
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Implementation of an Artificial Immune System to
Mitigate Cybersecurity Threats in Unmanned Aerial

Systems

Meagan Shivers
Department of Aerospace

Engineering
Embry-Riddle Aeronautical

University
Daytona Beach, USA

shiversm@my.erau.edu

Christian Llanes
Department of Aerospace

Engineering
Embry-Riddle Aeronautical

University
Daytona Beach, USA
llanesc@my.erau.edu

Maxwell Sherman
Department of Computer Science

Gonzaga University
Spokane, USA

msherman3@zagmail.gonzaga.edu

This project aims to use an artificial immune system to detect
cyber-attacks on the dynamics of a minidrone. Using linear transfer
functions, a zero-dynamics attack was designed to be injected into
the system. To further explore how zero-dynamics translates from
linear to non-linear systems, a similar attack was made using a
random value rather than an unstable zero of the system. These
attacks were then injected via the ground station computer. An
offline artificial immune system was created and used to test the
effectiveness of detecting the attacks. The immune system uses a
discrete, binary, non-self recognition algorithm to create detectors
and find disturbances in the data.

Keywords—artificial immune system, zero-dynamics, non-
linear, attack, cybersecurity

I. INTRODUCTION

Unmanned aerial vehicle (UAV) warfare, commonly
known as “drone warfare,” has become central to armed
conflicts in the 21st century. It enables countries to perform
aerial surveillance and execute precise air strikes without the
need for pilots to physically be present. In addition, a
significant amount of research is dedicated to UAV autonomy,
to allow the vehicles to recover from various malfunctions or
attacks.

It is of paramount importance to all militaries with UAVs
to ensure the security and reliability of their vehicles due to
their significance. In December 2011, Iran captured an
American-made Lockheed Martin RQ-170 Sentinel, which
was used for a variety of surveillance and other data-collecting
purposes. Iran commandeered the UAV, landed it,
downloaded and decoded all of the information on it, and
produced new vehicles based on their reverse-engineered
design [1]. Ensuring the security of these UAVs means
ensuring the security of the potentially critical data on them,
as well as the technology within the vehicles themselves.

Desired security measures entail ensuring the UAV can
detect intrusions, create countermeasures, execute the

countermeasures, and recover in the event of a successful
attack. If there is physical damage or faulty sensor data, for
instance, the UAV must work to stay airborne, and enter a
recovery sequence as determined by the operator (fly in
circles, return home, self-destruct, or any combination of tasks
like these).

II. BACKGROUND AND MOTIVATION

Machine learning is a popular technique where computers,
without explicit instructions, find patterns and derive solutions
often much more efficiently and effectively than their human
counterparts. One form of machine learning exists in the form
of the genetic algorithm, where natural selection is simulated
on a set of solutions. Potential solutions are evaluated based
on a user-defined heuristic known as fitness. The weaker
solutions are removed and the stronger solutions are paired,
bred, and mutated [2]. This process repeats usually until a
certain fitness threshold is reached, or until a certain number
of generations has been produced. These sorts of algorithms
help find robust solutions with less human intervention.

An artificial immune system (AIS) expands on the genetic
algorithm. Modeled after a biological immune system, the AIS
treats the varying problems it must solve as antigens, and
solutions to these problems as antibodies. It uses a genetic
algorithm to generate antibodies: sets of basic instructions that
potentially solve the problem at hand. A pre-existing
knowledge base is used to employ negative selection which
prevents any known bad solutions from entering the gene
pool. Previous solutions that worked well are stored in a
database, comparable to biological memory cells, to quickly
recall how to solve the problem again rather than needing to
create a solution from scratch [2]. A training set, then, can act
as a “vaccine.”

