

1 **Impacts of ice-shelf melting on water mass transformation in the Southern**

2 **Ocean from E3SM simulations**

3 Hyein Jeong*, Xylar S. Asay-Davis, Adrian K. Turner, Darin S. Comeau, Stephen F. Price

4 *Los Alamos National Laboratory, Los Alamos, NM 87545, USA*

5 Ryan P. Abernathay

6 *Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA*

7 Milena Veneziani, Mark R. Petersen, Matthew J. Hoffman

8 *Los Alamos National Laboratory, Los Alamos, NM 87545, USA*

9 Matthew R. Mazloff

10 *Scripps Institution of Oceanography, La Jolla, CA 92093, USA*

11 Todd D. Ringler

12 *Los Alamos National Laboratory, Los Alamos, NM 87545, USA*

13 *Corresponding author address: Hyein Jeong, Theoretical Division, Los Alamos National Laboratory, PO Box 1663, Los Alamos, NM 87545.

14 E-mail: hjeong@lanl.gov, hjeong820310@gmail.com

ABSTRACT

16 The Southern Ocean overturning circulation is driven by winds, heat fluxes,
17 and freshwater sources. Among these sources of freshwater, Antarctic sea-ice
18 formation and melting play the dominant role. Even though ice-shelf melt
19 is relatively small in magnitude, it is located close to regions of convection,
20 where it may influence dense water formation. Here, we explore the impacts
21 of ice-shelf melting on Southern Ocean water mass transformation (WMT)
22 using simulations from the Energy Exascale Earth System Model (E3SM)
23 both with and without the explicit representation of melt fluxes from beneath
24 Antarctic ice shelves. We find that ice-shelf melting enhances transformation
25 of Upper Circumpolar Deep Water (UCDW), converting it to lower density
26 values. While the overall differences in Southern Ocean WMT between the
27 two simulations are moderate, freshwater fluxes produced by ice-shelf melt-
28 ing have a further, indirect impact on the Southern Ocean overturning cir-
29 culation through their interaction with sea-ice formation and melting, which
30 also cause considerable upwelling. We further find that surface freshening
31 and cooling by ice-shelf melting causes increased Antarctic sea-ice produc-
32 tion and stronger density stratification near the Antarctic coast. In addition,
33 ice-shelf melting causes decreasing air temperature, which may be directly
34 related to sea-ice expansion. The increased stratification reduces vertical heat
35 transport from the deeper ocean. Although the addition of ice-shelf melting
36 processes leads to no significant changes in Southern Ocean WMT, the simu-
37 lations and analysis conducted here point to a relationship between increased
38 Antarctic ice-shelf melting and the increased role of sea ice in Southern Ocean
39 overturning.

40 **1. Introduction**

41 The Southern Ocean plays a large role in Earth's climate system (Morrison et al. 2011; Marshall
42 and Speer 2012; Séférian et al. 2012; Heuzé et al. 2013; Merino et al. 2018) as a significant sink for
43 atmospheric heat (Roemmich et al. 2015) and anthropogenic carbon dioxide (Sallée et al. 2012),
44 hence reducing global warming (Merino et al. 2018). The Southern Ocean also produces the
45 densest water mass in the global ocean, Antarctic Bottom Water (AABW), which plays an active
46 role in driving the global meridional overturning circulation (MOC). In turn, the freezing and
47 melting of Antarctic sea ice are a major control on this overturning circulation. Using a water mass
48 transformation (WMT) analysis (Walsh 1982), Abernathey et al. (2016) revealed that differential
49 brine rejection and sea-ice melting are strong controls on the strength of the MOC by governing
50 the upwelling and transformation of Circumpolar Deep Water (CDW), with precipitation playing
51 a more minor part.

52 Despite a recent sharply decreasing trend from 2014 to 2019 (Parkinson 2019), most observa-
53 tional studies report increasing Antarctic sea-ice extent during the last 40 years. Most CMIP5
54 models, however, simulate a steadily decreasing Antarctic sea-ice extent over the past few decades
55 (Flato et al. 2013), failing to capture the observed expansion. Significant effort has gone into
56 understanding the cause for this discrepancy, primarily through the investigation of changes in
57 atmospheric climate modes and their relation to tropical forcing (Thompson et al. 2011; Turner
58 et al. 2009; Stammerjohn et al. 2008; Li et al. 2014; Kwok et al. 2016), ozone depletion (Bitz and
59 Polvani 2012; Sigmond and Fyfe 2010), and ocean and sea-ice feedbacks (Zhang 2007). Increased
60 Antarctic ice-shelf melting could also be contributing to Antarctic sea-ice expansion through the
61 freshening of Southern Ocean surface waters (Jacobs et al. 2002; Jacobs and Giulivi 2010; Bin-
62 tanja et al. 2013; Merino et al. 2018). However ice sheet freshwater fluxes are typically not treated

realistically in CMIP climate models; freshwater enters the ocean at the ice sheet edge, is distributed near the sea surface, and temporal variability enters only through changes in precipitation. These simplifications may partially explain the failure of existing climate models to reproduce the observed Antarctic sea-ice trends (Turner et al. 2013; Zhang et al. 2019).

Ice-shelf melt fluxes, though relatively small in magnitude compared to freshwater fluxes from sea-ice freezing and melting or precipitation, may have a disproportionate influence on dense water formation because they occur at depth, forming a buoyant plume that contributes to ocean overturning. In addition to its direct impacts, ice-shelf melting contributes to freshwater fluxes indirectly through its impacts on stratification and circulation, which feeds back on sea-ice formation and melting (Hellmer 2004; Donat-Magnin et al. 2017; Jourdain et al. 2017; Mathiot et al. 2017). While not previously applied to simulations that include thermodynamic interactions with ice shelves, the WMT framework (Walsh 1982; Abernathey et al. 2016) is an ideal tool for obtaining a more qualitative and quantitative understanding of how Antarctic ice-shelf melt fluxes impact Southern Ocean properties and circulation.

In this study, we investigate the impacts of Antarctic ice-shelf melting on Southern Ocean WMT and its indirect impacts on sea-ice formation and melting. Our approach is that of a sensitivity study, where a perturbed simulation includes an additional source of freshwater derived from explicitly calculating ice-shelf melt fluxes that is not present in the control. Although the amount of freshwater added to the perturbed simulation is about an order of magnitude larger than observed trends ($\sim 1400 \text{ Gt yr}^{-1} \approx 0.046 \text{ Sv}$, in our simulation vs. $\sim 155 \text{ Gt yr}^{-1} \approx 0.0049 \text{ Sv}$ from observations; Bamber et al. 2018), this approach may suggest mechanisms by which increased ice-shelf melting, observed in Antarctica during the last few decades (e.g., Shepherd et al. 2004; Khazendar et al. 2016; Pritchard et al. 2012; Holland et al. 2019), could impact the broader climate. In Section 2, we briefly describe the E3SM climate model, the reference data sets used for model

validation, and the WMT analysis used herein. Section 3 analyzes the fidelity of E3SM's Southern Ocean climate compared to available reanalysis data sets. Section 4 uses the WMT framework to examine interactions between ice-shelf melting and Southern Ocean sea ice processes, and Section 5 provides a detailed analysis of the WMT caused by Antarctic ice-shelf melting. In Section 6, we present our summary and conclusions from this study.

2. Data and Methodology

a. E3SM

For this study we use the Energy Exascale Earth System Model (E3SM) version 1, a new global, coupled Earth system model developed by the U.S. Department of Energy (DOE) (Golaz et al. 2019; Petersen et al. 2019; Rasch et al. 2019). E3SM v1¹ features fully coupled ocean, sea-ice, river, atmosphere and land components as well as a unique capability for multi-resolution modeling using unstructured grids in all of its components. The ocean and sea-ice components of E3SM v1 are MPAS-Ocean and MPAS-Seaice respectively, which are built on the Model for Prediction Across Scale (MPAS) modeling framework (Ringler et al. 2013; Petersen et al. 2019) and share the same unstructured horizontal mesh. The ocean model vertical grid is a structured, z-star coordinate (Petersen et al. 2015; Reckinger et al. 2015) and uses 60 layers ranging in thickness from 10 m at the surface to 250 m in the deep ocean. The ocean and sea-ice mesh used here contain $\sim 230,000$ horizontal ocean cells with resolution varying from 30 to 60 km; enhanced resolution in the equatorial and polar regions is used to better resolve processes of interest. Within the area of interest in this study (south of 60°S) the ocean and sea-ice horizontal resolution varies from 35 to 50 km. Petersen et al. (2019) provide a more detailed description of the E3SM v1 ocean and sea-ice components. The atmosphere component of E3SM v1 is the E3SM Atmospheric Model

¹<https://github.com/E3SM-Project/E3SM/>

109 (EAM), which uses a spectral element dynamical core at \sim 100 km horizontal resolution on a
110 cubed-sphere geometry. EAM's vertical grid is a hybrid, sigma-pressure coordinate and uses 72
111 layers with a top of atmosphere at approximately 60 km. Golaz et al. (2019), Xie et al. (2018),
112 and Qian et al. (2018) provide a detailed description of the E3SM v1 atmosphere component.
113 Since there is currently no coupled land ice component, E3SM v1 routes precipitation (snow or
114 rain) that falls on Antarctica back to the rest of the climate system as either solid ice or liquid
115 runoff, respectively. Snow in excess of 1 m water equivalent (so-called "snowcapping") and rain
116 are immediately routed to the nearest coastal ocean grid cell and deposited at the surface with a
117 small amount of horizontal smoothing. This functions as a crude approximation to unresolved ice
118 sheet processes (including surface processes, iceberg calving, and basal melting) in order to keep
119 the ice sheet in instantaneous equilibrium with climate forcing, and conserves mass globally to
120 avoid having to account for a potentially large water sink in the model.

121 A new capability for Earth system models, now available in E3SM, is the extension of the
122 ocean domain to include ocean circulation in cavities under Antarctic ice shelves. In these cavi-
123 ties, MPAS-Ocean solves the full prognostic equations, which include velocity, temperature, and
124 salinity. Based on these fields, diagnostic melt fluxes at the base of the ice shelves are computed
125 using coupled boundary conditions for heat and salt conservation, and a linearized equation of
126 state for the freezing point of seawater (Holland and Jenkins 1999; Hellmer and Olbers 1989).
127 These boundary conditions are used to simultaneously compute the potential temperature, salin-
128 ity, and melt rate at the ice shelf base using a velocity-dependent parameterization of the transfer
129 of heat and salt across the ocean-ice-shelf boundary layer (Dansereau et al. 2014) with constant,
130 non-dimensional heat- and salt-transfer coefficients (Jenkins et al. 2010). The boundary condi-
131 tions account only for the conversion of sensible heat from the ocean into latent heat of melting
132 ice, ignoring the sensible heat flux into the ice (which is typically \lesssim 10% of other terms; Holland

133 and Jenkins 1999). The thermal and haline driving terms are computed using “far-field” potential
134 temperature and salinity averaged over the top 10 m of the water column. The freshwater and heat
135 fluxes from ice-shelf melting are deposited into the ocean at depth using an exponentially decaying
136 distribution over the water column with a characteristic distance from the interface of 10 m. In the
137 simulations presented here, melt fluxes are computed directly in the ocean component once during
138 each ocean time step, rather than in the coupler. No overflow parameterizations, common in many
139 ESMs of similar resolution (Briegleb et al. 2010), are used to redistribute water masses between
140 ice-shelf cavities and the continental shelf or between the continental shelf and the deep ocean.
141 Given that E3SM does not yet have the ice sheet-ocean coupling needed to model the response
142 of the ice sheet to basal melting, we use a static geometry for the ice-shelf cavities and ground-
143 ing line. Thus, we are able to model the impact of ice-shelf melt fluxes on ocean circulation and
144 stratification, but not the feedback from ocean circulation and ice shelf basal melting on ice-sheet
145 stability. Here, we assume that the term “ice-shelf melting” includes both melting and freezing
146 (i.e., negative melting) at the base of the ice shelf, but we label it “melting” because that term is
147 dominant.

148 To better understand and quantify the impact of these additional heat and freshwater fluxes in
149 an Earth system model, we have run a pair of fully coupled, pre-industrial (Eyring et al. 2016)
150 simulations with E3SM: one with ice-shelf melt fluxes (hereafter, “ISM”)², and one without (here-
151 after, “Ctrl”)³. Previously published E3SM simulations (Golaz et al. 2019; Petersen et al. 2019) do
152 not include ice-shelf cavities, but the horizontal and vertical grids are otherwise identical to these.
153 Both ISM and Ctrl include the three-dimensional ocean domain below the ice shelves, but in Ctrl
154 the ice-shelf base is simply a depressed surface where no heat and freshwater exchange occur.

²Full name in E3SM archive: 20180612.B_case.T62_oEC60to30v3wLI.modified_runoff_mapping.edison

³Full name in E3SM archive: 20180612.B_case.T62_oEC60to30v3wLI.modified_runoff_mapping.no_melt_fluxes.edison

155 This experimental setup can be thought of as a sophisticated freshwater hosing experiment, where
156 the amount, timing, and location of the additional freshwater input to the system is model-state
157 dependent. While both simulations have runoff from Antarctic precipitation, the ISM simulation
158 has an additional source term of freshwater through ice-shelf basal melting (≈ 0.045 Sv) that is not
159 in the Ctrl simulation (see Table 1 and Fig. 1). This difference in the freshwater budget has the
160 effect of an additional heat sink in the ISM simulation, since the freshwater from ice-shelf melting
161 is deposited in the ocean at the pressure- and salinity-dependent freezing point. The simulations
162 use “cold-start” initial conditions; the ocean is initialized with a month-long spin-up (without ice-
163 shelf melting) from rest for initial adjustment, and sea ice is initialized with a 1 meter-thick disk
164 of ice extending to 65° in both hemispheres. Each simulation was run for 75 years, with model
165 data from the last 30 years used for analysis.

166 *b. Atmosphere, ocean and sea-ice state estimates*

167 Before investigating the impacts of ice-shelf melting on WMT, we assess E3SM’s simulated
168 ocean temperature, salinity, and sea-ice properties over the Southern Ocean. To do this, we com-
169 pare E3SM results to several data sets including direct observations, model-based state estimates,
170 and interpolated climatologies of the ocean and sea-ice in this region. The Southern Ocean State
171 Estimate (SOSE, Mazloff et al. 2010) is a state-of-the-art data-assimilation product that incorpo-
172 rates millions of ocean and sea-ice observations while maintaining dynamically consistent ocean
173 state variables. Given the sparsity of observations in many regions around Antarctica, SOSE
174 offers a comprehensive, physically based estimate of ocean properties that would otherwise be
175 entirely uncharacterized. We also use the U.K. Met Office’s observational data sets (EN4; Good
176 et al. 2013), the World Ocean Atlas 2018 (WOA18; Locarnini et al. 2018), and the World Ocean
177 Circulation Experiment (WOCE)/Argo Global Hydrographic Climatology (WAGHC; Gouretski

178 2018), each of which provides a global data product of the subsurface ocean temperature and
179 salinity. For comparison of atmospheric winds over the Southern Ocean, we use zonal wind stress
180 from NCEP/NCAR Reanalysis I (Kalnay et al. 1996). For the sea-ice evaluation, we use several
181 satellite-derived observational data sets: sea-ice concentration from the SSM/I NASA Team (Cav-
182 alieri et al. 1996) and SSM/I Bootstrap (Comiso 1999) and sea-ice thickness from ICESat (Kurtz
183 and Markus 2012).

