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ABSTRACT: Benzamide, a simple derivative of benzoic acid and a common
intermediate of pharmaceutical compounds, was reported to form two polymorphs
in 1832, but the single crystal structure of the more stable form was not solved until
1959. Nearly S0 years later, the second form was characterized by powder
diffraction, followed shortly thereafter by characterization of a third form, a
polytype of the most thermodynamically stable Form I. These two new forms,
Forms II and III, are metastable. Herein, we describe a fourth polymorph, Form IV,
discovered by melt crystallization concurrently with its crystallization under
confinement at small length scales (<10 nm), where it is stable indefinitely. Form
III exists under confinement in larger pores, and melting point data for different
pore sizes corroborate the existence of Form IV below 10 nm. Form IV is highly
disordered, precluding indexing of powder diffraction data other than hk0

reflections. Nonetheless, a combination of powder X-ray diffraction and

computational crystal structure prediction reveals that Form IV contains a 2D motif resembling that of Form II, but with long-
range order in the third dimension masked by ubiquitous stacking faults. This approach relies on distilling a large number of
candidate structures to a few possible disorder models based on benzamide tetrads that organize in 2D parquet-like tiles, with
organization along the third dimension, that can be modeled with various stacking fault configurations having distinct intermolecular
interactions and translations in the dimension orthogonal to the tiling planes. These observations reveal a bewildering
crystallographic complexity for such a simple molecule. Nonetheless, the approach described herein demonstrates that challenging
structures that may be abandoned prematurely because of poor crystallinity, twinning, or disorder can be solved.

B INTRODUCTION

Wohler and von Liebig, while struggling to make sense of
constitution in organic compounds, cooled a boiling, aqueous
solution of benzamide and recorded the remarkable trans-
formation of silky needles into well-formed rhombic crystals."
Thus, benzamide (Scheme 1), now recognized as a common

Scheme 1. Benzamide Structure
0]
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Benzamide

intermediate for pharmaceutical compounds,z_5 became the
first reported example of polymorphism of molecular crystals.®
The single crystal structure of the stable (thombic) Form I was
not solved until 1959 and was assigned as monoclinic.” Nearly
50 years later, the transient Form II was prepared in situ as a
mixture with I, and a structure was extracted from powder X-
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ray diffraction (PXRD) data.”” A third metastable polymorph
(Form III), revealing a polytypic relationship to Form I, was
characterized shortly afterward.'®'" Yet, another polymorph
has been suggested by crystal structure prediction (CSP) but
not found experimentally."”
metastable benzamide polymorphs is complicated further by
the formation of bi- or triphasic mixtures, requiring extensive
optimization of crystallization protocols to minimize secondary
nucleation of Form L'"'*'* Computational studies suggested
an alternative structure for Form II, attributing the previous
structure solution to insufficient data owing to the preferred
orientations of needle-like crystals and the associated weak
intensity of hkl reflections with [ # 0. Absent or weak

The characterization of the
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reflections, however, also can be explained by stacking
disorder. While stacking faults are well-documented for
minerals or synthetic zeolites,'* *" they are less frequently
reported for molecular solids.””** The disorder unavoidably
leads to poor quality or incomplete data, thereby frustrating
structure solution using conventional characterization meth-
ods. Recently crystal structure prediction and density func-
tional theory have emerged as powerful tools for overcoming
limitations in small molecule structure determination**~*® and
for providing further insight into molecular packing inter-
actions.””*® These reports, however, have not addressed
stacking disorder in molecular solids.

We report herein a new metastable polymorph of
benzamide. The new form, denoted here as Form IV, was
discovered by melt crystallization using optical microscopy
concurrent with its crystallization under nanoconfinement. It
was confirmed as a unique polymorph by powder X-ray
diffraction (PXRD), Raman spectroscopy, and differential
scanning calorimetry. Melt crystallization or confinement
produced Form IV with negligible amounts of contamination
by other phases, enabling acquisition of powder data
corresponding to a single phase. The PXRD data indicated a
high degree of order in one dimension, but the absence of
reflections other than hk0 suggested disorder in the
perpendicular plane. Nonetheless, a combination of PXRD
and crystal structure simulation reveals that Form IV contains
a 2D motif resembling that of Form II, but with long-range
order in the third dimension masked by ubiquitous stacking
faults. This approach relies on distilling a large number of
candidate structures to a few possible disorder models based
on benzamide tetrads that organize in 2D parquet-like tiles,
with organization along the third dimension, that can be
modeled with various stacking fault configurations charac-
terized by different intermolecular interactions and translations
orthogonal to the parquet tiling planes. This combined
experimental—computational approach demonstrates that
challenging structures that may be abandoned prematurely
because of poor crystallinity, twinning, or disorder can be
solved.

B EXPERIMENTAL SECTION

Materials and Methods. Benzamide (C,H,NO, 99%) was
purchased from Sigma-Aldrich (St. Louis, Missouri) and was used
without further purification. Controlled pore glass (CPG), a borate—
silicate composite glass, from which the borate phase is leached to
produce a silica glass bead with a random pore network, was obtained
from Biosearch Technologies (Petaluma, CA) with nominal pore sizes
of 35, 50, 100, and 200 nm. Porous glass with nominal pore sizes of 4
and 8 nm were purchased from Sigma-Aldrich. The CPG
manufacturer specifications are provided in Table SI. All porous
glasses were washed with nitric acid prior to use, then washed with
deionized water and dried for 12 h under a vacuum. The acid-washed
matrices were stored under air in a desiccator.

