that Lw = w′′ + q(x)w is self-adjoint and α and β are strictly positive: the generalized
Sturm-Liouville structure to which we refer above. In the half-line case, there is in addition a
λ-dependent Robin-type boundary condition

(1.9) w′(0) = (c+ φ(λ))w(0), φ(0) = 0,

for which we find =φ(λ),<φ(λ) ≤ 0 for <λ ≥ 0. From this structure, together with monotonicity
of the underlying traveling wave, we are able to deduce stability by a combination of standard
Sturm-Liouville principles and “by-hand” computation.

This argument, while decisively answering the question of stability of hydraulic shocks, at the
same time suggests a number of other interesting questions. For example, given the complexity of
the formulae involved, to arrive at the end of computations to the above-described special structure
appears little short of miraculous. Is this a lucky accident? Or is it somehow forced by the properties
of the wave? More generally, given a generalized eigenvalue problem (1.8) for which all eigenvalues
are stable, is there some choice of coordinate system in which the resulting α and β are strictly
positive? And, still more generally, what are the minimum structural requirements under which
one can recover a full or partial suite of standard Sturm-Liouville results?

Finally, we pose the question, open so far as we know, whether shock profiles of general 2 × 2
relaxation systems of the type considered in [L] are always stable, or whether one can find examples
of spectrally unstable smooth or discontinuous profiles for amplitudes sufficiently large.

2. Profiles and reduction to second order scalar ODE

2.1. Profiles. Following [YZ, §2], we find, substituting the ansatz (1.3) into (1.1) and using the
first (conservative) equation to eliminate Q, that profiles satisfy on smooth regimes the first-order
scalar traveling-wave ODE

(2.1) H ′ =
F 2 (H −HL) (H −HR) (H −H3)

(H −Hs)(H2 +HHs +H2
s )

where

(2.2) H3 :=
ν2

ν2 + 2ν + 1
HR, Hs :=

(
Fν2

ν + 1

) 2
3

HR, ν :=

√
HL

HR
> 1,

with Q determined (from the first equation) by

(2.3) Q− cH ≡ constant =: −q0.

From ν > 1, we have H3 < HR < HL. When F < 2, we have also Hs < HL. When also Hs < HR,
there exists a smooth profile connecting equilibria HL and HR; when HR < Hs < HL, there exists
a fifth point

(2.4) H∗ :=
−ν − 1 +

√
8F 2ν4 + ν2 + 2ν + 1

2 (ν + 1)
HR
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lying between Hs and HL, such that there is an entropy-admissible Lax shock of (1.1) from H∗
to HR, hence a discontinuous hydraulic shock profile connecting equilibrium HL smoothly to the
nonequilibrium point H∗, and then by a Lax shock from H∗ to equilibrium HR.

In both cases, the rational-coefficient ODE (2.1) may be solved explicitly for H as a function of
x. However, by monotonicity of H on smooth parts of the profile (as holds for any scalar ODE),
we may equally well change coordinates and take H as independent variable in place of x, as in
[JNRYZ, YZ]. Thus, we do not need anywhere the precise form of (H,Q)(x) in our analysis here.

By the rescaling introduced in [YZ] [Observation 2.4], we can fix HL = 1 and 0 < HR < 1. From
now on, we substitute HL = 1 and assume 0 < HR < 1 in our analysis.

2.2. Reduction to second-order scalar form. By performing a change of unknowns, we may
rewrite the system (1.4) as a second order scalar ODE. Consider first a general 2 × 2 system of
ODE

(2.5)

[
p11(x) p12(x)
p21(x) p22(x)

]
︸ ︷︷ ︸

P

[
v1(x)
v2(x)

]′
=

[
q11(x) q12(x)
q21(x) q22(x)

]
︸ ︷︷ ︸

Q

[
v1(x)
v2(x)

]
︸ ︷︷ ︸

v

with p12 6= 0. Let T1(x) =

[
1 0

−p22(x)
p12(x)

1

]
, T2(x) =

[
1 0

−p11(x)
p12(x)

1

]
and note that T1PT2 =[

0 p12
−detP

p12
0

]
. Defining the change of unknowns v = T2u, the above becomes P (T2u

′ + T ′2u) =

QT2u. Left multiplying T1 on both hand sides, we have T1PT2u
′ = (T1QT2−T1PT ′2)u =: Mu, that

is,

(2.6)

[
0 p12

−detP
p12

0

] [
u1
u2

]′
=

[
m11 m12

m21 m22

] [
u1
u2

]
where here M = [mi,j ]

2
i,j=1. Assuming m11 6= 0, the first equation p12u

′
2 = m11u1 + m12u2 yields

u1 =
p12u′2−m12u2

m11
. Substituting in the second equation, we obtain the second-order scalar ODE

(2.7) − detP

p12

(p12u′2 −m12u2
m11

)′
= m21

p12u
′
2 −m12u2
m11

+m22u2.

