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ABSTRACT

Deep learning (DL) has emerged as a tool for improving ac-
celerated MRI reconstruction. A common strategy among DL
methods is the physics-based approach, where a regularized
iterative algorithm alternating between data consistency and
a regularizer is unrolled for a finite number of iterations. This
unrolled network is then trained end-to-end in a supervised
manner, using fully-sampled data as ground truth for the net-
work output. However, in a number of scenarios, it is difficult
to obtain fully-sampled datasets, due to physiological con-
straints such as organ motion or physical constraints such as
signal decay. In this work, we tackle this issue and propose
a self-supervised learning strategy that enables physics-based
DL reconstruction without fully-sampled data. Our approach
is to divide the acquired sub-sampled points for each scan into
training and validation subsets. During training, data consis-
tency is enforced over the training subset, while the validation
subset is used to define the loss function. Results show that
the proposed self-supervised learning method successfully
reconstructs images without fully-sampled data, perform-
ing similarly to the supervised approach that is trained with
fully-sampled references. This has implications for physics-
based inverse problem approaches for other settings, where
fully-sampled data is not available or possible to acquire.

Index Terms— Self-supervised learning, accelerated
imaging, parallel imaging, compressed sensing, deep learn-
ing, neural networks, supervised learning

1. INTRODUCTION

Long acquisition times remain a limitation for MRI. In most
clinical protocols, a form of accelerated imaging is utilized to
improve spatio-temporal resolution. In these methods, data is
sub-sampled, and then reconstructed using additional infor-
mation. Parallel imaging [1, 2] which utilizes redundancies
between receiver coils, and compressed sensing [3, 4] which
uses compressibility of images are two common approaches.

Recently, deep learning (DL) has gained interest as a
means of improving accelerated MRI reconstruction [5-12].
Several approaches have been proposed, including learning

a mapping from zero-filled images to artifact-free images
[10], learning interpolation rules in k-space [11, 12], and
a physics-based approach that utilizes the known forward
model during reconstruction [6-9]. The latter approach con-
siders reconstruction as an inverse problem, including a data
consistency term that involves the forward operator and a
regularization term that is learned from training data. Such
methods typically unroll an iterative algorithm for a pre-
determined number of iterations to solve this inverse problem
[13]. Specifics of these networks vary [14]. For instance, in
[7]1, data consistency used a gradient step and regularizer was
a variational network, whereas in [8] conjugate gradient was
used in data consistency and a residual network as regularizer.

To the best of our knowledge, most physics-based DL-
MRI reconstructions to date use supervised learning, utiliz-
ing fully-sampled data as reference for training the network.
However, in several practical settings, it is not possible to ac-
quire fully-sampled data due to physiological constraints, e.g.
high-resolution dynamic MRI, or due to systemic limitations,
e.g. high-resolution single-shot diffusion MRI. Furthermore,
accelerated imaging is often used to improve resolution feasi-
ble, which in turn makes it infeasible to acquire fully-sampled
data at higher resolution due to scan time constraints.

In this work, we propose a self-supervised learning ap-
proach that uses only the acquired sub-sampled k-space data
to train physics-based DL-MRI reconstruction without fully-
sampled reference data. Succinctly, our approach divides the
acquired k-space points into two sets. The k-space points
in the first set are used for data consistency in the network,
while the k-space points in the second set are used to define
the loss function. Results on knee MRI [15] show that our
self-supervised training performs similar to conventional su-
pervised training for the same network structure, while out-
performing parallel imaging and compressed sensing.

2. MATERIALS AND METHODS

2.1. Physics-Based Deep Learning MRI Reconstruction

Let y be the acquired data in k-space, where €) denotes the
sub-sampling pattern of acquired locations, and x be the im-



age to be recovered. The forward model is given as
yo = Eqox +n, (1)

where Eq : CM*N — CP is the forward encoding operator,
including a partial Fourier matrix and the sensitivities of the
receiver coil array [1], and n € CPF is the measurement noise.
Equation (1) is generally ill-posed and thus commonly solved
using a regularized least squares problem [3, 16] as follows

arg m)in lya — Eaox|2 + R(x), 2)

where first term enforces data consistency with acquired mea-
surements, and R () is a regularizer. There are several strate-
gies to solve this optimization problem [17], where methods
alternate between enforcing data consistency with acquired
data yq and a proximal operation involving R(-). For in-
stance, using variable-splitting and quadratic relaxation [17],
we have

207 = arg min p||xY — 2|2 + R(z) (3a)

x() = argmin [lyo — Eox|3 + plx — 203 @b

where z(*) is an intermediate variable and x(*) is the desired
image at iteration 7. This algorithm can be unrolled for a fixed
number of iterations [13], as depicted in Figure 1.

