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Abstract- Simulating potential cascading failures can be useful
for avoiding or mitigating such events. Currently, existing
steady-state analysis tools are ill-suited for simulating
cascading outages as they do not model frequency
dependencies, they require good initial conditions to converge,
and they are unable to distinguish between a “collapsed grid
state” from a “hard-to-solve test case.” In this paper, we extend
a circuit-theoretic approach for simulating the steady-state of a
power grid to incorporate frequency deviations and implicit
models for under-frequency and under-voltage load shedding.
Using these models, we introduce a framework capable of
robustly solving cascading outages of large-scale systems that
can also locate infeasible regions. We demonstrate the efficacy
of our approach by simulating entire cascading outages on an
8k+ nodes sample testcase.

Index Terms- cascading outage, collapsed grid, extreme
contingencies, frequency modeling, under-frequency load-
shedding, under-voltage load shedding.

1. INTRODUCTION

Modern society depends on the secure and reliable operation
of the electric grid. Cascading outages represent a class of
events that can significantly impact the electric grid and
create wide-spread socio-economic damages. The North
American Electric Reliability Corporation (NERC) defines
cascading outages “as the uncontrolled loss of any system
facilities or load, whether because of thermal overload,
voltage collapse, or loss of synchronism, except those
occurring as a result of fault isolation” [1].

NERC has released several guidelines to mitigate the
likelihood of cascading outages occurring in the grid.
Amongst those, NERC standards TPL-001-4 [2] and CIP-
014-2 [3] require evaluation of the impact of extreme
contingencies that may cause cascading outages. On the
operations side, Emergency Operations EOP-003-1 [4]
requires that: “After taking all other remedial steps, a
Transmission Operator or Balancing Authority operating
with insufficient generation or transmission capacity shall
shed customer load rather than risk an uncontrolled failure of
components or cascading outages of the Interconnection” by
implementing Special Protection Systems (SPS) and other
routines to automatically shed load under adverse events.

Therefore, to properly analyze cascading outages, a
simulation framework must (i) solve extreme contingency
cases from initial conditions that are far from the solution; (ii)
identify and locate collapsed (infeasible) grid locations; and
(ii1) include frequency state into its framework to model the
impact of generator droop control and automatic protection
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schemes such as frequency dependent load shedding. A
framework capable of satisfying these requirements will
allow planning engineers to distinguish a cascaded grid
scenario from a divergent scenario. Furthermore, such a
framework would be able to converge infeasible test cases
(i.e., cases operating beyond the tip of the nose curve) and
allow planning engineers to locate weak sections of the grid.
Additionally, it is also important for the framework to
robustly simulate any remedial actions in order to accurately
analyze the grid during a cascade outage. These include
Under-Frequency Load Shedding (UFLS) and Under Voltage
Load Shedding (UVLS) schemes.

Existing frameworks for simulating cascading outages
have tried to incorporate these features in both sequential
power flow analysis [5], [6] as well as transient analysis [7]-
[8]. In general, transient analysis is slow and is therefore only
performed for critical contingencies in the system. A
sequential steady-state power flow analysis offers runtime
advantages to study a broad range of outages. However,
existing steady-state tools in the industry and academia do
not satisfy the previously stated requirements of
incorporating frequency information and/or solving
infeasible cases. This is highlighted in a recent report [9] by
the Task Force on Understanding, Prediction, Mitigation,
and Restoration of Cascading Failures that stated that “the
tools for directly assessing and mitigating large cascading
failures are not yet well developed.”

Overall, there has been significant research on
addressing key elements required to develop a robust tool for
cascading analysis. [10]-[11] have improved the robustness
of convergence of complex and large “hard-to-solve” cases
by incorporating limiting and homotopy methods. Modeling
the frequency state is also broached by many existing works
[11]-[13]; however, these approaches use of outer loops to
resolve discontinuous models which can cause simulation
convergence issues. Furthermore, detection and localization
of infeasible grid states is also ongoing work [14]-[15].
Continuation power flow [17] was previously proposed to
solve infeasible test cases (operating beyond the tip of the
nose curve), but requires solving the base case first, which
itself is hard to achieve for complex, large-scale test cases
when the initial condition is far from the solution. Other
optimization-based methodologies [15] have also attempted
to solve infeasible test cases, but they generally suffer from
a lack of convergence robustness and have only been tested
on small, well-conditioned networks.
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The current-voltage state variables-based power flow
formulation in [11] proposes to model the transmission and
distribution grid networks as equivalent circuits. This
approach has been demonstrated to enable robust
convergence of complex transmission or distribution
networks via use of circuit simulation methods [11].
Recently, we have expanded this simulation framework to
further solve infeasible test networks and locate weak system
areas that would correspond to a collapsed grid state [14]. In
this paper, we expand the circuit-based formulation to model
frequency deviations while implicitly capturing UFLS and
UVLS without the need for outer loops. This enables us to
develop a framework to accurately simulate cascading
outages while localizing and identifying collapsed sections of
the grid.