Specialized to system (1.4), by setting

(2.8) v = T2u, T2 =

[
1 0
c 1

]
,

and following the reduction procedures, the eigenvalue system (1.4) reduces for λ 6= 0 to

(2.9) u′′2 + (f1λ+ f2)u
′
2 + (f3λ

2 + f4λ)u2 = 0, u1 = −u
′
2

λ
,

where fi, i = 1, . . . , 4 are explicitly computable functions (see Appendix A). In terms of the original
coordinates,

(2.10) u1 = h, u2 = q − ch.
For later use, we note that, dividing by (f3λ

2+f4λ), differentiating, substituting −λu1 everywere
for u′2, and rearranging, we may write (2.9) alternatively as

(2.11)
(u′1 + (f1λ+ f2)u1

f3λ+ f4

)′
= −λu1, u2(x) = −λ

∫ x

−∞
u1(y)dy,

to obtain a formulation for which all eigenvalues agree with those of (1.4), including the translational
eigenvalue at λ = 0, corresponding to (h, q) = (H ′, Q′), or (u1, u2) = (H ′, 0). The formulations
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(2.11) and (2.9) may be recognized respectively as analogous to the “flux” and “balanced flux”
formulations of [PZ], the latter of which has the advantage of removing the translational eigenvalue
at λ = 0. For all other eigenvalues on <λ ≥ 0, the spectra of (1.4), (2.9), and (2.11) agree. In
particular, setting λ = 0 and recalling (2.10), we record that h̄ := H ′ satisfies

(2.12) h̄′ + f2h̄ = 0.

Introducing now the Liouville-type transformation

w(λ, x) = e
1
2

∫ x
0 (f1(y)λ+f2(y))dyu2(λ, x),

we find that w satisfies

(2.13) w′′ +

((
f3 −

1

4
f21

)
λ2 +

(
f4 −

1

2
f1f2 −

1

2
f ′1

)
λ− 1

4
f22 −

1

2
f ′2

)
w = 0.

Summary: The eigenvalues of (1.4) and the generalized eigenvalue equation (2.13) agree for
<λ ≥ 0 and λ 6= 0, hence to establish weak spectral stability of hydraulic shock profiles, it is
sufficient to show that (2.13) admits no eigenvalues on <λ ≥ 0 other than λ = 0. In fact we shall
show that (2.13) admits no eigenvalues on <λ ≥ 0, that is, the translational zero eigenvalue of the
original problem has been removed by the coordinate transformation to variable w.

3. Spectral stability of smooth hydraulic shock profiles

In order for w to decay exponentially at ±∞, it is required that

(3.1) <γ1,−(λ) + lim
y→−∞

1

2
(f1(y)<λ+ f2(y)) > 0, <γ2,+(λ) + lim

y→+∞

1

2
(f1(y)<λ+ f2(y)) < 0.

where γ2,+, γ1,− defined in [YZ][(4.8) (4.9)] are the expected decaying rate of eigenmode v(λ, x) as
x→ ±∞. Calculation shows

(3.2)

γ1,−(λ) + lim
y→−∞

1

2
(f1(y)λ+ f2(y))

=
Fν (ν + 1)

√
4λ2ν2(ν + 1)2 + 4λν (ν + 1) (−F 2 + 2ν2 + 2ν) + F 2(ν2 + ν − 2)2

2 (−F 2 + ν4 + 2ν3 + ν2)

(3.3)

γ2,+(λ) + lim
y→+∞

1

2
(f1(y)λ+ f2(y))

=−
Fν (ν + 1)

√
4λ2(ν + 1)2 + 4λν (ν + 1) (−F 2ν2 + 2ν + 2) + F 2ν2(−2ν2 + ν + 1)2

2 (−F 2ν4 + ν2 + 2ν + 1)

(3.1) then holds.

Lemma 3.1. The system (1.4) has no nonzero pure imaginary eigenvalue.

Proof. By coordinate change v ↔ u ↔ w and exponential decay of w(x) as x → ±∞ ensured
by (3.1), existence of eigenmodes of (1.4) is equivalent to existence of exponential decaying (as
x → ±∞) solutions w to (2.13). Let now λ = ia, a 6= 0 be an eigenvalue and w a corresponding
decaying solution. Substituting λ = ia, w in (2.13) implies

(3.4) w′′ +
(
− a2f3 +

1

4
a2f21 −

1

4
f22 −

1

2
f ′2

)
w = ia

(
− f4 +

1

2
f1f2 +

1

2
f ′1

)
w.