184 We note that these ocean and sea-ice data sets represent present-day conditions, whereas the
185 E3SM simulations are representative of model conditions for the the pre-industrial climate. While
186 there will be uncertainty when comparing pre-industrial simulation output with present-day ob-
187 servations, we find that the differences between pre-industrial and present-day control simulations
188 are much less than the differences between different model configurations under the same pre-
189 industrial forcing. Therefore, as in other studies (e.g., Menary et al. 2018), we feel justified in
190 using present-day observations as a metric by which to judge our pre-industrial simulation output.
191 Detailed information about each of these data sets, which have been time-averaged as indicated, is
192 provided in Table 2.

193 *c. Surface-flux driven water mass transformation*

194 Water mass transformation analysis, first introduced by Walin (1982), quantifies the relationship
195 between the thermodynamic transformation of water mass properties within an ocean basin and
196 the net transport of those same properties into or out of the basin. This relationship has been used
197 to infer Southern Ocean overturning circulation based on observations of air-sea fluxes and to
198 characterize the thermodynamic processes that sustain the Southern Ocean overturning in models
199 (Abernathay et al. 2016). Here, we apply a WMT analysis framework (following Abernathay
200 et al. 2016) to aid in our investigation of Southern Ocean interactions between the atmosphere,

201 ocean, sea ice, and ice shelves, and to help identify biases in the E3SM's representation of these
202 processes.

203 Southern Ocean water masses are assumed to be primarily transformed by surface heat and
204 freshwater fluxes (Abernathay et al. 2016). As sea-ice grows, brine rejection (the result of a
205 surface flux of freshwater out of the ocean) and vertical mixing have a tightly coupled relationship
206 and contribute along with other surface fluxes to transformations (Abernathay et al. 2016). In
207 addition, geothermal heating or internal tide and lee wave-driven mixing can also contribute to
208 WMT in Southern Ocean, affecting formation or consumption of AABW (De Lavergne et al.
209 2016). Furthermore, Groeskamp et al. (2016) showed that cabbeling and thermobaricity also play
210 a significant role in the WMT budget, with cabbeling having a particularly important role in the
211 formation of Antarctic Intermediate Water (AAIW) and AABW. Mixing-induced, interior diabatic
212 fluxes, however, are not explicitly diagnosed in our simulations. Consequently, we only consider
213 the transformation rate induced by surface fluxes.

214 The transformation across density surfaces is diagnosed from surface heat and freshwater buoy-
215 ancy fluxes:

$$\Omega(\sigma_k, t) = -\frac{1}{\sigma_{k+1} - \sigma_k} \iint_A \left(\frac{\alpha Q_{net}}{\rho_0 C_p} \right) dA + \frac{1}{\sigma_{k+1} - \sigma_k} \iint_A \left(\frac{\beta SF_{net}}{\rho_0} \right) dA, \quad (1)$$

216 where variables in Equation 1 are defined in Table 3. In this study, the total WMT into the ocean
217 consists of the transformation rate due to net surface heat flux (the first term of right-hand side in
218 Equation 1) and the transformation rate due to net surface freshwater flux (the second term of right-
219 hand side in Equation 1). The WMT is calculated numerically by discretizing potential density,
220 σ_k , into 400 unevenly spaced bins. The bin spacing, $\sigma_{k+1} - \sigma_k$, varies from 0.025 kg m^{-3} at low
221 densities to 0.0025 kg m^{-3} at high densities. This density spacing was chosen by Abernathay et al.

222 (2016) who showed that it provides good resolution for high-density, polar water masses. In this
223 study, we analyze the WMT rate south of 60°S.

224 All sources of net surface heat and freshwater fluxes are communicated to the ocean component
225 through the coupler from the respective model components (e.g. precipitation from the atmosphere
226 component). The exception to this are the ice-shelf melt fluxes, which, in the absence of a dynamic
227 land-ice component, are calculated directly in the ocean component. Each term is stored separately
228 in ocean history files. Here, “surface” implies processes at the atmosphere/ocean interface, but also
229 at the sea ice/ocean and ice shelf/ocean interfaces. That is, the surface considered here is always
230 the ocean surface regardless of what other model component that surface is in contact with.

231 To diagnose the role of different surface freshwater fluxes, we decompose surface net freshwater
232 flux, F_{net} , into several sources:

$$F_{net} = F_{A \rightarrow O} + F_{I \rightarrow O} + F_{S \rightarrow O}, \quad (2)$$

233 where, $F_{A \rightarrow O}$ is the freshwater flux from the atmosphere into the ocean, $F_{I \rightarrow O}$ is that from sea-ice
234 into the ocean and $F_{S \rightarrow O}$ is that from ice shelves into the ocean. $F_{I \rightarrow O}$ is further decomposed into
235 two parts: the freshwater flux from sea-ice formation ($F_{formation}$) and that from sea-ice melting
236 ($F_{melting}$):

$$F_{formation} = F_{I \rightarrow O} \text{ where } F_{I \rightarrow O} < 0, \quad (3)$$

$$F_{melting} = F_{I \rightarrow O} \text{ where } F_{I \rightarrow O} > 0. \quad (4)$$

237 The water mass formation (WMF) rate is the difference of the transformation rate with respect to
238 density surfaces,

$$M(\sigma) = -[\overline{\Omega(\sigma_{k+1})} - \overline{\Omega(\sigma_k)}], \quad (5)$$

239 where the over-bar represents an average in time.

240 The transformation and formation rate are computed with respect to surface-referenced potential
241 density, but plotted against the neutral density, γ_n , using a regression relationship between potential
242 density and neutral density (Jackett and McDougall 1997; Klocker et al. 2009). This is possible
243 because surface-referenced potential density and neutral density have a robust linear relationship
244 in the upper ocean (Abernathy et al. 2016). Table 4 shows how the WMT and formation rates
245 should be physically interpreted with respect to their sign.

246 Since we focus on the region south of 60°S, we classify Southern Ocean water masses into
247 Surface Water ($\gamma_n < 27.5 \text{ kg m}^{-3}$), Upper Circumpolar Deep Water (UCDW; $27.5 < \gamma_n < 28.0$
248 kg m^{-3}), Lower Circumpolar Deep Water (LCDW; $28.0 < \gamma_n < 28.2 \text{ kg m}^{-3}$), and Antarctic Bot-
249 tom Water (AABW; $\gamma_n > 28.2 \text{ kg m}^{-3}$).

250 3. Southern Ocean climate in E3SM

251 Before looking in more detail at the impacts of ice-shelf melting on WMT in E3SM, we in-
252 vestigate the fidelity of ocean temperature and salinity in simulation results from E3SM. In this
253 section, we use the Ctrl simulation to investigate the simulated Southern Ocean climate. Here, we
254 make comparisons to the Ctrl simulation rather than the ISM simulation for three main reasons.
255 First, the Ctrl configuration is closer to the “standard” E3SM configuration that has been used
256 to run the CMIP6 DECK experiments (Golaz et al. 2019). Second, while the ISM configuration
257 might be considered to represent freshwater fluxes in a more physically realistic way, the state of
258 its climate has received less assessment and scrutiny to date. Finally, Ctrl is also the configuration
259 more similar to other ESMs used for CMIP experiments.

260 Temperature and salinity are the most important characteristics of seawater, in that they control
261 ocean density and govern the vertical movement of ocean water. Fig. 2a through d show E3SM’s
262 annual mean climatology for temperature and salinity at the sea-surface and at 500 m depth over

263 the Southern Ocean (south of 50°S). The Southern Ocean is the coldest part of the global ocean,
264 and is also relatively fresh, with an area-averaged sea-surface temperature (SST) of 1.50°C and
265 sea-surface salinity (SSS) of 33.6 PSU in E3SM (Fig. 2a and b). At 500 m depth the temperature
266 and salinity is relatively warm and salty compared to the sea-surface, with an area-averaged tem-
267 perature of 2.43°C and salinity of 34.5 PSU (Fig. 2c and d). These relatively high temperatures
268 can lead to ice shelf melting. In Fig. 2e we compare E3SM’s temperature and salinity with the four
269 ocean products described in Section 2, in terms of area-weighted root mean square error (RMSE)
270 at the sea-surface and 500 m depth. The scatter diagram shows that the RMSE of temperature and
271 salinity at the sea-surface is larger than that at a depth of 500 m, indicating $\sim 0.9^\circ\text{C}$ and ~ 0.35
272 PSU errors at the sea-surface, and $\sim 0.8^\circ\text{C}$ and ~ 0.13 PSU errors at a depth of 500 m.

273 To investigate the characteristics of the potential temperature and salinity in the ocean interior,
274 Fig. 3 shows the full-depth, volumetric T-S diagram of the Southern Ocean for E3SM and the
275 four ocean data products. The volumetric T-S diagram, first introduced by Montgomery (1958),
276 presents a census for how much of a water mass has a given set of T-S properties (Thomson and
277 Emery 2014). The Southern Ocean near Antarctica has the densest, coldest water in the global
278 ocean. This dense water is referred to as AABW and is located at the bottom of the T-S diagram
279 ($\gamma_h > 28.2 \text{ kg m}^{-3}$ in Fig. 3). In general, E3SM has AABW at a similar density to the four ocean
280 data products, which may be attributable to the initial conditions given the relatively short model
281 spin-up. There are some discrepancies, however, in the CDW and lighter water mass ranges ($\gamma_h <$
282 28.2 kg m^{-3}). In the CDW range E3SM has relatively warmer temperatures and lower salinities
283 compared to the four ocean products.

284 It is also important to characterize how well E3SM represents that total water transported by
285 ocean currents. In Fig. 4 we show the horizontal and overturning volume transport in the Southern
286 Ocean for E3SM and SOSE. Positive values of the streamfunction in Fig. 4a, d show anticyclonic

subtropical gyres, while negative values represent cyclonic subpolar gyres. There is strong eastward transport by the Antarctic Circumpolar Current (ACC) between the subtropical and subpolar gyres, as shown by the rapidly increasing contours from approximately 0 to 170Sv in Fig. 4d. The results from SOSE suggest that the Weddell gyre transport is almost double that of the Ross Sea gyre. In general, E3SM simulates the horizontal volume transport well, as indicated by a reasonably high pattern correlation coefficient of 0.98 between the horizontal circulation patterns from SOSE and E3SM (Fig. 4a compared with d). The canonical value of net transport through Drake passage, the narrowest choke point of the ACC, is 134 ± 11.2 Sv from observational estimate (Whitworth and Peterson 1985; Cunningham et al. 2003), while recently Donohue et al. (2016) suggested the transport of 173.3 ± 10.7 Sv from updated observed data. E3SM simulates transport through the Drake Passage of 127 ± 11 Sv, which is a value that falls within the canonical observed range but is significantly lower than the more recent estimate.

The Meridional Overturning Circulation (MOC), calculated in depth space, does not reflect cross-isopycnal flow (Speer et al. 2000). However, it does clearly show the dominant Southern Ocean Ekman transport in E3SM and SOSE, which is due primarily to the strong atmospheric westerly winds around 50° S (Fig. 4b and e). Closer to Antarctica, Ekman divergence drives upwelling of deep waters (Fig. 4e). E3SM simulates the Southern Ocean overturning circulation reasonably well but displays Ekman transport that is stronger (~ 41 Sv) compared to SOSE (~ 33 Sv) and shifted equatorward (Fig. 4b), both of which are likely due to stronger westerly winds in E3SM around 50° S (Fig. 4c). Biases in westerly winds are common phenomena in CMIP5 simulations. Bracegirdle et al. (2013) found that every CMIP5 model shows an equatorward bias ranging from 0.4° to 7.7° in latitude. Also, there is a large spread in climatological zonal wind strength in the models compared to reanalysis data.

310 Since buoyancy fluxes from sea-ice formation and melting are the next most dominant terms,
311 after westerly winds, in causing CDW to upwell (Abernathay et al. 2016) it is important to
312 validate the properties of sea-ice in E3SM. Fig. 5 compares E3SM's June-July-August (JJA)
313 and December-January-February (DJF) mean sea-ice concentration, October-November (ON) and
314 February-March (FM) mean sea-ice thickness, and JJA and DJF mean freshwater flux from sea-ice
315 into the Southern Ocean with satellite-based observations and SOSE. While E3SM simulates the
316 summer sea-ice concentrations well (Fig. 5g and j), close to Antarctica, Southern Hemisphere win-
317 ter sea-ice concentrations are higher than observations during the JJA season (Fig. 5a and d). First,
318 it is important to keep in mind that these simulations are based on pre-industrial conditions, and
319 this may mean that sea-ice concentration should not be expected to match present-day observa-
320 tions. Second, this kind of bias is common in CMIP5 models, which while simulating the seasonal
321 cycle of sea-ice concentration well, show large variability from model to model in sea-ice extent
322 (Flato et al. 2013). There are a number of ways in which sea ice is influenced by and interacts with
323 the atmosphere and ocean, and some of these feedbacks are still poorly quantified (Flato et al.
324 2013). E3SM has relatively thicker sea ice compared to ICESat (Ice, Cloud, and land Elevation
325 Satellite) during October-November and February-March (Fig. 5 middle column). This is a point
326 that should be revisited in the future, when improved sea-ice thickness observations from ICESat-2
327 become available in the Southern Ocean. E3SM and SOSE are similar with respect to patterns of
328 JJA and DJF mean freshwater flux from sea-ice to ocean (Fig. 5 right column), but E3SM shows
329 increased sea-ice formation (corresponding to a negative freshwater flux) near Antarctica during
330 JJA and increased sea-ice melting (corresponding to a positive freshwater flux) offshore during the
331 DJF season compared to SOSE.

332 The above discussion argues that E3SM does a reasonable job of capturing the salient features of
333 Southern Ocean water masses, horizontal and overturning circulation, and sea-ice formation and
334 melting. We now move on to a comparative analysis of the Ctrl and ISM simulations.

335 **4. General impacts of ice shelf melting on hydrography, atmosphere, and sea-ice over the**
336 **Southern Ocean**

337 *a. Impacts on the Southern Ocean*

338 To investigate changes in hydrography over the Southern Ocean due to ice-shelf melting we
339 show zonally averaged differences between the Ctrl and ISM simulations for ocean temperature,
340 salinity, and potential density, for the specific basins of interest (the Amery ice-shelf sector, and
341 the Ross, Amundsen, and Weddell Seas; Fig. 6). The first thing to note is that, in both the Ctrl and
342 ISM simulations, isopycnals are weakly domed as they approach the continental shelf, especially
343 in the Amery, Ross Sea and Weddell Sea sectors (Fig. 6b, e, k), indicating the presence of a weak
344 Antarctic Slope Front. Furthermore, the ISM simulation has relatively fresher surface waters near
345 Antarctica, as well as fresher subsurface waters inside the ice-shelf cavities (Fig. 6 left column).
346 These salinity differences directly influence the potential density distribution; the ISM simulation
347 shows lower densities relative to the Ctrl simulation at the surface as we approach Antarctica and
348 in the subsurface over the shelf (Fig. 6 middle column). This behavior in the Amery Ice Shelf sec-
349 tor and Amundsen Sea, allows for the transport of relatively warm, deep water toward Antarctic
350 ice-shelf cavities rather than ventilation of this water at the ocean surface farther offshore (dashed
351 line in Fig. 6b, which continues to the ice shelves rather than impinging on the surface). The on-
352 shore transport of warm deep water results in more ice-shelf melting in the Amery and Amundsen
353 Sea sectors in E3SM (Fig. 1a). For the Ross and Weddell Seas, the ISM simulation isopycnals im-

354 ping more on the topography at depth, thus producing a relatively stronger Antarctic Slope Front
355 and inhibiting transport of CDW to the continental shelves (relative to the Ctrl simulation). In
356 general, surface freshening in the ISM simulation causes a more stratified vertical ocean structure,
357 especially near the Antarctic continental shelf (Fig. 7). This prevents convective activity between
358 the surface and the ocean depths, resulting in relatively colder temperatures near the surface but
359 warmer temperatures at depth.

