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Fully Coupled Two-Fluid Dynamics in Superfluid “He: Anomalous Anisotropic Velocity
Fluctuations in Counterflow
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We investigate the thermal counterflow of the superfluid “He by numerically simulating three-dimensional
fully coupled dynamics of the two fluids, namely quantized vortices and a normal fluid. We analyze the
velocity fluctuations of the laminar normal fluid arising from the mutual friction with the quantum turbulence
of the superfluid component. The streamwise fluctuations exhibit higher intensity and longer-range
autocorrelation, as compared to transverse ones. The anomalous fluctuations are consistent with
visualization experiments [Mastracci et al., Phys. Rev. Fluids 4, 083305 (2019)], and our results confirm
their analysis with simple models on the anisotropic fluctuations. This success validates the model of the fully
coupled dynamics and paves the way for solving some outstanding problems in this two-fluid system.

DOI:

Introduction.—Quantum turbulence (QT) refers to the
turbulent flow in a superfluid [1-6], which can occur
in a wide range of coherent matter-wave systems, e.g.,
superfluid *He and “He [7], atomic Bose-Einstein conden-
sates (BECs) [8], neutron stars [9], and galactic dark-
matter BECs [10]. At finite temperatures, the interaction
between QT and the thermal component can lead to
intriguing hydrodynamical behaviors that are new to
physics. In this study, we address an outstanding phenome-
non of the coupled dynamics in the superfluid “He, i.e., the
velocity fluctuations of the thermal component caused
by QT.

Liquid “He exhibits superfluidity below T, =2.17 K
[11-13]. Superfluid “He (He II) can be understood via the
two-fluid model [14,15]. In this model, He Il is described by
a mixture of an inviscid superfluid and a viscous normal
fluid (thermal excitations). The ratio of superfluid density p,
to the normal-fluid density p, depends on temperature. The
normal fluid and superfluid exhibit individual velocities v,
and v, respectively. In the superfluid component, a quan-
tized vortex appears as rotational motion, which exhibits
quantum circulation ¥ = 1.0 x 1073 ¢cm?/s. The angstrom-
sized vortex core can be considered as the filament with «,
which is termed as the vortex filament model (VFM).
Conversely, the normal-fluid component behaves in a
manner similar to a viscous classical fluid. The quantized
vortices and the normal fluid affect each other via mutual
friction (MF), and coupled dynamics is essentially important
to understand He II.

QT is a tangle of quantized vortices, and this tangle
produces a turbulent velocity field of the superfluid. The
typical experiment to generate QT corresponds to a thermal
counterflow [16], which is arelative flow of the two fluids. In
a closed channel, the temperature gradient is applied via a
heater. The normal fluid flows from the heater to the cooler
side to transfer heat. The superfluid flows to the heater to
satisfy the mass conservation [g(p,v, + pvs)dS =0,
where the integral is performed over the channel cross
section. When the relative velocity v, = v, — v, exceeds a
critical value, QT appears in the thermal counterflow.
A vortex line density L = (1/Q) [, dé is measured in a
statistically steady state with the sample volume €, the
integral path £ along the vortex filaments, and the arc length
£ along the filaments. The value of L increases with the mean
relative velocity V,,; = |(v,,)| with spatial average (- - -) and
obeys the steady-state relation

1

L= Y(Vns - VO) (1)

based on Vinen’s equation employing the temperature-
dependent parameter y and a fitting parameter V, [16,17].

Extensive experimental studies by Tough et al. revealed
that there are two turbulent regimes in counterflow: a T-1
state characterized by smaller values of y and a T-2 state
with larger y [16]. They suggested that the T-1 state is
associated with turbulence only in the superfluid while in
the T-2 state both fluids are likely turbulent. Melotte and
Barenghi [18] performed linear stability analysis of the
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normal fluid in the T-1 state and suggested that the laminar
normal fluid could become unstable due to MF
Experimental confirmation of the doubly turbulent T-2
state in counterflow was first provided by Guo et al. [19].
More detailed subsequent studies revealed a nonclassical
energy spectrum and exceptionally high turbulence inten-
sity in the T-2 state [20], the understanding of which is a
topic of current interests [21-23].