Taking the L2 inner product of w with (3.4) on the whole line yields

(3.5) − 〈w′, w′〉+
〈
w,
(
− a2f3 +

1

4
a2f21 −

1

4
f22 −

1

2
f ′2

)
w
〉

= ia
〈
w,
(
− f4 +

1

2
f1f2 +

1

2
f ′1

)
w
〉
.
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Taking the imaginary part of (3.5) then gives

(3.6)
〈
w,
(
− f4 +

1

2
f1f2 +

1

2
f ′1

)
w
〉

= 0.

We will reach a contradiction provided that
(
−f4 + 1

2f1f2 + 1
2f
′
1

)
has definite sign. But

(3.7) − f4 +
1

2
f1f2 +

1

2
f ′1 =

F 2
(
H −HR +H(

√
HR +HR)

)
fF,HR

(H)(√
HR + 1

)3
(H3 −H3

s )2
,

(3.8) fF,HR
(H) := 2

(√
HR + 1

)2
H3 − F 2HR

(
HR +

√
HR + 1

)
H + F 2HR

2.

It then suffices to show fF,HR
(H) has definite sign. The positive critical point of fF,HR

(·) is

(3.9) Hc(F,HR) =
F
√
HR(HR +

√
HR + 1)√

6(
√
HR + 1)

.

Further, we have

(3.10) Hc(F,HR) < F

√
HR√

HR + 1
< HR,

in which the last inequality holds because the domain of existence of smooth hydraulic shocks is

(3.11) HR +
√
HR > F.

By monotonicity of fF,HR
(·) (3.8) on [Hc,∞), we thus have

(3.12)

fF,HR
(H) > fF,HR

(HR)

= HR
5/2
(√

HR + 1
)(

2HR − F 2 + 2
√
HR

)
> HR

5/2
(√

HR + 1
)(

FHR − F 2 + F
√
HR

)
= HR

5/2
(√

HR + 1
)
F
(
HR − F +

√
HR

)
> 0,

in which the last inequality holds, again, by (3.11). �

Corollary 3.2. All smooth hydraulic shock profiles are weakly spectrally stable in the sense that
system (1.4) has no eigenvalue λ with <λ ≥ 0 and λ 6= 0.

Proof. By their characterization as roots of the Evans function, which is analytic on <λ ≥ −η for
some η > 0, and real analytic in parameters F , HL, HR [MZ1, MZ2, YZ], we see readily that
eigenvalues associated with (1.4) perturb continuously as parameters are varied, in both location
and multiplicity. In particular, the fact shown in Lemma 3.1 that there are no nonzero imaginary
eigenvalues together with the fact shown in [YZ] that there is an eigenvalue of fixed multiplicity one
at λ = 0, implies that no eigenvalues can cross from <λ < 0 to <λ ≥ 0 as parameters are varied. By
connectedness of the parameter range on which hydraulic shock profiles exist, therefore, we find by a
homotopy argument that the number of nonstable eigenvalues, <λ ≥ 0 is constant across the entire
domain of existence. But, by [MZ3], small-amplitude hydraulic shock profiles are spectrally stable,
hence have precisely one nonstable eigenvalue consisting of a simple root of the Evans function at
λ = 0. Thus, the number of nonstable roots for all hydraulic shock profiles must be 1, and this is
accounted for by the multiplicity one root at the origin corresponding to translational invariance
of the underlying equations [MZ1, MZ2]. It follows that there are no nonstable eigenvalues other
than λ = 0, and all profiles are weakly spectrally stable as claimed. �
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3.1. Alternate proof. We give also an alternate, direct proof of stability, both for its own interest
and as practice for nonsmooth case. Denote by

(3.13) Lw := w′′ +
(
− 1

4
f22 −

1

2
f ′2

)
w

the self-adjoint operator given by the λ = 0 part of the lefthand side of (2.13), and denote by

(3.14) B(w̃, w) := −〈w̃′, w′〉 −
〈
w̃,
(1

4
f22 +

1

2
f ′2

)
w
〉

the bilinear form induced on w̃, w ∈ H1(R) by B(w̃, w) := 〈w̃, Lw〉.
Lemma 3.3. Operator L has no eigenvalues on <λ ≥ 0; form B is negative definite.

