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Abstract—The entropy power inequality (EPI) and the
Brascamp-Lieb inequality (BLI) are fundamental inequalities
concerning the differential entropies of linear transformations
of random vectors. The EPI provides lower bounds for the
differential entropy of linear transformations of random vectors
with independent components. The BLI, on the other hand,
provides upper bounds on the differential entropy of a random
vector in terms of the differential entropies of some of its linear
transformations. In this paper, we define a family of entropy
functionals, which we show are subadditive. We then establish
that Gaussians are extremal for these functionals by mimicking
the idea in Geng and Nair (2014). As a consequence, we obtain
a new entropy inequality that generalizes both the BLI and EPI.
By considering a variety of independence relations among the
components of the random vectors appearing in these functionals,
we also obtain families of inequalities that lie between the EPI
and the BLI.

Index Terms—Entropy power inequality, Brascamp-Lieb in-
equality, subadditivity

I. INTRODUCTION

Information inequalities provide some of the most powerful
mathematical tools in an information theorist’s toolbox and
are therefore a vital part of information theory. Inequalities
such as the non-negativity of mutual information and the data
processing inequality are so fundamental to information theory
that they are inseparable from information-theoretic notation.
These basic inequalities, combined with Fano’s inequality,
are powerful enough to provide a proof of the converse
of Shannon’s channel coding theorem. For harder problems
in network information theory, it is necessary to develop
more nuanced information inequalities. Not surprisingly, it
is often the case that discovering new inequalities leads to
breakthroughs in network information theory problems.

On a related note “single-letter characterizations” of a
capacity region or outer bounds to a capacity region in network
information theory are induced by subadditive functionals that
reduce the characterization of the region to one governed by a
single channel use. In this paper we identify a new functional
that is sub-additive and for which Gaussian distributions are
extremal. Consequently, we obtain a new class of information
inequalities that unifies two fundamental inequalities: the en-
tropy power inequality (EPI) and the Brascamp-Lieb inequality
(BLI). In what follows, we provide a brief introduction to the
EPI and the BLI and state our main results.

As notational conventions in what follows, := and =: denote
equality by definition, while, for an integer n > 0, [n] denotes

{1, . . . , n} and In×n denotes the n × n identity matrix. All
vectors are thought of as column vectors. For random vectors
X and Y , we write Z = (X,Y ) for the random vector that
would normally be written as Z = [XT , Y T ]T .

Entropy power inequality: The EPI states that for inde-
pendent Rn-valued random variables X and Y we have:

e
2h(X+Y )

n ≥ e
2h(X)

n + e
2h(Y )

n , (1)

where, h(·) refers to the differential entropy function and all
the differential entropies in equation (1) are assumed to exist.
Equality holds if and only if X and Y are Gaussian random
variables with proportional covariance matrices. The EPI was
proposed by Shannon [1] and was first proved by Stam [2].
The EPI has an equivalent statement due to Lieb [3], which
is that for all λ ∈ (0, 1) we have:

h(
√
λX +

√
1− λY ) ≥ λh(X) + (1− λ)h(Y ). (2)

Equality holds in the above inequality if and only if X and
Y are Gaussian random variables with identical covariance
matrices. Note that

√
λX +

√
1− λY may be interpreted

as a linear transformation of an R2n-valued random variable
Z := (X,Y ) with some independence constraints on the
components of Z, namely X ⊥⊥ Y . Another result along such
lines is Zamir and Feder’s EPI [4] for linear transformations
of random vectors with independent components. This EPI
has an equivalent formulation, discovered in [5], [6], that is
analogous to the one in equation (2): For an Rn-valued random
vector X := (X1, . . . , Xn) with independent components and
any k× n matrix A satisfying AAT = Ik, Zamir and Feder’s
EPI states that

h(AX) ≥
n∑

j=1

α2
jh(Xj), (3)

where α2
j is the squared-norm of the j-th column of A; i.e.,

α2
j :=

∑k
i=1 a

2
ij .

Brascamp-Lieb inequality: The BLI [7] is actually a
family of functional inequalities that lies, in some sense, at the
intersection of information and functional inequalities. Many
well-known and commonly used inequalities are special cases
of the BLI, including Hölder’s inequality, the Loomis-Whitney
inequality, the Prékopa-Leindler inequality, and sharp forms of
Young’s convolution inequalities [8], [9].
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Theorem 1 (Functional form of the BLI): For j ∈ [m], let
E, Ej be Euclidean spaces, Aj : E → Ej be linear maps,
cj be positive real numbers, and fj be nonnegative integrable
functions on Ej . Define the function F via

F(f1, . . . , fm) :=

∫
E

∏m
j=1 f

cj
j (Ajx)dx∏m

j=1

(∫
Ej
fj(xj)dxj

)cj .
Then the supremum of F over all nonnegative and integrable
fj is equal to the supremum of F when fj are centered
Gaussian functions; i.e., for all j ∈ [m], we have fj(xj) ∝
e−x

T
j Bjxj for some positive semidefinite Bj .