This Letter is concerned with some striking new obser-
vations from a more recent flow visualization experiment
on counterflow turbulence conducted by Mastracci and
Guo [24]. In their particle tracking velocimetry (PTV)
measurement, they showed that in the T-1 state, there exist
unexpected anisotropic velocity fluctuations in the laminar
normal fluid. Inspired by early analysis and simulations
[17,25,26], Mastracci et al. suggested that these fluctua-
tions may arise due to the MF drag in the normal fluid from
individual quantized vortices [27], and they supported this
suggestion by analyzing various simple models. However,
a more detailed understanding of the observations is
possible only with the fully coupled two-fluid dynamics.

Two major methods address the three-dimensional
coupled dynamics in He II. The first method is to use the
Hall-Vinen-Bekarevich-Khalatnikov (HVBK) equations for
both fluids, where quantized vortices are coarse-grained
[13,23,28,29]. The model is useful in studying properties
larger than the mean intervortex spacing ¢ of QT. However,
the model does not describe the dynamics of quantized
vortices although it is essential for QT. The other method is
to employ the VFM for the superfluid coupled with the
HVBK equations for the normal fluid [26,30-33]. Recently,
Yui et al. demonstrated the calculation involving QT in their
study of the normal-fluid velocity profile in counterflow
[33]. Nevertheless, a coarse-grained MF was used in that
work, which obscures any possible normal-fluid vortices
near the vortex filaments.

In this Letter, we investigate how the laminar normal fluid
is disturbed by QT through the MF in the T-1 state. We
introduce a numerical framework based on the VFEM for the
superfluid coupled with HVBK equations for the normal
fluid without any spatial coarse-graining of the MF. The
three-dimensional simulation based on this model allows us
to resolve eddy structures generated by the MF in the laminar
normal fluid in the vicinity of the vortex tangle. The
calculated streamwise velocity fluctuations in the normal
fluid exhibit higher intensity and a longer autocorrelation
range. The results are consistent with the PTV observations,
and confirm their explanation with simple models [27]. This
work not only elucidates the origin of the intriguing velocity
fluctuations in laminar normal fluid but also validates this
model of the coupled dynamics, making it a valuable tool for
solving various unsolved problems in this two-fluid system.

Coupled dynamics of quantized vortices and normal
fluid—The VFM is used as one of the most powerful tools
to describe the dynamics of quantized vortices [6,34—42].

The position vector s of the filaments are represented by the
parametric form s = s(&) with arc length . The superfluid
velocity is obtained by the Biot-Savart integral as follows:
vy(r) = (x/4n) [ A[(s1 =r) x dsi)/[|s; =[]} +vyp + Vs
Specifically, v, is a velocity induced for boundary con-
dition, and v, , is an externally applied velocity. We employ
the full Biot-Savart integral containing the nonlocal inter-
actions [36]. Eventually, the velocity of the filaments is as
follows [34,43]:

% =v,+as’ xv,, —ds x (s xv,), (2)
where s’ denotes the unit tangent vector of the filaments.
The terms including temperature-dependent coefficients a
and o show the MF with the normal fluid.

The dynamics of the normal fluid is given by the HVBK
equations [13,43]:

1 1
aavtn + (vn ' v)vn = _;VP + Dnvzvn +EF’U’ (3)

by using the kinetic viscosity v, = #,/p, of the normal
fluid and the effective pressure gradient VP. Here, the MF
force F,(r) =[1/9'(r)] |, oS (§)dE is obtained by the
integral of the MF f per unit length of the filaments:
J(&)/psk = as' x (8" xv,,) + &s" xv,,. L (r) denotes the
filaments in the local subvolume '(r) at the position r. The
size of Q' determines the coupling length scale (see
Supplemental Material [44]). In the study, we employ
the local coupling condition #3 > €/, ie., the MF F,,
only affects the normal fluid at the position of the vortex
filaments in contrast to a preceding study [33]. We use the
incompressible condition V -v, = 0 as a closure.

