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This project aims to use an artificial immune system to detect 
cyber-attacks on the dynamics of a minidrone. Using linear transfer 
functions, a zero-dynamics attack was designed to be injected into 
the system. To further explore how zero-dynamics translates from 
linear to non-linear systems, a similar attack was made using a 
random value rather than an unstable zero of the system. These 
attacks were then injected via the ground station computer. An 
offline artificial immune system was created and used to test the 
effectiveness of detecting the attacks. The immune system uses a 
discrete, binary, non-self recognition algorithm to create detectors 
and find disturbances in the data. 
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I. INTRODUCTION  

Unmanned aerial vehicle (UAV) warfare, commonly 
known as “drone warfare,” has become central to armed 
conflicts in the 21st century. It enables countries to perform 
aerial surveillance and execute precise air strikes without the 
need for pilots to physically be present. In addition, a 
significant amount of research is dedicated to UAV autonomy, 
to allow the vehicles to recover from various malfunctions or 
attacks.  

It is of paramount importance to all militaries with UAVs 
to ensure the security and reliability of their vehicles due to 
their significance. In December 2011, Iran captured an 
American-made Lockheed Martin RQ-170 Sentinel, which 
was used for a variety of surveillance and other data-collecting 
purposes. Iran commandeered the UAV, landed it, 
downloaded and decoded all of the information on it, and 
produced new vehicles based on their reverse-engineered 
design [1]. Ensuring the security of these UAVs means 
ensuring the security of the potentially critical data on them, 
as well as the technology within the vehicles themselves.  

Desired security measures entail ensuring the UAV can 
detect intrusions, create countermeasures, execute the 

countermeasures, and recover in the event of a successful 
attack. If there is physical damage or faulty sensor data, for 
instance, the UAV must work to stay airborne, and enter a 
recovery sequence as determined by the operator (fly in 
circles, return home, self-destruct, or any combination of tasks 
like these).  

II. BACKGROUND AND MOTIVATION 

Machine learning is a popular technique where computers, 
without explicit instructions, find patterns and derive solutions 
often much more efficiently and effectively than their human 
counterparts. One form of machine learning exists in the form 
of the genetic algorithm, where natural selection is simulated 
on a set of solutions. Potential solutions are evaluated based 
on a user-defined heuristic known as fitness. The weaker 
solutions are removed and the stronger solutions are paired, 
bred, and mutated [2]. This process repeats usually until a 
certain fitness threshold is reached, or until a certain number 
of generations has been produced. These sorts of algorithms 
help find robust solutions with less human intervention.    

An artificial immune system (AIS) expands on the genetic 
algorithm. Modeled after a biological immune system, the AIS 
treats the varying problems it must solve as antigens, and 
solutions to these problems as antibodies. It uses a genetic 
algorithm to generate antibodies: sets of basic instructions that 
potentially solve the problem at hand. A pre-existing 
knowledge base is used to employ negative selection which 
prevents any known bad solutions from entering the gene 
pool. Previous solutions that worked well are stored in a 
database, comparable to biological memory cells, to quickly 
recall how to solve the problem again rather than needing to 
create a solution from scratch [2]. A training set, then, can act 
as a “vaccine.”  

AIS have proven useful in the past with UAVs. AIS have 
been successfully employed in UAVs to compensate for 
subsystem failures, low power resources, navigation, and even 



monitor the health of components as they age [3]. While AIS 
are not suited for intrusion detection, they are very capable of 
compensating for attacks once they happen. This project’s 
goal is to prove that an AIS can be used in a cybersecurity 
aspect to aid the control of a UAV that has been pervaded by 
external and unwanted persons.  

III. PREVIOUS WORKS 

In prior research, AIS have been utilized to create fault 
tolerant control systems on aircraft. Fault tolerant systems 
account for failures in sub-systems of aircrafts, such as the 
actuators and structures, and adjust the control laws of as 
needed. AIS have been integrated to these systems as the 
method of machine learning. It has been shown that artificial 
immune systems have high positive identification rates within 
these fault tolerant systems [3]. The AIS was able to identify 
what mode of failure occurred and adjust the control laws as 
necessary. 