II. BACKGROUND
A. Governor Power Flow

Previous works [11]-[13] have explored the use of a
frequency variable in power flow formulations, including
optimization-based methods [5]. These frameworks
generally adjust the real power of the generator based on the
change of the grid’s frequency Af:

Pe = PSFT — R af ()
where, P;; is the frequency-adjusted real power output of the
generator, PSET is the set generator real power, and Py and
R define the primary frequency response of the generator
based on droop control and inertia. However, these methods
typically account for real power limits of the generator in the
outer loop of the solver, thereby causing significant
convergence issues due to piecewise discontinuous
modeling [16], where:

PMAX if p; > PMAX

MIN ; MIN
PG= PG ,lfPG<PG (2)

P
(P&*" - ERAf, otherwise

In [10] and [16], we have shown that convergence issues
due to piecewise discontinuous modeling of limits can be
avoided by using implicit models for system control
including real power control of a generator based on
frequency deviations. It was shown that a generator’s change
in real power due to the primary response can be captured by
formulating the change in real power as a function of
frequency including real power limits [18]. This continuous
model implicitly captures the generator real power limits
without the need for outer iteration loops.

B. Current-Voltage Approach to Power Flow Analysis

Current-voltage (I-V) based formulations have been
explored in the past for performing power flow and three-
phase power flow analyses [11], [22]. Amongst these
approaches, a recently introduced equivalent circuit
approach [11] maps the different network models of the grid
(e.g. PV, PQ etc.) into their respective equivalent circuits and
further aggregates them together to create the whole network
model to solve for the node voltages and branch currents.
This approach has also been previously extended with circuit
simulation methods to preserve the physical behavior of the
grid elements by avoiding solutions that include low-
voltages [11] and generators operating in an unstable region
[16]. Robust convergence to meaningful solutions from
initial conditions that are far from the solution is essential for

simulating cascading outages, and we demonstrate the
efficacy of an extension of this circuit-theoretic simulation
framework for such simulation problems in this paper.

C. Optimization Using Equivalent Circuit Approach

The equivalent circuit approach described above can be
extended to formulate constrained optimization problems via
the use of adjoint theory [14]. In this approach, in addition
to the power flow circuits, adjoint circuits are added to the
framework [14] to represent the necessary first-order
optimality conditions of the optimization problem. The
solution of this net aggregated circuit (power flow circuits
and adjoint circuits) corresponds to an optimal solution of
the optimization problem and is obtained by using the circuit
simulation techniques described in [11], [24].

For simulation of cascading outages, it is essential to
differentiate “hard-to-converge” grid-state from “infeasible”
grid-state. Therefore, the optimization problem in [14] that
was previously proposed to detect infeasibility in regular
power flow test cases by introducing an infeasibility current
source I at each bus, is extended to include frequency
control and special protection schemes (UVLS and UFLS)
to simulate cascading outages, as shown in later sections of
this paper.

III. IMPLICIT MODEL FOR LOAD SHEDDING

In order to simulate the effect of a contingency during a
cascade, it is important to consider automatic schemes
designed to protect the stability of the grid. Under Frequency
Load Shedding (UFLS) and Under Voltage Load Shedding
(UVLS) [PRC-010] are a set of control mechanisms
designed to restore and maintain frequency and voltage
stability respectively, by disconnecting loads to match the
supply of generators [19]. Both these load shedding schemes
can shed load discretely or continuously (as described in
[21]) by disconnecting parts of loads based on the frequency
of the grid or the voltage at the bus.

In both discrete and continuous load shedding
mechanisms, load shedding only occurs once the frequency
of the grid or the voltage at the bus is below a certain
threshold. To study the steady-state effects of UFLS and
UVLS, we incorporate this behavior into power flow and
extend the PQ load model as shown in (3)-(4). This
facilitates both discrete and continuous load shedding.