360 *b. Impacts on the atmosphere*

361 Since both the ISM and Ctrl simulations are fully coupled, the atmosphere over the Southern
362 Ocean can be affected by ice-shelf melting and/or increased sea-ice volume. In Fig. 8, we show
363 30 years of annual mean 2-m air temperature, sea level pressure (SLP), and precipitation from the
364 ISM simulation as well as differences in these quantities between the ISM and Ctrl simulations. In
365 the Antarctic interior, the air temperature is often below -30°C, leading to a temperature gradient
366 between the Antarctic plateau and the coastal ocean that, together with the slope of the ice sheet,
367 lead to katabatic winds that blow from the Antarctic interior to the Southern Ocean. Precipitation
368 over the Southern Ocean is relatively small in magnitude, with an annual average of 2–3 mm/day.
369 The difference in precipitation between the Ctrl and ISM simulations is small (Fig. 8f). This is
370 consistent with the observed small change in WMT due to precipitation between the ISM and
371 Ctrl simulations, which will be shown in Section 5. Fig. 8d shows significant coastal cooling
372 only in the western Ross Sea and close to the Filchner Ice Shelf, with offshore cooling in the
373 Dronning Maud Land sector. In both the Amundsen/Bellingshausen sector and over broad regions
374 of Eastern Antarctica, there is no significant difference in 2-m air temperature either at coast or
375 on the Plateau, meaning that the strength of katabatic winds is largely unaffected. According to
376 geostrophic balance, the climatological winds are westerlies on the equator side of the low pressure

377 belt (50°S) and easterlies on the polar side, especially along the Antarctic coast (Fig. 8b). From
378 the SLP differences between ISM and Ctrl (Fig. 8e), the anomalies in pressure gradient over East
379 Antarctica show enhanced easterlies in the ISM simulation. However, along the coasts of West
380 Antarctica, the gradients in SLP are reduced, leading to weakened coastal easterlies. Similarly,
381 in regions of westerly winds over the western Southern Ocean, especially over the Amundsen
382 and Bellingshausen Seas and near the Weddell Sea, the westerlies are reduced. Even with the
383 weakened easterlies and westerlies, the Southern Ocean is colder than the Ctrl simulation, leading
384 to more sea-ice production. The pattern of decreased 2-m air temperature is similar to the pattern
385 of increased sea-ice concentration (Fig. 8d vs. Fig. 9a), suggesting that increased sea-ice area may
386 cause 2-m air temperature to decrease, or vice versa.

387 *c. Impacts on sea ice*

388 To investigate the impacts on sea ice over the Southern Ocean, we examine the differences in
389 mean annual sea-ice concentration, thickness, and sea-ice to ocean freshwater flux between the Ctrl
390 and ISM simulations (Fig. 9). Sea ice concentration in the ISM simulation has increased by an area
391 average of 5% and the sea-ice thickness has increased by about 15 cm over the Southern Ocean
392 (Fig. 9a, b), compared to the Ctrl simulation. Merino et al. (2018) and Jourdain et al. (2017) found
393 thinner sea ice in the Amundsen Sea with more ice-shelf melting, in contrast to our simulations
394 with E3SM (see Fig. 9a). This is likely because of the relatively low resolution of E3SM and
395 biases in sub-surface temperature in the Amundsen Sea in the E3SM simulations. Further, we find
396 that more freezing occurs in the ISM than the Ctrl simulation (Fig. 9c) and that spatial patterns
397 of these differences are similar to those for sea-ice concentration and thickness (Fig. 9a and b).
398 The ISM simulation shows a similar sea-ice expansion as discussed by Bintanja et al. (2013), who
399 argued that the overall increase in observed sea-ice concentration is dominated by increased ice-

400 shelf melting. Increasing sea-ice thickness in the ISM is also consistent with previous results by
401 Hellmer (2004) and Kusahara and Hasumi (2014), who performed numerical experiments with and
402 without ice-shelf interaction and investigated the impacts on the sea-ice distribution. As suggested
403 by Bintanja et al. (2013), ice-shelf melting freshens the surface, which reduces convective activity
404 between the fresh surface and the warmer subsurface layers. This cools the upper ocean, which,
405 along with fresher surface waters, encourages more sea-ice formation (here, at an average rate
406 of -0.05 m/yr; Fig. 9c). Bintanja et al. (2013) did not mention the air-temperature changes from
407 their experiments, instead only arguing that there is no relationship between sea ice expansion and
408 atmospheric variability such as the Southern Annular Mode (SAM) or stratospheric ozone. We
409 find, however, that air temperature has also been changed in the ISM simulation compared to the
410 Ctrl simulation, which might be directly related to increased sea-ice extent and volume.

411 **5. Surface-flux driven water mass transformation and formation from ice-shelf melting**

412 *a. Water mass transformation*

413 We show the annual mean WMT rate from the Ctrl and ISM simulations in Fig. 10. Broadly
414 speaking, there are no significant differences in WMT rates due to the total surface fluxes, which
415 are a summation of surface heat and freshwater fluxes (black lines in Fig. 10a). We do, however,
416 find important differences in the individual components; if we further separate the WMT rate into
417 that caused by distinct sources of freshwater flux (Fig. 10b), we see compensating differences in
418 transformation rate between the Ctrl and ISM simulations for each source. First, freshwater flux
419 from ice-shelf melting induces a more negative transformation rate (increased buoyancy gain) by
420 as much as -1.74 Sv (peaking at a neutral density of 27.4 kg m^{-3}) compared to the Ctrl simulation.
421 Second, ice-shelf melting also has a significant, indirect effect on sea ice. The transformation rate

422 due to sea-ice formation and melting increases by as much as 1.79 Sv, at the same high density
423 levels affected by ice-shelf melting, but decreases by -0.84 Sv at lower densities (with the largest
424 decrease at 26.4 kg m^{-3}). Third, we find no notable changes in the transformation rate by freshwa-
425 ter fluxes from the atmosphere and land (E-P-R term) between the two simulations. Meanwhile,
426 there is no AABW formation in either the Ctrl or ISM simulations and transformation rates of
427 LCDW in the two simulations are minimal. Formation of AABW is notably difficult to represent
428 in low resolution of general circulation models (Aguiar et al. 2017). In addition, most CMIP5 mod-
429 els have temperature and salinity biases over the entire water column in Southern Ocean, which
430 is a factor influencing the density of seawater (Sallée et al. 2013). Both Ctrl and ISM simulations
431 have such temperature and salinity biases in the Southern Ocean as shown in Fig. 2.

432 In Fig. 11, we plot the climatological annual cycle of WMT rate caused by freshwater fluxes
433 from sea-ice formation and melting and from ice-shelf melting. Consistent with Fig. 10, ice-shelf
434 melting always produces a negative transformation rate (Fig. 11b), regardless of the season, at a
435 neutral density of approximately 27.4 kg m^{-3} . In contrast, the transformation caused by sea-ice
436 formation and melting has large seasonal variability (Fig. 11a), with a positive transformation
437 rate (buoyancy loss) during the winter and a negative transformation rate (buoyancy gain) during
438 the summer. These differences in transformation rate between the two simulations (Fig. 11c)
439 show that the ISM simulation has an overall stronger seasonal sea-ice cycle. During winter, the
440 ISM simulation has a more positive transformation rate due to sea-ice formation, peaking at a
441 neutral density of 27.4 kg m^{-3} where ice-shelf melting is also influential. During summer, the
442 ISM simulation has a more negative transformation rate due to sea-ice melting at lower density
443 levels, which compensates for the more positive transformation rate in winter.

444 *b. Water mass formation*

445 Finally, we investigate how ice-shelf melting and sea-ice formation and melting impact water
446 mass formation and destruction by decomposing the water mass formation rate into contributions
447 from different surface flux processes (Fig. 12). The water mass formation rate is the difference
448 of the WMT rate with respect to density and represents volume convergence (for positive values,
449 corresponding to downwelling) or divergence (for negative values, corresponding to upwelling)
450 within a particular density range (Abernathay et al. 2016). The freshwater flux from ice-shelf
451 melting can thus indirectly impact the water mass formation rate through sea-ice formation and
452 melting (Fig. 12a). For both the Ctrl and ISM simulation, the combined effects of sea-ice for-
453 mation and melting destroy a considerable amount of water mass (corresponding to a negative
454 formation rate) in the density range from 26.4 kg m^{-3} to 27.4 kg m^{-3} (Surface Water). Yet there
455 is additional water mass destruction in this same density range by as much as 2.57 Sv for the ISM
456 simulation (Table 5). The freshwater flux from ice-shelf melting directly induces transformation
457 (corresponding to a negative formation rate) at relatively high-density levels (UCDW and LCDW)
458 and this upwelled water is directly converted to lower densities (Fig. 12b). The total amount of
459 upwelling due to ice-shelf melting is approximately 1.77 Sv (Table 5). Fig. 12c-f shows the WMF
460 rate for the Southern Ocean divided into the Amery ice-shelf sector, Ross Sea, Amundsen Sea
461 and Weddell Sea sectors. It is evident that the Amery ice-shelf sector dominates the WMF rate,
462 and that upwelled water here is converted to relatively low densities. This is probably due to rela-
463 tively warm water coming up onto the continental shelf in the Amery ice-shelf sector in the ISM
464 simulation (Fig. 6g), and thus melt rates are probably too high compared to Rignot et al. (2013)
465 (e.g., note large melt biases in Dronning Maud Land region and for the Amery Ice Shelf in Fig. 1).
466 The Indian Ocean sector (the Dronning Maud Land region of Antarctica) has a particularly narrow

⁴⁶⁷ continental shelf, and the model resolution is likely insufficient to separate warmer water in the
⁴⁶⁸ deeper Weddell Sea from colder water trapped on the continental shelf.

⁴⁶⁹ **6. Summary and conclusions**

⁴⁷⁰ By comparing otherwise identical Earth system model simulations with and without ice-shelf
⁴⁷¹ melt fluxes we have used E3SM to characterize and quantify the impacts of ice-shelf melting
⁴⁷² and freezing processes on WMT and WMF. We find no significant differences in net Southern
⁴⁷³ Ocean WMT due to the differences in total surface fluxes between the two simulations. Yet,
⁴⁷⁴ when we separate the WMT rate into its constituent processes, we find important differences in
⁴⁷⁵ both WMT and WMF rate between the simulations. Meltwater from ice shelves makes Surface
⁴⁷⁶ Water and UCDW water masses in the Southern Ocean lighter (corresponding to a buoyancy gain)
⁴⁷⁷ at relatively high density values. Meanwhile, the freshwater flux from sea-ice formation makes
⁴⁷⁸ these water masses denser (corresponding to a buoyancy loss) at these same high density values.
⁴⁷⁹ Effectively, ice-shelf meltwater is partially counteracting the densification of seawater from brine
⁴⁸⁰ rejection at these densities, with even more of a cancellation likely under future climate scenarios
⁴⁸¹ in which ice-shelf melting is likely to increase. Ice-shelf melting produces transformation of
⁴⁸² UCDW water masses at relatively high density values where ice-shelf melting is dominant and
⁴⁸³ this upwelled water is directly converted to lower density values. Freshwater fluxes produced by
⁴⁸⁴ ice-shelf melting have a further, indirect impact on the Southern Ocean overturning circulation
⁴⁸⁵ through the action of increased sea-ice formation, which also cause considerable upwelling and
⁴⁸⁶ effectively further amplifies the overturning that occurs from the buoyancy of ice-shelf meltwater
⁴⁸⁷ directly. Importantly, we find that this indirect impact is larger than the direct impact.

⁴⁸⁸ We have found that surface freshening by ice-shelf melting increases density stratification near
⁴⁸⁹ the Antarctic coast and hence reduces vertical heat transport from the deeper ocean, trapping

warmer water at depth. In some regions, this trapped heat might be expected to reach ice-shelf cavities through changes in ocean currents and/or density structure in future climate scenarios (Hellmer et al. 2012). Indeed, in some regions of Antarctica, feedbacks between ice-shelf melting and trapping of warmer waters have already been observed (Silvano et al. 2018). This more stratified ocean makes the sea surface colder, which along with the additional freshwater, results in significant Antarctic sea-ice expansion in simulations that include ice shelf melt fluxes. In addition, we have also found that air temperature has decreased in the ISM simulation compared to the Ctrl simulation, which may be directly related to sea-ice expansion. As air temperatures decrease, the sea ice is likely to increase even further in a feedback. Our model configuration does not allow us to investigate the trends of Antarctic sea-ice but rather the mean state of sea-ice with ice-shelf melting and, as stated previously, the change in freshwater flux between our ISM and Ctrl simulations is an order of magnitude larger than the observed trend in freshwater input (Bamber et al. 2018). With these caveats, our findings of sea-ice expansion by ice-shelf melting are consistent with the proposal that increased ice-shelf melting over the past decades (e.g., Shepherd et al. 2004; Pritchard et al. 2012; Khazendar et al. 2016) could be a cause for the observed sea-ice expansion over that same time period.

Abernathay et al. (2016) assessed the relative contributions of sea-ice freezing and melting, together with other modes of air-sea interaction, to Southern Ocean overturning and revealed the central role of sea-ice formation and melting in transforming upwelled Circumpolar Deep Water. Although we found no significant changes to those conclusions in this study, our results do show that the addition of ice-shelf melting to Earth system models increases the importance of sea-ice in Southern Ocean overturning. In other words, the increase in Antarctic ice-shelf melting over the historical time period (Shepherd et al. 2004; Pritchard et al. 2012; Khazendar et al. 2016; Holland et al. 2019) has likely increased the role of sea-ice in Southern Ocean overturning.

514 Silvano et al. (2018) suggested that increased glacial melt water will reduce AABW formation
515 by offsetting increased salt flux during sea-ice formation in coastal polynyas. These effects would
516 then prevent full-depth convection and the formation of dense shelf water. In this study we have
517 used a relatively low resolution version of E3SM, which does not have a good representation of
518 Antarctic coastal polynyas. This may explain why we do not find changes in dense water formation
519 related to ice-shelf melting. Future E3SM studies will investigate the impacts of ice-shelf melting
520 and the inclusion of ice-shelf cavities at higher resolution.

521 Whereas Bintanja et al. (2013) put freshwater fluxes from ice-shelf melting at the ocean surface,
522 our ISM simulation places that freshwater at the depth of the ice-shelf base, inducing overturning
523 that may either enhance or suppress local sea-ice formation, depending on deeper ocean conditions
524 (Donat-Magnin et al. 2017; Jourdain et al. 2017; Mathiot et al. 2017). In addition, ice-shelf melting
525 is not uniform along the Antarctic coast (Rignot et al. 2013; Depoorter et al. 2013), suggesting the
526 possibility for strong regional variation in how ice shelf melting affects sea ice. Care must be taken
527 in how Antarctic ice-shelf melt is distributed along the coast in global coupled climate simulations.

528 Here, prognostic basal melt fluxes from individually modeled ice shelves influence and are, in turn,
529 influenced by regional differences in sea-ice expansion and WMT. In that sense, the E3SM model
530 used here captures the important features mentioned above. As highlighted by our results, fully
531 coupled models including ice sheets, such as planned for future versions of E3SM, are required for
532 investigating potential feedbacks between Antarctic ice-shelves and ocean and sea-ice properties.