Within the artificial immune system, the use of a self-non-
self-identification approach is used to recognize changes in 
patterns of data. These systems must be “trained” with 
nominal data to create a self-space to be used in the pattern 
recognition scheme. A self-space can be represented as a 
binary string that contains a map of the system’s usual 
activity. Previous work has been done to take real-value sets 
of data and create a binary self-space from them. From this 
self-space, different algorithms for matching rules that use the 
negative selection concept were used to train and test the 
immunology system using this self-space [4]. It was found that 
the r-chunk method with a sub-string size of 10 was found to 
be the most effective at detecting these changes while 
maintaining a low false alarm rate.  

The robustness of the AIS should allow it be effective for 
sensing even stealthy attacks. One form of stealth attacks 
know is the zero dynamics attack. When a non-linear, real 
system is linearized, a finger print containing the information 
about the system’s dynamics is found and summarized in a 
control matrix. The matrix contains information about the 
system such as stability, damping, and frequency. The limit of 
control design and stability are noted by the zeros found 
within this linearization. Zero dynamics attacks exploit the 
unstable zeros found when the system is discretized at a 
specific sample time. An attack using the unstable zero as an 
input command is injected into the system and causes it to 
become unstable [5]. When viewed in continuous time, the 
unstable nature of the system is very apparent. Sensors, 
however, do not work in continuous time. If a sensor works at 
the same sample time as that of the attack, it cannot be seen 
and could go completely undetected by a monitoring system. 
The sample time conundrum makes zero dynamics attacks 
very difficult to detect. Adaptive control systems, such as an 
L1 multirate, have been implemented to negate these types of 
attacks in the past [6]. The controller did an excellent job at 
removing the attack from the system while maintaining 
stability. 

This project aims to expand upon these works by creating 
an artificial immune system that uses sets of binary 
representation strings for the signals sent from the sensors to 
detect changes in the sensors that have been caused by 
cybersecurity breaches. The artificial immune system will 
combine the first two previously discussed works to create a 
novel approach to mitigate the effects of cyber-attacks. This 
approach allows for a database of solutions to be created that 
can be expanded upon as new technology is created and added 
to unmanned aerial systems for more accurate sensing. Zero 
dynamics attacks will then be used as the means of testing the 
effectiveness of the newly created adaptive control system. 

IV. METHODOLOGY 

A. Attack Design and Implementation 

This study focuses on using zero-dynamics attacks to 
create unstable systems using stealthy attacks that are based 
off of the dynamics of the system. To create these attacks, the 
quadcopter was flown via commanded pitch and roll while the 
VICON system tracked and logged the movement of the 
aircraft. This real-time data was then used in MATLAB’s 
System Identification Application to generate transfer 
functions that describe the systems motion in inputs and 
outputs. Two different types of transfer functions were 
generated: pitch command-to-x-position and roll command-to-
y-position.  

These transfer functions were then discretized to with 
sample times of 0.1, 0.03, and 0.05 seconds. After discretizing 
the transfer functions, their zeros were found. In zero 
dynamics attacks, unstable zeros are exploited by 
implementing them into the system at the same sample rate 
which the system is being discretized.  
 Linear system simulations of the transfer functions were 
then created in Simulink to develop the attacks. Fig. 1 shows 
the simulation environment used to do so. The attack constant 
varies based on the magnitude and sign of the unstable zero 
used to develop the attack. It is attack specific and is chosen 
based on how quickly the attack grows. 

 The gain value was used to turn the attack “on” or “off” 
based to view the responses of the linear system with or 
without the attack. The attack is added to the reference value 
and then fed into the transfer function. In the attacks 
generated, the reference is either a roll or pitch orientation. A 
reference value of 0.0001 was used in generation of all the 
attacks. A reference value of zero was preferred, but many 

Fig. 1.   Linear simulation environment used to develop zero-dynamics 
attacks. 



times the attacks would occur far too rapidly and a small, near 
zero reference value solved this issue. To discretize the 
continuous-time transfer function, two zero order holds, one 
before and one after the transfer function, were placed into the 
simulation environment and had their sample times changed 
accordingly with the attack 

 As attacks were being created, it was noted that the 
magnitude of the unstable zero played an important role in the 
power of the attack constant. Larger magnitude zeros grew 
much faster and had to have much smaller constants to remain 
stealthy. Due to time constraints, an attack on the roll 
command with a sample time of 0.03 seconds was focused on. 
The attack value was -1.0423 and the attack constant was 10-5.  

