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When rotating classical fluid drops merge together, angular momentum can be advected from
one to another due to the viscous shear flow at the drop interface. It remains elusive what the
corresponding mechanism is in inviscid quantum fluids such as Bose-Einstein condensates (BECs).
Here we report our theoretical study of an initially static BEC merging with a rotating BEC in
three-dimensional space along the rotational axis. We show that a soliton-like sheet, resembling a
corkscrew, spontaneously emerges at the interface. Rapid angular momentum transfer at a constant
rate universally proportional to the initial angular momentum density is observed. Strikingly, this
transfer does not necessarily involve fluid advection or drifting of the quantized vortices. We reveal
that the corkscrew structure can exert a torque that directly creates angular momentum in the static
BEC and annihilates angular momentum in the rotating BEC. Uncovering this intriguing angular
momentum transport mechanism may benefit our understanding of various coherent matter-wave
systems, spanning from atomtronics on chips to dark matter BECs at cosmic scales.

Conservation of angular momentum can have a pro-
found effect on the dynamics of rotating fluid systems
such as cyclonic eddies in the ocean [1] and accretion
disks surrounding stars and black holes [2, 3]. When ro-
tating classical fluids merge together, the viscous shear
flow at the interface can lead to the formation of vor-
tical structures due to the Kelvin-Helmholtz instability
[4, 5]. Angular momentum can be advected from one
fluid body to another, accompanied by the drifting of
the vortical structures [6]. However, for invisid quantum
fluids such as low temperature Bose-Einstein condensates
(BECs), little is known on what flow structures may form
at the interface and how the angular momentum transfer
is achieved. On the other hand, understanding the mech-
anism of angular momentum transport between merging
rotating BECs may benefit the study of a wide range of
coherent matter-wave systems. For instance, for spinning
neutron stars that consist of neutron-pair superfluid [7, 8]
and for rotating galactic cold dark matter halos that are
believed to form BECs [9], the merging of the neutron
stars [10] and the collision of the galactic dark matter
halos [11] may exhibit similar characteristics as merging
rotating atomic BECs.

In the past, there were numerous studies on the merg-
ing dynamics of isolated atomic BECs due to its relevance
to matter wave interferometry [12-15] and the celebrated
Kibble-Zurek (KZ) mechanism [16-21]. However, most

*Corresponding: wguo@magnet.fsu.edu

of these studies focused on merging of BECs with no ini-
tial relative motions. The merging dynamics of rotating
BECs, subjecting to angular momentum conservation, is
more intriguing but has received much less attention. In
a recent numerical work by the authors, the merging of
a rotating disk condensate with a concentric ring con-
densate in two-dimensional space was studied [22, 23].
Nevertheless, since fluid advection and angular momen-
tum transfer occurs in the same plane, it was impractical
to disentangle the fluid advection effect from other pos-
sible angular-momentum transfer mechanisms.

In this paper, we report our numerical study of two
cylindrical BECs merging along their rotational axis in
three-dimensional (3D) space. We show that a soliton-
like structure, resembling a “corkscrew”, emerges at the
interface of the two BECs, accompanied by rapid angu-
lar momentum transfer. Strikingly, we reveal that this
transfer does not necessarily involve fluid advection or
quantized vortices. Instead, a new mechanism is iden-
tified: the solitonic corkscrew can exert a torque that
directly creates angular momentum in the initially static
BEC and annihilates angular momentum in the rotating
BEC. Uncovering this fascinating mechanism may have
a far-reaching impact in various relevant topic areas.

Numerical method: To model the dynamical evolu-
tion of a BEC system at zero temperature, we adopt a
non-linear Gross-Pitaevskii equation (GPE) [24]:
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FIG. 1: (a) Schematic of the potential U(F) used in Eq. 2.
(b) Initial density and phase profile of the BECs with a single
vortex line at the center of the lower condensate. The plot
shows the density iso-surface at 50% of the bulk density.

where % is Planck’s constant, M is the mass of the par-
ticles that form the condensate, ¥=|t)|e’® is the com-
plex condensate wave function, U is the external po-
tential that confines the condensate, and g is the cou-
pling constant that measures the strength of the parti-
cle interactions. For convenience, we introduce dimen-
sionless parameters 7=r/¢, t=t/7, and =1 /(\/N/E3),
where ¢=h/\/2Mng is the healing length, 7=h/ng,
N=/[dV|y|* is the total particle number, and n=N/V
is the particle number density averaged over the system
volume V. The original GPE can be written in the fol-
lowing dimensionless form:
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where the dimensionless coupling constant g takes the
form §g=N/(n&3)=V /&3 and the dimensionless potential
U=U/ng now measures the ratio of the external potential
U to the particle interaction strength ng.

