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Abstract. In this article we propose a second order, linear, unconditionally stable, implicit-
explicit scheme based on the Crank-Nicolson-Leapfrog discretization and the artificial compression
method for solving phase field models of two-phase incompressible flows. We show that the scheme
is unconditionally long-time stable. Numerical examples are provided to demonstrate the accuracy
and long-time stability.
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1. Introduction. Multiphase flows are ubiquitous in science and in industrial
applications. Due to moving boundaries and possible phase changes, it is challenging
to model and perform numerical simulations on. multiphase flow phenomena. In
recent years phase field (diffuse interface) models have become an increasingly popular
approach in the study of multiphase flows. Various phase field fluid models have
been proposed, including the Cahn-Hilliard-Navier-Stokes system (model H) for two-
phase flows of matched densities [11, 8, 19], the Cahn-Hilliard-Hele-Shaw (Darcy)
model for two-phase flows in a Hele-Shaw cell or porous media [17, 18], the Cahn-
Hilliard-Stokes-Darcy system for multiphase flows in karst geometry [9], the quasi-
incompressible Cahn-Hilliard fluid models for two-phase flows of variable density [20],
the incompressible diffuse interface model for two-phase flows of different densities [1],
among many others, cf. [2, 15] for general reviews.

In a diffuse interface fluid model the sharp interface between two immiscible fluids
is replaced by a diffusive interface of finite thickness over which field variables such
as order parameter, pressure vary continuously. The major obstacle for numerical
simulations of diffuse interface models is the stiffness associated with the diffusive
interface (steep transition over thin layers). It is of utmost importance to design
high-order, unconditional stable numerical schemes for solving these Cahn-Hilliard
fluid models. There are two popular approaches. The first approach is the cele-
brated convex-concave splitting which treats the convex part of the potential function
implicitly and concave part explicitly, cf. [21, 10] for Crank-Nicolson schemes, and
[26] for a second order BDF scheme, see also [25] for a stabilized linear second order
convex-splitting scheme. The second approach is the Lagrange multiplier approach
[7] and its recent generalization: the Invariant Energy Quadratization method (IEQ)
[30, 6] and the Scalar Auxiliary Variable approach (SAV) [22]. In these methods an
auxiliary variable (Lagrange multiplier) is introduced to rewrite the energy functional
leading to an expanded gradient flow which is suitable for the design of high-order
unconditionally stable linear schemes.

While current literature focuses on either the Crank-Nicolson or the BDF2 tem-
poral discretization, this article contributes to a second order, linear, unconditionally
stable scheme based on the Crank-Nicolson-Leapfrog discretization (CNLF) and the
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artificial compression method (AC) for solving phase field fluid models. We follow
closely the CNLF scheme proposed and analyzed in [16, 12, 13, 14], and the AC
scheme studied in [5] for the Navier-Stokes equations which is in turn inspired by
the classical fractional step methods [24, 23] and the pressure projection method
[4]. As a particular example we present the scheme for solving the Cahn-Hilliard-
Navier-Stokes system. The discretization of the Cahn-Hiliard equation is performed
in the framework of the IEQ approach with stabilization to enhance stability. The
computation of the velocity is decoupled from that of the pressure at the expense
of the coupling among the velocity components (hence increased condition number)
due to the grad-div stabilization, and no boundary condition is needed in the update
of pressure thanks to the application of the AC method, cf. [5]. We establish the
unconditional long-time stability of the scheme. Numerical resulted to presented to
gauge the accuracy and stability of the proposed algorithm. We emphasize that the
method can be readily generalized to the other phase field fluid models such as the
Allen-Cahn-Navier-Stokes equations, the Cahn-Hilliard-Hele-Shaw system etc. It is
also possible to design similar algorithm (CNLF+AC) for solving phase field fluid
models of variable densities, following the approach in [6]. This will be pursued in a
separate work.

The rest of the article is divided into two sections. In Sec. 2 we recall the
Cahn-Hilliard-Navier-Stokes system, present the semi-discrete numerical scheme, and
establish the unconditional long-time stability. In Sec. 3 we provide numerical exam-
ples to verify the accuracy and long-time stability of the algorithm.