 To further study how zero dynamics attacks work in the 
non-linear system, a similar attack was designed with a 
random value rather than an unstable zero. The attack value 
used was -1.052 and the attack constant 2×10-7. These values 
are very similar to that of the unstable zero attack. Fig. 2 
shows the two attacks compared to one another as well as the 
differences in the attacks when created using the linear 
system. 

 It can be seen that when the linear system is sampled at 
0.03 seconds, the unstable zero attack is completely 
undetected while the random value attack is seen almost 
immediately. Both attacks have similar magnitudes which is 
shown in the last two plots in the figure. These two attacks 
were used in simulation as well as in the real system to gather 
data for the immune system to process. 

 The quadcopter project in Simulink is a previously created 
simulation of the UAV used in this project. This non-linear 
model includes the flight controller, sensors, and a non-linear 
airframe model of the quadcopter. Its responses to the attacks 
gave a first glance at how the real system might respond. The 
attacks were added to reference command values, just like in 
the linear system, and data from the estimator and sensors 
were logged for analysis. Since the attack focused on was a 
roll command, data from the roll angle, roll rate, y-direction 
velocity component, and y-position were used to analyze the 
effects on the dynamics.  

Fig. 2.   Comparison of unstable zero attack to the random value attack. 

 To implement the attacks into the real system, the flight 
controller was edited to an orientation reference and the 
attacks added in at their respective sample time. The attacks 
began after five seconds of flight time to give the quadcopter 
time to stabilize. The VICON system was used to mock GPS 
and track the movement and orientation of the quadcopter 
while it flew. The data from the estimator, sensors, and 
VICON were all collected to analyze the real system’s 
response to these sorts of attacks.  

 An RC controller was also connected to the quadcopter. 
Rather than reading a single reference command that was 
initially stated within the flight controller, the RC controller 
allows a pilot to control the quadcopter in real time. 
Eventually, the attacks will be sent via this communication 
means rather than having them preprogrammed into the flight 
controller. In real scenarios, an attacker would not have access 
to compile the flight controller, but could intercept or handle 
the radio frequency at which a pilot’s controller is operating. 
 

B. Hardware Setup 

 As stated earlier, due to time constraints, the focus of 
cyber-attacks on the drone was shifted to those where the 
attacker can gain enough control of the drone to inject a zero-
dynamics attack. This means that denial-of-service attacks 
such as jamming or spamming corrupt packets, as well as false 
GPS coordinates/altitude sensor spoofing are no longer of 
interest.   

 The main objective is to verify the effectiveness of the AIS 
in real flight hardware. The Parrot Mambo minidrone was 
chosen to be used due to its robustness in handling crashes and 
relatively cheap cost. The Parrot Mambo also has the ability to 
be interfaced with Simulink using the Parrot Minidrones 
Support toolbox. Initial testing is done using the Aerospace 
Blockset Quadcopter example model from the 
asbQuadcopterStart MATLAB function because it provides 
an estimator and controller ready to fly. To determine which 
binary algorithm would be best for the AIS, this non-linear 
model was used to collect preliminary data to create and test 
the immunology. 

 The model was extended to support multiple controllers 
and a VICON motion capture camera system for local 
positioning. The Simulink model was designed to be user-
friendly with buttons to select from the three different 
controllers before compiling and uploading to hardware. The 
three controllers are a simple cascaded PID controller, a 
Nonlinear Dynamic Inversion (NLDI) controller, and a L1 
controller. The NLDI controller incorporates an Adaptive 
Neural Network (ANN) designed by a graduate student at the 
Embry-Riddle Aeronautical University Advanced Dynamics 
and Controls Lab (ADCL) [7]. This ANN will aid in 
extending the time to crash so that the AIS has enough time to 
detect the attack and respond.  

 The Parrot Mambo uses Bluetooth to communicate with 
the ground control station computer (GCS) running Simulink 



and sending the VICON position data via UDP protocol. This 
is an unsafe protocol, but it was used for the sake of getting 
the project groundwork completed and making sure the other 
systems worked with a reliable transport layer for the high-
bandwidth and real-time demands of drone localization. The 
original PID controller was used to collect nominal data to 
create the immune system. 

V. RESULTS 

 Based upon many preliminary tests, it was determined that 
the optimal binary, negative selection algorithm for the AIS, 
in this application, was the hamming method. This algorithm 
was chosen due to its high identification rate, low false alarm 
rate, and low computation time. This method was used to train 
the immunology to detect both the attacks in the simulation 
and real system environment. The real system data was tested 
with two different data representations: four bits and six bits. 

