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ABSTRACT
In this paper, we present a new deep learning-based approach
for histopathology image classification. Our method is built
upon standard convolutional neural networks (CNNs), and in-
corporates two separate attention modules for more effective
feature learning. In particular, the attention modules infer the
attention maps along different dimensions, which help focus
the CNNs on critical image regions, as well as highlight dis-
criminative feature channels while suppressing the irrelevant
information with respect to the classification task. The at-
tention modules are light-weight, and enhances the feature
representation with small extra computational overhead. Ex-
perimental results on the publicly available BreakHis dataset
demonstrate that our method outperforms the state-of-the-arts
by a large margin.

Index Terms— Histopathology image analysis, breast,
convolutional neural network, attention, transfer learning

1. INTRODUCTION

Microscopic histopathological examination using a tissue
biopsy has been widely used in cancer diagnosis and is con-
sidered confirmatory gold standard in practice. Diagnostic
report, including grading and staging, is typically completed
by experienced pathologists through visually inspecting the
histological samples. With the recent advances in image pro-
cessing, it becomes increasingly possible to automate such
histopathology analysis, thereby assisting the pathologists
to be more productive and objective. As one of the primor-
dial tasks, classification of histopathology images has gained
much attention in recent years. However, such classification
task is quite challenging due to the inherent complex visual
patterns of histopathology images.

Early works on histopathology image classification mainly
rely on handcrafted features extracted from the whole image
or segmented patches [1, 2, 3]. While being interpretable,
handcrafted features are typically unsatisfactory for this task
due to their limited description of the images. Inspired by
recent advances in deep learning, several methods have been
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developed to employ convolutional neural networks (CNNs)
for automatic image feature learning, which has been shown
to achieve better performance than the handcrafted design
[4, 5]. However, one major weakness with CNN-based mod-
els is that they typically require massive data for training. To
mitigate the data-intensive issue, one common strategy is to
fine-tune the models pre-trained on large-scale image dataset
(e.g., ImageNet) [6]. Another different class of methods sim-
ply utilizes the pre-trained CNNs as feature extractors and
then applies Fisher Vector (FV) encoding for global feature
representation [7, 8, 9]. While achieving the state-of-the-art
results, these methods tend to generate features with redun-
dancy and noise, which are adverse to the classification.

In this paper, we propose a new CNN architecture and
improve the feature representation for histopathology image
(patch) classification from a different perspective. At the core
of our method is an attention mechanism, which helps the
CNN focus on regions and feature channels that are critical
to the classification task. Our key motivation is from the hu-
man vision system: when perceiving a scene, humans first
glance at the scene and then instantly attend to the salient
contents while ignoring the irrelevant information. We imple-
ment such mechanism as attention maps through global fea-
ture correlation analysis. Specifically, inspired by the Trans-
former [10] and non-local neural networks [11], we design
two attention modules, which infer the attention maps along
channel and spatial dimensions, respectively (see Fig. 1). The
channel-wise attention (C-Attn) module allows the network to
concentrate on discriminative feature channels and reduce the
redundancy, while the spatial attention (S-Attn) module high-
lights the useful regions and suppresses the irrelevant ones for
the network. These two modules enhance the discriminative
learning ability collaboratively, and can be integrated into ar-
bitrary existing CNN architectures in a plug-and-play manner.
In practice, we adopt VGG19 [12] as the base model and in-
sert the attention modules at different positions, as shown in
Fig. 1. We apply our method to the task of benign and malig-
nant breast caner classification, and on the publicly available
BreakHis dataset [2] we demonstrate the superiority of our
method compared to the state-of-the-arts.

In the following sections we present the details of our
method, and provide the experimental results and discussions.