AIS have proven useful in the past with UAVs. AIS have
been successfully employed in UAVs to compensate for
subsystem failures, low power resources, navigation, and even

monitor the health of components as they age [3]. While AIS
are not suited for intrusion detection, they are very capable of
compensating for attacks once they happen. This project’s
goal is to prove that an AIS can be used in a cybersecurity
aspect to aid the control of a UAV that has been pervaded by
external and unwanted persons.

III. PREVIOUS WORKS

In prior research, AIS have been utilized to create fault
tolerant control systems on aircraft. Fault tolerant systems
account for failures in sub-systems of aircrafts, such as the
actuators and structures, and adjust the control laws of as
needed. AIS have been integrated to these systems as the
method of machine learning. It has been shown that artificial
immune systems have high positive identification rates within
these fault tolerant systems [3]. The AIS was able to identify
what mode of failure occurred and adjust the control laws as
necessary.

Within the artificial immune system, the use of a self-non-
self-identification approach is used to recognize changes in
patterns of data. These systems must be “trained” with
nominal data to create a self-space to be used in the pattern
recognition scheme. A self-space can be represented as a
binary string that contains a map of the system’s usual
activity. Previous work has been done to take real-value sets
of data and create a binary self-space from them. From this
self-space, different algorithms for matching rules that use the
negative selection concept were used to train and test the
immunology system using this self-space [4]. It was found that
the r-chunk method with a sub-string size of 10 was found to
be the most effective at detecting these changes while
maintaining a low false alarm rate.

The robustness of the AIS should allow it be effective for
sensing even stealthy attacks. One form of stealth attacks
know is the zero dynamics attack. When a non-linear, real
system is linearized, a finger print containing the information
about the system’s dynamics is found and summarized in a
control matrix. The matrix contains information about the
system such as stability, damping, and frequency. The limit of
control design and stability are noted by the zeros found
within this linearization. Zero dynamics attacks exploit the
unstable zeros found when the system is discretized at a
specific sample time. An attack using the unstable zero as an
input command is injected into the system and causes it to
become unstable [5]. When viewed in continuous time, the
unstable nature of the system is very apparent. Sensors,
however, do not work in continuous time. If a sensor works at
the same sample time as that of the attack, it cannot be seen
and could go completely undetected by a monitoring system.
The sample time conundrum makes zero dynamics attacks
very difficult to detect. Adaptive control systems, such as an
L1 multirate, have been implemented to negate these types of
attacks in the past [6]. The controller did an excellent job at
removing the attack from the system while maintaining
stability.

This project aims to expand upon these works by creating
an artificial immune system that uses sets of binary
representation strings for the signals sent from the sensors to
detect changes in the sensors that have been caused by
cybersecurity breaches. The artificial immune system will
combine the first two previously discussed works to create a
novel approach to mitigate the effects of cyber-attacks. This
approach allows for a database of solutions to be created that
can be expanded upon as new technology is created and added
to unmanned aerial systems for more accurate sensing. Zero
dynamics attacks will then be used as the means of testing the
effectiveness of the newly created adaptive control system.

IV. METHODOLOGY

A. Attack Design and Implementation

This study focuses on using zero-dynamics attacks to
create unstable systems using stealthy attacks that are based
off of the dynamics of the system. To create these attacks, the
quadcopter was flown via commanded pitch and roll while the
VICON system tracked and logged the movement of the
aircraft. This real-time data was then used in MATLAB’s
System Identification Application to generate transfer
functions that describe the systems motion in inputs and
outputs. Two different types of transfer functions were
generated: pitch command-to-x-position and roll command-to-
y-position.

These transfer functions were then discretized to with
sample times of 0.1, 0.03, and 0.05 seconds. After discretizing
the transfer functions, their zeros were found. In zero
dynamics attacks, unstable zeros are exploited by
implementing them into the system at the same sample rate
which the system is being discretized.
 Linear system simulations of the transfer functions were
then created in Simulink to develop the attacks. Fig. 1 shows
the simulation environment used to do so. The attack constant
varies based on the magnitude and sign of the unstable zero
used to develop the attack. It is attack specific and is chosen
based on how quickly the attack grows.