To study BEC merging along the rotational axis, we
consider two cylindrical BECs of equal sizes that are
aligned along the z-axis. This configuration is achieved
by setting U = Uyyqp+U,y, where Ugpqp represents a cylin-
drical hard-wall box potential that traps the condensates
and U, denotes the potential barrier that separates the
two BECs, as shown in Fig. 1 (a). The hard-wall trap
ﬁt,.ap has a diameter of 20¢ and a length of 50£. The
potential barrier, which is located at the center of the
hard-wall trap, has a uniform height of U,=10 with a
thickness Zy=5. The initial state is prepared by evolv-
ing Eq. 2 in imaginary time [25], i.e., substituting f=—ir
while imposing conservation of the superfluid density to
effectively minimize the energy of the system. Quan-
tized vortex lines can be introduced to each condensate.
An example of the initial condensate density profile with
a single vortex line in the lower condensate is shown in
Fig. 1 (b). At time =0, we then suddenly remove the en-

ergy barrier U,, and let the two condensates merge. The
dynamical evolution of the condensate wavefunction can
be obtained by numerically integrating Eq. 2 with spa-
tial steps AZ=Aj=/A%2=0.2 and a time step Af=4x10"°
using the forth-order Runge-Kutta method [26].

Experimental relevance: Our model configuration
can be realized in BEC experiments. Indeed, box po-
tential has already been implemented experimentally
[27, 28]. Separating two BECs in a box geometry like in
Fig. 1 using tailored optical potentials is straightforward.
The size of our BECs and the height of the potential
barrier are all within the parameter range of representa-
tive experiments (i.e., typical BEC size of about 10£-10%¢
[20, 29-31] and typical U in the range of 1-100 [20, 29—
33]). To create vortices in one BEC while keeping the
other one static is more challenging but not impossible.
For instance, one may imprint vortices in the BECs and
apply enhanced dissipation in one of them so that this
BEC loses vorticity faster and eventually only one vortex
line remains in the system. We would also like to mention
that our BEC configuration is very similar to that used in
the experiment for studying interface instability between
superfluid *He A-phase and B-phase [34, 35|, although
that experiment involved two immiscible superfluids and
hence merging dynamics was not relevant.

Simulation results: For validation purpose, we first
consider the merging of the two BECs with no initial rel-
ative motion. Fig. 2 (a) and (b) show two cases where
the two condensates are, respectively, static and co-rotate
with a vortex line placed at the center at t=0. As the po-
tential barrier is removed, interference fringes are formed
at the interface. These fringes quickly evolve into disk-
shaped dark solitons that propagate towards the top and
bottom ends of the trap. The solitary nature of these
disks is supported by the abrupt phase step A¢ across
the density-depleted regions and the fact that they travel
at the expected soliton speed vs=vq - cos(A¢p/2) opposite
to the direction of the phase step [36]. This behavior
agrees well with the observed dynamics of soliton disks
created in 3D cigar-shaped condensates [37, 38]. In long
time evolution, the soliton disks decay into vortices due
to snake instability [39-42].

We now focus on BEC merging that is accompanied
by angular momentum transfer. A representative case is
shown in Fig. 2 (c). At =0, the lower condensate ro-
tates with a vortex line placed at the center and carries
angular momentum, while the upper condensate is static
with a uniform phase ¢=0. Due to the phase winding
in the lower condensate, the phase difference between
the two condensates across the barrier gap varies around
the z-axis. The time evolution of the condensate wave-
function now exhibits fascinating new features. First,
a soliton-like structure resembling a corkscrew emerges
at the interface of the two condensates. This structure
then extends towards both ends of the cylindrical BEC,
reaches the ends at about #~15, and bounces back, gener-
ating complex flows and density field in the merged BEC
(see movies in Supplementary Materials). The solid yel-
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FIG. 2: Merging dynamics of the two condensates when they are (a) static and (b) co-rotate at t=0. (c) Condensate density
evolution when only the lower condensate contains a vortex line at t=0. The color plots at t=3 and 6 show the instantaneous

phase profiles.