2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)
Venice, Italy, April 8-11, 2019

978-1-5386-3640-4/19/$31.00 ©2019 IEEE 1865



Conv 

Block 1
C-Attn C-Attn S-Attn

Conv 

Block 2

Conv 

Block 3

Conv 

Block 4
S-Attn

Conv 

Block 5
S-Attn

FC 

Block

VGG19 with Attention

Conv

Conv

Conv

𝐒𝑄
𝑇𝐒𝐾 Softmax

𝐒𝑉𝐄
′

Add

S𝑄

S𝐾

S𝑉

F

E E′

A𝑠

𝐅𝑛𝑒𝑤

Conv

Conv

Conv

M𝑄M𝐾
𝑇 Softmax

D′𝑇M𝑉

Add

M𝑄

M𝐾

M𝑉

F

D D′

A𝑐

𝐅𝑛𝑒𝑤

Channel-Wise Attention Module Spatial Attention Module

Fig. 1. Illustration of the attention modules, which are placed at different positions of VGG19 network.

2. METHOD

Given an intermediate feature map F ∈ RC×H×W as input
(C, H and W are the channel number, height and width of
F, respectively), the C-Attn and S-Attn modules infer the at-
tention maps Ac and As along the channel and spatial di-
mensions, respectively. The generated attention maps Ac and
As are then applied to F for feature refinement. Below we
illustrate the details of each module.

2.1. Channel-Wise Attention Module

The C-Attn module produces the attention map by explicitly
modeling the inter-channel relationships of features. The key
motivation is that different channels typically correspond to
different patterns, and only a portion of them are useful for the
classification task. Therefore, the C-Attn module is designed
to help the CNN focus on the discriminative patterns and re-
duce the redundancy by suppressing the non-discriminative
ones. In this way, it prevents the most discriminative features
from being averaged out by the background channels.

Specifically, given input feature map F ∈ RC×H×W , C-
Attn module first generates the channel-wise feature vectors:

M = R (WcF) . (1)

Wc represents the weights of a 2D Conv layer without bias,
which produces a feature map of size C × H ′ × W ′. R
is the reshape operation and generates M ∈ RC×N , where
N = H ′ ×W ′. Here, M can be seen as a set containing C
vectors of length N . In a similar spirit to Transformer [10],
Eq. (1) is applied to F twice with different Conv weights,
leading to different sets of vectors MQ and MK . Meanwhile,
by fixing the 2D Conv in Eq. (1) to be 1× 1, the feature map
F is transformed into another vector set MV (see Fig. 1). Af-
terwards, we capture the inter-channel relationships by com-
puting the channel-wise statistics:

D = MQM
T
K , (2)

D′ = softmax(D), (3)

where the softmax operation is applied column-wise:

D′ij =
exp(D′ij)∑C
i exp(D′ij)

. (4)

Then we compute the attention map as weighted sum of fea-
ture vectors:

Ac = D′TMV . (5)

Finally, the attention map Ac is added to the input feature
map F for feature refinement:

Fnew = F+R′(Ac), (6)

where the operationR′ reshapes Ac back to C ×H ×W . In
place of F, the refined Fnew is then fed forward to the sub-
sequent layers. Since the attention map Ac learns the long-
range semantic dependencies among feature channels, it is
able to highlight the class-specific discriminative features and
thus help improve the classification performance. Note that
Ac can also be interpreted as a residual component, which
has been verified to be beneficial to the feature learning [13].

2.2. Spatial Attention Module

Unlike C-Attn, the spatial attention allows the network to con-
centrate on useful regions and suppress the background infor-
mation. It works in a similar manner to C-Attn, but with a
focus on pixels instead of feature channels.