Proof. On <λ ≥ 0, the eigenvalues of L agree with those of Mu2 := u′′2 +f2u
′
2, through the Liouville

transform w(x) = e
1
2

∫ x
0 f2(y)dyu2(x). Here, we are using the fact that the essential spectra of both

operators lies in {<λ < 0}∪{0} to see that eigenfunctions on {<λ ≥ 0}\{0} are composed of expo-
nentially decaying modes, which, further, are in one-to-one correspondence in the two coordinate
systems. This follows, in turn, from a standard theorem of Henry [He] showing that the rightmost
boundary of the set of essential spectra on asymptotically constant-coefficient ordinary elliptic dif-
ferential operator is given by the rightmost boundary of the spectra of its constant-coefficient limits,
and the characterization of this boundary as the rightmost dispersion curve of the Fourier symbol
of these limits [GZ, Z1], and leftmost boundary of the set (the “domain of consistent splitting”)
for which solutions of the eigenvalue equations either decay or grow exponentially. For similar ar-
guments, see, e.g., [Sa]. Indeed, the essential spectrum of L is confined to <λ ≤ −η < 0, since the
limiting constant-coefficient operators L±w = w′′ − (f22 (±∞)/4)w are evidently negative definite,
f2 being nonvanishing at ±∞.2 At λ = 0, there is a neutral, nondecaying and nongrowing mode in
the u2 coordinates, but the exponentially decaying mode is still unique and in correspondence with
that in the w-coordinates, hence eigenfunctions are in one-to-one correspondence also for λ = 0.

Now, introduce the “differentiated operator”Mz = (z′+f2z)′ induced by z = u′2. By divergence
form ofM we find, integrating both sides ofMz = λz, that any eigenfunction for <λ ≥ 0 and λ 6= 0
(necessarily exponentially decaying) has zero integral

∫∞
−∞ z(y)dy = 0, hence u2(x) :=

∫ x
−∞ z(y)dy

is exponentially decaying and an eigenfunction of M ; thus, the eigenvalues of M and M agree on
<λ ≥ 0, λ 6= 0.

By (2.12), we have that z̄ := H ′ is an eigenfunction ofM with eigenvalue λ = 0. By monotonicity
H ′ < 0 of the traveling wave profile, we have on the other hand that z̄ < 0 has one sign. Moreover,
by the same computation as for M , the essential spectrum of M is confined to {λ : <λ < 0} ∪ {0}.
By standard Sturm-Liouville considerations, therefore- specifically, the extension to the real line of
the principal eigenvalue theorem [BCJLMS, HLS]- we may conclude that λ = 0 is the maximum
eigenvalue of M. It follows that M and thus L have no eigenvalues on <λ ≥ 0 other than possibly

at λ = 0. Directly solving 0 = Mu2 = u′′2 + f2u
′
2 as u′2 = e−

∫ x
0 f2(y)dyu′2(0), we find that sgn u′2 =

sgnu′(0) and so Mu2 = 0 has no nontrivial decaying solutions, and so λ = 0 is not an eigenvalue
of M or equivalently of L. Thus, L has no eigenvalues on <λ ≥ 0, and, as remarked earlier, has
essential spectrum confined to <λ ≤ −η < 0. It follows that B is negative definite as claimed. �

Remark 3.4. Numerically, we find that 1
2f

2
2 + f ′2 > 0, whence B is negative definite by inspection.

Alternate proof of Corollary 3.2. From the calculations above, (2.13) is of form (1.8) with α > 0
from (3.7) and β > 0 from (4.14). Let λ = ia + b with real a, b and b ≥ 0. Then, taking the
imaginary part of the L2 inner product of w with Lw = αλw + βλ2w, we have

(3.15) 0 = a〈w,αw〉+ 2ab〈w, βw〉.
2This can be seen by direct computation or deduced indirectly by the fact that the linearized traveling-wave ODE

h′ + f2h = 0 (see discussion surrounding (2.11)) admits the exponentially-decaying solution h = H ′ at ±∞.
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Noting that 〈w,αw〉 + 2b〈w, βw〉 > 0 for w 6≡ 0, we find therefore that a = 0; that is, we reduce
to the study of real eigenvalues λ = b > 0. Taking the real part of the L2 inner product of w with
Lw = αbw + βb2w, we thus obtain

(3.16) B(w,w) = b〈w,αw〉+ b2〈w, βw〉 ≥ 0,

with equality only if w ≡ 0. By negative definiteness of B, equation (3.16) never holds for non-zero
w. �

4. Spectral stability of discontinuous hydraulic shock profiles

For the discontinuous case, the eigenvalue system in “good unknowns”, after elimination of the
front location, reads [YZ]

(4.1)
(Av)x = (E − λId)v,

[λW −R(W )]⊥ · [Av] = 0.

Since the eigenvalues γ1,2,± of limiting matrix A−1± (E± − λId) satisfy

(4.2)

<γ1,−(λ) > 0, <γ2,−(λ) < 0, for all <λ > 0, F < 2, ν > 1,

<γ1,+(λ) > 0, <γ2,+(λ) > 0, for all <λ > 0, ν >
1 +
√

1 + 4F

2F
,

we have that v(λ, x) ≡ 0 for x > 0, yielding w(λ, x) ≡ 0 for x > 0. Thus, the system reduces as
described in the introduction to (1.4) on x ∈ (−∞, 0), with boundary condition (1.6) at x = 0.
Applying the same reduction/Liouville-type transformation as in the smooth case, we obtain the
scalar second-order problem (1.8), with boundary condition (1.9) induced by (1.6), to be computed
later.