Crystal Growth. Form IV was prepared by melting 2—4 mg of
benzamide powder (mp = 125—128 °C) in the presence of natural
resins between two glass coverslips on a Kofler bench and rapidly
cooling to room temperature (ca. 20 °C). It has been suggested that
the addition of resins, such as Canada balsam or gum mastic, can
suppress crystal growth until hi%h crystallization driving forces can be
achieved at large undercoolings.”” The amount of resin can vary, from
10 to 30 wt %, and in all cases spherulites corresponding to Form IV
were observed. The porous glass beads were mixed with benzamide
bulk crystals, heated above the benzamide T, of 130 °C, and allowed
to absorb the benzamide by capillary action for 2 min while heating in
the DSC instrument. Cooling these nanoporous matrices below the
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melting point of benzamide results in benzamide nanocrystals
embedded within the nanopores, as evident from Bragg peak
assignments to benzamide in PXRD data collected on the matrices.
Although the extent of pore filling has been reported to have minimal
effect on the change of melting temperature,”®*' overfilling was
avoided to prevent thermal signatures of bulk material. The mass ratio
of benzamide and CPG and the manufacturer provided pore volume
were used to calculate that 67—70% of the pores were filled. The
heating and cooling of the benzamide—matrix mixtures were
performed with a differential scanning calorimeter at 10 °C/min.
Differential scanning calorimetry (DSC) was performed on a Pyris-1
(PerkinElmer Inc., Wellsley, Massachusetts) differential scanning
calorimeter. An indium standard was used to calibrate the instrument,
and nitrogen was used as the purge gas. Enthalpies were calculated by
integrating the areas under the peaks after defining a baseline.
Metastable II was prepared by evaporation of ethanol solution (140
mg/mL). The benzamide obtained commercially was confirmed by
PXRD as Form I Form III was obtained as the transformation
product of Form IV formed from the melt.

X-ray Diffraction. Two-dimensional X-ray microdiffraction (2D
u-XRD) was performed with a Bruker D8 Discover General Area
Detector Diffraction System (GADDS) equipped with a VANTEC-
2000 2D detector and Cu Ka source (4 = 1.54178 A). The X-ray
beam was monochromated with a graphite crystal and collimated with
a 0.5 mm capillary collimator (MONOCAP). Form IV was measured
on a glass slide with the coverslip removed. CPG beads consisting of
benzamide nanocrystals were loaded into a Kapton 0.8 capillary for
measurement. High signal-to-noise ratio synchrotron powder
diffraction data was collected for Form IV on the 17-BM beamline
of the Advanced Photon Source, Argonne National Laboratory, at a
wavelength of 0.45212 A using a PerkinElmer PE1621 area detector.
The sample—detector distance was 800 mm, and the measurement
covered the angular range 26 = 0.8—18.8°. A Kapton 1.0 mm capillary
was loaded with benzamide powder, which was then melted by
heating at ca. 150 °C (above T,, = 130 °C) then rapidly cooled down
to 100 K using an Oxford 700+ Cooler and measured at the same
temperature. High-resolution synchrotron powder diffraction data of
Form IV were collected at beamline 11-BM of the Advanced Photon
Source, Argonne National Laboratory, using a wavelength of 0.412827
A. Discrete detectors covering an angular range from —6 to 16° 26
were scanned over a 34° 20 range, with data points collected every
0.001° 20 and scan speed of 0.01°/s. A few milligrams of benzamide
mixture with ca. 20% of gum mastic were placed between a
microscope slide and a glass coverslip and melted on a Kofler
bench at ca. 140 °C. The sample was rapidly cooled to room
temperature. The coverslip was detached, and the powder of Form IV
was carefully scraped with a needle. The powder was loaded into the
Kapton 1.5 mm capillary and measured at 100 K using Oxford 700+
Cooler. The data collected on the two beamlines were in agreement,
and data acquired on 11-BM did not add appreciably to the structure
solution.

Computational Methods. CSP searches were performed using a
rigid body random search algorithm in the UPACK program suite”
with each molecule described using the general Amber force field
(GAFF).*® Atomic point charges for the classical force field were
determined using the restricted electrostatic potential (RESP) charge
assignment scheme™* using RHF/6-31G*//MP2/6-31G* in Gaussian
09.”> Individual searches were performed in parallel on selected space
groups with a fixed number of molecules in the asymmetric unit (Z).
Z' =1 structure searches included the space groups Iba2, C2, C222,,
C2/c, Cc, P1, P1, P2, P2,2,2, P2,2,2,, P2,/c, P222, P222,, P2/c,
Pba2, Pbca, Pbcn, Pc, Pca2,, Pccn, and Pna2,. The Z’ = 2 searches were
performed for the space groups C2/¢, Cc, P1, P2,, P2,2,2, P2,2,2,,
P2,/¢, Pc, Pca2,, and Pna2;. The space groups tested are the most
commonly occurring space groups for molecular crystals in the
Crystal Structure Database. At least S00 structures were generated in
each search, with up to 50000 candidate structures generated for
some space groups. This collection of structures was then subject to
similarity clustering and flexible molecule optimization routines,
resulting in 2551 unique crystal structures within 40.0 kJ/mol of the
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lowest energy form. A summary of the CSP results and the resulting
energy vs molecular volume plot highlighting the relevant predicted
forms are provided in Figure S4.