PL — PLset(l _ aUFLS) (1 _ aUVLS) (3)

Q= Qi (1 — a’"5)(1 — a"V5s) (4)
The new variable a = {aUFLS, aUVLS} € [0,1] describes load
shedding due to UFLS or UVLS at the steady-state grid
response. When a =0, the load experiences no load
shedding (P, = P¢ and Q! = Q}°°"), whereas, a =1
represents full load shedding (P} = Piset and QF = QLseY).

“UFLs
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Figure 1: Discrete (blue) and Continuous (red) UVLS and UFLS.
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In order to model discrete load shedding during power
flow, a PQ load at a distribution station is segmented into
separate PQ loads, each corresponding to a part of the load
being shed at a particular threshold frequency or voltage.
Each segmented load then has a corresponding a. For a
continuous load shedding scheme, the entire PQ load can be
modelled as a whole with a single a.

For each load, « is controlled by the frequency of the grid
or the voltage at the bus depending on the scheme, described
in the following sections.

D. Implicitly modeling UFLS

Under the UFLS scheme, Y5 € [0,1] is controlled by the
frequency of the grid. Ideally, in a discrete load shedding

scheme:
UFLS — {O’ Af > fSET (5)
1, Af < fser

However, (5) is a discontinuous function and causes
numerical issues during Newton-Raphson (NR). In order to
model the discontinuous behavior implicitly without any
outer loop, we approximate the behavior of UFLS in (5) by
a continuous differentiable function (6) and is depicted in
Figure 2.

a

( 0, Region 1
AminAf2 + bpinAf + Coins Reg%on 2
alFts = —BAf = fser), Region 3 (6)
AmaxDf? + bpaxAf + Crnaxr Region 4
k 1, Region 5

(6) is a smooth function with a continuous first derivative
that inherently considers the threshold frequency (fsgr) as
well as bounds aUFLS < 1. Region 1 in (6), also shown in
Figure 2, represents no load shedding when the frequency of
the grid is above fsgr. In order to model discrete load
shedding step at fsgr, the model moves from Region 1 to
Region 5 through continuous sections. It is apparent from
Figure 2 that in order to tightly match the discrete step, 8
must be large (> 100).

A model for continuous load shedding is described by:

QUFLS — { 0, Af> fser %
—K(Af = fser), Af < fser

where, K is a predefined factor that controls the amount of
load shedding at each frequency deviation. However, (7) is
also a discontinuous function that can cause numerical
stability issues. As a result, (6) can also be used to model the
continuous load shedding by equating the factor § to K.

Regions 2 and 4 are vital quadratic patching functions for
(6) that provide first derivative continuity, thus improving
simulation convergence properties. Before the simulation
begins, we solve for the quadratic parameters by matching
their values and the first derivative of the quadratic function
to the adjacent functions at the intersection points. This
forces the function to be continuous and smooth for all
frequencies, thereby improving robustness during simulation
as it does not have the deficiencies of discontinuous
piecewise models. In using the optimization framework
described in Section II.C, it is also necessary to calculate the
search direction using the second derivative of the implicit
models. The model given in (6) is first-order continuous and
its second order derivative is estimated as done in [16] to
provide a reasonable approximation that allows the model to
converge toward a feasible solution.

While modelling a discontinuous load shedding scheme
using the implicit UFLS model, the framework may
converge to a solution with 0 < aVFXS < 1, i.e. within a
region that is not fully connected nor fully disconnected. In
this case, we are able to apply an outer loop to snap the
function of aV*XS to the closer bound (0 or 1). In practice,
this outer loop does not result in convergence issues because
the previous solution is close enough to the true solution of
the grid to allovy fast convergence using N-R.
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Figure 2: Continuous implicit models for UVLS and UFLS.
E. Implicit Model of UVLS

UVLS behaves similarly to the UFLS scheme with the
exception that aU'YS is controlled by the bus voltage V.
UVLS schemes typically disconnect parts of a load if the bus
voltage is below a certain minimum threshold, Vsgr. The
steady-state of UVLS can be described as:

1, V < Vggr
Similar to the ideal UFLS model, however, equation (8) is a
discontinuous function that cannot guarantee convergence
using numerical methods such as NR. To remediate this, we
apply the same model as UFLS, but with the controlling
variable as voltage (V), as shown in Figure 2.

a

( , Region 1

AminV? + bminV + Comins Region 2

aVVLS = 1 —B(V = Vsgr), Region 3 (8)
AmaxV? + bmaxV + Cmaxr Region 4
k 1 Region 5

Like the implicit model for the discrete UFLS, we use an
outer loop to handle simulations where the solution
converges to 0 < aUVLS < 1. In practice, this outer loop also
does not result in any convergence issues.