In order for w to decay exponentially at −∞, it is required that

(4.3) <γ1,−(λ) + lim
y→−∞

1

2
(f1(y)<λ+ f2(y)) > 0.

which follows from taking the real part of equation (3.2). Taking the L2 inner product of w with
(2.13) on the half line x < 0 yields

(4.4) w̄(0) · w′(0)− 〈w′, w′〉+
〈
w,
(
f3λ

2 + f4λ−
1

4
(f1λ+ f2)

2 − 1

2
(f ′1λ+ f ′2)

)
w
〉

= 0.

The relation between v(0−) and w(0) coordinates (for simplicity omitting “(0−)”) is

(4.5) v = T2

[
u1
u2

]
= T2

[
− 1
λ 0
0 1

] [
u′2
u2

]
= T2

[
− 1
λ 0
0 1

] [
1 −1

2(f1λ+ f2)
0 1

] [
w′

w

]
,

where T2 is as in (2.8). For a vector
[
a b

]T
, define its ⊥-vector as

[
a
b

]
⊥

=
[
b −a

]
.

Substituting [λW −R(W )]⊥ in (1.6) and using (4.5) yields the equation for w′, w:

(4.6) [λW −R(W )]⊥A(0−)T2

[
− 1
λ 0
0 1

] [
1 −1

2(f1λ+ f2)
0 1

] [
w′

w

]
= 0,

or

(4.7) w′(0) = (c1 + c2λ)w(0),

where, after simplifying by identity

(4.8) H∗
2
(√

HR + 1
)2

+H∗HR

(√
HR + 1

)2
− 2F 2HR = 0,

9



(4.9) c1 =
1

2
f2(H∗)− F 2Hs

(
HR +

√
HR + 1

)2 −HR

(
2F 2 + 1

)
(
√
HR + 1)2(H3

∗ −H3
s )

,

(4.10) − c2 =
F 2HRH∗

(
√
HR + 1)(H3

∗ −H3
s )
> 0.

We see that (4.7) is of form (1.9), with c = c1 and φ(λ) = c2λ. Substituting (4.7) in (4.4) yields

(4.11) (c1 + c2λ)w(0) · w(0)− 〈w′, w′〉+
〈
w,
(
f3λ

2 + f4λ−
1

4
(f1λ+ f2)

2 − 1

2
(f ′1λ+ f ′2)

)
w
〉

= 0.

4.1. Nonexistence of nonreal eigenvalues. Substituting λ = ia + b with real a, b in (4.11)
yields an imaginary part

(4.12) a

(
c2w(0) · w(0) +

〈
w,
(

(2f3 −
1

2
f21 )b+ f4 −

1

2
f1f2 −

1

2
f ′1

)
w
〉)

= 0.

Provided a 6= 0 (λ being non-real), this further simplifies to

(4.13) − c2w(0) · w(0) +
〈
w,
(
− 2f3 +

1

2
f21 )b− f4 +

1

2
f1f2 +

1

2
f ′1

)
w
〉

= 0,

where −c2 is as in (4.10), −f4 + 1
2f1f2 + 1

2f
′
1 is as in (3.7), and

(4.14) − 2f3 +
1

2
f21 =

2F 2H5

(H3 −H3
s )2

.

Substituting λ = b with real b in (4.11) yields

(4.15)
(c1 + c2b)w(0) · w(0)− 〈w′, w′〉

+
〈
w,
(

(f3 −
1

4
f21 )b2 + (f4 −

1

2
f1f2 −

1

2
f ′1)b−

1

4
f22 −

1

2
f ′2

)
w
〉

= 0.

Lemma 4.1. On the right half space <λ ≥ 0, the system (4.1) has no non-real eigenvalues for
discontinuous hydraulic shock profiles.