DFT optimizations were run in CP2K v. 2.6.2%° using the Gaussian
and plane wave (GPW) scheme®” of the QUICKSTEP package.38 In
the first phase, cells were optimized with a cutoff of 450 Ry, the PBE
exchange-correlation functional,®® and the DZVP-MOLOPT-GTH
(m-DZVP) basis set*® paired with the appropriate dual-space GTH
pseudopotentials.*"** All supercells were at least 10 A on all sides. In
the second optimization phase, the D3(BJ) dispersion correction™>**
with a cutoff of 20 bohr was included and energies were evaluated
using the TZVP-MOLOPT-GTH (m-TZVP) basis set, with the
corresponding GTH pseudopotentials.*** The SCF convergence
threshold was 1 X 1077 hartree using a fine integration grid and the
following QUICKSTEP variables: S grids with a cutoff of 900 Ry and
a relative cutoff of 70 Ry, EPS_RHO =1 X 107'%, EPS PGF_ORB =
1 X 1077. The space group for each optimized structure was
determined using PLATON.*

Diffuse-PXRD and (h0!) projections were calculated from our 20 X
20 X 1 unit cell atomistic crystal disorder models using the respective
programs, DISCUS* or DIFFUSE.*” Each short-range order (SRO)
model output was controlled using the stochastic structure generator
methods available in the program ZMC.*® Other ad hoc computa-
tional scripts were used to read in relevant preliminary crystal
structure coordinates and then create the multiple coordinate
“building-block” sets necessary as separate input files for the ZMC
program. The powder module in DISCUS was run in complete
integration mode using the pseudo-Voigt peak shape function with
profile parameters u, v, and w set to 0.0, 0.0, and 0.002. A Lorentz
correction parameter was manually adjusted to 13.27, and the hkl grid
was evenly spaced at 1.00 reciprocal lattice units (rlu.). All other
parameters are default. The k0! diffraction section was calculated by
averaging “total” scattering intensities over 2 lots that comprised 10 X
10 X 1 unit cells.

The interface energies were calculated by building two blocks of
each structure (6 X 3 X 6 unit cells for P2,2,2 structures, 6 X 2 X 6
unit cells for ac interfaces of Fdd2 structures, and 3 X 2 X 10 unit cells
for bc interfaces of Fdd2 structures), which were combined to create
smooth interfaces. The energies of such structures, E_;, were
calculated under 3D periodic boundary conditions. Optimization
and MD simulations were performed using LAMMPS (Large-scale
Atomic/Molecular Massively Parallel Simulator) with the same GAFF
parameters used for CSP. All the MD simulations were 3 ns and were
performed in the NPT _F (constant particle number, pressure,
temperature with flexible cells) ensemble at 300 K and 1 atm with
a 1 fs time step. The energy values for each block and the
combinations were averaged over the last 500 frames. The energies of
corresponding bulk P2,22 and Fdd2 structures (E,,;) were
calculated in the same way. The interface energies were calculated
as By otuce = (Epic — Evun) /A, where A is the area of the inteface. Since
the energies of superimposed structures evaluated are the same (only
their configurations or orientations were different), there was no need
to calculate energies for each of two original building blocks.

The crystal-adiabatic free energy dynamics (C-AFED) simulations
were run for 0.5 ns using a modified version of the MD code platform
PINY MD.*' Simulation sizes were 4 X 2 X 8 unit cells
(corresponding with a, b, and ¢) for the P2,2,2 and P2,2,2,
structures (2 X 1 X 8 unit cells for the Fdd2), which produced a
nearly cubic cell and total of 8192 atoms. Prior to the C-AFED run,
each system was subject to energy optimization, as well as consecutive
NVT and NPT_F equilibrations at 300 K for 20 ps. The time step for
all MD runs was 0.5 fs. The C-AFED cell thermostat temperature was
200 000 K with the “mass-like” 7 parameter set at 1000 fs.

B RESULTS AND DISCUSSION

Crystallization and Thermotropic Behavior. Melt
crystallization is a powerful method for polymorph discovery
as it creates conditions far from equilibrium, yet results in slow
growth and nucleation. This has been demonstrated by our
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identification of new polymorphs grown from the melt for a
wide range of materials, including aracetamol,”® testosterone
propionalte,SO aspirin,” coumarin,”” resorcinol,”® and DDT.>*
Crystal growth under nanoconfinement also has been used for
the discovery and stabilization of metastable forms, ™%
wherein polymorph stability rankings deviate from bulk
(unconfined) behavior.®*

Rapid cooling of a benzamide melt with gum mastic to room
temperature (ca. 20 °C) yielded two kinds of spherulites with
distinct morphologies (Figure 1). Powder X-ray diffraction and

Figure 1. Polarized light optical micrograph of benzamide Forms III
and IV spherulites grown by melt crystallization at room temperature
with gum mastic (ca. 20 wt %).

Raman spectroscopy revealed that one of these morphologies
corresponded to Form III, as deduced from comparison with
published and newly collected data for Forms I, II, and IIL"'
The other morphology, consisting of optically positive
spherulites (large refractive index is radial), afforded a distinct
PXRD pattern and Raman spectrum, supporting the formation
of a new Form IV (Figure 2, see Figure 4B). Transformation of
Form IV to Form III occurred within minutes at room
temperature and significantly faster at elevated temperatures,
precluding the determination of the melting temperature of
Form IV. Crystallization of Form IV from the melt is more
preferred in the presence of natural resins such as Canada
balsam or gum mastic (ca. 20 wt %), which also slows the
transformation to Form IIL. A reduction in phase trans-
formation rates in the presence of resins and polymers, which
has been well established for molecular crystals, can be
attributed to slower diffusion and reduced growth of the
transformation front.”">> When the benzamide—resin mixtures
are confined between two glass slides, the transformation to
Form III can take as long as several days, whereas unconfined
benzamide—resin powders transform within hours. Form IV
held at T > 70 °C for a few minutes transforms into Form III,
even in the presence of resins (Figure 3).