IV.PROBLEM FORMULATION

In this section, we develop a framework for simulating
cascading outages based on a robust current-voltage
formulation [14], [10]. This algorithm, depicted in Figure 3,
extends the power flow formulation by incorporating under
frequency and voltage load-shedding and is able to identify
if the network has partially or totally collapsed.

A. Cascade Analysis Stage 1 Module

The first stage of the framework solves for the steady state
of the grid under a contingency using power flow including
UFLS and UVLS schemes. Mathematically, stage I can be
described as an optimization problem:

. 2
min- 1, g (%a)
st. YV—Ip=0 (9b)
Pé+ APE = VSIS + VAIP, i € slack (9¢)

. P
AP{ — R—RAf =0,i € slack (9d)

i
Pi =Py + AP, i € PV, (9¢)
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. P
AP(‘;—(R—RAf)zo,L’EPV 99
i
PIL: _ PLi,set(l — qUFLS) (1 — qVViS),i € PQ (Qg)
P{=Q;*" (1 -a’f$) (1-a?),iePQ  (%h)

where (x) operator bounds x in the predefined range given
by xmin, and x4, and is modeled by the implicit continuous
model for saturating real power given in [16]. (9a) is the
objective function that minimizes the real and reactive
feasibility currents I that are added to each node (v € V) in
the system. For a feasible system state, these currents are
minimized to zero, whereas under an infeasible system state,
the currents have a non-zero magnitude at locations that lack
either real or reactive power, corresponding to a collapsed
system. (9b) represents the non-linear network Kirchhoff
Current Law constraints for each node v in the system. (9¢)
and (9d) correspond to the output of the slack generator (P{)
in the set of slack buses (slack). Similarly, (9¢) and (9f)
represent the implicit modeling of AGC/droop control as a
function of frequency for all generators in the set of PV
buses, and (9g) and (9h) represent the implicit modeling of
UVLS and UFLS for all loads in the set of PQ loads.

The problem described above is a non-convex quadratic
programming problem and is solved in our approach using
Newton’s method [14] to obtain a local optimum solution.
We also make use of circuit-based limiting and homotopy
methods in [11] ensure a coherent optimal solution while
also pushing the solution away from low-voltage solutions.

B. Incorporating protective relaying data for Stage Il

After finding an optimal steady-state solution in Stage I, we
must report any device in the grid that has hit its limit and
deactivate it prior to simulating the next cascading outage
stage. In this framework, we incorporate protective relaying
limits for line and transformer overloads as well as generator
voltage limits. The remedial action schemes, such as UVLS
and UFLS, were previously incorporated in Stage 1.

V. SIMULATION ALGORITHM

The overall algorithm for simulating cascading outages in
circuit-theoretic approach, with implicit modeling of UFLS
and UVLS schemes and frequency state, is shown in Figure
3. The algorithm begins by taking a network, with an
initiating event, that will be simulated to study the cascading
effect. We also create a set X, initialized as empty, to
represent the lines, transformers and generators that have
tripped due to over-loading and exceeding over-voltage
limits. The Stage I of the problem as formulated in Section
IV.A is solved with elements in set X de-activated and
simulates the network case while modelling the frequency
state and special protection systems (UFLS and UVLS). If,
after running Stage I of the solver, the network case (or a
subset of islands) is found infeasible (operating past the tip
of the nose curve), then the localized areas responsible for
collapsing the grid is reported to the user. If the output of the
Stage I solver is found to be feasible for any island (i.e.
converges to a solution with Ir = 0), the solver adds the
lines, transformers, and generators that have violated their
limits in the feasible islands to the set X. The devices in set
X are then tripped and the algorithm is re-run until no device
is found violating its limit (set X is empty), or the case (all
islands) is found to be infeasible (i.e. converges to a solution
with non-zero I¢), representing a system wide blackout. The

output for the simulation then reports the state of each island
in the network case as either secure or collapsed.

The algorithm described for simulation of a cascading
outage is fully parallelizable for each contingency without
any co-dependencies. Therefore, in order to analyze a set of
high-risk contingencies, they can be solved in parallel with
ease.

Input Test Case

‘Apply Initiating Event,
Set X={}

Trip Elements in set X

Solve Stage I: Expanded
power flow with implicit
UFLS + UVLS Stage II

Report Collapsed Grid
Event

Add overvoltage
generators to set X

<_Is set X empty?
1

U |

Report Secure Grid
Event

L
Figure 3: Flowchart for implementation circuit theoretic
cascading analysis.