 The gain value was used to turn the attack “on” or “off”
based to view the responses of the linear system with or
without the attack. The attack is added to the reference value
and then fed into the transfer function. In the attacks
generated, the reference is either a roll or pitch orientation. A
reference value of 0.0001 was used in generation of all the
attacks. A reference value of zero was preferred, but many

Fig. 1. Linear simulation environment used to develop zero-dynamics
attacks.

times the attacks would occur far too rapidly and a small, near
zero reference value solved this issue. To discretize the
continuous-time transfer function, two zero order holds, one
before and one after the transfer function, were placed into the
simulation environment and had their sample times changed
accordingly with the attack

 As attacks were being created, it was noted that the
magnitude of the unstable zero played an important role in the
power of the attack constant. Larger magnitude zeros grew
much faster and had to have much smaller constants to remain
stealthy. Due to time constraints, an attack on the roll
command with a sample time of 0.03 seconds was focused on.
The attack value was -1.0423 and the attack constant was 10-5.

 To further study how zero dynamics attacks work in the
non-linear system, a similar attack was designed with a
random value rather than an unstable zero. The attack value
used was -1.052 and the attack constant 2×10-7. These values
are very similar to that of the unstable zero attack. Fig. 2
shows the two attacks compared to one another as well as the
differences in the attacks when created using the linear
system.

 It can be seen that when the linear system is sampled at
0.03 seconds, the unstable zero attack is completely
undetected while the random value attack is seen almost
immediately. Both attacks have similar magnitudes which is
shown in the last two plots in the figure. These two attacks
were used in simulation as well as in the real system to gather
data for the immune system to process.

 The quadcopter project in Simulink is a previously created
simulation of the UAV used in this project. This non-linear
model includes the flight controller, sensors, and a non-linear
airframe model of the quadcopter. Its responses to the attacks
gave a first glance at how the real system might respond. The
attacks were added to reference command values, just like in
the linear system, and data from the estimator and sensors
were logged for analysis. Since the attack focused on was a
roll command, data from the roll angle, roll rate, y-direction
velocity component, and y-position were used to analyze the
effects on the dynamics.

Fig. 2. Comparison of unstable zero attack to the random value attack.

 To implement the attacks into the real system, the flight
controller was edited to an orientation reference and the
attacks added in at their respective sample time. The attacks
began after five seconds of flight time to give the quadcopter
time to stabilize. The VICON system was used to mock GPS
and track the movement and orientation of the quadcopter
while it flew. The data from the estimator, sensors, and
VICON were all collected to analyze the real system’s
response to these sorts of attacks.

 An RC controller was also connected to the quadcopter.
Rather than reading a single reference command that was
initially stated within the flight controller, the RC controller
allows a pilot to control the quadcopter in real time.
Eventually, the attacks will be sent via this communication
means rather than having them preprogrammed into the flight
controller. In real scenarios, an attacker would not have access
to compile the flight controller, but could intercept or handle
the radio frequency at which a pilot’s controller is operating.

B. Hardware Setup

 As stated earlier, due to time constraints, the focus of
cyber-attacks on the drone was shifted to those where the
attacker can gain enough control of the drone to inject a zero-
dynamics attack. This means that denial-of-service attacks
such as jamming or spamming corrupt packets, as well as false
GPS coordinates/altitude sensor spoofing are no longer of
interest.

 The main objective is to verify the effectiveness of the AIS
in real flight hardware. The Parrot Mambo minidrone was
chosen to be used due to its robustness in handling crashes and
relatively cheap cost. The Parrot Mambo also has the ability to
be interfaced with Simulink using the Parrot Minidrones
Support toolbox. Initial testing is done using the Aerospace
Blockset Quadcopter example model from the
asbQuadcopterStart MATLAB function because it provides
an estimator and controller ready to fly. To determine which
binary algorithm would be best for the AIS, this non-linear
model was used to collect preliminary data to create and test
the immunology.