533 While this study only considers the impacts of ice-shelf melting on the Southern Ocean, iceberg
534 melting represents approximately half of the mass flux from the Antarctic ice sheet to the ocean
535 (Rignot et al. 2013; Depoorter et al. 2013). Calved icebergs transport freshwater away from the
536 Antarctic coast and exchange heat with the ocean, thereby affecting ocean stratification and circu-
537 lation, with subsequent indirect thermodynamic effects on the sea-ice system (Hunke and Comeau

538 2011; Stern et al. 2016; Merino et al. 2016). Future work to address these effects should include
539 a comprehensive analysis considering the impacts of both melting from ice shelves and calved
540 icebergs.

541 *Acknowledgments.* This research was supported by the Energy Exascale Earth System Model
542 (E3SM) project, funded by the U.S. Department of Energy Office of Science, Biological and En-
543 vironmental Research program. E3SM simulations used computing resources from the Argonne
544 Leadership Computing Facility (U.S. DOE contract DE-AC02-06CH11357), the National Energy
545 Research Scientific Computing Center (U.S. DOE contract DE-AC02-05CH11231), and the Oak
546 Ridge Leadership Computing Facility at the Oak Ridge National Laboratory (U.S. DOE con-
547 tract DE-AC05-00OR22725), awarded under an ASCR Leadership Computing Challenge (ALCC)
548 award. R. Abernathay acknowledges support from NSF award OCE-1553593. M. Mazloff ac-
549 knowledges support from NSF grants OCE-1658001, OCE-1924388, and PLR-1425989. The
550 authors appreciate three anonymous reviewers.

551 **References**

552 Abernathay, R., I. Cerovecki, P. Holland, E. Newsom, M. Mazloff, and L. Talley, 2016: Water-
553 mass transformation by sea ice in the upper branch of the Southern Ocean overturning. *Nature
554 Geoscience*, **9** (8), 596.

555 Aguiar, W., M. M. Mata, and R. Kerr, 2017: On deep convection events and antarctic bottom water
556 formation in ocean reanalysis products. *Ocean Science*, **13** (6).

557 Bamber, J. L., R. M. Westaway, B. Marzeion, and B. Wouters, 2018: The land ice contribution to
558 sea level during the satellite era. *Environmental Research Letters*, **13** (6), 063 008, doi:10.1088/
559 1748-9326/aac2f0.

560 Bintanja, R., G. J. Van Oldenborgh, S. S. Drijfhout, B. Wouters, and C. A. Katsman, 2013: Impor-
561 tant role for ocean warming and increased ice-shelf melt in Antarctic sea-ice expansion. *Nature*
562 *Geoscience*, **6 (5)**, 376.

563 Bitz, C., and L. M. Polvani, 2012: Antarctic climate response to stratospheric ozone depletion in
564 a fine resolution ocean climate model. *Geophysical Research Letters*, **39 (20)**.

565 Bracegirdle, T. J., E. Shuckburgh, J.-B. Sallee, Z. Wang, A. J. Meijers, N. Bruneau, T. Phillips,
566 and L. J. Wilcox, 2013: Assessment of surface winds over the atlantic, indian, and pacific ocean
567 sectors of the southern ocean in cmip5 models: Historical bias, forcing response, and state
568 dependence. *Journal of Geophysical Research: Atmospheres*, **118 (2)**, 547–562.

569 Briegleb, B. P., G. Danabasoglu, and W. G. Large, 2010: An Overflow parameterization for the
570 ocean component of the Community Climate System Model. Tech. Rep. NCAR/TN-481+STR,
571 NCAR. doi:10.5065/D69K4863.

572 Cavalieri, D., C. Parkinson, P. Gloersen, and H. Zwally, 1996: updated yearly: Sea ice con-
573 centrations from nimbus-7 smmr and dmsp ssm/i-ssmis passive microwave data (1981-2011).
574 *National Snow and Ice Data Center, Boulder, CO, digital media.[Available online at doi:*
575 *10.5067/8GQ8LZQVL0VL.J.*

576 Comiso, J., 1999: Bootstrap sea ice concentrations for nimbus-7 smmr and dmsp ssm/i. *Digital*
577 *Media, National Snow and Ice Data Center*, **10**, J6JQLS9EJ5HU.

578 Cunningham, S., S. Alderson, B. King, and M. Brandon, 2003: Transport and variability of
579 the antarctic circumpolar current in drake passage. *Journal of Geophysical Research: Oceans*,
580 **108 (C5)**.

581 Dansereau, V., P. Heimbach, and M. Losch, 2014: Simulation of subice shelf melt rates in a general
582 circulation model: Velocity-dependent transfer and the role of friction. *Journal of Geophysical*
583 *Research: Oceans*, **119** (3), 1765–1790, doi:10.1002/2013JC008846.

584 De Lavergne, C., G. Madec, J. Le Sommer, A. G. Nurser, and A. C. Naveira Garabato, 2016: On
585 the consumption of antarctic bottom water in the abyssal ocean. *Journal of Physical Oceanog-*
586 *raphy*, **46** (2), 635–661.

587 Depoorter, M. A., J. Bamber, J. Griggs, J. T. Lenaerts, S. R. Ligtenberg, M. R. van den Broeke,
588 and G. Moholdt, 2013: Calving fluxes and basal melt rates of antarctic ice shelves. *Nature*,
589 **502** (7469), 89.

590 Donat-Magnin, M., N. C. Jourdain, P. Spence, J. Le Sommer, H. Gallée, and G. Durand, 2017:
591 Ice-shelf melt response to changing winds and glacier dynamics in the amundsen sea sector,
592 antarctica. *Journal of Geophysical Research: Oceans*, **122** (12), 10 206–10 224.

593 Donohue, K., K. Tracey, D. Watts, M. P. Chidichimo, and T. Chereskin, 2016: Mean antarctic cir-
594 cumpolar current transport measured in drake passage. *Geophysical Research Letters*, **43** (22),
595 11–760.

596 Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor, 2016:
597 Overview of the coupled model intercomparison project phase 6 (cmip6) experimental design
598 and organization. *Geoscientific Model Development (Online)*, **9** (LLNL-JRNL-736881).

599 Flato, G., and Coauthors, 2013: Evaluation of climate models. Cambridge University Press.

600 Golaz, J.-C., and Coauthors, 2019: The DOE E3SM coupled model version 1: Overview
601 and evaluation at standard resolution. *Journal of Advances in Modeling Earth Systems*,

602 11 (ja), doi:10.1029/2018MS001603, URL <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001603>.

603

604 Good, S. A., M. J. Martin, and N. A. Rayner, 2013: En4: Quality controlled ocean tempera-
605 ture and salinity profiles and monthly objective analyses with uncertainty estimates. *Journal of*
606 *Geophysical Research: Oceans*, **118** (12), 6704–6716.

607 Gouretski, V., 2018: Woce-argo global hydrographic climatology (waghc version 1.0), world data
608 center for climate (wdcc) at dkrz. World Data Center for Climate (WDCC) at DKRZ.

609 Groeskamp, S., R. P. Abernathey, and A. Klocker, 2016: Water mass transformation by cabbeling
610 and thermobaricity. *Geophysical Research Letters*, **43** (20), 10–835.

611 Hellmer, H. H., 2004: Impact of antarctic ice shelf basal melting on sea ice and deep ocean
612 properties. *Geophysical Research Letters*, **31** (10).

613 Hellmer, H. H., F. Kauker, R. Timmermann, J. Determann, and J. Rae, 2012: Twenty-first-century
614 warming of a large antarctic ice-shelf cavity by a redirected coastal current. *Nature*, **485** (7397),
615 225.

616 Hellmer, H. H., and D. J. Olbers, 1989: A two-dimensional model for the thermohaline circulation
617 under an ice shelf. *Antarctic Science*, **1** (4), 325–336.

618 Heuzé, C., K. J. Heywood, D. P. Stevens, and J. K. Ridley, 2013: Southern ocean bottom water
619 characteristics in cmip5 models. *Geophysical Research Letters*, **40** (7), 1409–1414.

620 Holland, D. M., and A. Jenkins, 1999: Modeling Thermodynamic Ice–Ocean Interactions
621 at the Base of an Ice Shelf. *Journal of Physical Oceanography*, **29** (8), 1787–1800, doi:
622 10.1175/1520-0485(1999)029<1787:MTIOIA>2.0.CO;2, URL [http://journals.ametsoc.org/doi/abs/10.1175/1520-0485\(1999\)029%3C1787:MTIOIA%3E2.0.CO;2](http://journals.ametsoc.org/doi/abs/10.1175/1520-0485(1999)029%3C1787:MTIOIA%3E2.0.CO;2).

623

624 Holland, P. R., T. J. Bracegirdle, P. Dutrieux, A. Jenkins, and E. J. Steig, 2019: West Antarctic ice
625 loss influenced by internal climate variability and anthropogenic forcing. *Nature Geoscience*,
626 **12**, 718–724, doi:10.1038/s41561-019-0420-9.

627 Hunke, E. C., and D. Comeau, 2011: Sea ice and iceberg dynamic interaction. *Journal of Geo-*
628 *physical Research: Oceans*, **116** (5), 1–9, doi:10.1029/2010JC006588.

629 Jackett, D. R., and T. J. McDougall, 1997: A neutral density variable for the world's oceans.
630 *Journal of Physical Oceanography*, **27** (2), 237–263.

631 Jacobs, S. S., and C. F. Giulivi, 2010: Large multidecadal salinity trends near the Pacific–Antarctic
632 continental margin. *Journal of Climate*, **23** (17), 4508–4524.

633 Jacobs, S. S., C. F. Giulivi, and P. A. Mele, 2002: Freshening of the Ross Sea during the late 20th
634 century. *Science*, **297** (5580), 386–389.

635 Jenkins, A., K. W. Nicholls, and H. F. Corr, 2010: Observation and parameterization of ablation
636 at the base of Ronne Ice Shelf, Antarctica. *Journal of Physical Oceanography*, **40** (10), 2298–
637 2312, doi:10.1175/2010JPO4317.1.

638 Jourdain, N. C., P. Mathiot, N. Merino, G. Durand, J. Le Sommer, P. Spence, P. Dutrieux, and
639 G. Madec, 2017: Ocean circulation and sea-ice thinning induced by melting ice shelves in the a
640 mundsen s ea. *Journal of Geophysical Research: Oceans*, **122** (3), 2550–2573.

641 Kalnay, E., and Coauthors, 1996: The ncep/ncar 40-year reanalysis project. *Bulletin of the Ameri-*
642 *can meteorological Society*, **77** (3), 437–472.

643 Khazendar, A., and Coauthors, 2016: Rapid submarine ice melting in the grounding zones
644 of ice shelves in West Antarctica. *Nature Communications*, **7**, 13 243–13 243, doi:10.1038/
645 ncomms13243.

646 Klocker, A., T. J. McDougall, and D. R. Jackett, 2009: A new method for forming approximately
647 neutral surfaces. *Ocean Science*, **5** (2), 155–172.

648 Kurtz, N., and T. Markus, 2012: Satellite observations of antarctic sea ice thickness and volume.
649 *Journal of Geophysical Research: Oceans*, **117** (C8).

650 Kusahara, K., and H. Hasumi, 2014: Pathways of basal meltwater from antarctic ice shelves: A
651 model study. *Journal of Geophysical Research: Oceans*, **119** (9), 5690–5704.

652 Kwok, R., J. Comiso, T. Lee, and P. Holland, 2016: Linked trends in the South Pacific sea ice edge
653 and Southern Oscillation Index. *Geophysical Research Letters*, **43** (19), 10–295.

654 Li, X., D. M. Holland, E. P. Gerber, and C. Yoo, 2014: Impacts of the north and tropical atlantic
655 ocean on the antarctic peninsula and sea ice. *Nature*, **505** (7484), 538.

656 Locarnini, R., and Coauthors, 2018: World ocean atlas 2018, volume 1: Temperature. Mishonov
657 Technical Ed.

658 Marshall, J., and K. Speer, 2012: Closure of the meridional overturning circulation through South-
659 ern Ocean upwelling. *Nature Geoscience*, **5** (3), 171.

660 Mathiot, P., A. Jenkins, C. Harris, and G. Madec, 2017: Explicit representation and parametrised
661 impacts of under ice shelf seas in the z * coordinate ocean model nemo 3.6, geosci. model dev.,
662 10, 2849–2874. gmd-10-2849-2017.

663 Mazloff, M. R., P. Heimbach, and C. Wunsch, 2010: An eddy-permitting Southern Ocean state
664 estimate. *Journal of Physical Oceanography*, **40** (5), 880–899.

665 Menary, M. B., and Coauthors, 2018: Preindustrial control simulations with hadgem3-gc3. 1 for
666 cmip6. *Journal of Advances in Modeling Earth Systems*, **10** (12), 3049–3075.

667 Merino, N., N. C. Jourdain, J. Le Sommer, H. Goosse, P. Mathiot, and G. Durand, 2018: Impact of
668 increasing Antarctic glacial freshwater release on regional sea-ice cover in the Southern Ocean.
669 *Ocean Modelling*, **121**, 76–89.

670 Merino, N., J. Le Sommer, G. Durand, N. C. Jourdain, G. Madec, P. Mathiot, and J. Tournadre,
671 2016: Antarctic icebergs melt over the Southern Ocean: Climatology and impact on sea ice.
672 *Ocean Modelling*, **104**, 99–110.

673 Montgomery, R. B., 1958: Water characteristics of Atlantic Ocean and of world ocean. *Deep Sea*
674 *Research (1953)*, **5 (2-4)**, 134–148.

675 Morrison, A. K., A. M. Hogg, and M. L. Ward, 2011: Sensitivity of the southern ocean overturning
676 circulation to surface buoyancy forcing. *Geophysical research letters*, **38 (14)**.

677 Parkinson, C. L., 2019: A 40-y record reveals gradual antarctic sea ice increases followed by
678 decreases at rates far exceeding the rates seen in the arctic. *Proceedings of the National Academy*
679 *of Sciences*, 201906556.

680 Petersen, M. R., D. W. Jacobsen, T. D. Ringler, M. W. Hecht, and M. E. Maltrud, 2015: Evaluation
681 of the arbitrary Lagrangian-Eulerian vertical coordinate method in the MPAS-Ocean model.
682 *Ocean Modelling*, **86 (0)**, 93 – 113, doi:<http://dx.doi.org/10.1016/j.ocemod.2014.12.004>, URL
683 <http://www.sciencedirect.com/science/article/pii/S1463500314001796>.

684 Petersen, M. R., and Coauthors, 2019: An evaluation of the ocean and sea ice climate
685 of e3sm using mpas and interannual core-ii forcing. *Journal of Advances in Model-*
686 *ing Earth Systems*, **11 (5)**, 1438–1458, doi:[10.1029/2018MS001373](https://doi.org/10.1029/2018MS001373), URL <https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2018MS001373>, <https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2018MS001373>.

689 Pritchard, H. D., S. R. M. Ligtenberg, H. a. Fricker, D. G. Vaughan, M. R. van den Broeke,
690 and L. Padman, 2012: Antarctic ice-sheet loss driven by basal melting of ice shelves. *Nature*,
691 **484 (7395)**, 502–505, doi:10.1038/nature10968.

692 Qian, Y., and Coauthors, 2018: Parametric sensitivity and uncertainty quantification in the ver-
693 sion 1 of E3SM Atmosphere Model based on short perturbed parameter ensemble simulations.
694 *Journal of Geophysical Research: Atmospheres*, **123 (23)**, 13–046.

695 Rasch, P., and Coauthors, 2019: An overview of the atmospheric component of the energy ex-
696 ascale earth system model. *Journal of Advances in Modeling Earth Systems*, doi:10.1029/
697 2019MS001629.