Crystallization under confinement in various nanoporous
media often results in changes in polymorph stability rankings
and discovery of new polymorphs.”>~>* The crystallization of
benzamide was examined using controlled pore glass (CPG)
beads with nominal pore sizes of 4, 8, 35, 50, 100, and 200 nm
after infiltration of benzamide melt. PXRD of benzamide
confined in CPG beads with pore sizes d > 35 nm revealed 260
peaks corresponding to the 011, 013, and 102 reflections of
Form IIT (26 = 16.5, 19.9, and 20.9°, respectively, Figure 4).
The diffraction peaks for the benzamide crystals embedded in
8 nm pores, however, differ from those observed in the larger
pore sizes, exhibiting unique reflections at 11.4, 18.9, 19.5, and
22.5° that correspond to the new Form IV observed from melt

https://dx.doi.org/10.1021/acs.cgd.0c00096
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Figure 2. (A) Raman spectra of the four benzamide polymorphs. (B) Spectra in shaded region of A from 1200—1050 cm™ enlarged.

Figure 3. (A) Spherulites of Form IV grown by melt crystallization at
room temperature in the presence of gum mastic (ca. 20 wt %). (B)
Partial phase transformation of Form IV to Form III after raising the
temperature to ca. 70 °C for less than 1 min.

crystallization. Numerous reports”™ >’ have demonstrated
Debye—Scherrer broadening for hkl reflections corresponding
to planes about the zone axis parallel to the pore walls, which
can lead to low peak intensities. Moreover, scattering from
nanoscale crystals tends to be weak, with broad peaks, which
can mask the peaks at 15 and 26° expected from the data for
melt crystallization samples. The region near 6° likely indicates
the presence of some Form II (admixed with Form IV), which
is structurally similar to Form IV. Stronger peaks elsewhere,
however, support Form IV as the dominant phase. Under
ambient temperature and humidity, confined Form IV has
remained stable for more than a year, in contrast to bulk Form
IV that transforms to Form III within minutes. Benzamide
confined in 4 nm pores does not crystallize even at elevated
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temperatures below the expected melting temperature for
crystals of this size (see below).

The melting temperature of benzamide confined in CPG
decreases with decreasing pore size, a direct consequence of
the increasing surface-to-volume ratio when crystal size is
reduced.*** The melting point depression can be expressed
accordin§ to a modified form of the Gibbs—Thomson
equation® ™% (eq 1), where AT, is the melting point
depression, Ty, is the bulk melting temperature, T,,(d) is
the melting temperature of the confined crystal with a diameter
d (assumed to be of equivalent size to the host pores),
AHgopuy is the enthalpy of fusion, p4 is the density of the
solid, Ycrystal-melt 15 the crystal—melt interfacial energy, and cos 0
is the contact angle between an emerging spherical crystal and
the pore wall (or any phase that may have wetted the pore
wall).

4Tm,bu1kycrystal —melt
— ¢
dAH, fus, bu]kpcrysta]

AT os 0

m

= Tk — Tn(d) = -
(1)
The Gibbs—Thomson equation often is simplified by assuming
the contact angle 6 = 180° (eq 2).

Tm,bulk - Tm(d) _ 47crysta]—melt
Tm,bulk dAHqu,bulkpcrystal (2)

Both eqs 1 and 2 predict a linear relationship between the
melting point depression and the inverse of the crystal size.
Using the enthalpy of fusion measured for bulk Form III
(AHgygpui = 1594 J/g) and the density of Form I (pryga =
128 g/cm?), the slope of T, vs. 1/d gives Verystalmmelt =
40.8(1.1) mJ/m* To evaluate the validity of the interfacial
energy obtained, we consider the lower limit of the crystal-melt
interface energy, which can be estimated from a semiempirical

model”’ (eq 3).
3 RT}, pulk
XP|
(3)

== e

ycrysta.l—melt 8 NA1/3w2/3
Here, R is the universal gas constant, N, is the Avogadro
number, and w 90.4 cm®/mol is the benzamide molar
volume. An estimation of the surface free energy from bulk
properties, as in eq 3, giVes Yeystalmetr = 50.7 mJ/m?, which
agrees surprisingly well with the experimental values obtained

AHg ik
3RT,, pui
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Figure 4. (A) PXRD data for benzamide nanocrystals embedded in CPG. (B) Comparison of benzamide PXRD data in 8 nm pores with bulk I, II,

ITI, and IV phases.

by DSC and interface energy calculations above. This
correspondence argues that the assumption of a contact
angle @ = 180° between the confined nanocrystals and the pore
walls is reasonable. We note, however, that contact of the
confined nanocrystals with an intervening amorphous phase
lining the pore walls cannot be discounted.”® Controlled pore
glass beads used in confinement experiments have hydrophilic
surfaces and are likely wetted by benzamide, suggesting that
the crystals inside pores are separated from the walls by an
amorphous benzamide layer. Ultimately, extrapolation of the
data for Form III in Figure S to 8 nm pore size (1/d = 0.125

Predicted T,, = 88.3°C

S
A ;. Measured T,, = 77.8°C
i 3
1254 " =
o
Q
. T
1201 A ‘ 60 70 80 90 100
p N
¢
~ 115+ .
110 A
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Figure S. Dependence of the melting temperature, Ty, on the inverse
of the pore diameter, 1/d, for benzamide Form IIL The diameters
correspond to the nominal CPG pore sizes. The contact angle 6 in eq
1 is assumed to be 180°. The dashed lines represent the best linear fit
to the data set. T,y is denoted as the open triangle. Inset: DSC
heating scan for benzamide confined in 8 nm pores.

nm™') indicates a melting point of 88.3 °C. This value is
substantially higher than the actual measured value in 8 nm
pores, corroborating the crystallization of the less stable Form
Iv.