The solid yellow lines represent the locations of the vorticity singularities.

(d) Evolution of the angular

momentum density L. corresponding to (c). The plots show L. iso-surface at 10% of the initial bulk value.
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FIG. 3: (a) Evolution of the total angular momentum Lz in
the upper and lower condensate regions. (b) Angular momen-
tum contribution from fluid advection in the upper conden-
sate before vortices drift to this region.

low lines shown in Fig. 2 (c) represent the locations of
the vorticity singularities. One can see that the propaga-
tion of the helical soliton sheet in the lower condensate
induces waves along the vortex line, i.e., the so-called

Kelvin waves [45-47]. Interestingly, at relatively short
evolution time (i.e., £<12), the vortices are nearly con-
fined to the Z<0 region. Entrained by the local flows
[45], these vortices later move to the upper region. At
long evolution times, the decay of the soliton and its in-
teraction with the vortices and the trap lead to the for-
mation of a quantum turbulence [48] that carries angular
momentum, as shown in Fig. 2 (c) at =45.

To quantify angular momentum transfer, we introduce
a dimensionless angular momentum density L, as:
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The evolution of the angular momentum density for the
case presented in Fig. 2 (c) is shown in (d). It seems
that the angular momentum initially contained in the
lower rotating condensate can rapidly “flow” to the up-
per condensate region along the helical channel formed
by the soliton sheet. We can also calculate the total an-
gular momentum L= f L,dV integrated over the upper
(2 >0) and lower (Z <0) regions, as shown in Fig. 3 (a).
An interesting question one may raise is what the an-
gular momentum transfer mechanism is at £ < 12, i.e.,
before the vortices drift into the upper condensate region.
Fig. 2 (d) may give an illusion that this transfer is con-
trolled by fluid advection. However, this is not true. The
angular momentum advected across the Z=0 plane can
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FIG. 4: (a) Profiles of the integrated torque exerted by the
soliton sheet in the upper condensate region. (b) Profiles of
the soliton sheet and the vortex line created by showing the
density iso-surface at 50% of the bulk density.

be evaluated as f(f dt' [, 0.(7,t')L.(7,t) - d°F, where
0,=20¢/0Z is the velocity component along the Z-axis.
As shown in Fig. 3 (b), this advection contribution is only
a small fraction of the total angular momentum gained
by the upper condensate. This result is reasonable since
the flow in the lower condensate is initially perpendic-
ular to the merging direction. The gradual increase of
the advection contribution at # > 7.5 can also be under-
stood: the Kelvin waves on the vortex line in the lower
condensate deform the line into a coil shape, which then
induces a vertical flow through the coil that effectively
advects angular momentum to the upper region.

In order to explain the observed rapid angular mo-
mentum transfer at small evolution times, a mechanism
other than advection is needed. We note that the helical
soliton sheet has a free edge inside the BEC. Due to the
phase step across the soliton sheet, there is a phase wind-
ing around this edge line, which induces flows in the BEC
effectively like a vortex line. This feature is similar in na-
ture to the 2D case discussed in Ref. [22]. As the soliton
propagates, the phase profile associated with it can ex-
ert force and hence torque to both the upper and lower
condensates. The torque per unit volume in the_’BEC

with respect to the Z-axis is given by T, = (F x f) - &.,

where the force per unit volume f can be evaluated based
on the change rate of the condensate momentum density,

f:dﬁ/df:d(|1/~}|25)/dt~. To better illustrate the torque

{=0 =25 {=9 f=15
& Nt
\ \\, \ .
—ir = ) bt
R 1, 'M\ > ‘:I\\\\,*:
“. el ey DB
] y ( v >
(a)
8 T T T T T T -
U,=10,z,=5 9
— n: # of vortices ﬁ"
o 6 $, 4
= - e
X 1 n=1 /E’ i
s 44 // e =57
';G Q/, [=:] | n=5
lq& [y L &
= Wl n=
2 1 @@f’
] /,Af o n=3
n=2
0 “ T T T T T T
b 0 1 2 3 4 5 6 7
) L.(0) (<10