2. The model and the numerical scheme.

2.1. The model. As an example we present our numerical algorithm for solv-
ing the Cahn-Hilliard-Navier-Stokes system that models two-phase flows of matched
density. Similar schemes can be constructed for other phase field fluid models. We
consider a mixture of two immiscible, incompressible fluids in a bounded Lipschitz
domain Ω in Rd (d = 2, 3) with matched density assumed to be unity for simplicity
of presentation. Introducing a phase function φ such that

φ(x, t) ≈

{
1, for fluid 1,

− 1, for fluid 2,
(2.1)

we adopt the Ginzburg-Landau type free energy associated with the binary system

W (φ,∇φ) =

∫
Ω

λ

(
1

2
|∇φ|2 + F (φ)

)
dx. (2.2)

In (2.2) the first term contributes to the hydrophilic type (tendency of mixing) of
interactions between the materials while the second part, the double-well bulk energy
F (φ) = 1

4η2 (φ2 − 1)2, represents the hydrophobic type (tendency of separation) of
interactions. As the consequence of the competition between the two types of inter-
actions, the equilibrium configuration will include a diffusive interface with thickness
proportional to the parameter η.

The governing equations are the following Cahn-Hilliard-Navier-Stokes (CHNS)
system: 

φt +∇ · (φu) = M∆µ,

µ = λ(−∆φ+ f(φ)),

ut + u · ∇u +∇p− ν∆u = −φ∇µ,
∇ · u = 0,

(2.3)

2



equipped with the boundary conditions

u|∂Ω = 0, ∂nφ|∂Ω = 0, ∂nµ|∂Ω = 0.

Assuming no external forcing other than gravity, the CHNS system satisfies an energy
law, i.e.

d

dt

{
W (φ,∇φ) +

∫
Ω

1

2
|u|2dx

}
= −

∫
Ω

M |∇µ|2 + ν|∇u|2dx. (2.4)

2.2. The algorithm. In this section we introduce the algorithm in the semi-
discrete form and establish its unconditional long-time stability. Throughout the
L2(Ω) norm of scalars, vectors, and tensors will be denoted by ‖ · ‖ with the usual
L2 inner product denoted by (·, ·). Let q = 1

η2 (φ2 − 1) and thus f(φ) = φq. Taking

derivative of q with respect to gives qt = 2
η2φφt, which can discretized by the Crank-

Nicolson-Leapfrog scheme as follows.

qn+1 − qn−1

2∆t
=

2

η2
φn
φn+1 − φn−1

2∆t
.

We then propose a similar second order, partitioned, linear, Crank-Nicolson Leap-
Frog artificial compression method for the CHNS system given by

Algorithm 2.1. Given un−1, un, pn−1, pn, φn−1,φn, find un+1, pn+1, φn+1

and µn satisfying

φn+1 − φn−1

2∆t
+∇ ·

(
φn

un+1 + un−1

2

)
−M∆µn = 0, (2.5)

µn = λ

(
−∆

φn+1 + φn−1

2
+ γ(φn+1 − 2φn + φn−1) + φn

qn+1 + qn−1

2

)
, (2.6)

qn+1 − qn−1 =
2

η2
φn
(
φn+1 − φn−1

)
, (2.7)

un+1 − un−1

2∆t
− β∆t−1∇∇ · (un+1 − un−1) + un · ∇

(
un+1 + un−1

2

)
+

1

2
(∇ · un)

(
un+1 + un−1

2

)
− ν∆

(
un+1 + un−1

2

)
+∇pn + φn∇µn = 0, (2.8)

α∆t
(
pn+1 − pn−1

)
+∇ · un = 0, (2.9)

un+1|∂Ω = 0, ∇φn+1 · n|∂Ω = 0, ∇µn · n|∂Ω = 0. (2.10)

The Eqs. (2.5)–(2.7) represent a Leap-frog time marching scheme for the Cahn-
Hilliard equation in which the nonlinear potential is treated by the the Invariant
Energy Quadratization method (IEQ) [27, 30, 3, 28, 31, 29] with stabilization. Note
that the recently developed scalar auxiliary variable (SAV) approach [22] is equally
applicable here. Eqs. (2.8)–(2.9) is the Leap-frog artificial compression method for
solving Navier-Stokes equations [5].