PXRD Data Analysis of Form IV. While polycrystalline
samples of Form IV were obtained from the melt and through

nanoscale confinement, single crystals could not be obtained.
Moreover, the PXRD data collected on the GADDS micro-
diffractometer (Figure 4 and Figure S1) was not sufficient for
structure determination. Therefore, structure analysis was
performed using synchrotron powder data recorded at the
17-BM beamline (1 = 0.45212 A, Advanced Photon Source,
Argonne National Laboratory). A two-dimensional pattern
collected did not exhibit texture (inset in Figure 6), indicating

30x10%4
£ 25x10%
20x10%
15x10%

10x10%-

5x10° LJMM

0

Intensity, arbitrary units

2 4 6 8 10 12 14 16 18
26, degrees

Figure 6. Synchrotron powder diffraction data of benzamide Form IV
collected at 17-BM beamline of the Advanced Photon Source,
Argonne National Laboratory, at a wavelength of 0.45212 A and
temperature of 100 K. Insert: 2D diffraction pattern used to make 1D
intensity vs 26 plot. Continuous Debye—Sherrer diffraction rings
without discrete diffraction spots are consistent with the absence of
texture.

a polycrystalline sample with no preferred orientation. The
powder X-ray diffraction (PXRD) pattern (Figure 6), indexed
with the software McMaille v3.04,°° was consistent with an
orthorhombic unit cell (a = 11.83 A, b = 20.50 A, and ¢ = 5.03
A). A Pawley fit of the data in the space group P2,2,2, afforded
R,, = 5.99%. The hkl reflections with I # 0 were broad and
weak, however (Figure S2). A Pawley fit of similar quality (pr
= 7.1%) was obtained using only hkO reflections (with c set to
0.1 A in the Pawley fitting). Additional high-resolution
synchrotron measurements of Form IV were recorded at 11-
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Table 1. DFT-Optimized Unit Cell Parameters and Relative Lattice Energies for the Candidate Form IV Structures, As Well As
Structures Determined by Optimization of the Reported Structures of Forms I, II, and III

generation method”

I (optimized BZAMIDO2) P2,/c P2,/c
III (optimized BZAMID12) P2,/c P2,/n
SA P2,/c P2,/n
II (optimized BZAMID13) Fdd2 Fdd2
SA Pan2? Fdd2
CSP P2,2.2, P2,2,2,
CSP P2,/c P2,/c
Csp P2,/c P2,/n
CSP P2,2,2 P2.2,2
SA Pna2, Pna2,
sA P2,2.2, P2,2,2,
CSP Pna2, Pna2,
SA P2,/n P2,/c

initial space group final space group E (kJ/mol)

0.00
0.23
2.52
2.78
4.48
4.68
6.20
744
8.21
8.98
9.37

10.24
10.84

z a (A) b (A) ¢ (A) B (deg) outcome

1 5.551 5.010 21.216 91.22 benzamide I

1 5.039 5.449 21.575 90.04 benzamide IIT

2 5.249 17.753 13.117 96.49 unit cell of I1”¢

2 33.856 27.994 5.170 90 benzamide 11

2 23.303 40.481 5.166 90 possible IV

2 5.072 11.405 20.955 90 possible IV

2 5.173 15.923 15.150 98.15 unit cell does not fit
2 5.157 20.880 11.561 99.37 possible IV

2 12.435 19.785 5.162 90 possible IV

2 14.421 16.935 5.149 90 unit cell of II°

2 5.228 10.230 23.615 90 unit cell does not fit
2 17.394 14.923 5.001 90 unit cell of II°

2 5.020 24.174 11.086 102.21 unit cell does not fit

“Structure generation methods: SA, simulated annealing; CSP, crystal structure prediction. bCorresponds to the predicted structure #22 in ref 15.
“2D lattice parameters in the optimized structure are twice the values of those in SA and CSP structures. “With force field, optimized as P1 (Table

S3).

BM beamline (1 = 0.412827 A, Advanced Photon Source,
Argonne National Laboratory). Despite higher angular
resolution, no additional information was obtained because
of significant peak broadening (Figure S3). Similarities in the
two measurements imply disorder that is inherent in the
benzamide crystal, which allows extraction of only 2D data.
Nevertheless, candidate structures for benzamide Form IV can
be found using the 2D data.