VI.RESULTS

Here we demonstrate the advantages of our approach for
simulating cascading outages on a simple 14-bus system and
a larger 8k+ node system. For all test cases, we incorporate
frequency information as well as implicit models for UFLS
and UVLS. Power flow is analyzed by our prototype
simulation tool, SUGARJ10].

A. Advantages of Implicit UFLS and UVLS models

Using the standard IEEE14 bus test case with loading factor
of4.2 (LF) (load parameters P and Q and generator P scaled),
we completed simulation runs with an (i) implicit UFLS
model as described in Section III and (ii) the UFLS model in
the outer loop as described in [5]. The UFLS model is
described by following parameters:
Frequency Threshold (fy;;n) % load shedding
-0.3 17%
TABLE 1: COMPARISON OF RESULTS BETWEEN IMPLICIT UFLS MODEL AND
UFLS MODEL IN OUTER LOOP.

Case Loading Solution
Name Factor Achieved? Af (hz)
Implicit
UFLS IEEE-14 42 Converged -0.476
UFLS in IEEE-14 42 Did not* NA
outer loop converge

*Inner loop failed to converge in 100 iterations

The results shown in Table 1 demonstrate that
convergence of the UFLS model based on an outer loop is
highly dependent on the inner loop convergence. However,
if the inner loop of the network is infeasible (as is the case
with 4.2 LF without load shedding), it prevents system
convergence. With an implicit UFLS model, however, the
UFLS control is solved concurrently in the inner loop, and
convergence is easily achieved.

B. Steady-State Simulation of Cascading Outage

The framework shown in Figure 3 allows us to sequentially
simulate the cascading outage on a modified 8k+ node
system [25] while considering the steady state effects of
UFLS, UVLS and generator frequency control mechanisms.
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The parameters are shown in Table 2.
TABLE 2: FREQUENCY RESPONSE PARAMETERS.

UFLS Afser UVLS Vggr Primary Control 2
-0.3Hz 0.95 p.u. 0.1 MW/Hz
The simulation results in Figure 4 identify the devices
that were tripped in each cascading stage, as well as show
the islands created and their respective frequencies. The
simulation completed by creating 3 islands, all of which
collapsed, creating a system wide blackout, with a steady
state frequency deviation of the infeasible main island as -
0.016Hz. By using implicit models and circuit heuristics, the
framework robustness was demonstrated for this case. The
infeasibility is indicated by the non-zero infeasibility
currents in cascading stages 2 and 3. The final stage results
in a system wide black out due to a collapse of all islands.

[ Initiating Event }E{}[ }Q[ }@[ ]E:>[ Bixi':’(Eol\ﬂT }
U U O [y

N-2 contingency Devices Tripped Devices Tripped
Branch: 5408-5702* || Branch: 4081-7052 Branch: 2228-5687
Branch: 5408-5687* || Branch: 5408-5702** Branch: 5408-5687+*
Generator: 7773 Branch: 5408-10000

Cascade
Stage 3

Cascade
Stage 2

Cascade
Stage 1

2 New Islands
Created
Island 1: Infeasible:
Ipy =0.533 p.u.
Af; = -0.016 Hz

1 New Island Created
Island 1: Feasible
Ipp=0

Island 1: Feasible
Ipy =0
Af; = -0.026 Hz

Island 2: Infeasible
fo <58Hz
Island 3: Infeasible
f3 <58Hz
Island 4: Infeasible
f, <58Hz

* Circuit1
** Circuit2

Afy = -0.025Hz
Island 2: Infeasible
fo <58Hz

Figure 4. Results of cascading simulation on 8k+ node system.
Figure 5 demonstrates the infeasibility currents in
different areas of the system during the final stage. It is
visible from the bar plot that areas around 48 through 55 are
the weakest regions with the largest infeasibilities and one of
the primary causes of the cascading outage.

L | ® Grid Infeasibility .

Infeasibility Current Iz [pu]

.

e e %,

0 3 2 0 m s & 0
Area Number

Figure 5. Infeasibility currents during system blackout stage.

VIL

In this paper, we developed a robust framework to simulate
the steady-state of sequential cascading outages. To achieve
this, we extended the current-voltage based power flow
formulation to model frequency and developed implicit
models for under frequency load shedding and under voltage
load shedding schemes. These models were shown to have
better convergence characteristics than discontinuous outer-
loop models of UFLS and UVLS. Importantly, the
optimization used to solve for the steady-state with
minimization of “feasibility” currents enables simulation of
large cascading outages, such as the 8k+ bus network, while
localizing and identifying any collapsed sections of the grid.
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