 The model was extended to support multiple controllers
and a VICON motion capture camera system for local
positioning. The Simulink model was designed to be user-
friendly with buttons to select from the three different
controllers before compiling and uploading to hardware. The
three controllers are a simple cascaded PID controller, a
Nonlinear Dynamic Inversion (NLDI) controller, and a L1
controller. The NLDI controller incorporates an Adaptive
Neural Network (ANN) designed by a graduate student at the
Embry-Riddle Aeronautical University Advanced Dynamics
and Controls Lab (ADCL) [7]. This ANN will aid in
extending the time to crash so that the AIS has enough time to
detect the attack and respond.

 The Parrot Mambo uses Bluetooth to communicate with
the ground control station computer (GCS) running Simulink

and sending the VICON position data via UDP protocol. This
is an unsafe protocol, but it was used for the sake of getting
the project groundwork completed and making sure the other
systems worked with a reliable transport layer for the high-
bandwidth and real-time demands of drone localization. The
original PID controller was used to collect nominal data to
create the immune system.

V. RESULTS

 Based upon many preliminary tests, it was determined that
the optimal binary, negative selection algorithm for the AIS,
in this application, was the hamming method. This algorithm
was chosen due to its high identification rate, low false alarm
rate, and low computation time. This method was used to train
the immunology to detect both the attacks in the simulation
and real system environment. The real system data was tested
with two different data representations: four bits and six bits.

A. Simulation Results

Nominal data about the roll angle was collected by giving
a series of roll and pitch commands to the simulation. The roll
angle nominal data was then mapped to a binary self-space
and used to create the immune system. A repertoire size of
1500 was set. The simulation’s data generated 1433 detectors

 To validate that the immune system was working properly,
three test flights were flown in the simulation and tested
against the immune system. These flights had varying roll
angle commands given at various lengths of time. All of these
tests had a low false alarm rate meaning that the immune
system was functioning well.

 After validation, both attacks were implemented into the
roll command of the simulation. The simulation was ran for
twenty seconds while data was logged. Self-spaces were then
created from the data and tested against the immune system.
Fig. 3and fig. 4 show the immune system’s detection scheme.

 In both of the attacks, the roll angle of the quadcopter
grows unbounded until the quadcopter crashes. The immune
system detects the attacks very well due the large growth and
oscillations. In these figures, 1000 data points corresponds

to five seconds of simulation time. The immune system, in
both cases, begins to detect the attacks around 12.5 seconds
and continues activate detectors until the quadcopter crashes.
These results show that the AIS can detect attacks that will
grow in an unbounded fashion.

B. Real System Results
 As in the simulation, five test flights were conducted to
collect nominal data on the roll angle of the quadcopter. The
commands were given and the roll angle response was logged.
Two different immune systems were created with the data.
The first immune system was created using a 4-bit
representation of a time-slice in the self-space, a repertoire of
1500 in the hamming method, and a threshold value of 12.
The second had a 6-bit representation of a time-slice in the
self-space, a repertoire of 2500, and a threshold of 18. The
number of time-slices per string was kept at a value of four for
each of the immune systems.

 The quadcopter was flown using the RF controller to
collect data to validate the immune systems. The test flight
had no pre-described path. Simple roll and pitch commands
were given using the RF controller and the roll angle response
logged. A binary-self space was created from the data and
tested against the immune system. Both immune systems had
a low false alarm rate and both immune systems were
validated.

 After validation, the unstable zero attack and the random
value attack were implemented into the system six times each.
The roll angle was logged for each of the attacks and used to
create self-spaces to be tested against the immune system. In
both attacks, the quadcopter crashes after fifteen second of
flight time allowing the attacks ten seconds to grow. The data
for the first five seconds was trimmed due to the quadcopter
using this time to stabilize.