698 Reckinger, S. M., M. R. Petersen, and S. J. Reckinger, 2015: A study of overflow simulations
699 using mpas-ocean: Vertical grids, resolution, and viscosity. *Ocean Modelling*, **96, Part 2**, 291 –
700 313, doi:<http://dx.doi.org/10.1016/j.ocemod.2015.09.006>, URL <http://www.sciencedirect.com/science/article/pii/S146350031500164X>.

701

702 Rignot, E., S. Jacobs, J. Mouginot, and B. Scheuchl, 2013: Ice-shelf melting around antarctica.
703 *Science*, **341 (6143)**, 266–270.

704 Ringler, T., M. Petersen, R. Higdon, D. Jacobsen, P. Jones, and M. Maltrud, 2013: A multi-
705 resolution approach to global ocean modeling. *Ocean Modelling*, **69 (0)**, 211–232, doi:<http://dx.doi.org/10.1016/j.ocemod.2013.04.010>, URL <http://www.sciencedirect.com/science/article/pii/S1463500313000760>.

706

707

708 Roemmich, D., J. Church, J. Gilson, D. Monselesan, P. Sutton, and S. Wijffels, 2015: Unabated
709 planetary warming and its ocean structure since 2006. *Nature climate change*, **5 (3)**, 240.

710 Sallée, J.-B., R. J. Matear, S. R. Rintoul, and A. Lenton, 2012: Localized subduction of anthropogenic carbon dioxide in the Southern Hemisphere oceans. *Nature Geoscience*, **5** (8), 579.

711

712 Sallée, J.-B., E. Shuckburgh, N. Bruneau, A. J. Meijers, T. J. Bracegirdle, Z. Wang, and T. Roy, 2013: Assessment of southern ocean water mass circulation and characteristics in cmip5 models: Historical bias and forcing response. *Journal of Geophysical Research: Oceans*, **118** (4), 1830–1844.

713

714

715

716 Séférian, R., D. Iudicone, L. Bopp, T. Roy, and G. Madec, 2012: Water mass analysis of effect of climate change on air–sea co2 fluxes: The southern ocean. *Journal of climate*, **25** (11), 3894–3908.

717

718

719 Shepherd, A., D. Wingham, and E. Rignot, 2004: Warm ocean is eroding West Antarctic Ice Sheet. *Geophysical Research Letters*, **31** (23), L23 402, doi:10.1029/2004GL021106.

720

721 Sigmond, M., and J. C. Fyfe, 2010: Has the ozone hole contributed to increased Antarctic sea ice extent? *Geophysical Research Letters*, **37** (18).

722

723 Silvano, A., S. R. Rintoul, B. Peña-Molino, W. R. Hobbs, E. van Wijk, S. Aoki, T. Tamura, and G. D. Williams, 2018: Freshening by glacial meltwater enhances melting of ice shelves and reduces formation of antarctic bottom water. *Science advances*, **4** (4), eaap9467.

724

725

726 Speer, K., S. R. Rintoul, and B. Sloyan, 2000: The diabatic Deacon cell. *Journal of physical oceanography*, **30** (12), 3212–3222.

727

728 Stammerjohn, S., D. Martinson, R. Smith, X. Yuan, and D. Rind, 2008: Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability. *Journal of Geophysical Research: Oceans*, **113** (C3).

729

730

731 Stern, A., A. Adcroft, and O. Sergienko, 2016: The effects of Antarctic iceberg calving-size dis-
732 tribution in a global climate model. *Journal of Geophysical Research: Oceans*, **121** (8), 5773–
733 5788.

734 Thompson, D. W., S. Solomon, P. J. Kushner, M. H. England, K. M. Grise, and D. J. Karoly, 2011:
735 Signatures of the Antarctic ozone hole in Southern Hemisphere surface climate change. *Nature
736 geoscience*, **4** (11), 741.

737 Thomson, R. E., and W. J. Emery, 2014: *Data analysis methods in physical oceanography*.
738 Newnes.

739 Turner, J., T. J. Bracegirdle, T. Phillips, G. J. Marshall, and J. S. Hosking, 2013: An initial assess-
740 ment of Antarctic sea ice extent in the CMIP5 models. *Journal of Climate*, **26** (5), 1473–1484.

741 Turner, J., and Coauthors, 2009: Non-annular atmospheric circulation change induced by strato-
742 spheric ozone depletion and its role in the recent increase of Antarctic sea ice extent. *Geophys-
743 ical Research Letters*, **36** (8).

744 Walin, G., 1982: On the relation between sea-surface heat flow and thermal circulation in the
745 ocean. *Tellus*, **34** (2), 187–195.

746 Whitworth, T., and R. Peterson, 1985: Volume transport of the antarctic circumpolar current from
747 bottom pressure measurements. *Journal of Physical Oceanography*, **15** (6), 810–816.

748 Xie, S., and Coauthors, 2018: Understanding cloud and convective characteristics in version 1
749 of the E3SM Atmosphere Model. *Journal of Advances in Modeling Earth Systems*, **10** (10),
750 2618–2644.

751 Zhang, J., 2007: Increasing Antarctic sea ice under warming atmospheric and oceanic conditions.
752 *Journal of Climate*, **20** (11), 2515–2529.

753 Zhang, L., T. L. Delworth, W. Cooke, and X. Yang, 2019: Natural variability of southern ocean
754 convection as a driver of observed climate trends. *Nature Climate Change*, **9** (1), 59.

755 **LIST OF TABLES**

756 Table 1.	Antarctic freshwater fluxes to the ocean for each simulation, averaged over last		
757 15 years. Standard deviations are in parentheses. The runoff term includes a			
758 solid ice (excess snow from snowcapping) and liquid (rain) term, determined by			
759 precipitation over Antarctica. The ISM simulation has an additional freshwater			
760 term from explicit ice-shelf melt fluxes, adding about 50% to the total Antarctic			
761 runoff over Ctrl.			37
762 Table 2.	Atmosphere, ocean and sea-ice estimation data sets used in this study.		38
763 Table 3.	Definition of parameter in Equation 1 and 5		39
764 Table 4.	Interpretation of WMT and formation rate.		40
765 Table 5.	Thirty-year annual mean of transformation anomaly caused by either freshwa-		
766 ter flux from ice-shelf melting or from sea-ice formation and melting. Rows			
767 show results from the ISM and Ctrl simulations, and their differences. Val-			
768 ues in parentheses represent the standard deviation over 30 years of the annual			
769 mean (indicating the level of interannual variability) of upwelled water in each			
770 simulation.			41

771 TABLE 1. Antarctic freshwater fluxes to the ocean for each simulation, averaged over last 15 years. Standard
 772 deviations are in parentheses. The runoff term includes a solid ice (excess snow from snowcapping) and liquid
 773 (rain) term, determined by precipitation over Antarctica. The ISM simulation has an additional freshwater term
 774 from explicit ice-shelf melt fluxes, adding about 50% to the total Antarctic runoff over Ctrl.

	Ctrl	ISM
Runoff	0.087 (0.042) Sv	0.080 (0.041) Sv
Ice-shelf melting	0 Sv	0.045 (0.003) Sv
Total	0.087 (0.042) Sv	0.125 (0.041) Sv

TABLE 2. Atmosphere, ocean and sea-ice estimation data sets used in this study.

Data sets	Variables	Periods	Reference
NCEP/NCAR Reanalysis I	Zonal wind stress	2005-2010	(Kalnay et al. 1996)
	Temperature, Salinity,		
SOSE	Zonal and meridional components of velocity, Sea-ice to ocean freshwater flux	2005-2010	(Mazloff et al. 2010)
EN4	Temperature, Salinity	1995-2018	(Good et al. 2013)
WOA18	Temperature, Salinity	1995-2018	(Locarnini et al. 2018)
WAGHC	Temperature, Salinity	1985-2016	(Gouretski 2018)
SSM/I NASA Team	Sea-ice concentration	1979-2009	(Cavalieri et al. 1996)
ICESat	Sea-ice thickness	2003-2008	(Kurtz and Markus 2012)

TABLE 3. Definition of parameter in Equation 1 and 5

Parameter	Description	Units
Ω	WMT rate	Sv
M	WMF rate	Sv
σ_k	Surface-referenced potential density	kg m^{-3}
t	Time	s
α	Thermal expansion	$\text{kg m}^{-3} \text{K}^{-1}$
Q_{net}	Downward surface heat flux	W m^{-2}
C_p	Specific heat of seawater (3,994)	$\text{J kg}^{-1} \text{K}^{-1}$
β	Haline coefficient of contraction	$\text{kg m}^{-3} \text{PSU}^{-1}$
F_{net}	Downward surface freshwater flux	$\text{kg m}^{-2} \text{s}^{-1}$
S	Sea surface salinity	PSU
ρ_0	Constant reference density of seawater (1,035)	kg m^{-3}
A	Horizontal ocean surface area of interest	m^2

TABLE 4. Interpretation of WMT and formation rate.

	Positive	Negative
Transformation rates	Denser	Lighter
	Lose buoyancy	Gain buoyancy
Formation rates	Water convergence	Water divergence
	Downwelling motion	Upwelling motion

775 TABLE 5. Thirty-year annual mean of transformation anomaly caused by either freshwater flux from ice-shelf
776 melting or from sea-ice formation and melting. Rows show results from the ISM and Ctrl simulations, and their
777 differences. Values in parentheses represent the standard deviation over 30 years of the annual mean (indicating
778 the level of interannual variability) of upwelled water in each simulation.

	Ice-shelf melting	Sea-ice formation and melting
ISM	-1.77 (0.12) Sv	-19.04 (1.75) Sv
Ctrl	N/A	-16.47 (1.56) Sv
ISM - Ctrl	-1.77 Sv	-2.57 Sv

779 LIST OF FIGURES

Fig. 1. Top left: melt rates (m a^{-1}) from Antarctic ice-shelves from the ISM simulation, averaged over ten years near the end of the simulation. Top middle: satellite-derived melt rates (Rignot et al. 2013). Top right: the difference between the previous panels. Each panel uses the coastline and grounding line as seen by E3SM to give the reader a sense of the resolution of the model. Bottom: A time series of the total Antarctic melt flux with present-day estimates and those inferred if the AIS were in steady state (rather than losing mass) from Rignot et al. (2013). The steady-state value may be the more appropriate comparison for pre-industrial conditions.

Fig. 2. Spatial distribution of annual mean sea-surface (a) temperature, (b) salinity; 500 m depth (c) temperature, (d) salinity from E3SM (30-year average from the Ctrl simulation); and (e) scatter diagram of RMSE (root mean square error) for sea-surface and 500 m depth temperature and salinity between E3SM and four ocean products from SOSE, EN4, WOA18, and WAGHC.

Fig. 3. (a) Definition of water masses in this study and volumetric probability density functions (PDFs) of Southern Ocean annual mean temperature and salinity for the region south of 60°S and over the entire depth range from (b) E3SM Ctrl, (c) SOSE, (d) EN4, (e) WOA18, and (f) WAGHC. The units are the percentage of the total volume of the region with the given properties. Summation of PDFs are displayed in the upper right corner of each figure (with difference relative to 100% indicating the percentage of values falling outside of the T and S ranges plotted here). Dashed contour lines denote neutral density, γ_n . We also define Surface Water ($\gamma_n < 27.5 \text{ kg m}^{-3}$), but that is located outside of this T-S diagram.

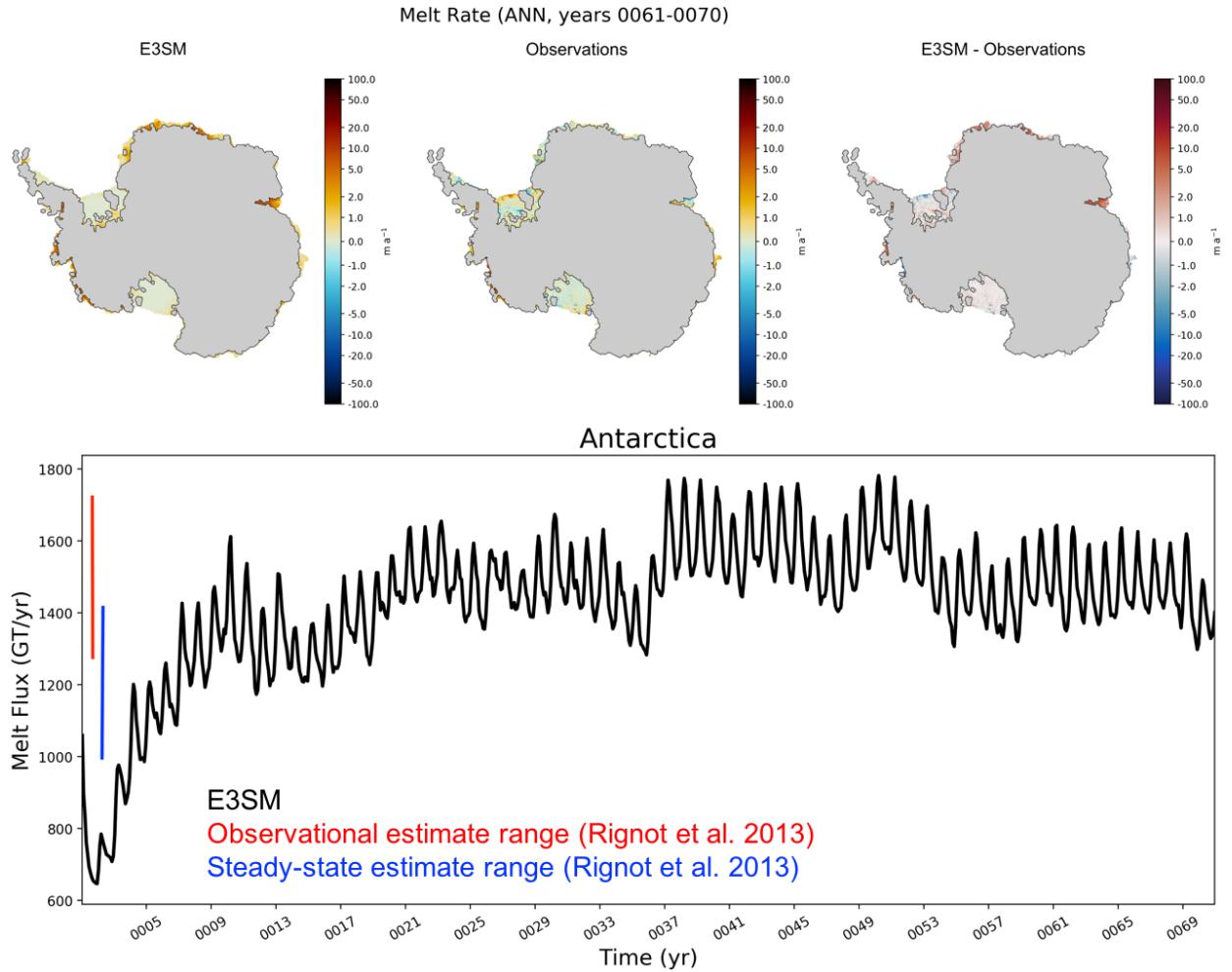

Fig. 4. Mean vertical integrated transport streamfunction (Sv) from (a) E3SM (Ctrl simulation) and (d) SOSE. The zero contour is the Antarctic coast and the contour interval is 10 Sv. Positive values denote anticyclonic subtropical gyres and negative values denote cyclonic polar gyres. Southern Ocean overturning streamfunction (Sv) from (b) E3SM and (e) SOSE for latitude-depth spaces. The contour interval is 5 Sv. Positive values represent counterclockwise and negative represent clockwise circulations. (c) Zonally averaged zonal wind stress for E3SM and NCEP/NCAR Reanalysis I. Positive values of wind stress means westerly winds (West to East) and negative values are easterly winds (East to West).