Theorem 2.2. Taking α and β such that αβ ≥ 1
4 , then the scheme (2.5)–(2.10)

is unconditionally long-time stable in the sense that for any N ≥ 2

2∆t
N−1∑
n=1

‖∇µn‖2 +
λ

2

(
‖∇φN‖2 + ‖∇φN−1‖2

)
+
λη2

4

(
‖qN‖2 + ‖qN−1‖2

)
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+ ∆t
N−1∑
n=1

2ν‖∇u
n+1 +∇un−1

2
‖2 +

1

2

(
‖uN‖2 + ‖uN−1‖2

)
+
λγ

2
||φN − φN−1||2 +

λγ

2

N−1∑
n=1

||φn+1 − 2φn + φn−1||2

≤ λ

2

(
‖∇φ1‖2 + ‖∇φ0‖2

)
+
λη2

4

(
‖q1‖2 + ‖q0‖2

)
+

1

2

(
‖u1‖2 + 2β‖∇ · u1‖2

)
+

1

2

(
‖u0‖2 + 2β‖∇ · u0‖2

)
+ α∆t2

(
‖p1‖2 + ‖p0‖2

)
+
λγ

4
||φ1 − φ0||2

+ ∆t(p1,∇ · u0)−∆t(p0,∇ · u1).

Proof. Taking the inner product of (2.5) with µn and multiply through by 2∆t
gives

(
φn+1 − φn−1, µn

)
− 2∆t

(
φn
(
un+1 + un−1

2

)
,∇µn

)
+ 2∆tM‖∇µn‖2 = 0.

(2.11)

Taking the inner product of (2.6) with φn+1 − φn−1 gives

−
(
φn+1 − φn−1, µn

)
+ λ

(
1

2
‖∇φn+1‖2 − 1

2
‖∇φn−1‖2

)
+
λγ

2

(
||φn+1 − φn||2 − ||φn − φn−1||2 + ||φn+1 − 2φn + φn−1||2

)
(2.12)

+ λ

(
φn
qn+1 + qn−1

2
, φn+1 − φn−1

)
= 0.

Taking the inner product of (2.7) with λη2 q
n+1+qn−1

4 gives

λη2

4

(
‖qn+1‖2 − ‖qn−1‖2

)
= λ

(
φn
(
φn+1 − φn−1

)
,
qn+1 + qn−1

2

)
. (2.13)

Summing up (2.11), (2.12) and (2.13) yields

− 2∆t

(
φn
(
un+1 + un−1

2

)
,∇µn

)
+ 2∆tM‖∇µn‖2

+
λ

2

(
‖∇φn+1‖2 − ‖∇φn−1‖2

)
+
λη2

4

(
‖qn+1‖2 − ‖qn−1‖2

)
(2.14)

+
λγ

2

(
||φn+1 − φn||2 − ||φn − φn−1||2 + ||φn+1 − 2φn + φn−1||2

)
= 0.

Taking inner product of (2.8) with ∆t(un+1 + un−1) gives

1

2

(
‖un+1‖2 + 2β‖∇ · un+1‖2

)
− 1

2

(
‖un−1‖2 + 2β‖∇ · un−1‖2

)
(2.15)

+ 2∆tν‖∇u
n+1 +∇un−1

2
‖2 −∆t

(
pn,∇un+1 +∇un−1

)
+ ∆t

(
φn∇µn,un+1 + un−1

)
= 0. (2.16)
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Taking inner product of (2.9) with pn+1 + pn−1 and multiplying through by ∆t

α∆t2
(
‖pn+1‖2 − ‖pn−1‖2

)
+ ∆t

(
∇ · un, pn+1 + pn−1

)
= 0. (2.17)

Adding (2.14), (2.15) and (2.17) yields

2∆tM‖∇µn‖2 +
λ

2

(
‖∇φn+1‖2 + ‖∇φn‖2

)
− λ

2

(
‖∇φn‖2 + ‖∇φn−1‖2

)
(2.18)