 When comparing the two attacks, it is apparent that the
unstable zero causes the quadcopter to roll at a higher
magnitude than the random value attack. This trend is present
in all of the other test flights as well. Using the dynamics of
the quadcopter to create the attack causes a more severe

Fig. 3. Detection scheme for simulation under unstable zero attack. Fig. 4. Detection scheme for simulation under random value attack.

failure in the system. These responses, however, are much
smaller than the simulation’s response to the attacks. The lack
of exponential growth could be due to saturations and
limitations of the motors that were not properly modeled
within the non-linear simulation.

 After creating the self-spaces from the roll angle data, both
immune systems were used to detect the attacks. The immune
systems had similar computation times and were very fast in
going through all of the data. Fig. 5 compares the detection
scheme for both the immune systems using the 4-bit scheme
while fig. 6 compares the 6-bit scheme. In the figure, data
point 0 represents five seconds of flight time and is when the
attacks are implemented into the system. Each 1000 data
points represents an additional five seconds.

 In both the 4 and 6-bit representations, the random value
attack is detected more often than the unstable zero attack.
Data point 2000 represents fifteen seconds of flight and the
majority of the detectors that are activated in the unstable zero
attack occur on or after this point. The system has already
begun to fail at this point. In the random value attack,
however, many detectors are activated before failure of the
system has begun. The stealth aspect of the zero dynamics
attack is shown in the fact that the immune system has a much
harder time detecting the attack.

 The 6-bit immune system detects the unstable zero attack
more often than the 4-bit but not a significant amount. The
majority of the detectors are activated after the fifteen second
mark. In the random value attack, however, many more
detectors are activated before failure occurs. Between thirteen
and fourteen and a half seconds there are many more detectors
activated. This detection should allow the system enough time
to remove the attack and prevent the system from crashing.

 Due to the fact that the real system’s response did not
exponentially grow like that of the simulation, the real
system’s immune system has a much harder time detecting the
attacks. The simulation’s immune system almost immediately
recognizes the attack since the oscillations grow quickly. In

the real system, the changes are much smaller and gradual
since the system cannot change angles as quickly as the
simulation predicts.

VI. CONCLUSION

 The goal of this project is to train an AIS to detect zero-
dynamics attacks that are being injected into the commanded
roll angle input. The zero-dynamics attacks were developed
using a linear model of the Parrot Mambo represented by
transfer functions that were found using the system
identification toolbox via real test data from the quadcopter.
The zero-dynamics attack is implemented into the quadcopter
and it is switched on after the quadcopter has stabilized. The
authors used the flight test data from the zero-dynamics attack
and random value attack tests and ran it through the AIS. The
6-bit scheme is found to perform better at detecting the attacks
sooner than the 4-bit scheme. When creating the transfer
functions from system identification, the authors found that
the linear system does not model the nonlinear quadcopter
very well and this could have been the source of many
problems faced throughout the project because the zero-
dynamics attacks were designed from the transfer functions.
The stealth aspect of the zero-dynamics attack that is seen in
the linear model is lost when it is transferred to the nonlinear
system. A small aspect of stealth is regained, however, due to
the fact that the AIS does not detect the unstable zero attack as
often or as quickly as the random value attack.

VII. FUTURE WORK

 This project is still ongoing, and one of the future plans is
to simulate the entirety of the zero-dynamics attack, from
hacking into the drone successfully to injecting the attacks.
After extensive reading and testing, it was determined that
Bluetooth would not be a viable attack surface. Wi-Fi and
915MHz ISM band are highly favorable over Bluetooth. First,
Bluetooth is far more complicated and convoluted than Wi-Fi
– the standards themselves are hundreds of pages longer than
those for Wi-Fi. Despite its outstanding complexity, though,

Fig. 5. Detection rate of real system under the unstable zero attack. Fig. 6. Detection rate of real system under the random value attack.