Structure Generation. Pawley fits for all orthorhombic
and monoclinic space groups (7 = 90° while & or ff can deviate
from 90° due to uncertainty in ¢ orientation) were evaluated
using hkO reflections (¢ = 0.1 A). The P2,2,2,, P2,2,2, Pna2,,
Pba2, Pbn2,, Pnn2, Pbam, Pnnm, Pbnm, Pnam, P2,/b, P2,/n
space groups provided reasonable fits (R, < 8%). These space
groups were then used to generate structure solutions by
simulated annealing (SA) in Bruker TOPAS 4 software.”” The
geometry of each molecule was defined as a rigid body based
on Form I atomic coordinates, and rotational and translational
parameters were simultaneously refined during SA search. Due
to the severe disorder, only hkO reflections were used to
compare simulated and observed PXRD data. Six structures
with the best pr < 12% were selected for further computation
analysis (SA entries in Table 1 and Table S2). Because
simulated annealing did not produce an obvious structure
solution, crystal structure prediction (CSP) was employed to
generate alternative candidates. Random structures were
generated with the UPACK program suite’' using the general
Amber force field (GAFF).”” Candidate structures were
filtered by identifying all matches with CSP-generated unit
cells against the indexed parameters of the possible 2D cell for
Form IV (within a 5% tolerance; for CSP details, see the
Computational Methods section). Five structures of the 34
cells that matched the experimentally determined 2D unit cell
parameters (Figure S4) had simulated PXRD patterns with low
angle 20 values and intensities consistent with the experimental
data for Form IV.

All 11 Form IV candidate structures generated by SA and
CSP were ranked by optimizing their structures with density
functional theory (DFT). Forms I, II, and III also were
optimized for comparison (CSD ref codes: BZAMIDO02
BZAMID13, and BZAMIDI12 respectively). Structures of
Form IV generated by simulated annealing were first optimized
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using the GAFF force field embedded in the GULP software
with preservation of their respective space group symmetries.
The Pba2 and Pnn2 cells did not reach minimum energy
structures unless optimized after the symmetry was reduced to
P1. Both the transition state (full symmetry) and local
minimum (P1) cells were included as candidate forms. The
eight structures from simulated annealing and five structures
from CSP were subsequently optimized without space group
symmetries using DFT calculations in CP2K v. 2.6.2° (see the
Computational Methods section for details). The three
structures that optimized to Pl cells with Z' = 8 are not
reported in Table 1 (see Table S3); these include the two
saddle point structures from simulated annealing (Pba2 and
Pnn2) and the Pba2 structure optimized as Pl using the
classical force field. Optimized structures with unit cells that
differed by more than 10% from the experimental 2D lattice
parameters were excluded as Form IV candidates. Curiously,
three structures optimized to unit cells that resembled the
reported Fdd2 structure of Form II'® as well as its optimized
version (Table 1), suggesting that Forms II and IV are similar.
Consequently, the set of DFT optimized structures (Table 1,
Figure 7) was narrowed to four potential candidates for Form
IV: Fdd2 (4.48 kJ/mol), P2,2,2, (4.68 kJ/mol), P2,/n (7.44
kJ/mol), and P2,2,2 (8.21 kJ/mol).

Description of Candidate Structures. The four afore-
mentioned candidate structures adopt a parquet-like motif of
tiles, each consisting of a tetrad of benzamide molecules,
stacked normal to the S A axis. The tiles are parallelograms
with nearly the same dimensions; the length of one side
approximately twice the length of the other, | = 2w, and an
angle ¢ between the two sides (Figure 8). The tetrads in the
candidate Form IV structures resemble those in Form IL%'°
but the tiles have different dimensions (w = 7.8 A and ¢ = 82°
in Form IV vs w = 8.3 A and ¢ = 63° in Form II). Unlike
Forms I and III, in which benzamide molecules are associated
by hydrogen-bonded R,*(8)”° dimers that assemble further
through dimeric hydrogen-bonded R,*(8) tapes, Form IV
forms skewed R;*(8) rings from three benzamide molecules
that assemble into a hydrogen-bonded R;*(8) catemeric tape
(Figure 9). Candidate structures with the R,*(8) dimers
observed in Forms I and III resulted in optimized unit cells
that did not correspond with the PXRD cell of experimental
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Figure 7. Four candidate Form IV structures. All four structures
consist of benzamide tetrad tiles that stack along the short 5 A axis
(normal to the plane of the page) through catemeric hydrogen-bonds.
With the exception of P2,/n structure, all the carbonyls within a tile
point in the same direction. The energy values for each structure are
relative to optimized Form I (Table 1).

Form IV (Table S4). One of the P1 structures (Table S4, 7.90
kJ/mol) does contain R,*(8) dimers but is unlikely because Z’
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Figure 9. Hydrogen-bonding motifs for Form IV candidate structures
(left) and Forms I and III (right). Graph set notations are indicated.

All four candidates of Form IV contain three types of
phenyl—phenyl contacts within the tetrads and between
tetrads. T- and E-contacts describe interactions between
neighboring tiles (Figure 8). T-contacts, in which a (phenyl)
C—H bond points toward a phenyl ring on a neighboring
tetrad,”””> occur in all candidate structures and are
characterized by dihedral angles of 68—78°. External contacts,
E, between parallel tiles associate in two motifs. V-contacts (for
the V-shaped geometry of the two neighboring rings) adopt an
edge-to-face herringbone arrangement, with dihedral angles
Ey = 67—72° between neighboring phenyl rings. P-contacts
(for the parallel arrangement of two neighboring rings) exhibit
dihedral angles E, = 0—7°. I-contacts describe phenyl ring
associations within a tile (Figure 8). Fdd2 and P2,2,2 belong
to one family with internal V-contacts, characterized by

Fdd2

&
Lo o

ALY
BN

P2,2,2,

Phenyl rings
contacts

Ip-contact

E,~contact

& & oo S8 K

l~contact

Ep-contact T-contact

Figure 8. Molecular packing of the tetrads in the four Form IV candidate structures.
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dihedral angles of I, = 67—69°. In contrast, P2,2,2, and P2,/n
form a second family of structures, all with nearly parallel
phenyl rings (P-contact) with corresponding dihedral angles I,
= 10—11° (Table SS).