Proof. Let λ = ia + b with real a, b and b ≥ 0. We first show λ with non-vanishing a is not an
eigenvalue. By equation (4.13), it suffices to show −c2, −2f3 + 1

2f
2
1 and −f4 + 1

2f1f2 + 1
2f
′
1 have

the same sign. Since for discontinuous hydraulic shock profiles HR < Hs < H∗ < 1, by equations
(4.10), (4.14), we readily see −c2, −2f3 + 1

2f
2
1 are positive. By (3.7), it is then enough to show

fF,HR
(H), H ≥ H∗ is also positive. We show in Appendix B. that H∗ > Hc where Hc defined in

(3.9) is the positive critical point of fF,HR
, hence

(4.16)

fF,HR
(H) > fF,HR

(H∗)

= 2
(√

HR + 1
)2
H3
∗ − F 2HR

(√
HR + 1

)
H∗ + F 2HR

2(1−H∗)

= 2
(√

HR + 1
)2
H∗

(
H2
∗ −

F 2HR

2
(√
HR + 1

))+ F 2HR
2(1−H∗)

≥ F 2H2
R(1−H∗) > 0

where the last inequality is because H∗ > F
√
HR/

√
2(
√
HR + 1) (see Appendix B for proof). �
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4.2. Nonexistence of real eigenvalues. It remains to show that λ = b with b > 0 real is not an
eigenvalue. Denote by L the self-adjoint operator in (3.13) given by the λ = 0 part of the lefthand
side of (2.13), and

(4.17) B2(w̃, w) := c1 ¯̃w(0) · w(0)− 〈w̃′, w′〉 −
〈
w̃,
(1

4
f22 +

1

2
f ′2

)
w
〉

the bilinear form induced on w̃, w ∈ H1(R−) by B2(w̃, w) := 〈w̃, Lw〉L2(R−), obtained by integration
by parts under the boundary condition

(4.18) w′(0) = c1w(0)

obtained by setting λ = 0 in (4.7).

Lemma 4.2. c1 <
1
2f2(H∗).

Proof. See Appendix B. �

Corollary 4.3. The bilinear form B2 is negative definite.

Proof. Using again the relation [He] between essential spectra of asymptotically constant-coefficient
operators and their constant-coefficient limits, we find by direct computation/analysis of the lim-
iting Fourier symbols that the essential spectrum of L with boundary condition (4.18) lies in
{<λ < −η ≤ 0}. By standard calculus of variations arguments, we find therefore that either B2
is negative definite, or else max|w|L2(R−)=1 B2(w) is achieved at a solution of the associated con-

strained Euler-Lagrange equation, with Lagrange multiplier λ equal to the maximum value (hence
in particular real). Moreover, the Euler-Lagrange equation is exactly the eigenvalue equation for L
with boundary condition (4.18) and eigenvalue λ. It is sufficient therefore to show that L has no
nonnegative eigenvalue with boundary condition (4.18), or equivalently Mu2 := u′′2 + f2u

′
2 has no

nonnegative eigenvalues with boundary condition

(4.19) u′2(0) = (c1 − f2(0)/2)u2(0).

We first observe, using monotonicity of the traveling wave H in a different way than in the
whole-line case, that M has no zero eigenvalue for boundary condition (4.19), for any discontinuous
hydraulic shock profile. For, the fact that H ′ satisfies h̄′ + f2h̄ = 0 implies that ū2 := H −HL is,
up to a constant factor, the unique decaying solution of Mu2 = 0. But, by monotonicity,

H ′

H −HL
> 0

for all H ∈ [H∗, HL), in particular at H∗ = H(0). Thus, 0 < ū′2(0)/ū2(0) 6= c1 − f2(0)/2, since,
by Lemma 4.2, c1 − f2(0)/2 < 0, and so there is no zero eigenfunction. That is, as noted in the
introduction, the tranlational eigenvalue at λ = 0 of (1.4) has been removed by the change to
“integrated coordinates” (u2, u

′
2).

Now, modify the domain of M from (−∞, 0) to (−∞, x0) for any x0 < 0 while keeping the same
boundary condition to obtain, denoting the operator on the modified domain by Mx0 , the family
of eigenvalue problems

(4.20)
Mx0w := u′′2 + f2u

′
2 = λu2, x ∈ (−∞, x0], x0 ∈ R−,

u′2(x0) = (c1 − f2(0)/2)u2(x0).

It is convenient to set ξ = x− x0 and y(ξ) = u2(x) so that y solves an eigenvalue problem

(4.21)
M̃x0y := y′′ + f2(ξ + x0)y

′ = λy, ξ ∈ (−∞, 0],

y′2(0) = (c1 − f2(0)/2)y2(0)
11



on the original domain (−∞, 0). Then, the same argument used for M shows that there is no zero

eigenvalue of M̃x0 , (4.21) for any choice of x0. Nor are there nonzero pure imaginary eigenvalues,

as can be seen by the Liouville transform to a self-adjoint operator L̃x0 on the same domain.

Thus, the eigenvalues of each M̃x0 on <λ ≥ 0 are positive and real. Moreover, standard energy

estimates [HLZ, E] show that eigenvalues of M̃x0 are uniformly bounded from above. For example,
let b (necessarily real) denote an eigenvalue with real part ≥ 0. Then, taking the real part of the L2

inner product of y against (4.21)(i) with λ = b and integrating by parts using (4.21)(ii), we obtain

(4.22) b|y|2L2(−∞,0) = −〈y′, y′〉+ <〈f2(ξ + x0)y
′, y〉+ (c1 − f2(0)/2)|y(0)|2.