+
λη2

4

(
‖qn+1‖2 − ‖qn‖2

)
+
λη2

4

(
‖qn‖2 − ‖qn−1‖2

)
+ 2∆tν‖∇u

n+1 +∇un−1

2
‖2

+
1

2

(
‖un+1‖2 + 2β‖∇ · un+1‖2

)
− 1

2

(
‖un‖2 + 2β‖∇ · un‖2

)
+

1

2

(
‖un‖2 + 2β‖∇ · un‖2

)
− 1

2

(
‖un−1‖2 + 2β‖∇ · un−1‖2

)
+ α∆t2

(
‖pn+1‖2 + ‖pn‖2

)
− α∆t2

(
‖pn‖2 + ‖pn−1‖2

)
+
λγ

2

(
||φn+1 − φn||2 − ||φn − φn−1||2 + ||φn+1 − 2φn + φn−1||2

)
+ ∆t

(
∇ · un, pn+1 + pn−1

)
−∆t

(
pn,∇un+1 +∇un−1

)
= 0.

The last two terms of (2.18) can be rewritten as(
∇ · un, pn+1 + pn−1

)
−
(
pn,∇un+1 +∇un−1

)
(2.19)

=
[
(pn+1,∇ · un)− (pn,∇ · un−1)

]
−
[
(pn,∇ · un+1)− (pn−1,∇ · un)

]
.

Then summing up (2.18) from n = 1 to n = N − 1 gives

2∆t

N−1∑
n=1

M‖∇µn‖2 +
λ

2

(
‖∇φN‖2 + ‖∇φN−1‖2

)
+
λη2

4

(
‖qN‖2 + ‖qN−1‖2

)
+ ∆t

N−1∑
n=1

2ν‖∇u
n+1 +∇un−1

2
‖2 +

1

2

(
‖uN‖2 + 2β‖∇ · uN‖2

)
+

1

2

(
‖uN−1‖2 + 2β‖∇ · uN−1‖2

)
+ α∆t2

(
‖pN‖2 + ‖pN−1‖2

)
(2.20)

+
λγ

2
||φN − φN−1||2 +

λγ

2

N−1∑
n=1

||φn+1 − 2φn + φn−1||2

+ ∆t(pN ,∇ · uN−1)−∆t(pN−1,∇ · uN )

=
λ

2

(
‖∇φ1‖2 + ‖∇φ0‖2

)
+
λη2

4

(
‖q1‖2 + ‖q0‖2

)
+

1

2

(
‖u1‖2 + 2β‖∇ · u1‖2

)
+

1

2

(
‖u0‖2 + 2β‖∇ · u0‖2

)
+ α∆t2

(
‖p1‖2 + ‖p0‖2

)
+
λγ

2
||φ1 − φ0||2

+ ∆t(p1,∇ · u0)−∆t(p0,∇ · u1).

The last two terms on the left hand side of (2.20) can be bounded as

∆t(pN ,∇ · uN−1)−∆t(pN−1,∇ · uN ) (2.21)

≤ β‖∇ · uN−1‖2 +
1

4β
∆t2‖pN‖2 + β‖∇ · uN‖2 +

1

4β
∆t2‖pN−1‖2.
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So if α ≥ 1
4β , (2.20) reduces to

2∆t
N−1∑
n=1

‖∇µn‖2 +
λ

2

(
‖∇φN‖2 + ‖∇φN−1‖2

)
+
λη2

4

(
‖qN‖2 + ‖qN−1‖2

)
+ ∆t

N−1∑
n=1

2ν‖∇u
n+1 +∇un−1

2
‖2 +

1

2

(
‖uN‖2 + ‖uN−1‖2

)
(2.22)

+
λγ

2
||φN − φN−1||2 +

λγ

2

N−1∑
n=1

||φn+1 − 2φn + φn−1||2

≤ λ

2

(
‖∇φ1‖2 + ‖∇φ0‖2

)
+
λη2

4

(
‖q1‖2 + ‖q0‖2

)
+

1

2

(
‖u1‖2 + 2β‖∇ · u1‖2

)
+

1

2

(
‖u0‖2 + 2β‖∇ · u0‖2

)
+ α∆t2

(
‖p1‖2 + ‖p0‖2

)
+
λγ

2
||φ1 − φ0||2

+ ∆t(p1,∇ · u0)−∆t(p0,∇ · u1).