Fig. 5. June-July-August mean sea-ice concentration (a and d), October-November mean sea-ice thickness (b and e), and June-July-August mean freshwater flux from sea-ice into ocean (c and f) from E3SM (30-year mean from the Ctrl simulation), SSM/I NASA Team, ICESat, and SOSE (6-year mean). December-January-February mean sea-ice concentration (g and j), February-March mean sea-ice thickness (h and k), and December-January-February mean freshwater flux from sea-ice into ocean (i and l) from E3SM (30-year mean from the Ctrl simulation), SSM/I NASA Team, ICESat, and SOSE (6-year mean). The figures only display sea-ice with concentration greater than 0.15 (15%) and thickness greater than 10cm.

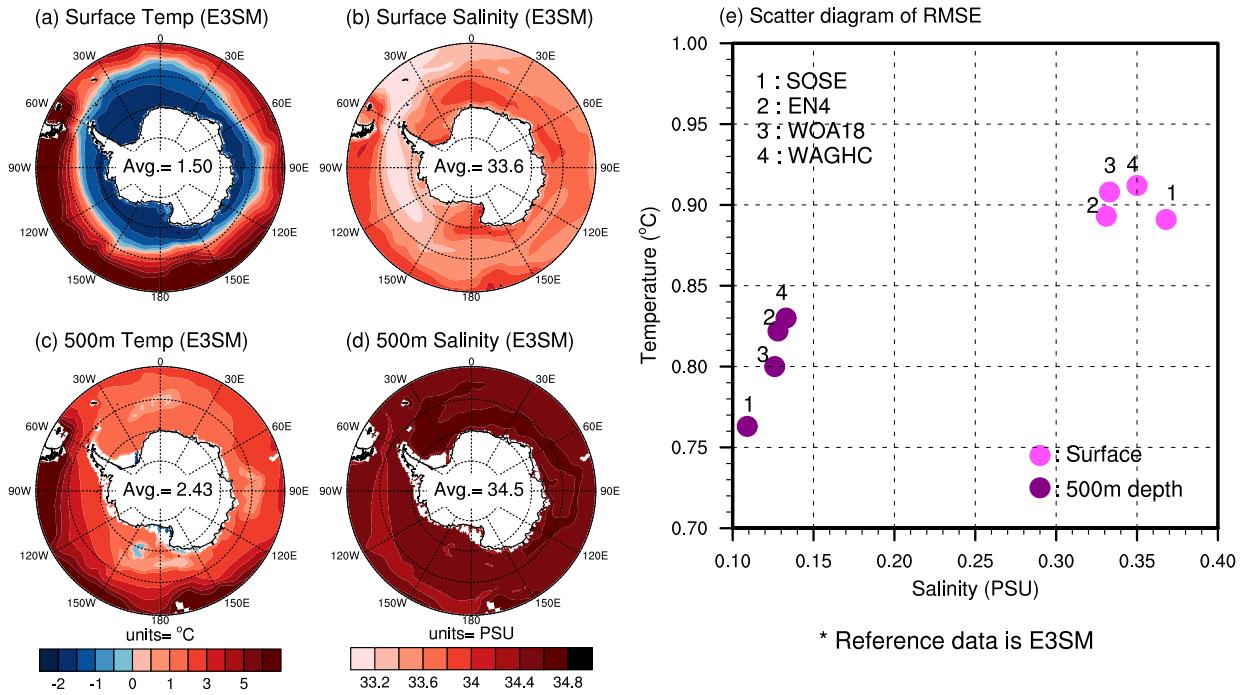
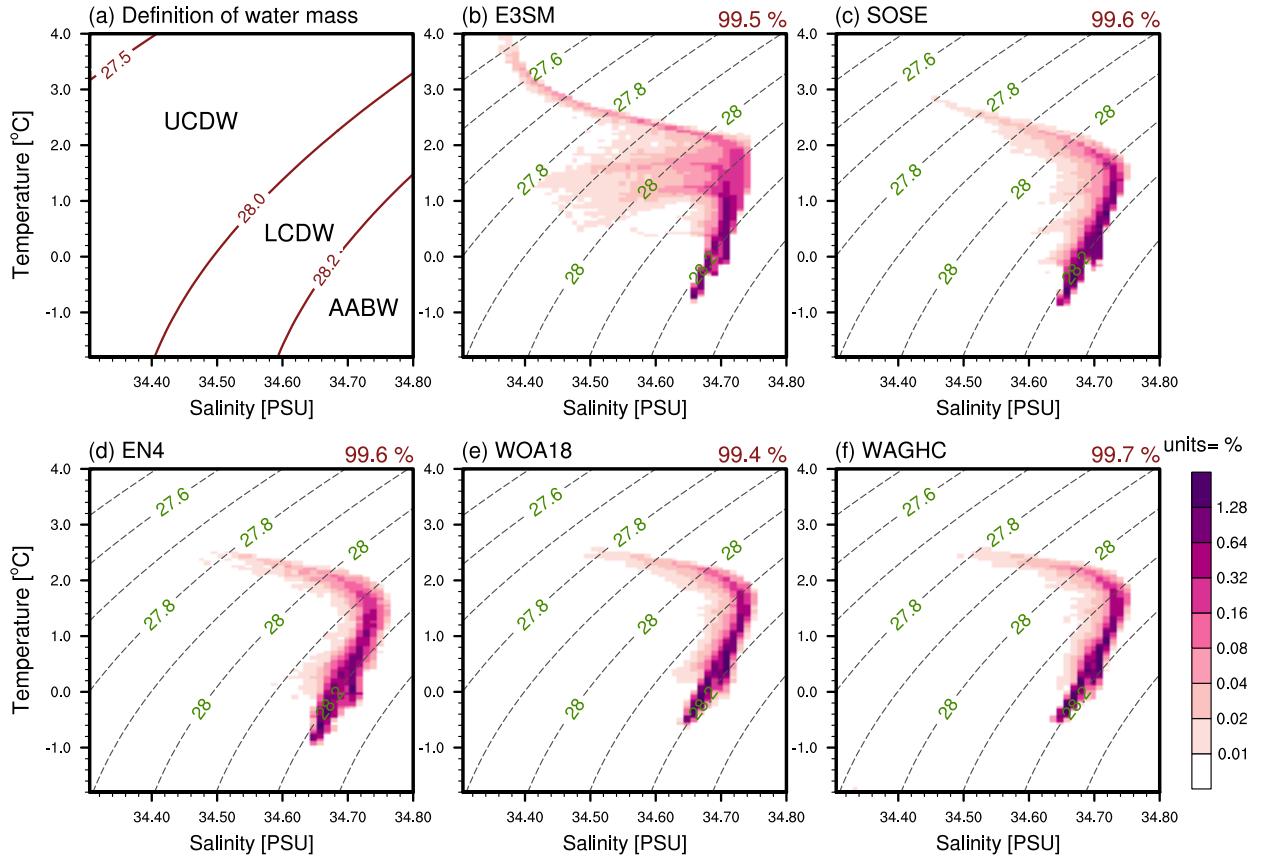

Fig. 6. Vertical cross sections of differences in zonally averaged (left) salinity, (middle) potential density, and (right) ocean temperature between the ISM and Ctrl simulations (ISM - Ctrl) for the Amery Ice-shelf sector [60°E-90°E], Ross Sea [165°E-165°W], Amundsen Sea [90°W-120°W], and Weddell Sea [60°W-30°W]. Solid lines are isohaline, isopycnals, and isotherms for the Ctrl simulation and dashed lines are for the ISM simulation.

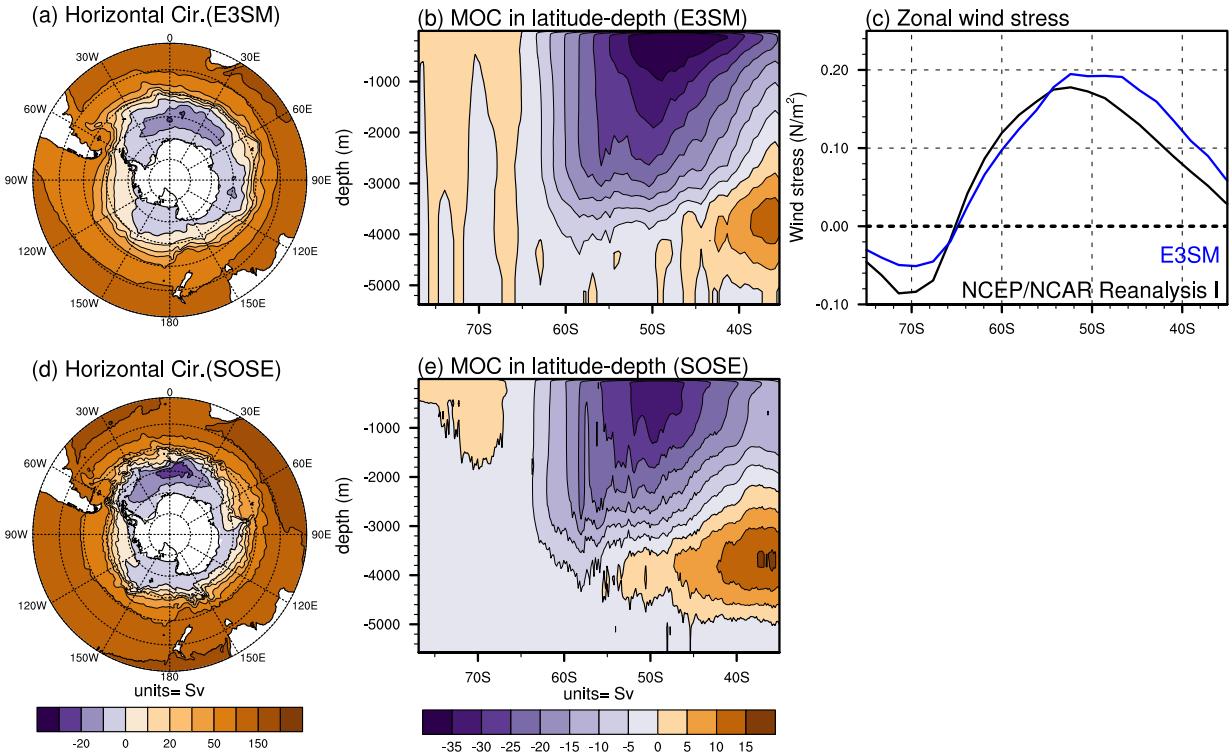
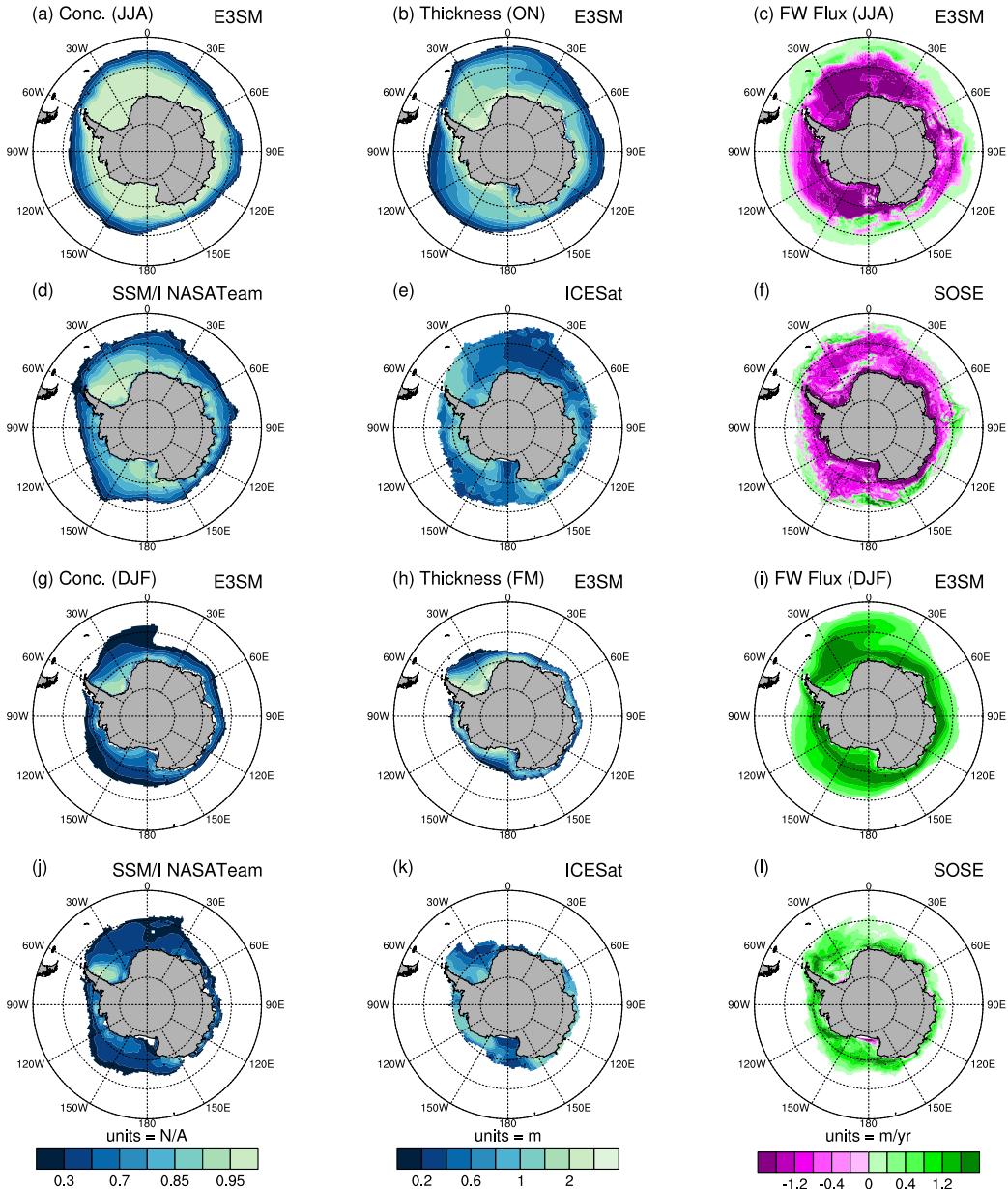
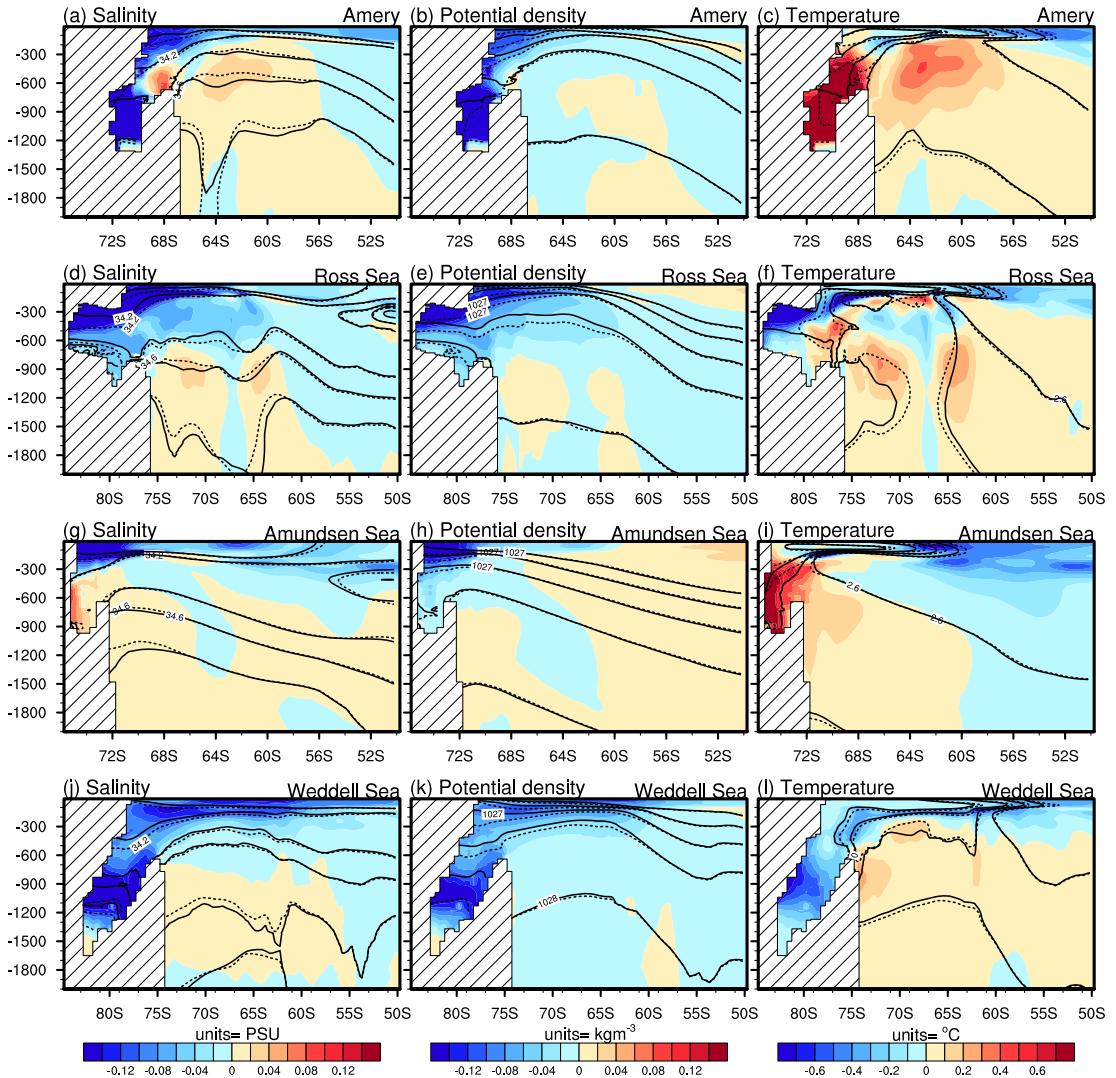
Fig. 7. Vertical density stratification ($N^2 = -(g/\rho_0)d\rho/dz$) in the (a) Amery ice-shelf sector [60°E-90°E], (c) Ross Sea [165°E-165°W], (e) Amundsen Sea [90°W-120°W], (g) Weddell sea [60°W-30°W] from the ISM simulations (left) and differences between the ISM and Ctrl