Bluetooth is by default very secure. Common Bluetooth
exploits such as BlueBorne have all been patched out in recent
versions, which our quadcopter runs. This was experimentally
verified using an Android phone and a utility produced by the
authors of the exploit themselves. Wi-Fi, on the other hand, is
very easy to set up insecurely. Almost all Wi-Fi-controlled
commercial drones use an open Wi-Fi network, which is
relatively easy to exploit. Others use insecure security
protocols, or use a default password that can be easily found
on the manufacturer’s website.

 Second, the Bluetooth hacking scene is significantly
smaller than that of Wi-Fi. While most Bluetooth exploits
throughout history aimed to steal vCards or phone numbers
from mobile phones, Wi-Fi exploits are of much greater
interest to hacking communities, as they can apply to much
more expansive and varied networks, often housing more
valuable data. Because of this, there is a higher quantity and
greater efficacy of Wi-Fi exploits available online and in
bundles, such as Kali Linux. 915MHz and surrounding bands
also typically house direct radio instructions between
controller and aircraft, which should theoretically be much
easier to intercept, and potentially inject as well.

 One protocol often used within the 915MHz band is
MAVLink. MAVLink communication is unauthorized and
unencrypted, meaning that commands can be easily injected or
intercepted. An external actor can not only listen to the
communications happening between the GCS and the UAV,
but also carry out a man-in-the-middle attack by disabling or
even hijacking the vehicle [8]. This, as well as exploitation of
the Wi-Fi vulnerabilities, can have devastating consequences,
as the Confidentiality, Integrity, and Authenticity can all be
violated with relative ease by an attacker. Though this method
may not be completely stealthy visually, it is a good starting
place for attack injection. In an unmanned system, such as that
in this study, the AIS would be the first line of defense against
a stealthy dynamics attack.

 Once a successful hacking method has been acquired, the
aim will be for the artificial immune system to be placed
online the drone. The malicious user will then use the hacking
method to add the attack signal to the commanded value that
has been given. The AIS will be used to detect this hacking
through the methods described in this paper in real time.

ACKNOWLEDGMENTS

 This project would not have been possible without the
support of the National Science Foundation, Grant no. CNS-
1757781. Many thanks go to the foundation for their support
of undergraduate research and their role in making this project
possible. Other thanks go to Dr. Hever Moncayo for his
mentorship, guidance, and encouragement during the process.
To the graduate students working in the Advanced Dynamics
and Controls Lab, thank you for your support and always
checking in on the team.

REFERENCES

[1] J. Kaneshige and K. Krishnakumar, "Artificial immune

system approach for air combat maneuvering," Proc.
SPIE 6560, Intelligent Computing: Theory and
Applications V, 656009, 2007.

[2] M. Perhinschi, H. Moncayo, B. Wilburn , J. Wilburn, O.
Karas and A. Bartlett , "Neurally-augmented immunity-
based detection and identification of aircraft sub-system
failures," The Aeronautical Junary (1968), 2014.

[3] H. Moncayo, "AIS Discrete Data Representation".
[4] H. Jafarnejadsani, H. Lee, N. Hovakinmyan and P.

Voulgaris, "Dual-rate L1 adaptive controller for cyber-
physical sampled-data systems," IEEE 56th Annual
Conference on Decision and Control (CDC), 2017.

[5] H. Jafarnejadsani, "Robust adaptive sampled-data control
design for MIMO systems: Applications in cyber-
physical security," 2018.

[6] J. A. Gross and T. Staff, "Iranian UAV that entered
Israeli airspace seems to be American stealth knock-off,"
Times of Israel, 2018.

[7] J. Verberne, Development of Robust Control Laws for
Disturbance Rejection in Rotorcraft UAVs, (Master's
Thesis) Embry-Riddle Aeronautical University Scholarly
Commons, 2019.

[8] M. A. Joseph, "Vulnerability Analysis of the MAVLink
Protocol for Command and Control of Unmanned
Aircraft," 2014.