By Sobolev embedding, given any ε > 0 there is a corresponding β(ε) so that

|y(0)|2 ≤ ε‖y′‖2L2(R−) + β(ε)‖u‖2L2(R−).

Using this, together with Cauchy-Schwarz and Young’s inequalities, we thus obtain from (4.22)

b|y|2L2(R−) ≤ −(1− 2|c1|ε)‖y′‖2L2(R−) + C(ε)‖y‖2L2(R−)

for C(ε) depending only on ε and ‖f2‖L∞(R−), yielding b ≤ C(ε), for any 0 < 2|c1|ε < 1.
Thus, by a homotopy argument using strict uniform boundedness above and below of nonnegative

eigenvalues of M̃x0 , the number of nonstable eigenvalues <λ ≥ 0 of Mx0 with boundary condition
(4.20) is constant for all choices of endpoint −∞ < x0 ≤ 0. Taking the limit as x0 → −∞ of the
associated Evans functions, we see that this number is equal to the number of nonstable eigenvalues
of the limiting constant-coefficient operator

M∞u2 := u′′2 + f2(−∞)u′2

with boundary condition (4.19) imposed at x = 0. But this may be seen by direct calculation
to be zero, since decaying solutions for <λ ≥ 0 are of form eµx with µ real and positive, and so
0 < µ = u′2(0)/u2(0) 6= c1 − f2(0)/2 < 0, contradicting existence of a decaying eigenfunction.

Thus, there are no nonnegative eigenvalues of M with boundary condition (4.19), hence no
nonnegative eigenvalue of L with boundary condition (4.18), and it follows that B2(w) < 0 as
claimed. �

Remark 4.4. The argument in the half-line case, though still based on monotonicity, is essentially
different from the standard principal eigenvalue argument used in the whole line case, using a
homotopy not available there. So far as we know, this approach is new.

Remark 4.5. Numerically, 1
4f

2
2 + 1

2f
′
2 > δ > 0, c1 < 0, whence B2 is negative definite by inspection.

Corollary 4.6. All discontinuous hydraulic shock profiles are weakly spectrally stable in the sense
that system (1.4) has no eigenvalue λ with <λ ≥ 0 and λ 6= 0.

Proof. Lemma 4.1, it is sufficient to consider real eigenvalues λ = b > 0. Taking the real part of
the L2 inner product of w with Lw = αλw + βλ2w on R−, we obtain

(4.23) φ(b)|w(0)|2 + B2(w) = b〈w,αw〉+ b2〈w, βw〉 ≥ 0,

with equality only if w ≡ 0. By negative definiteness of B2, and negativity of φ(b) (c2 < 0), equation
(4.23) never holds for b > 0, proving the result. �
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Appendix A. fi

(A.1)

f1 =
(

2F 2HHR

(√
HR + 1

))
/

(
H3
(√

HR + 1
)2
− F 2HR

2

)
f2 =F 2

(
−H4

(
2HR + 2

√
HR +HR

3/2 + 1
)2

+ 4H3HR

(√
HR + 1

)2 (
HR +

√
HR + 1

)
+ 3H2HR

2
(
F 2 − 1

) (√
HR + 1

)2
− 2F 2HHR

2
(
HR +

√
HR + 1

)2
+ 2F 2HR

3
(
HR +

√
HR + 1

))
/

(
H3
(√

HR + 1
)2
− F 2HR

2

)2

f3 =−
(
F 2H2

(√
HR + 1

)2)
/

(
H3
(√

HR + 1
)2
− F 2HR

2

)
f4 =− 2F 2H

(√
HR + 1

)(
H3
(√

HR + 1
)2 (

HR +
√
HR + 1

)
+H2HR

(
F 2 − 1

) (√
HR + 1

)2
− F 2HHR

(
HR +

√
HR + 1

)2
+ F 2HR

2
(
HR +

√
HR + 1

))
/

(
H3
(√

HR + 1
)2
− F 2HR

2

)2

Appendix B. Proof of inequalities

Let HR = 1/ν2 with ν > 1. We establish the following inequalities. 1. H∗ > Hc:

(B.1)

H∗ > Hc

⇔ −ν − 1 +
√

8F 2ν4 + ν2 + 2ν + 1

2ν2 (ν + 1)
>
F
√
ν2 + ν + 1√
6ν(ν + 1)

⇔
√

8F 2ν4 + ν2 + 2ν + 1 >
2Fν
√
ν2 + ν + 1√

6
+ ν + 1

⇔ 8F 2ν4 >
2

3
F 2(ν4 + ν3 + ν2) +

4Fν(ν + 1)
√
ν2 + ν + 1√

6

⇔ 11

3
Fν3 − 1

3
Fν2 − 1

3
Fν >

2(ν + 1)√
6

√
ν2 + ν + 1

⇔ F 2

(
121

9
ν6 − 22

9
ν5 − 7

3
ν4 +

2

9
ν3 +

1

9
ν2
)
>

2

3
(ν2 + 2ν + 1)(ν2 + ν + 1).