Surprisingly, a direct connection exists between the func-
tional form of the BLI and a generalized subadditivity result
for differential entropy. This link was first discovered in Carlen
et al. [10], and has since led to new proofs and generalizations
of the original BLI [11]–[15]. The information-theoretic form
of the BLI is the following:

Theorem 2 (Information-theoretic form of the BLI): For i ∈
[m], let E, Ei, Ai, and ci be as in Theorem 1. For a random
variable X on E with a well-defined differential entropy (see
Definition 1) and satisfying E[‖X‖2]2 <∞, define f(X) as

f(X) := h(X)−
m∑
j=1

cjh(AjX). (4)

Then the supremum of f over all such random variables
X is equal to the supremum of f over all Gaussian random
variables.
This information-theoretic form is completely equivalent to
the functional form: For a fixed choice of the Aj and cj , the
suprema in both problems have a direct relationship, and the
cases of equality are also in correspondence [11, Theorem
2.1]. For this reason, we will only consider the information-
theoretic form of the BLI in this paper.

Our contributions: The classical EPI and the EPI of Zamir
and Feder are valid only under certain independence assump-
tions. To be precise, for an R2n-valued random vector Z, the
EPI requires independence of Z1:n and Zn+1:n and considers
the sum of these two vectors, whereas Zamir and Feder’s EPI
requires all the components to be independent and considers
linear transformations of Z. Here we use the notation Za:b

to denote the random vector (Za, Za+1, . . . , Zb). It is natural
to consider more general “mixed” independence constraints,
for instance independence of Z1:k1

, Zk1+1:k2
, . . . , Zkr+1:n for

suitable choices of ki, and establish lower bounds on h(AZ)
for a matrix A. This is indeed a special case of the setting
considered in our work.

Consider an Rn-valued random vector X := (X1, . . . , Xk),
where k ≤ n and Xi are mutually independent Rri -valued
random variables. Note that

∑k
i=1 ri = n. We consider the

following function:

f(X) :=

k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX), (5)

for positive constants di and cj where i ∈ [k] and j ∈ [m]
for some m ≥ 1, and surjective linear transformations Aj

from Rn to Rnj . Our main result in Theorem 3 states that the
supremum of f(·) over all random variables X satisfying the
stated independence constraints is the same as the supremum
evaluated over Gaussian random variables. Moreover, we
identify necessary and sufficient conditions on n, k, m and
the ri, di, cj , nj and Aj such that this supremum is finite.
Theorem 3 also provides a generalization of Zamir and Feder’s
result to certain kinds of dependent random variables.

Our main technical contribution is identifying new entropic
functionals that satisfy a certain subadditivity property, allow-
ing us to prove Gaussian optimality for these functionals. This
proof strategy first appeared in [16], where the authors deter-
mined the capacity of a Gaussian vector broadcast channel by
establishing the subadditivity property for certain information-
theoretic expressions. This proof strategy has since been
applied to a wide variety of problems [17]–[22].

Related work: The EPI may be thought of as a limiting
special case of the BLI. Indeed, Dembo et al. [23] showed
that the EPI follows from the sharp form of Young’s inequality,
which in turn is a special case of the BLI. A related but more
geometric approach may be found in Cordero-Erausquin and
Ledoux [13].

Various information-theoretic analogues of hypercontractive
inequalities and reverse Brascamp-Lieb inequalities have been
studied in [14], [15], [24]. Liu et al. [15], define a function
F of the marginal densities of Rn-valued random variables X
as:

F (X) := inf
{Y |Yi

d
=Xi, i∈[n]}

n∑
i=1

dih(Yi)−
m∑
j=1

cjh(AjY ). (6)

Here, by Yi
d
= Xi we mean that the distribution of Yi is

identical to that of Xi. Theorem 8 in [15] states that the
supremum of F is obtained when each Xi is a centered
Gaussian random variable, in which case the infimum in
definition (6) is attained when the optimal coupling Y is a
jointly Gaussian random vector. Expressions (5) and (6) look
very similar. However, the main difference is that (6) has an
infimum over all possible couplings Y , whereas our definition
in (5) enforces the unique coupling where the components
Yi are mutually independent. In particular, the EPI results as
a special case of our formulation but is not directly implied
using the formulation in [15].