FIG. 5: (color online). (a) Evolution of the condensate den-
sity when the lower condensate contains three vortex lines.
(b) The angular momentum transfer rate dLr/df versus the
initial angular momentum density L. (0) for cases with vari-
ous initial vortex configurations. The barely visible error bars
represent the uncertainties in the linear fit as shown in Fig. 3
(b). The dashed line is a linear fit to the data.

profile in the upper condensate, in Fig. 4 (a) we show
the total torque Tpl integrated over the Z-y plane and
over a step length AZ=0.2 along the Z-axis. This torque
profile moves towards the top end of the condensate just
like the motion of the soliton sheet. To verify the corre-
lation between the torque and the soliton sheet, we plot
the corresponding soliton profiles in Fig. 4 (b). It turns
out that the spatial extend of the torque matches well
with the soliton profile. The peak of the torque profile
roughly coincides with the center of the soliton profile in
the upper condensate region. We have also checked that
the angular momentum created by the total torque in the
upper condensate region matches exactly the difference
between the two curves in Fig. 3 (b), which therefore con-
firms that the torque is the missing mechanism for the
angular momentum transfer. Note that the soliton sheet
also exerts a torque to the lower condensate. But since
the phase step of the soliton sheet reverts its direction
across the 2=0 plane (e.g., see Fig. 2 (a)), the torque in
the lower condensate has a negative sign, thereby annihi-



lating the angular momentum in this region. The exact
torque profile in the lower condensate is complicated due
to the existence of the vortices, but the magnitude of the
total torque matches that in the upper condensate, which
warrants angular momentum conservation.

We have also examined the rate of angular momentum
transfer in the early stage of the BEC merging where the
torque mechanism plays the key role. This rate can be
determined through a linear fit to the total angular mo-
mentum data as shown in Fig. 3 (b). The almost linear
time dependence of Ly can be understood by examin-
ing the torque profile shown in Fig. 4 (a). While the
torque profile evolves with time, we have confirmed that
the total area below the profile curve, which equals the
total torque exerting in the upper BEC region, remains
nearly constant. Therefore, a constant angular momen-
tum transfer rate is resulted.

We are also curious about how this rate may depend
on the initial angular momentum density difference L, (0)
between the two condensates. To investigate this effect,
we vary L.(0) by introducing multiple vortex lines in
the lower condensate while keeping the upper conden-
sate static. Furthermore, for a given number of vortex
lines in the lower condensate, L. (0) can be further tuned
by varying the distance between the vortices and the z-
axis. Fig. 5 (a) shows an example case with three vortex
lines in the lower condensate at t=0. Instead of having
one soliton sheet, three solitonic corkscrews emerge and
twist together. A constant angular momentum transfer
rate dLp/dt is again observed at short evolution times,
and this indeed holds for every cases we have studied. In
Fig. 5 (b), we plot the obtained dLz/df against L (0) for
all the cases. It is remarkable to observe that the rate
dLr/dt is universally proportional to L (0) regardless of
the vortex configurations. This universality may be un-

derstood qualitatively as follows. The L, (0) depends on
the exact vortex configuration. At the meanwhile, for any
vortex configuration, the solitonic corkscrews are always
initiated at locations where the vortex lines are. There-
fore, the spatial arrangement of the solitonic corkscrews
mimics the geometric configuration of the vortex lines.
The resulting total torque depends on this spatial ar-
rangement in a similar way as the dependance of L,(0)
on the vortex configuration. Therefore, the total torque
(which equals dLr/dt when the torque mechanism dom-
inates) appears to be consistently proportional to L. (0)
at short evolution times.

In summary, our work has revealed the formation of
soliton-like corkscrew structures at the interface of merg-
ing rotating BECs. These corkscrews enable angular
momentum transfer by exerting torques to the BECs.
The rate of this transfer appears to be universally pro-
portional to the initial angular momentum density dif-
ference. These findings not only enrich our knowledge
of BEC merging dynamics but also benefit the study of
other rotating coherent matter-wave systems.
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