Because on the domain of discontinuous hydraulic shock profiles, F > 1
ν2 + 1

ν . Thus, we have

(B.2)

F 2

(
121

9
ν6 − 22

9
ν5 − 7

3
ν4 +

2

9
ν3 +

1

9
ν2
)
− 2

3
(ν2 + 2ν + 1)(ν2 + ν + 1)

>

(
1

ν2
+

1

ν

)2(
121

9
ν6 − 22

9
ν5 − 7

3
ν4 +

2

9
ν3 +

1

9
ν2
)
− 2

3
(ν2 + 2ν + 1)(ν2 + ν + 1)

>

(
1

ν2
+

1

ν

)2(
78

9
ν6 +

2

9
ν3 +

1

9
ν2
)
− 2

3
(ν2 + 2ν + 1)(ν2 + ν + 1)

=
(ν + 1)

2 (
72ν4 − 6ν3 − 6ν2 + 2ν + 1

)
9ν2

> 0.

2. H∗ > F
√
HR/

√
2(
√
HR + 1):
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(B.3)

−ν − 1 +
√

8F 2ν4 + ν2 + 2ν + 1

2ν2 (ν + 1)
>

F√
2ν(ν + 1)

⇔
√

8F 2ν4 + ν2 + 2ν + 1 > F
√

2ν3(ν + 1) + ν + 1

⇔ 3Fν3 − Fν2 > (ν + 1)
√

2ν(ν + 1)

⇔ 9F 2ν6 − 6F 2ν5 + F 2ν4 > 2(ν + 1)3ν.

Again, using F > 1
ν2 + 1

ν , we have

(B.4)

9F 2ν6 − 6F 2ν5 + F 2ν4 − 2(ν + 1)3ν > F 2(3ν6 + ν4)− 2(ν + 1)3ν

>

(
1

ν2
+

1

ν

)2

(3ν6 + ν4)− 2(ν + 1)3ν =
(
ν2 − 1

)2
> 0.

3. c1 <
1
2f2(H∗):

It suffices to show

(B.5) H∗

(
HR +

√
HR + 1

)2
−HR

(
2F 2 + 1

)
> 0

Let ν̃ = 1
ν , replace H∗, HR by − ν̃(ν̃+ν̃

2−
√
8F 2+ν̃4+2ν̃3+ν̃2)
2(ν̃+1) and ν̃2, it then suffices to show for ν̃+ ν̃2 < F < 2,

0 < ν̃ < 1:

(B.6)

(ν̃4 + 2ν̃3 + 3ν̃2 + 2ν̃ + 1)
√

8F 2 + ν̃4 + 2ν̃3 + ν̃2

>4F 2ν̃2 + 4F 2ν̃ + ν̃6 + 3ν̃5 + 5ν̃4 + 5ν̃3 + 5ν̃2 + 3ν̃

⇔ #(F, ν̃) := −16F 4ν̃2(ν̃ + 1)
2

+ F 2
(
16ν̃6 + 48ν̃5 + 72ν̃4 + 64ν̃3 + 56ν̃2 + 32ν̃ + 8

)
− 4ν̃2(ν̃ + 1)

2 (
ν̃4 + 2ν̃3 + 3ν̃2 + 2ν̃ + 2

)
> 0.

As a quadratic function of variable F 2, the axis of symmetry of # is always on the right half plane, we then
examine values of # at end points F = ν̃ + ν̃2 and F = 2.

(B.7)

#(ν̃ + ν̃2, ν̃) = 4ν̃3 (1− ν̃) (ν̃ + 1)
3 (

4ν̃5 + 16ν̃4 + 24ν̃3 + 20ν̃2 + 11ν̃ + 6
)
> 0,

#(2, ν̃) = 4
(
ν̃2 + ν̃ − 2

)2 (−ν̃4 − 2ν̃3 + 9ν̃2 + 10ν̃ + 2
)

> 4
(
ν̃2 + ν̃ − 2

)2 (
6ν̃2 + 10ν̃ + 2

)
> 0.

Therefore,

(B.8) #(F, v) > min
(
#(ν̃ + ν̃2, ν̃),#(2, ν̃)

)
> 0.
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