Physics-based DL-MRI methods train these types of un-
rolled algorithms end-to-end using fully-sampled training
datasets [14]. The sub-problem (3a) is implemented by means
of a neural network, while the data-consistency sub-problem
(3b) is solved via

x) = (EfEq + pul) (B yq + pz"Y), @)

where I is the identity matrix and (-)¥ is the Hermitian opera-
tor. This can be solved via conjugate gradient to avoid matrix
inversion [8]. The unrolled network is then trained end-to-
end, either by allowing different parameters for each iteration
[7] or by sharing all trainable parameters across iterations [8].

2.2. Supervised Unrolled Network Training

In the supervised setting, SENSE-1 images generated from
fully-sampled data are often utilized as ground truth for train-
ing. Let x’,; denote the ground truth image for subject i. Let
f(yh, EL; 0) denote the output of the unrolled network for
sub-sampled k-space data y%,, and encoding matrix Ef, of
subject ¢, where the network is parametersized by 8. These

parameters are learned using
1 XN
mgn N Zl ‘C(X;efv f(YéZ’ Eb; 9>)v (5)

where NN is the number of fully-sampled datasets in the
training database, and L(-,-) is a loss function between the
network output image and the reference image. Common
choices for L(-,-) include ¢ norm, ¢; norm, mixed norms
and perception-based loss [7, 18-22].
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Fig. 1: The unrolled neural network architecture for solving Equa-
tion (2), where each step consists of a regularization (R) and a data
consistency (DC) unit.

2.3. Proposed Self-Supervised Network Training

As discussed in Section 1, there are several scenarios where
fully-sampled k-space data cannot be acquired. We propose
to tackle this challenge by dividing the acquired sub-sampled
data indices, € into two sets, © and A as

Q=0UA, (6)

where © denotes a set of k-space locations that is used within
the network during training, and A denotes a set of k-space
locations used in the loss function. In particular, in the ab-
sence of reference fully-sampled datasets, we minimize a loss
function of the form

N
Ilgn%z:z:(yi, Ej(f(yo, 6;9)))- )
=1

We note that the loss function is defined between the network
output image and a vector of k-space points, in contrast to
the supervised case, which traditionally has a loss function
defined over the image domain. We hypothesize that by cal-
culating the loss only on A instead of the whole acquired data
€, the network will be better-suited to avoid over-fitting is-
sues and generalize to future data.

2.4. Implementation Details

Training was performed end-to-end by unrolling the algo-
rithm in (3a)-(3b) for 10 iterations, where each iteration con-
sisted of regularization and data consistency units. The reg-
ularization convolutional neural network (CNN) employed a
ResNet structure, consisting of a layer of input and output
convolution layers and 15 residual blocks (RB) with skip con-
nections that facilitate the information flow during training
[23]. Each RB comprised two convolutional layers, where
the first layer is followed by a rectified linear unit (ReL.U)
and the second layer is followed by a constant multiplication
layer [23]. All layers had a kernel size of 3 x 3, 64 channels.
The data consistency unit used a conjugate gradient approach,
which itself was unrolled for 10 iterations [8]. Coil sensitivity
maps in the encoding matrices were generated using ESPIRIT
[15]. The network had a total of 592,129 trainable parameters.
A normalized ¢; - /5 loss, defined as
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Fig. 2: a) The acquired sub-sampling pattern €2; b) Uniform random
and c) Gaussian random selection for subset A over which loss is
defined; d) Reference fully-sampled data; e) Self-supervised DL-
MRI reconstruction with A as in (b); f) with A as in (¢). Green arrow
marks residual artifacts in uniform random selection of A. These are
suppressed further with Gaussian random selection.

was used for both the supervised and proposed self-supervised
training. For the self-supervised setting, © was chosen as
Q/A. The networks were trained using an Adam optimizer
with a learning rate of 10~3 by minimizing the respective loss
function with a batch size of 1 over 100 epochs.

2.5. Imaging Experiments

Coronal proton density weighted knee MRI data from the
New York University (NYU) fastMRI initiative database [15]
was used for training and testing. Training data consisted of
300 slices from 10 patients. Each raw k-space data was of size
320 x 368 x 15 where the first two dimensions are the matrix
sizes and the last dimension is the number of coils. Testing
was performed on 380 slices collected from 10 new subjects.

The fully sampled raw data were undersampled retrospec-
tively using a uniform sub-sampling pattern provided by NYU
with an acceleration rate of 4, and 24 lines as autocalibrated
signal (ACS). The first set of experiments were designed to
evaluate the choice of A on the proposed self-supervised train-
ing. Since A is a retrospectively selected subset of €2 during
reconstruction, its choice is not constrained by physical lim-
itations, such as gradient switching. Thus, A can be selected
among all possible k-space locations in 2. In particular, a uni-
form random selection of A, as well as a variable-density se-
lection based on Gaussian weighting were investigated. Sub-
sequently, the ratio p = |A|/|€2| was varied among {0.05, 0.1,
0.2, 0.3, 0.4}, where | - | defines the cardinality of the index
set.