II. PRELIMINARIES AND NOTATION

Definition 1: For n > 0, let X be an Rn-valued random
variable with density fX that lies in the convex set of proba-
bility densities{

f
∣∣∣ ∫

Rn

f(x) log(1 + f(x))dx <∞
}
. (7)

Then we define the differential entropy of X as

h(X) := −
∫
Rn

fX(x) log fX(x)dx. (8)



The differential entropy of a 0-dimensional random variable is
defined to be 0. The integral in (7) is well-defined since both
components are non-negative. The condition (7) implies that
differential entropy integral is well-defined and lower-bounded
away from negative infinity.

Definition 2 (Brascamp-Lieb datum): For an integer m > 0,
define an m-transformation as a triple

A := (n, {nj}j∈[m], {Aj}j∈[m]),

where for each j ∈ [m], Aj : Rn → Rnj is a surjective linear
transformation, and nj ≥ 0. An m-exponent is defined as an
m-tuple c = {cj}j∈[m], such that cj ≥ 0 for j ∈ [m]. A
Brascamp-Lieb (BL) datum is defined as a pair (A, c) where
A is an m-transformation and c is an m-exponent, for an
integer m > 0.

Definition 3 (EPI datum): For an integer k > 0, define a
k-partition of n as r = {ri}i∈[k], such that ri > 0 are integers
and

∑
i∈[k] ri = n. Let d = {di}i∈[k] such that di ≥ 0 for

all i be called a k-exponent. An EPI datum is the pair (r,d)
where r is a k-partition and d is a k-exponent, for an integer
k > 0.

Definition 4 (BL-EPI datum): For an integer n > 0, a BL-
EPI datum is defined as (A, c, r,d) where (A, c) is a BL
datum for an integer m > 0, and (r,d) is an EPI datum for
an integer k > 0.

Definition 5: Let (A, c, r,d) be a BL-EPI datum where r is
a k-partition of n. Define P(r) to be the set of all Rn-valued
random variables X := (X1, X2, . . . , Xk) such that:

1) For i ∈ [k], the random variables Xi take values in Rri

respectively and their densities satisfy the condition in
equation (7);

2) X1, X2, . . . , Xk are independent;
3) EX = 0 and E ‖X‖22 <∞.
Define Pg(r) ⊆ P(r) as the set of random variables X that

satisfy the properties above, in addition to each Xi, i ∈ [k],
being Gaussian.

Definition 6: For a BL-EPI datum (A, c, r,d), define
M(A, c, r,d) as

M(A, c, r,d) := sup
X∈P(r)

k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX).

Similarly, define Mg(A, c, r,d) as the above supremum taken
over Gaussian inputs X ∈ Pg(r). When the BL-EPI datum
is fixed, we shall omit the (A, c, r,d) argument and use the
simiplified notation M and Mg .

The following two concepts are required for the statement
of Theorem 4.

Definition 7: Let (A, c, r,d) be a BL-EPI datum. Define a
subspace V ⊆ Rn as being of r-product form if V may be
written as V = V1 × V2 × · · · × Vk for subspaces Vi ⊆ Rri ,
for i ∈ [k].

III. MAIN RESULTS

Our main result are as follows:

Theorem 3 (Unified EPI and BLI): Let (A, c, r,d) be a
BL-EPI datum. Recall the definition

Mg := sup
Z∈Pg(r)

k∑
i=1

dih(Zi)−
m∑
j=1

cjh(AjZ). (9)

Then for any X ∈ P(r), the following inequality holds:

k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX) ≤Mg. (10)

Naturally, we have M ≥Mg . Thus, if Mg is +∞, then so
is M . If Mg < ∞, then the above result implies M ≤ Mg ,
and thus M = Mg . An equivalent way of stating the above
result is asserting M =Mg .

Theorem 3 yields a useful result only if M <∞. We show
the following necessary and sufficient conditions for this to
hold:

Theorem 4: For a BL-EPI datum (A, c, r,d), we have
M(A, c, r,d) < ∞ if and only if

∑k
i=1 diri =

∑m
j=1 cjnj

and for all r-product form V ,

k∑
i=1

di dim(Vi) ≤
m∑
j=1

cj dim(AjV ).

Due to space constraints, we shall not present the complete
proof of Theorem 3. In Section IV we distill the novel
contributions of this work by proving the critical subadditivity
step for a new entropy functional. We shall omit the proof of
Theorem 4 in this paper. The detailed proofs of both theorems
may be found in [25].