Numerical simulation.—We perform numerical simula-
tions of the coupled dynamics in thermal counterflow. First,
we check the relation of Eq. (1) and velocity profiles of the
two fluids to know the state of QT. Second, we examine the
three-dimensional structures of the quantized vortices and
normal-fluid flow. Finally, the velocity fluctuations of the
normal fluid are statistically analyzed in terms of intensity
and autocorrelation.

The numerical simulations are performed as follows. The
volume of the computational box is Q= D.D,D, =
2.0 mm x 1.0 mm x 1.0 mm, as shown in Fig. 1(a). The
vortex filaments are discretized into a series of points with
the separation A¢,;,=0.008 mm<A&<0.024mm [45].
The time development of Eq. (2) is achieved via the fourth
order Runge-Kutta method. When the two filaments
approach more closely than A¢&.;,, the filaments are
artificially reconnected to each other [35,36]. The short
filaments with length less than 5 x A&, are removed [46].
The normal fluid is discretized via the homogeneous spatial
grid N,N,N_ = 80 x 40 x 40: the spatial resolutions are
Ax = Ay = Az = 0.025 mm. The subvolume of the MF is
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FIG. 1. (a) Schematics of counterflow simulation. (b) Averaged
values of the vortex line density as a function of the mean
relative velocity V ;. The slope parameter is y = 165 £9 s/cm?.
(c) Normal-fluid velocity v, , and superfluid velocity v, over
the channel cross section in the statistically steady state at
V, =25 mm/s.

Q' = AxAyAz. The time integration of Eq. (3) is achieved
by the second order Adams-Bashforth method, and the
second order finite-difference method is adopted for spatial
differentiation. Both fluids flow along the x axis. The
periodic boundary condition is applied in all directions.
The initial states correspond to 16 randomly oriented
rings of the quantized vortices and uniform flow of the
normal fluid. The mean velocity of the normal fluid is
prescribed as V, = |(v,)| =2.0,2.5,3.0 mm/s. We use
Vsa = —(pu/ps)(v,) as the counterflow condition. The
simulation is performed until t =10.0s at T =1.9 K.
Temporal-mean values are obtained by averaging values
over 5.0 s < ¢ < 10.0 s in statistically steady states.

We obtained the statistically steady state of the two fluids
in the counterflow. The vortex line density L increases from
the initial value and fluctuates around some constant values
for different V, (see Supplemental Material [44]). Thus,
QT is in the statistically steady state, where the generation
and dissipation of the vortex filaments are balanced.
Figure 1(b) shows the values of L temporally averaged
over steady states. The error bars denote standard
deviations. The mean vortex-line spacing £ ~L72 is
0.1 mm <7 <0.2 mm. The vortex tangle obeys Eq. (1),
and the coefficient y = 16549 s/cm? exceeds 7, ~
130 s/cm? of T-1 in experiments [16,47], but it is still
significantly lower than y, ~ 250 s/cm? of T-2 [48]. The
difference from the observed y, is potentially because the
simulation does not contain the solid channel walls, which
can reduce y [39,41]. Additionally, our value of y is close to
the values of the simulations with prescribed uniform flow
of normal fluid [36,38]. This implies that the velocity
fluctuations of the laminar normal fluid do not significantly
amplify y. Figure 1(c) shows snapshots of the velocity
profiles over the channel cross section in the steady state at
V, = 2.5 mm/s [49]. Specifically, v, , and v, denote the
x component of v, and v, respectively. The profile of v, , is