 

A. Simulation Results 

Nominal data about the roll angle was collected by giving 
a series of roll and pitch commands to the simulation. The roll 
angle nominal data was then mapped to a binary self-space 
and used to create the immune system. A repertoire size of 
1500 was set. The simulation’s data generated 1433 detectors  

 To validate that the immune system was working properly, 
three test flights were flown in the simulation and tested 
against the immune system. These flights had varying roll 
angle commands given at various lengths of time. All of these 
tests had a low false alarm rate meaning that the immune 
system was functioning well.  

 After validation, both attacks were implemented into the 
roll command of the simulation. The simulation was ran for 
twenty seconds while data was logged. Self-spaces were then 
created from the data and tested against the immune system. 
Fig. 3and fig. 4 show the immune system’s detection scheme. 

 In both of the attacks, the roll angle of the quadcopter 
grows unbounded until the quadcopter crashes. The immune 
system detects the attacks very well due the large growth and 
oscillations. In these figures, 1000 data points corresponds  

to five seconds of simulation time. The immune system, in 
both cases, begins to detect the attacks around 12.5 seconds 
and continues activate detectors until the quadcopter crashes. 
These results show that the AIS can detect attacks that will 
grow in an unbounded fashion. 

 

B. Real System Results 
 As in the simulation, five test flights were conducted to 
collect nominal data on the roll angle of the quadcopter. The 
commands were given and the roll angle response was logged. 
Two different immune systems were created with the data. 
The first immune system was created using a 4-bit 
representation of a time-slice in the self-space, a repertoire of 
1500 in the hamming method, and a threshold value of 12. 
The second had a 6-bit representation of a time-slice in the 
self-space, a repertoire of 2500, and a threshold of 18. The 
number of time-slices per string was kept at a value of four for 
each of the immune systems.  

 The quadcopter was flown using the RF controller to 
collect data to validate the immune systems. The test flight 
had no pre-described path. Simple roll and pitch commands 
were given using the RF controller and the roll angle response 
logged. A binary-self space was created from the data and 
tested against the immune system. Both immune systems had 
a low false alarm rate and both immune systems were 
validated.  

 After validation, the unstable zero attack and the random 
value attack were implemented into the system six times each. 
The roll angle was logged for each of the attacks and used to 
create self-spaces to be tested against the immune system. In 
both attacks, the quadcopter crashes after fifteen second of 
flight time allowing the attacks ten seconds to grow. The data 
for the first five seconds was trimmed due to the quadcopter 
using this time to stabilize. 

 When comparing the two attacks, it is apparent that the 
unstable zero causes the quadcopter to roll at a higher 
magnitude than the random value attack. This trend is present 
in all of the other test flights as well. Using the dynamics of 
the quadcopter to create the attack causes a more severe 

Fig. 3. Detection scheme for simulation under unstable zero attack. Fig. 4. Detection scheme for simulation under random value attack. 



failure in the system. These responses, however, are much 
smaller than the simulation’s response to the attacks. The lack 
of exponential growth could be due to saturations and 
limitations of the motors that were not properly modeled 
within the non-linear simulation. 

 After creating the self-spaces from the roll angle data, both 
immune systems were used to detect the attacks. The immune 
systems had similar computation times and were very fast in 
going through all of the data. Fig. 5 compares the detection 
scheme for both the immune systems using the 4-bit scheme 
while fig. 6 compares the 6-bit scheme. In the figure, data 
point 0 represents five seconds of flight time and is when the 
attacks are implemented into the system. Each 1000 data 
points represents an additional five seconds.  

 In both the 4 and 6-bit representations, the random value 
attack is detected more often than the unstable zero attack. 
Data point 2000 represents fifteen seconds of flight and the 
majority of the detectors that are activated in the unstable zero 
attack occur on or after this point. The system has already 
begun to fail at this point. In the random value attack, 
however, many detectors are activated before failure of the 
system has begun. The stealth aspect of the zero dynamics 
attack is shown in the fact that the immune system has a much 
harder time detecting the attack. 

 The 6-bit immune system detects the unstable zero attack 
more often than the 4-bit but not a significant amount. The 
majority of the detectors are activated after the fifteen second 
mark. In the random value attack, however, many more 
detectors are activated before failure occurs. Between thirteen 
and fourteen and a half seconds there are many more detectors 
activated. This detection should allow the system enough time 
to remove the attack and prevent the system from crashing.  