The two families of candidates were evaluated by Rietveld
refinement using the DFT-determined structures of Form IV.
Although the R, values of all four structures were high, the
structures with the I,-contacts (Fdd2, P2,2,2; Figures 7, 8)
exhibited the best fits (R,,) to the experimental data,
suggesting this type of tile is more likely than I,-contacts in
Form IV. Although the comprehensive analysis described
above narrows the choice to two structures consistent with
experimental 2D data, the poor fits to the experimental 3D
PXRD data (Figure SS), which are a consequence of the weak
reflections for hkl where I # 0, argues for severe disorder along
the short 5 A axis. Fdd2 and P2,2,2 structures exhibit internal
V-contacts.

Interface Energies. A high degree of disorder suggests the
existence of randomly distributed nanoscale domains, corre-
sponding to one or several tiles, which warrants consideration
on the role of interface energy on developing a model
structure. The P2,2,2 structure is enantiomorphous, whereas
the Fdd2 structure is polar (Figure 10). It is unlikely that

Enantiopolar orientations of Fdd2 structure

Enantiomorphs of P2,2,2 structure

Disordered structure

Pca2, structure

Figure 10. Idealized tiling motifs for internal V-contact structures
Fdd2 and P2,2,2, (with enantiomorphs), Pca2,, and an example of a
disordered structure. Unit cells are outlined in blue. Dark and light
green tiles represent tetrads of benzamide molecules in which all the
C—O vectors are pointing out of and into the page, respectively.
These schemes do not distinguish the relative shifts of catemers
normal to the page.

disorder would result from random mixtures of 2D layers in
which the carbonyls are pointing in different directions, as this
would cut the catemeric chains. Instead, disorder is better
represented by the schemes in Figure 11, which describe
domain boundaries along the ac and bc planes for both
structures. Enantiomorphs of P2,2,2 are distinguished by
subscripts p and q. The Fdd2 structure, with the polar axis
pointing in enantiopolar directions, is distinguished as u and d
(carbonyls up and down). There are an indefinite number of
ways to arrange the tetrads into nanoscale domains of various
sizes and symmetries. One particularly interesting example that
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effectively combines the tiling pattern of Fdd2 and P2,2,2 is a
low energy (8.30 kJ/mol relative to Form I) orthorhombic
Pca2, structure with Z’ = 4 and I-contacts as well (Figure S6).
This structure results in different domain interfaces.

The energies of the interfaces between the nanoscale
domains were calculated by molecular dynamic (MD)
simulations that combine two enantiomorphic or enantiopolar
building blocks. The corresponding energies of the bulk
structures (see the Experimental Section and Figure 11) were
compared. The calculated interface energies were comparable
(Table 3) to the surface energies determined for crystal—melt
interface energies of ca. 41 mJ/ m? obtained from the DSC data
on crystallization in confinement (see above).

Disorder Model. Distinct peaks associated with hkl
reflections for | # 0 are absent in the experimental PXRD
pattern. The hkl, hk2, and hk3 Bragg reflections, expected at
20 < 18°, were effectively extinct, which can be a signature of a
2D-stacking fault disorder. Using atomistic models, it is
possible to simulate the disorder among neighboring stacks
of tiles and the associated PXRD patterns. The Fdd2 structure
consists of tiles in which the all carbonyl groups orient along
the same direction, at 0, 1/4, 1/2, 3/4, parallel to the S A tape
axis. The P2,2,2 structure consists of the same tiles but with
one-half of the carbonyl groups oriented up, at 0, 1/2, and the
other half down, at 0, 1/2, with respect to the tape axis.
Disorder models, each consisting of 20 X 20 X 1 supercell,
were built from random combinations of single stacks
corresponding to the Fdd2 and P2,2,2 structures and PXRD
pattern generated using ZMC and DISCUS**”® software suites
(see the Computational Methods section for details) and then
were compared to the experimental pattern. It is important to
note that a random collection of Fdd2-like all “up” and all
“down” tapes (where up and down denote the direction of the
carbonyl groups), combined with translations of 0, 1/4, 1/2,
3/4 along the tape axis, is indistinguishable from a random
arrangement of P2,2,2-like tapes. Three possible settings were
used to characterize the disorder using the Fdd2-like tapes
only: random tape orientation (Cl), random tape displace-
ments (in increments of 1/4) along the short axis (C2), and
both (C3). Figure 10 depicts the random distribution of
orientations (random tape displacements cannot be discerned
from this figure). This kind of analysis is commonly used for
the interpretation of single crystal X-ray diffuse scattering or
pair distribution functions.**””