This completes the proof.
Despite the unconditional stability established in Theorem 2.2, it is well-known

that the Leapfrog time marching scheme suffers from nonphysical oscillations, cf. [5]
and references therein. Standard time filters can be applied to control these oscilla-
tions. We given an example here using the Robert-Asselin filter. Introducing

hn(ϕ) =
κ

2
(ϕn+1 − 2ϕn + ϕn−1),

at each time step one post-processes

φn = φn + hn(φ), µn = µn + hn(µ), un = un + hn(u), pn = pn + hn(p).

Here the coefficient κ is typically chose in the range (0, 0.2] in the geophysical fluid
dynamics applications.

3. Numerical experiments. In this section we numerically demonstrate the
accuracy and stability of the Leapfrog artificial compression method for solving the
CHNS system.

3.1. Convergence test. We first verify the temporal convergence of the scheme
(2.5)–(2.10) by method of manufactured solutions. The computational domain is
[0, 1] × [0, 1], and the parameters are taken to be M = η = λ = 1, ν = 0.1. We also
set the stabilization constants to be unity, i.e. γ = α = β = 1. The manufactured
solutions are as follows

φ = cos(t) cos(πx) cos(πy),

µ = sin(t) cos(πx) cos(πy),

u = −(sin(πx))2 sin(2πy) cos(t),

v = (sin(πy))2 sin(2πx) cos(t),

p = cos(t)(xy − 0.25),

where u := (u, v) is the velocity field.
In the numerical experiment we compute the solution up to the final time T = 1,

and we allocate 160 grid points in each direction. P2−P2 finite element pair is used
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for φ and µ, and Taylor-Hood finite elements are employed for u and p. From the
consistency error and the stability bound in Theorem 2.2, one would expect second
order convergence rate for φ, mu and u, and first order convergence rate for p. We
use the true solution to initialize the first two steps of the computation. Fig. 3.1
demonstrates the log-log plot of the error L2 norm for u, p, and φ as a function of
time step ∆t. Second order temporal accuracy is observed for φ and u, and first order
accuracy is roughly observed for pressure p with some error oscillation. Similar error
behaviour is also present for the scheme with filters even though the error tends to be
smaller. We remark here that selective application of filters such as only on velocities
did not improve pressure accuracy.

Fig. 3.1. Log-Log plot of the error in L2 norm for u, p, and φ as a function of time step ∆t.
The solid green line is the reference line of 2nd order e = 0.01∆t2, and the solid red line is the
reference line of first order e = ∆t. The final time is T = 1. h = 1/160. P2–P2 is used for φ and
µ, P2–P1 is used for u and p. The other parameters are set to be unity.

3.2. Stability test. In order to verify the long-time stability, we run the classical
test of spinodal decomposition of a binary fluid for a long time, and show that the
energy law (2.4) is preserved by our scheme. The initial velocity is given by

u = −(sin(πx))2 sin(2πy), v = (sin(πy))2 sin(2πx).

The phase field variable φ takes initially a random field of values φ0 = φ̄+r(x, y) with
an average composition φ̄ = −0.05 and random r ∈ [−0.05, 0.05] which represents a
uniform mixture. The parameters are ε = 0.01, M = 10−3, ν = 0.1, λ = 10−3. We
take uniform step-size δt = 0.05 and h = 0.01. Under the Cahn-Hilliard dynamics
the mixture first undergoes a quick phase separation process in which phases of same
composition quickly cluster, then followed by the slow process of coarsening where
larger droplets grow at the expense of smaller ones so as to minimize the surface
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area. Fig. 3.2 shows the monotonic evolution of the energy in which the initial rapid
decline of the energy corresponds to the stage of spinodal decomposition, and the
ensuing coarsening stage is slow.

Fig. 3.2. Stability test: energy as a function of time. ∆t = 0.05, h = 0.01, ε = 0.01, ν = 0.1.

4. Conclusion. This article contributes to a second order, linear, uncondition-
ally stable scheme based on the Crank-Nicolson-Leapfrog discretization and the ar-
tificial compression method for solving phase field fluid models. As an example we
present our algorithm for Cahn-Hilliard-Navier-Stokes equations, and we establish the
unconditional long-time stability. Numerical examples are presented to verify the ac-
curacy and long-time stability. Similar algorithms can be constructed for other phase
field fluid models.
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