 Due to the fact that the real system’s response did not 
exponentially grow like that of the simulation, the real 
system’s immune system has a much harder time detecting the 
attacks. The simulation’s immune system almost immediately 
recognizes the attack since the oscillations grow quickly. In  

the real system, the changes are much smaller and gradual 
since the system cannot change angles as quickly as the 
simulation predicts.  

 
VI. CONCLUSION 

 The goal of this project is to train an AIS to detect zero-
dynamics attacks that are being injected into the commanded 
roll angle input. The zero-dynamics attacks were developed 
using a linear model of the Parrot Mambo represented by 
transfer functions that were found using the system 
identification toolbox via real test data from the quadcopter. 
The zero-dynamics attack is implemented into the quadcopter 
and it is switched on after the quadcopter has stabilized. The 
authors used the flight test data from the zero-dynamics attack 
and random value attack tests and ran it through the AIS. The 
6-bit scheme is found to perform better at detecting the attacks 
sooner than the 4-bit scheme. When creating the transfer 
functions from system identification, the authors found that 
the linear system does not model the nonlinear quadcopter 
very well and this could have been the source of many 
problems faced throughout the project because the zero-
dynamics attacks were designed from the transfer functions. 
The stealth aspect of the zero-dynamics attack that is seen in 
the linear model is lost when it is transferred to the nonlinear 
system. A small aspect of stealth is regained, however, due to 
the fact that the AIS does not detect the unstable zero attack as 
often or as quickly as the random value attack. 

VII. FUTURE WORK 

 This project is still ongoing, and one of the future plans is 
to simulate the entirety of the zero-dynamics attack, from 
hacking into the drone successfully to injecting the attacks. 
After extensive reading and testing, it was determined that 
Bluetooth would not be a viable attack surface. Wi-Fi and 
915MHz ISM band are highly favorable over Bluetooth. First, 
Bluetooth is far more complicated and convoluted than Wi-Fi 
– the standards themselves are hundreds of pages longer than 
those for Wi-Fi. Despite its outstanding complexity, though, 

Fig. 5. Detection rate of real system under the unstable zero attack. Fig. 6. Detection rate of real system under the random value attack. 



Bluetooth is by default very secure. Common Bluetooth 
exploits such as BlueBorne have all been patched out in recent 
versions, which our quadcopter runs. This was experimentally 
verified using an Android phone and a utility produced by the 
authors of the exploit themselves. Wi-Fi, on the other hand, is 
very easy to set up insecurely. Almost all Wi-Fi-controlled 
commercial drones use an open Wi-Fi network, which is 
relatively easy to exploit. Others use insecure security 
protocols, or use a default password that can be easily found 
on the manufacturer’s website.  

 Second, the Bluetooth hacking scene is significantly 
smaller than that of Wi-Fi. While most Bluetooth exploits 
throughout history aimed to steal vCards or phone numbers 
from mobile phones, Wi-Fi exploits are of much greater 
interest to hacking communities, as they can apply to much 
more expansive and varied networks, often housing more 
valuable data. Because of this, there is a higher quantity and 
greater efficacy of Wi-Fi exploits available online and in 
bundles, such as Kali Linux. 915MHz and surrounding bands 
also typically house direct radio instructions between 
controller and aircraft, which should theoretically be much 
easier to intercept, and potentially inject as well.  

 One protocol often used within the 915MHz band is 
MAVLink. MAVLink communication is unauthorized and 
unencrypted, meaning that commands can be easily injected or 
intercepted. An external actor can not only listen to the 
communications happening between the GCS and the UAV, 
but also carry out a man-in-the-middle attack by disabling or 
even hijacking the vehicle [8]. This, as well as exploitation of 
the Wi-Fi vulnerabilities, can have devastating consequences, 
as the Confidentiality, Integrity, and Authenticity can all be 
violated with relative ease by an attacker. Though this method 
may not be completely stealthy visually, it is a good starting 
place for attack injection. In an unmanned system, such as that 
in this study, the AIS would be the first line of defense against 
a stealthy dynamics attack. 

 Once a successful hacking method has been acquired, the 
aim will be for the artificial immune system to be placed 
online the drone. The malicious user will then use the hacking 
method to add the attack signal to the commanded value that 
has been given. The AIS will be used to detect this hacking 
through the methods described in this paper in real time. 
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