Following the study on the choice of A, the proposed
self-supervised learning method was compared with the con-
ventional supervised learning approach, where the same net-
work structure described in Section 2.4 were used for both

approaches. Furthermore, the methods were compared to
conjugate gradient SENSE (CG-SENSE) [24], as well as a
conventional compressed sensing approach that uses a to-
tal generalized variation (TGV) [25] term for regularization
in Equation (2). Experimental results were quantitatively
evaluated using normalized mean square error (NMSE) and
structural similarity index (SSIM).

3. RESULTS

Figure 2 shows the self-supervised network training with p =
0.1 for uniformly random and variable-density Gaussian se-
lection of A C €. The green arrows show that visible residual
artifacts remained in the reconstruction using uniform random
selection of A. These artifacts were further suppressed by se-
lecting a variable-density Gaussian subset as A. The corre-
sponding quantitative evaluations, depicted in the figure, con-
firm these observations.

The effect of varying p € {0.05, 0.1, 0.2, 0.3, 0.4} is
shown in Figure 3. The residual artifacts, marked by green ar-
rows, decrease with increasing ratio p and disappear for p €
{0.3, 0.4}. Quantitative results indicate that these two val-
ues have similar performance, with the latter showing slightly
more visual improvement. Thus p = 0.4 was used for the rest
of the study.

Figure 4 displays the comparison among the proposed
self-supervised, supervised, TGV and CG-SENSE methods.
The green arrows on CG-SENSE and TGV results show
visible residual artifacts. The supervised and the proposed
self-supervised DL-MRI reconstruction approaches eliminate
these artifacts, while performing closely with each other.
The SSIM and NMSE values for this slice further confirms
the visual assessments. Figure 5a and b summarizes the
mean and standard deviation of the NMSE and SSIM metrics
over the 380 test slices using the proposed self-supervised
DL-MRI, conventional supervised DL-MRI and CG-SENSE
approaches. The two DL-MRI methods yield similar SSIM

Ground Truth

Fig. 3: A test slice reconstructed using different ratios of p =
|A|/|€2], where A is only used in the loss and Q/A is only used
in the data consistency unit of the network.
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Fig. 4: A slice from a proton-density knee dataset, depicting the reference fully-sampled image, and reconstructions using CG-SENSE, TGV,
supervised DL-MRI trained on fully-sampled data and the proposed self-supervised DL-MRI trained on only sub-sampled data. The proposed
training strategy leads to a DL-MRI reconstruction that removes artifacts successfully and perform similar to the supervised approach, while

visibly outperforming CG-SENSE and TGV approaches.

and NMSE values, even though the self-supervised approach
does not use any fully-sampled datasets during training. Both
methods outperform CG-SENSE.

4. DISCUSSION

We have proposed a self-supervised training method for
physics-based DL-MRI reconstruction in the absence of
fully-sampled data. The set of sub-sampled data indices
Q was divided into two sets © and A, where the former was
used during data consistency in the unrolled network, and the
latter was utilized in the loss function. Results on fastMRI
dataset indicate that our approach is successful in training
a reconstruction algorithm that removes aliasing artifacts,
achieving comparable performance to the conventional su-
pervised learning approach that has access to fully-sampled
data, while outperforming traditional compressed sensing and
parallel imaging. The same neural network architecture was
used for the self-supervised and supervised training. While
this is not the focus of this study, other choices of neural
networks are possible for further improvement. The effect
of different choices of A was also studied, where a variable-
density selection with sufficient cardinality was favored.
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Fig. 5: a) and b) shows the SSIM and NMSE values for the 380 slices
tested. Supervised DL-MRI approach performs slightly better than
the proposed self-supervised DL-MRI approach, while both methods
readily outperform CG-SENSE quantitatively.

In many scenarios, acquisition of fully-sampled data is
challenging due to physiological and physical constraints.
The lack of ground truth data hinders the utility of the super-
vised learning approaches in these scenarios. The proposed
self-supervised approach relies only on available sub-sampled
measurements. While we have focused on MRI reconstruc-
tion, the proposed approach naturally extends to other linear
inverse problems, and has potential applications in other
imaging modalities.

5. CONCLUSION

The proposed self-supervised learning strategy allows train-
ing of physics-based DL-MRI reconstruction without requir-
ing fully-sampled data, while performing similar to conven-
tional supervised learning approaches.
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