For an input feature map F ∈ RC×H×W , it is first linearly
transformed and reshaped as follows:

S = R (WsF) , (7)

where Ws is the weights of a 1× 1 Conv layer whose output
feature map is of size C ′×H ×W . In practice, to reduce the
computational overhead, C ′ is set as C ′ = C/r, with reduc-
tion ratio r ≥ 2. The convolutional output is transformed by
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the reshape operation R into a set of N feature vectors with
length C ′, i.e., S ∈ RC′×N , where N = H ×W . Similar to
C-Attn, Eq. (7) is applied to F three times, thereby generating
SQ, SK and SV , among which the vector set SV is created
without channel reduction, i.e., r = 1. Then we compute the
spatial correlation between different positions as:

E = ST
QSK , (8)

E′ = softmax(E), (9)

where the softmax is performed column-wise:

E′ij =
exp(E′ij)∑N
i exp(E′ij)

. (10)

Note that similar feature vectors would correspond to high
correlation values in E′. Finally, we generate the attention
map As and add it back to the input feature map:

As = SV E
′, (11)

Fnew = F+R′(As). (12)

The attention map As learns and aggregates the global con-
text into the refined feature map Fnew, thereby effectively
guiding the network to concentrate on more critical region in-
formation for the classification task.

2.3. Arrangement of the Attention Modules

The two different attention modules compute complementary
attention and can be inserted into CNN collaboratively. In the
case of VGG19, we empirically observe that placing C-Attn
and S-Attn on the bottom and top layers respectively gives the
best results (see Fig. 1). We also experiment with inserting
the attention modules at other positions (e.g., after all convo-
lutional blocks), but obtain slightly inferior performance. The
reason would be that the bottom layers contain more redun-
dant channels which correspond to the low-level background
signals, while the top layers have rich semantic features where
the critical regions are not salient.

3. EXPERIMENTS AND RESULTS

We evaluate the proposed method on the publicly available
BreakHis dataset [2]. This dataset consists of hematoxylin
and eosin (H&E) stained microscopy biopsy images of be-
nign and malignant breast tumors. The images are collected
from 82 patients and captured at four different magnifications
(40×, 100×, 200× and 400×). In total there are 7909 images,
with 2480 benign and 5429 malignant cases. Each image is a
patch from the whole slide and has size 700× 460× 3.

In the implementation we use VGG19 as the base model,
where the two different attention modules are integrated.
Note that our method is generic and not limited to VGG19.

Table 1. The image-level classification accuracies (%) on
BreakHis dataset. Our method incorporates both the spatial
and channel-wise attentions, and achieves the best results.
(“C”: C-Attn module. “S”: S-Attn module.)

Method Magnification
40× 100× 200× 400×

CNN-r [4] 89.6±6.5 85.0±4.8 82.8±2.1 80.2±3.4

CNN-m [4] 85.6±4.8 83.5±3.9 82.7±1.7 80.7±2.9

FV-dr [7] 87.0±2.6 86.2±3.7 85.2±2.1 82.9±3.7

FV-ada [9] 87.5±1.6 88.6±3.6 85.5±2.0 85.0±4.6

VGG19 89.1±3.4 90.3±3.9 90.6±2.8 87.4±2.4

VGG19 + C 91.1±2.6 91.5±3.5 92.0±2.2 88.6±2.3

VGG19 + S 89.9±3.0 91.7±2.5 92.2±1.9 89.2±2.5

Ours 91.4±3.0 92.2±2.9 93.4±2.3 90.0±2.2

Table 2. The patient-level classification accuracies (%) on
BreakHis dataset. Our method achieves the best performance.
(“C”: C-Attn. “S”: S-Attn.)