(a) Quantized vortices

A\ .>\(/ \{\ )

i o8

(b) Normal fluid vortices

ok
- s

SAS=

(c) Normal fluid velocity fluctuations

3 \

(S

’Un® rvs® vnivs 0, = —0.1
FIG. 2. Three-dimensional structures at V, =2.5 mm/s.
(a) Quantized vortices. The black lines denote vortex filaments.
(b) Vortices of the normal fluid. The green surfaces denote the
positive isosurfaces of Q. (c) Velocity fluctuations of the normal
fluid. The red and blue surfaces denote the isosurfaces of
0, = 0.1 and —0.1, respectively.

slightly disturbed while that of v, , significantly fluctuates.
A Reynolds number Re; = Av,I/v, is 10°, where I =
10" mm denotes integral length and Aw, denotes the
fluctuation velocity of the normal fluid, so that the normal
fluid should be laminar in the large scales. The results
indicate that QT is in the T-1 state.

Figure 2(a) shows typical snapshots of the structure
of the vortex-filament tangle in the steady state at
V, = 2.5 mm/s (The dynamics are seen in the movie of
the Supplemental Material [44]). The tangle becomes
anisotropic because the MF as’ x v, in Eq. (2) affects
the quantized vortices anisotropically in the counterflow
[35,36]. To analyze the normal-fluid vortices, we calculate
the second invariant Q =1(w;w; —S;;S;) of the
velocity gradient tensor employing vorticity tensor
w;j =%(dv, ;/0x; — Ov,,;/Ox;) and strain tensor S;; =
1(0v, ;/0x; + Ov,;/Ox;) [50]. Specifically, v, is the
ith component of v,. Figure 2(b) shows the positive
isosurfaces of Q = 10.0 s~2, which show vortex tubes
with rotational regions. The normal-fluid vortices are
induced near the vortex filaments because the vortex
filaments push the normal fluid through the MF F, ; locally.
The result is qualitatively consistent with the one-ring
simulation [26]. The normal-uid vortex structure which is
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smaller than the mean vortex-line spacing £ was not
examined in the preceding simulation [33].

It is important to investigate the velocity fluctuations in
the normal fluid, which are observed in the PTV experiment
[27]. We define 6, = (v,, —V,)/V, as the streamwise
velocity deviation. Figure 2(c) shows the isosurfaces of
0, = 0.1 (red) and —0.1 (blue). The normal fluid in the red
(blue) region is faster (slower) than the mean velocity. It is
noted that the normal fluid is nearly laminar despite
fluctuations. The negative-uctuation regions with &, =
—0.1 arise because the vortex filaments push the normal
fluid into the superfluid flow direction —x via MF, and
normal-fluid velocity fluctuations remain on the trace.
Specifically, the structures of the negative fluctuations
appear to reflect the tangle structure of the filaments.
This refers to a normal-fluid wake caused by quantized
vortices [27]. The positive fluctuations in red can arise from
other mechanisms, e.g., the back flow due to the constant
mean velocity of the normal fluid. The structure is larger
than the mean vortex-line spacing #. The most notable
aspect is the strong anisotropy of the velocity fluctuations,
which is quantitatively investigated in the following
sections.

As a statistical value of the intensity of the normal-fluid
velocity fluctuations, we employ the quantities

A’Un,x - <<Un,x — Vn)2>%’ Ayn.y = </[j%!y>%_ (4)

The value of Awv,, (Awv,,) shows the intensity of the
velocity fluctuations in the streamwise (transverse) direc-
tion. Figure 3(a) shows the values of Av, , and A, , as a
function of time at V,, = 2.5 mm/s. Figure 3(b) shows the
values that are temporally averaged over the statistically
steady states. The fluctuations are significantly smaller than
the mean flow: Av,, ,, Av, , < V,,. Thus, the normal fluid
is almost laminar and just disturbed by QT. The anisotropy
of the fluctuations is clearly observed as Av, , > Av, ,,
and this anisotropy is a feature of the counterflow QT in
contrast to classical turbulence [51]. The value of Av, ,
increases with V,, keeping Av, , > Av, . These results
are consistent with the PTV experiments [24,27]. The
present values are less than those of the experiments.
This can come from that the MF f spreads over the

(a) 0.25 (b) 0.3 —————— ‘
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FIG. 3. (a) Velocity fluctuations Av,, , and Av, , as a function
of time at V, = 2.5 mm/s. (b) Mean values of the velocity
fluctuations as a function of V.

subvolume. The smaller subvolume should reduce the
differences between the simulation and the experiment.