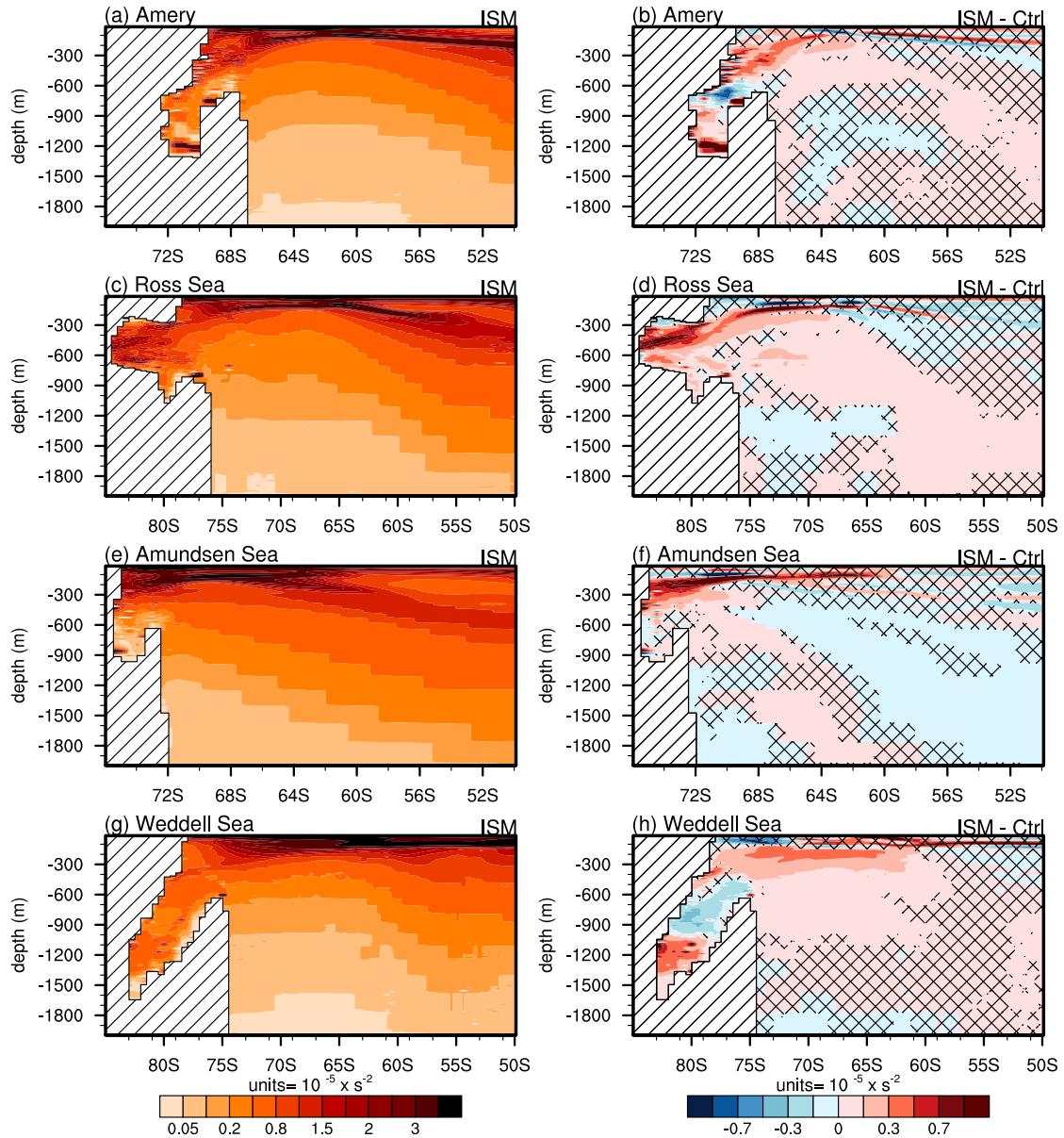

825	simulations (ISM - Ctrl) (right). The stippled area represents non-significant differences at	50
826	the 95% confidence level from Student's t-test.	
827	Fig. 8. Annual mean (a) 2m temperature, (b) sea level pressure and (c) precipitation from the ISM	
828	simulation and differences between the ISM and Ctrl simulations (ISM - Ctrl) in (d) 2m	
829	temperature, (e) sea level pressure and (f) precipitation. The stippled area represents non-	
830	significant differences at the 95% confidence level from Student's t-test.	51
831	Fig. 9. Differences between the ISM and Ctrl simulations (ISM - Ctrl) in annual mean sea-ice con-	
832	centration (a), sea-ice thickness (b), and freshwater flux from sea-ice freezing (c). For fresh-	
833	water flux by sea-ice formation (c), negative values represent more sea-ice freezing and	
834	positive values mean less sea-ice freezing. Area averaged values for each field are displayed	
835	in the middle of each plot. The stippled area represents non-significant differences at the	
836	95% confidence level from Student's t-test.	52
837	Fig. 10. WMT rates due to individual surface-flux types from the ISM simulation (dashed lines) and	
838	the Ctrl simulation (solid lines) over the Southern Ocean south of 60°S. (a) The decompo-	
839	sition of transformation from surface heat flux and freshwater flux into the Southern Ocean,	
840	and their sum. (b) The decomposition of transformation rate from surface freshwater flux	
841	into E-P-R (Evaporation, Precipitation, and Runoff), sea-ice formation and melting, and ice-	
842	shelf melting. Note the runoff term (R) has a solid ice and liquid water component, with	
843	both distributed to coastal grid cells.	53
844	Fig. 11. Climatological annual cycle of WMT rate caused by freshwater flux from sea-ice formation	
845	and melting (a) and from ice-shelf melting (b) for the ISM. (c) Differences of WMT rate	
846	caused by freshwater flux from sea-ice formation and melting between two simulations, as	
847	a function of time (x-axis) and neutral density, γ_n (y-axis).	54
848	Fig. 12. Water mass formation rates in the Ctrl and ISM simulations by freshwater flux component (a	
849	and b), summed in 0.1 kg m^{-3} neutral density bins. Water mass formation rate by freshwater	
850	flux from (a) sea-ice formation and melting and (b) ice-shelf melting. Regional water mass	
851	formation rate by ice-shelf melting over the (c) Amery ice-shelf sector [60°E-90°E], (d)	
852	Ross Sea [165°E-165°W], (e) Amundsen Sea [90°W-120°W], and (f) Weddell Sea [60°W-	
853	30°W]. Regional water mass formation rates are only plotted above 26.5 kg m^{-3} neutral	
854	density level, shown as the dotted line in (b).	55

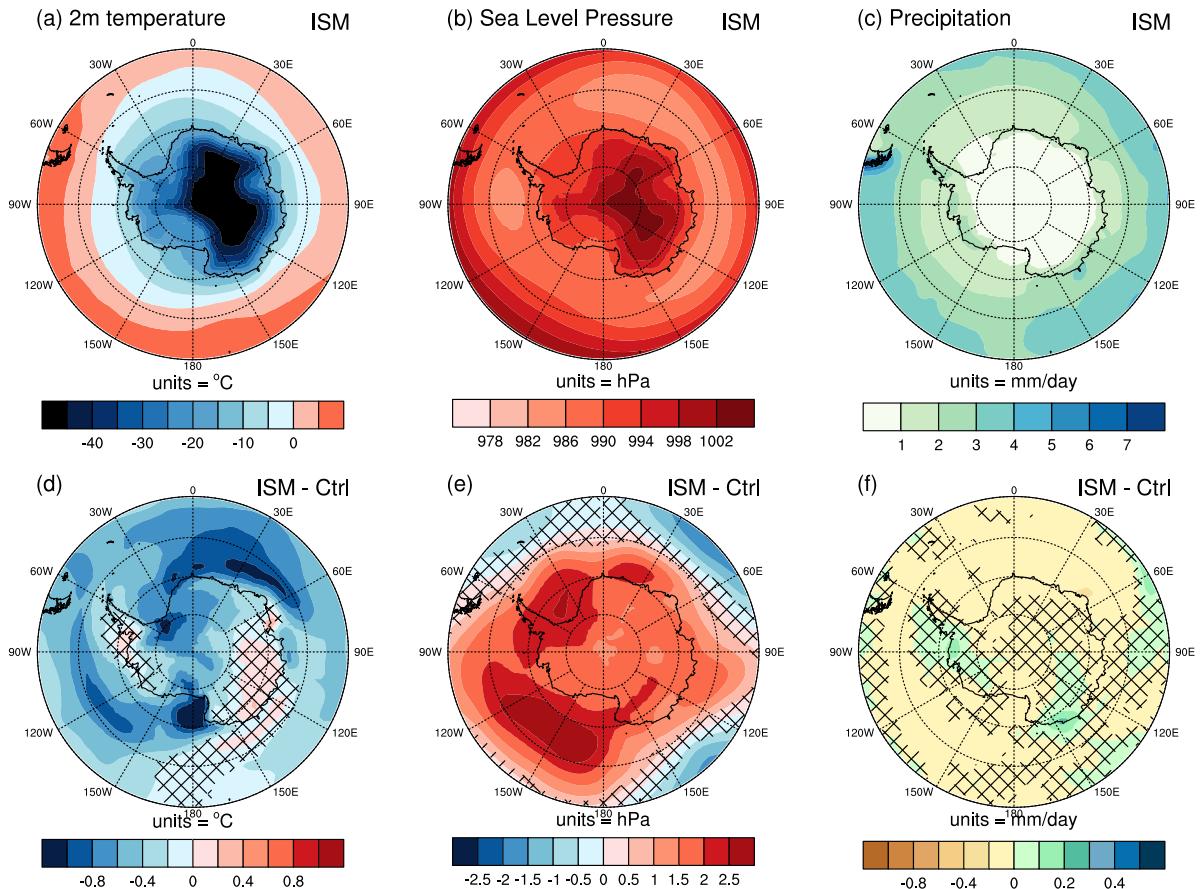
855 FIG. 1. Top left: melt rates (m a^{-1}) from Antarctic ice-shelves from the ISM simulation, averaged over ten
 856 years near the end of the simulation. Top middle: satellite-derived melt rates (Rignot et al. 2013). Top right: the
 857 difference between the previous panels. Each panel uses the coastline and grounding line as seen by E3SM to
 858 give the reader a sense of the resolution of the model. Bottom: A time series of the total Antarctic melt flux with
 859 present-day estimates and those inferred if the AIS were in steady state (rather than losing mass) from Rignot
 860 et al. (2013). The steady-state value may be the more appropriate comparison for pre-industrial conditions.

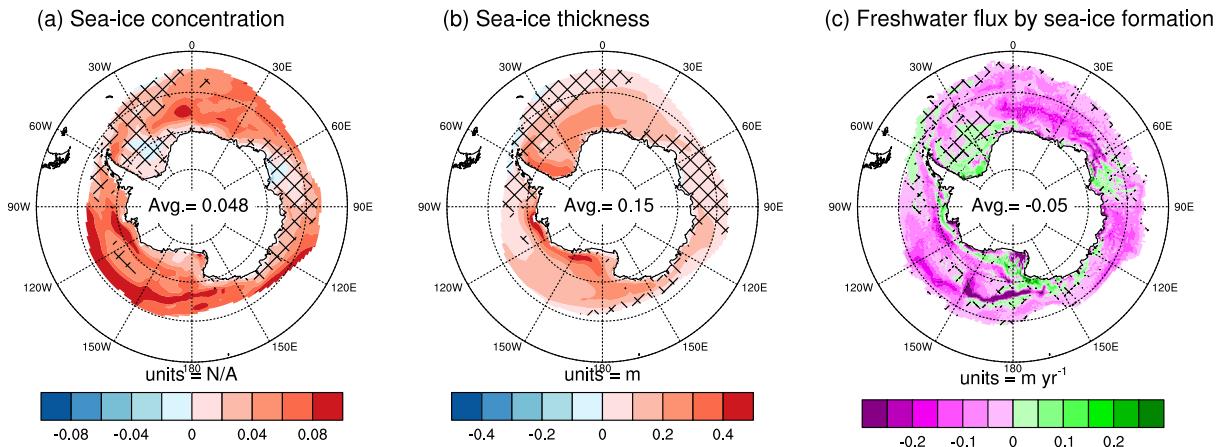
861 FIG. 2. Spatial distribution of annual mean sea-surface (a) temperature, (b) salinity; 500 m depth (c) tempera-
 862 ture, (d) salinity from E3SM (30-year average from the Ctrl simulation); and (e) scatter diagram of RMSE (root
 863 mean square error) for sea-surface and 500 m depth temperature and salinity between E3SM and four ocean
 864 products from SOSE, EN4, WOA18, and WAGHC.