Method Magnification
40× 100× 200× 400×

PFTAS[2] 81.6±3.0 79.9±5.4 85.1±3.1 82.3±3.8

Vote [3] 87.2 88.2 88.9 85.8
CNN-r [4] 88.6±5.6 84.5±2.4 83.3±3.4 81.7±4.9

CNN-m [4] 90.0±6.7 88.4±4.8 84.6±4.2 86.1±6.2

CNN-st [5] 83.1 83.2 84.6 82.1
MIL-CNN[6] 89.5 89.1 88.8 87.7

FV-dr [7] 90.0±3.2 88.9±5.0 86.9±5.2 86.3±7.0

FV-ada [9] 88.5±2.7 90.8±4.4 89.2±3.2 89.2±7.9

VGG19 95.7±3.9 96.4±3.6 96.4±2.5 92.9±3.6

VGG19 + C 97.1±3.0 98.6±2.0 98.6±2.0 95.7±3.0

VGG19 + S 97.9±3.2 98.6±2.0 97.9±3.2 94.3±4.8

Ours 97.9±3.2 99.3±1.6 98.6±2.0 96.4±2.5

The weights of the convolutional blocks in VGG19 are fine-
tuned while the remaining fully connected layers and the
attention modules are trained from scratch. The input images
are normalized by the data mean and variance, and are re-
sized to 224× 224, followed by random flip and rotation. For
model training, we use Adam optimizer and set the learning
rate to 0.00005, with a decay of 0.5 every 30 training epochs.
The training batch size is 8, and the weight decay is chosen
to be 0.0001. For C-Attn, we set both the kernel size and
stride of the 2D convolution for generating MQ and MK

to 4. For S-Attn, we set the reduction parameter in SQ and
SK to r = 8. The code1 is implemented with PyTorch and
executed on a single NVIDIA GTX 1080 Ti GPU.

We perform 5-fold validation in the experiment, and fol-
low the train/test split provided by the BreakHis dataset: 70%
of the images are used for training and 30% for testing. In
the evaluation, we measure the accuracies at both image and

1Code is available at https://github.com/pxiangwu/attn-hist-classify.
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patient levels. The patient-level accuracies are obtained by
majority voting using the image-level classification results.
Following the setting of [9], we train our model with all the
available training images regardless of the magnification fac-
tors. This makes the task more challenging due to the image
heterogeneity.

We compare our method with several existing works, in-
cluding PFTAS [2], Vote [3], CNN-r [4], CNN-m [4], CNN-
st [5], MIL-CNN [6], FV-dr [7] and FV-ada [9]. In particu-
lar, PFTAS and Vote are based on handcrafted features, while
CNN-r, CNN-m, CNN-st and MIL-CNN employ CNN for
automatic feature learning. FV-dr and FV-ada follow a dif-
ferent route by utilizing Fisher Vector to further encode the
learned convolutional features into lower-dimensional space.
To validate the effectiveness of the attention modules, we also
conduct several ablation studies. In particular, we fine-tune a
baseline VGG19 model using the same experimental setting.
Besides, we experiment with removing the S-Attn modules
from our method, leading to a model with C-Attn only (i.e.,
VGG19 + C-Attn, as shown in Table 1 and 2). Similar abla-
tion is also applied to the C-Attn modules, and thereby gives
a model with spatial attention only (i.e., VGG19 + S-Attn).

We report the results in Table 1 and Table 2. Note that
some of the existing works only provide the patient-level re-
sults, and a few of them only give the average accuracies with-
out reporting the standard deviations. From the experimental
results it can be observed that our method outperforms the
existing methods by a large margin. This demonstrates the
advantages of attention modules. In particular, compared to
the vanilla VGG19 model, our method achieves much perfor-
mance gain due to the benefits of attention. Besides, the clas-
sification accuracy decreases when removing either one type
of attention modules. This shows that the two modules are
complementary. However, even equipped with only one at-
tention mechanism, the resulting model still outperforms the
baseline, which verifies the effectiveness of attention. Note
that such performance gain comes with a small parameter
overhead, indicating that the improvement is not due to the
increased network capacity brought by attention modules, but
instead from the attentive feature refinement.

4. CONCLUSION

In this work, we aim to enhance the feature representation for
histopathology image classification, and propose a new deep
neural network based on attention mechanism. We show that
convolutional feature learning could be improved by two dif-
ferent attention modules, thereby leading to better classifica-
tion performance in practice. The attention modules are light-
weight and enhance the feature discriminability with small
extra overhead. We validate the proposed method on the pub-
licly available BreakHis dataset. Experimental results demon-
strate the effectiveness of our method, particularly the atten-
tion modules, in histopathology image classification task.
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