Although the choices for the candidate structures were
narrowed to Fdd2 and P2,2,2, both with Iy contacts, disorder
models were also built from the tiling in the P2,2,2, and P2,/n
structures, which have I, contacts to confirm that the former
pair represented the best candidate structures. Pattern B in
Figure 12 corresponds to the I, model with both random
orientations and displacements. Comparison with the Form IV
experimental data (pattern A) shows significant disagreements
in peak intensities. The diffuse scattering calculated at 26 ~ 5°
for Iy models is not apparent in the experimental data, thus
arguing against the two I candidates (P2,2,2,, P2,/n; Figure
7).
Inspection of the PXRD patterns (Figure 12) calculated for
the aforementioned disordered I, models C1, C2, and C3
reveals distinct differences. The random tape orientations in
the C1 model do not extinguish hkl reflections adequately for
# 0, as evidenced by peaks in the C1 pattern that are not
observed in the experimental data (e.g. peaks at 20 = 6.1, 6.5,
8.4°). C2, with random tape displacements, and C3, with both
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Table 3. Interface Energies (Eieace) for Combinations of
Enantiomorphic and Enantiopolar Domains of Most
Probable Crystal Structure Candidates (Figure 11)

interface interface E

interfaces

building blocks plane structure m]J/ m?
(P2,212), + (P2,2,2), ac Fdd2 34
be Pca2, 12
(Fdd2), + (Fdd2), ac P2,2,2 140
be Pca2, 50
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Figure 12. Comparison of calculated PXRD from 2D-disorder models
and analogous (h0l) sections demonstrating the effect on diffraction
from structures with and without random displacements of
neighboring tiles. (A) Observed data. (B) Calculated PXRD from a
random displacement-orientation model with Ip-contact tiles. (C)
Calculated diffraction patterns from models where tiles are all Iy-
contact, adopting random orientation disorder (C1) or displacement

disorder (C2) or both (C3).

random tape displacements and orientations, extinguish the
hk1, hk2, and hk3 Bragg reflections, similar to the experimental
PXRD data. The extinction of hkl, hk2, and hk3 reflections
also can be validated from the corresponding reciprocal space
sections for C1 and C3 calculated using DIFFUSE" (Figure
12). Collectively, these observations demonstrate that disorder
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of the tape orientations alone is not sufficient to explain the
observed data.

Crystal Adiabatic Free Energy Dynamics (C-AFED)
Analysis. The PXRD data is consistent with the presence of
2D disorder in Form IV, explained further through modeling as
related to displacement of the tapes along the short stacking
axes. This does not imply that a mechanical crystal distortion
allows tiles to slip past each other, as faults also could occur
during crystal growth. Alternatively, disorder could reflect
nearly equal energies for the possible domain boundaries
between stacks of tiles.”® One approach for testing the
propensity of a structure to exhibit stacking faults is to
simulate deformations using molecular dynamics (MD).” In
particular, C-AFED simulations can accommodate unit cell
fluctuations that might lead to disorder.*”"!

Comparison of initial (after NPT _F equilibration) and final
frames from 500 ps C-AFED simulations for Fdd2 and P2,2,2
are shown in Figure 13. The blue and red colors represent the
magnitude of atomic z-displacements from the base of the
simulation box. The Fdd2 molecules appear relatively
unchanged in their positions between the first and final
frames. In contrast, the P2,2,2 simulation shows clear
fluctuations of the molecules along the z-displacement, as
evidenced by the skewed stripes of color for molecules that
started with the same z-displacement. This suggests that the
P2,2,2 tiling can accommodate displacements more readily
than the Fdd2 form. These stacking faults are consistent with
the disorder models that best match the PXRD data. While the
Fdd2 tiling is lower in energy and more structurally stable in
the MD simulations, the lack of characteristic peaks in the
PXRD data rules out domains larger than just a few tetrad tiles.
Combining the SRO models with the MD results, we find that
Form IV likely incorporates small Fdd2-type domains with
varied orientations relative to their nearest neighbors, as shown
by the disordered structure in Figure 10.

B CONCLUSIONS

A new, highly metastable benzamide Form IV polymorph was
discovered by melt crystallization in parallel with growth under
nanoconfinement in very small pores. Under nanoscale
confinement, the melting behavior of more stable benzamide

https://dx.doi.org/10.1021/acs.cgd.0c00096
Cryst. Growth Des. 2020, 20, 2670—2682


https://pubs.acs.org/doi/10.1021/acs.cgd.0c00096?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.0c00096?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.0c00096?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.0c00096?fig=fig11&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.0c00096?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.0c00096?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.0c00096?fig=fig12&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.cgd.0c00096?fig=fig12&ref=pdf
pubs.acs.org/crystal?ref=pdf
https://dx.doi.org/10.1021/acs.cgd.0c00096?ref=pdf

Crystal Growth & Design

pubs.acs.org/crystal

Figure 13. C-AFED simulations for two Form IV models, Fdd2 and
P2,2,2. Large C-AFED simulation cells are viewed along the y-axis;
the z-axis is vertical. Coloring (red — gray — blue) denotes the
relative, periodic positions of the molecules in the initial frames on the
left and the displacements on the right. Fluctuations in the positions
of the P2,2,2 molecules are evidence of stacking faults. The insets
correspond to xy sections viewed along the z-axis for each frame.

Form III crystallizing in larger pores was strongly influenced by
the pore size, with the melting depression scaling inversely
with crystal size. Interfacial energies calculated by the Gibbs—
Thomson equation agreed with those obtained by semi-
empirical model. Using a combination of powder X-ray
diffraction analysis and computational methods, a large
number of candidate structures for benzamide Form IV were
reduced to a few possible disorder models based on tapes of
2D parquet-like tiles consisting of benzamide tetrads. The
disorder could be explained by various stacking fault
configurations corresponding to random tape displacements
and orientations. Collectively, these observations reveal an
impressive crystallographic complexity for such a simple
molecule, yet one that is within reach of emerging methods
for determination of solid-state structure. Moreover, this
analysis suggests that many structures that may have been
abandoned because of catch-all shortcomings, such as poor
crystallinity, twinning, or disorder, can be solved.
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