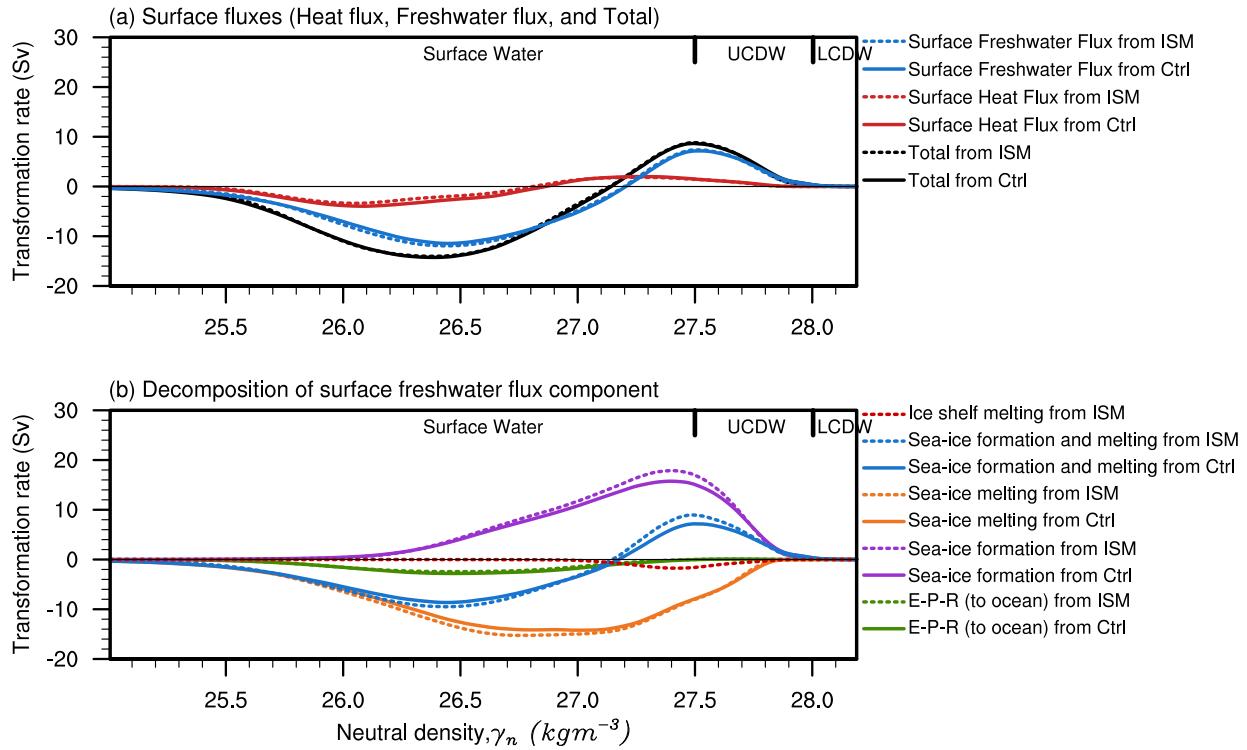
865 FIG. 3. (a) Definition of water masses in this study and volumetric probability density functions (PDFs) of
 866 Southern Ocean annual mean temperature and salinity for the region south of 60°S and over the entire depth
 867 range from (b) E3SM Ctrl, (c) SOSE, (d) EN4, (e) WOA18, and (f) WAGHC. The units are the percentage of
 868 the total volume of the region with the given properties. Summation of PDFs are displayed in the upper right
 869 corner of each figure (with difference relative to 100% indicating the percentage of values falling outside of the
 870 T and S ranges plotted here). Dashed contour lines denote neutral density, γ_n . We also define Surface Water (γ_n
 871 $< 27.5 \text{ kg m}^{-3}$), but that is located outside of this T-S diagram.

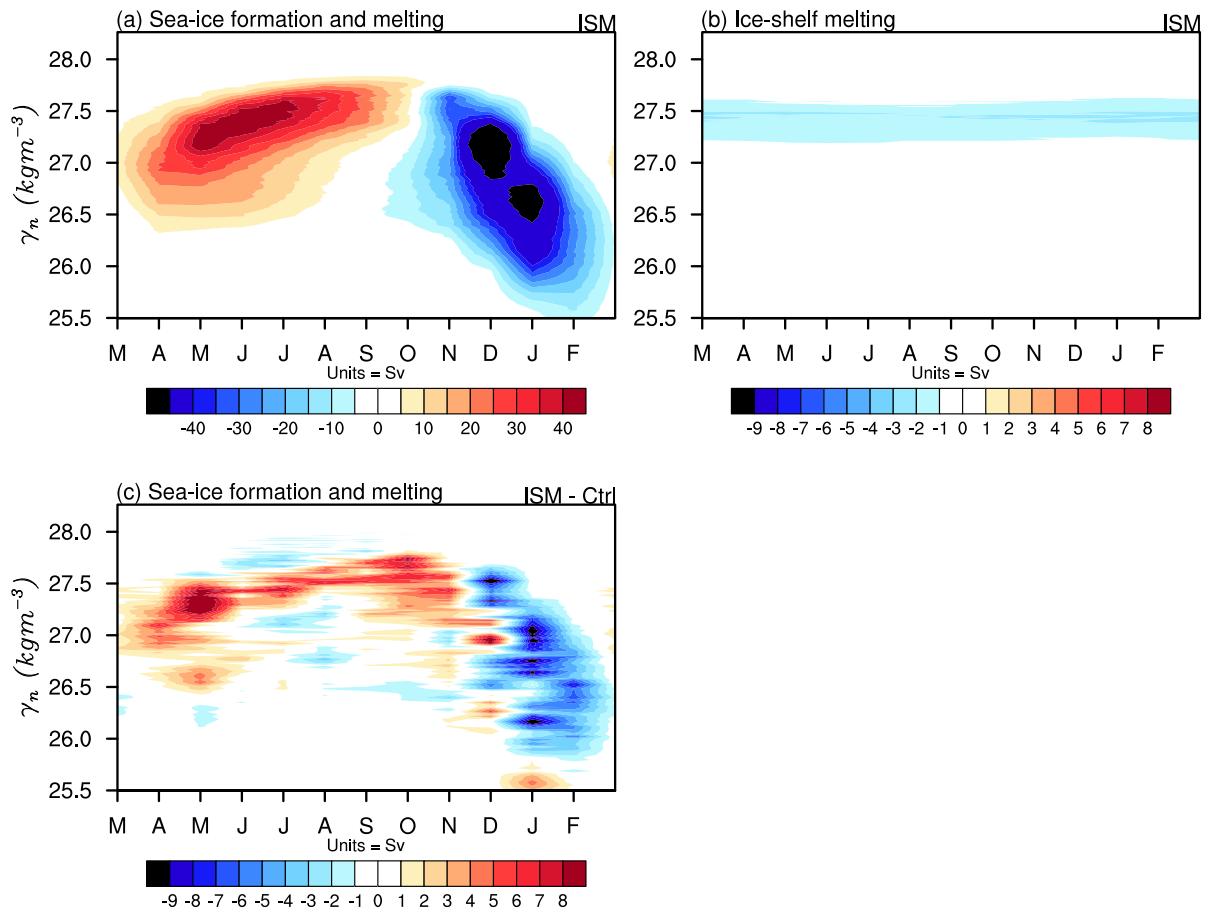




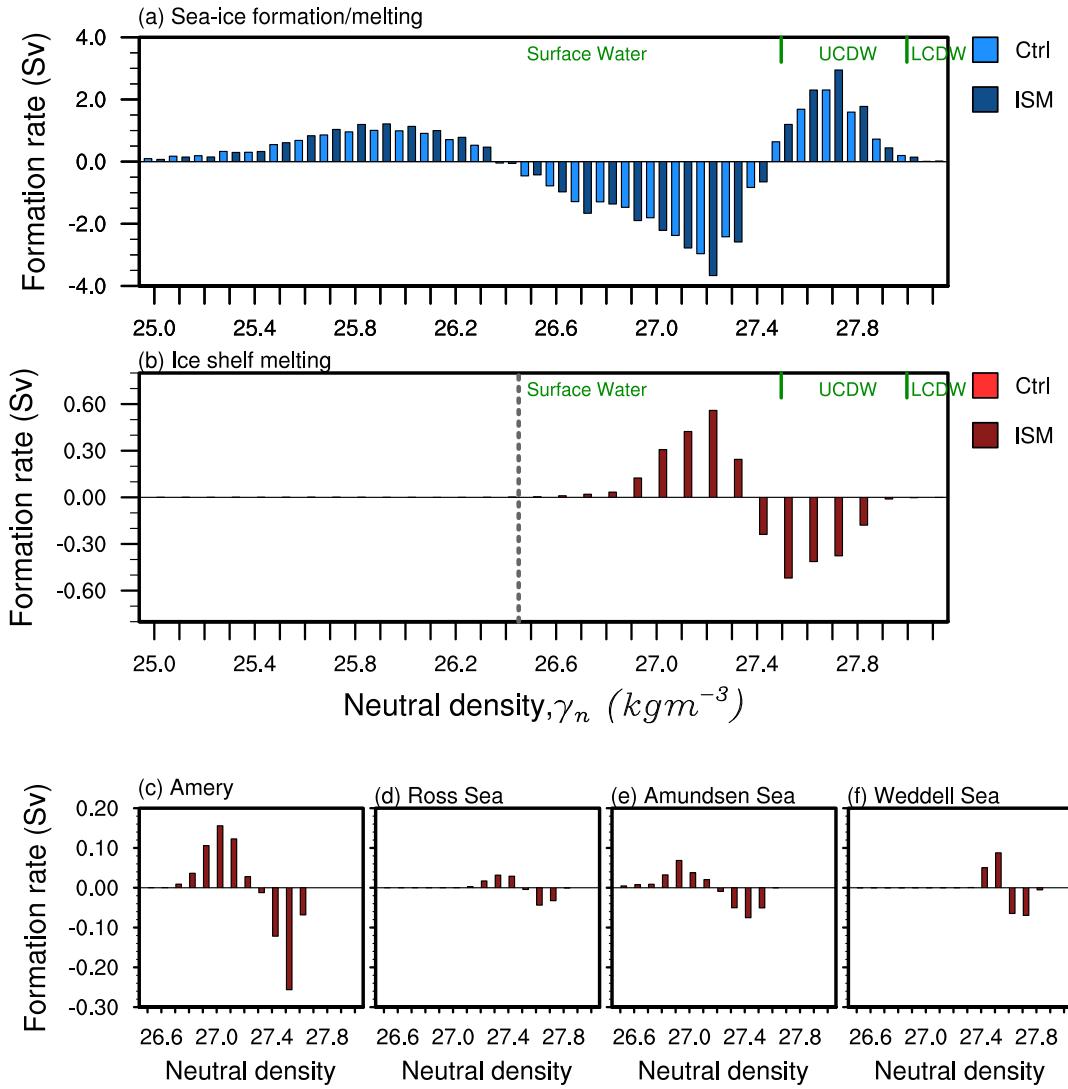

FIG. 4. Mean vertical integrated transport streamfunction (Sv) from (a) E3SM (Ctrl simulation) and (d) SOSE. The zero contour is the Antarctic coast and the contour interval is 10 Sv. Positive values denote anticyclonic subtropical gyres and negative values denote cyclonic polar gyres. Southern Ocean overturning streamfunction (Sv) from (b) E3SM and (e) SOSE for latitude-depth spaces. The contour interval is 5 Sv. Positive values represent counterclockwise and negative represent clockwise circulations. (c) Zonally averaged zonal wind stress for E3SM and NCEP/NCAR Reanalysis I. Positive values of wind stress means westerly winds (West to East) and negative values are easterly winds (East to West).


879 FIG. 5. June-July-August mean sea-ice concentration (a and d), October-November mean sea-ice thickness
 880 (b and e), and June-July-August mean freshwater flux from sea-ice into ocean (c and f) from E3SM (30-year
 881 mean from the Ctrl simulation), SSM/I NASA Team, ICESat, and SOSE (6-year mean). December-January-
 882 February mean sea-ice concentration (g and j), February-March mean sea-ice thickness (h and k), and December-
 883 January-February mean freshwater flux from sea-ice into ocean (i and l) from E3SM (30-year mean from the
 884 Ctrl simulation), SSM/I NASA Team, ICESat, and SOSE (6-year mean). The figures only display sea-ice with
 885 concentration greater than 0.15 (15%) and thickness greater than 10cm.


886 FIG. 6. Vertical cross sections of differences in zonally averaged (left) salinity, (middle) potential density,
887 and (right) ocean temperature between the ISM and Ctrl simulations (ISM - Ctrl) for the Amery Ice-shelf sector
888 [60°E-90°E], Ross Sea [165°E-165°W], Amundsen Sea [90°W-120°W], and Weddell Sea [60°W-30°W]. Solid
889 lines are isohaline, isopycnals, and isotherms for the Ctrl simulation and dashed lines are for the ISM simulation.


890 FIG. 7. Vertical density stratification ($N^2 = -(g/\rho_0)d\rho/dz$) in the (a) Amery ice-shelf sector [60°E-90°E],
891 (c) Ross Sea [165°E-165°W], (e) Amundsen Sea [90°W-120°W], (g) Weddell sea [60°W-30°W] from the ISM
892 simulations (left) and differences between the ISM and Ctrl simulations (ISM - Ctrl) (right). The stippled area
893 represents non-significant differences at the 95% confidence level from Student's t-test.


894 FIG. 8. Annual mean (a) 2m temperature, (b) sea level pressure and (c) precipitation from the ISM simulation
 895 and differences between the ISM and Ctrl simulations (ISM - Ctrl) in (d) 2m temperature, (e) sea level pressure
 896 and (f) precipitation. The stippled area represents non-significant differences at the 95% confidence level from
 897 Student's t-test.


898 FIG. 9. Differences between the ISM and Ctrl simulations (ISM - Ctrl) in annual mean sea-ice concentration
 899 (a), sea-ice thickness (b), and freshwater flux from sea-ice freezing (c). For freshwater flux by sea-ice formation
 900 (c), negative values represent more sea-ice freezing and positive values mean less sea-ice freezing. Area averaged
 901 values for each field are displayed in the middle of each plot. The stippled area represents non-significant
 902 differences at the 95% confidence level from Student's t-test.

903 FIG. 10. WMT rates due to individual surface-flux types from the ISM simulation (dashed lines) and the
904 Ctrl simulation (solid lines) over the Southern Ocean south of 60°S. (a) The decomposition of transformation
905 from surface heat flux and freshwater flux into the Southern Ocean, and their sum. (b) The decomposition
906 of transformation rate from surface freshwater flux into E-P-R (Evaporation, Precipitation, and Runoff), sea-
907 ice formation and melting, and ice-shelf melting. Note the runoff term (R) has a solid ice and liquid water
908 component, with both distributed to coastal grid cells.

909 FIG. 11. Climatological annual cycle of WMT rate caused by freshwater flux from sea-ice formation and
 910 melting (a) and from ice-shelf melting (b) for the ISM. (c) Differences of WMT rate caused by freshwater flux
 911 from sea-ice formation and melting between two simulations, as a function of time (x-axis) and neutral density,
 912 γ_n (y-axis).

913 FIG. 12. Water mass formation rates in the Ctrl and ISM simulations by freshwater flux component (a and
914 b), summed in 0.1 kg m^{-3} neutral density bins. Water mass formation rate by freshwater flux from (a) sea-ice
915 formation and melting and (b) ice-shelf melting. Regional water mass formation rate by ice-shelf melting over
916 the (c) Amery ice-shelf sector [60°E - 90°E], (d) Ross Sea [165°E - 165°W], (e) Amundsen Sea [90°W - 120°W],
917 and (f) Weddell Sea [60°W - 30°W]. Regional water mass formation rates are only plotted above 26.5 kg m^{-3}
918 neutral density level, shown as the dotted line in (b).