Finally, we investigate the structure of the normal-fluid
velocity fluctuations. We introduce streamwise and trans-
verse autocorrelation functions

Cst<r) _ <<dx(x+r7y<9AZ;j;)C§x(xvy’Z’ t)>>l’ (5)

Ctr(r) _ <<dx(x7y+’{AZ;);)‘§x(x’y’ <, t>>>t’ (6)

respectively. Here, d,(x,y,z,t) = v, (x,y,z,t) = V,, and
(--+), denotes temporal average. The widths of the dis-
tribution of Cy(r) and C(r) show the streamwise and
transverse sizes of the fluctuation structure, respectively.
Figure 4(a) shows the values of Cy and C; as a function of
distance r at V, = 2.5 mm/s. Our simulated Cy; profile,
which agrees well with the calculation of a simplified
wake-flow model [27], differs from the measured velocity
autocorrelation at small scales. This difference may be
caused by the uncertainties in the experimental data. The
distances r* where the autocorrelations decay to 0.1 are
shown in Fig. 4(b). Evidently, the streamwise values of r*
are significantly larger than the transverse values. The
transverse distances are approximately r* ~ 0.2 mm, which
is comparable to #. This agreement is because the fluctua-
tions reflect the structure of the tangle of the vortex
filaments, and the fluctuations are localized near the vortex
filaments in the transverse direction. Conversely, the
streamwise distances of r* exceed #. The streamwise large
structures are consistent with the PTV experiment [27]. The
large structures originate from the normal-fluid wakes
caused by quantized vortices as shown in the blue regions
of Fig. 2(c), and also from the positive fluctuations in red.

Conclusions.—In the study, we addressed the T-1 state
by using a numerical simulation of three-dimensional
coupled dynamics of the VFM and HVBK equations.
We obtained the laminar normal fluid and turbulent super-
fluid in statistically steady states, i.e., the T-1 state.
The normal-fluid vortices were generated near the vortex
filaments via MF. The results indicated that velocity
fluctuations of the normal fluid exhibit strong intensity

1, :
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< ]
= Zosp -
5 Eoal ]
Q *

2 « 03 1
zo 02 © o o
0.2 s s s s 01 Ly

00 02 04 06 08 10 1.8 2.0 22 2.4 26 28 3.0 32
r (mm) V,, (mm/s)
FIG. 4. (a) Autocorrelations as a function of distance r at

V, =2.5 mm/s. (b) Distances r* where the autocorrelations
decay to 0.1.
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and long-range autocorrelation in the streamwise direction.
Our results are consistent with the PTV experiment [27].
This success validates the model and paves the way for
future study on the fully coupled dynamics. The T-1-T-2
transition could be directly produced with the present
method only by increasing the flow velocity. Moreover,
this study is applicable to other important problems such as
QT in a realistic solid channel and decaying QT [42,52,53].

Elucidating the origin of these velocity fluctuations
provides critical insights for some long-standing questions.
For instance, the T-1-T-2 transition corresponds to a
turbulent transition in the normal fluid [16]. The transition
mechanism is still an outstanding question despite decades
of research on counterflow. The shear stress from the
channel wall, which drives the turbulent transition in
classical channel flow [51], could be responsible for this
transition. But as Melotte and Barenghi pointed out [18], a
new mechanism, i.e., the MF, may play a more important
role. This work has identified the velocity fluctuations in
the laminar normal fluid, which provides strong support to
this view. These fluctuations may serve as the seed for
triggering the normal-fluid turbulent transition [27]. It can
be naturally confirmed using our model in the future.
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