IV. SUBADDITIVITY LEMMA

As noted before, our proof mimics the strategy developed in
[16] for solving optimization problems of the following form:
supCov(X)�Σ s(X). The upper-concave envelope of s, denoted
by S, is defined as

S(X) = sup
U
s(X|U) = sup

U

∑
u∈U

s(X|U = u)pU (u),

where the supremum is taken over auxiliary random variables
U taking values in finite sets U of arbitrary cardinality. The
most crucial step in this proof strategy is establishing a certain
“subadditivity” result for the S function. The ingredients for
establishing the subadditivity result developed here stems from
the ideas to establish converses to coding theorems and outer
bounds in network information theory. An argument with the
flavor of the argument employed here can be found outlined
in [26]. The main idea is to exploit the chain rule for entropy
in two separate ways. Given a random vector (X1, X2),
we use the two expansions for the joint differential entropy
h(X1, X2):

(A) h(X1, X2) = h(X1) + h(X2)− I(X1;X2),
(B) h(X1, X2) = h(X1|X2) + h(X2|X1) + I(X1;X2).



Let (A, c, r,d) be a BL-EPI datum. Let X :=
(X1, X2, . . . , Xk) ∈ P(r), where Xi ∼ pXi . A natural
definition for s(X) is

s(X) :=

k∑
i=1

dih(Xi)−
m∑
j=1

cjh(AjX). (11)

In [25], we use an alternate definition where we use Gaussian
perturbed random variables to make the analysis rigorous
in some technical aspects. However, the main strategy for
proving the subadditivity lemma is identical in both cases.
Let S be the upper-concave envelope of s. Consider the space
P(2r), defined as the set of all random variables (X1, X2)
such that X1 := (X11, . . . , Xk1) and X2 := (X12, . . . , Xk2)
are Rn-valued random vectors such that the random vec-
tors (Xi1, Xi2) ∈ R2ri , i ∈ [k] are mutually independent,
(Xi1, Xi2), i ∈ [k] satisfy the condition in equation (7), and
condition (3) of Definition 5 holds for (X1, X2). Define the
extension of s to this space as

s(X1, X2) :=

k∑
i=1

dih(Xi1, Xi2)−
m∑
j=1

cjh(AjX1, AjX2).

(12)

As before, the upper-concave envelope of this extension is
denoted by S(X1, X2).

Lemma 1 (Subadditivity lemma): The function S is subad-
ditive; i.e., if (X1, X2) ∈ P(2r) then

S(X1, X2) ≤ S(X1) + S(X2). (13)

Proof of Lemma 1:
Let U be an arbitrary auxiliary random variable such

that pX1X2|U ∈ P(2r). Consider the following expansion,
motivated by expansion (A):

s(X1, X2 | U) =

[
k∑

i=1

dih(Xi1|U)−
m∑

j=1

cjh(AjX1|U)

]

+

[
k∑

i=1

dih(Xi2|U)−
m∑

j=1

cjh(AjX2|U)

]

+

[
−

k∑
i=1

diI(Xi1;Xi2|U) +

m∑
j=1

cjI(AjX1;AjX2|U)

]
. (14)

For simplicity, denote the terms in the square brack-
ets by T1(U), T2(U), and T3(U), respectively. Since
pX1|U (·|U), pX2|U (·|U) ∈ P(r), we have T1(U) ≤ S(X1) and
T2(U) ≤ S(X2). Substituting these inequalities, we arrive at

s(X1, X2|U) ≤ S(X1) + S(X2) + T3(U). (15)

We now expand s(X1, X2 | U) in a different way, motivated
by expansion (B):

s(X1, X2 | U) =
[ k∑

i=1

dih(Xi1|U,Xi2)−
m∑

j=1

cjh(AjX1|U,AjX2)
]

+
[ k∑

i=1

dih(Xi2|U,Xi1)−
m∑

j=1

cjh(AjX2|U,AjX1

]

+
[ k∑

i=1

diI(Xi1;Xi2|U)−
m∑

j=1

cjI(AjX1;AjX2|U)
]
. (16)

For ease of notation, call the three terms in the square
brackets R1(U), R2(U), and R3(U) = −T3(U), respectively.
Similar to inequality (15), we would like to upper bound
R1(U) and R2(U) by S(X1) and S(X2) respectively. How-
ever, the conditioning in each of the two differential entropy
terms in each Ra(U), a = 1, 2 is not the same. Using the chain
rule of mutual information and data processing relations, we
may make the conditioning in R1(U) and R2(U) uniform by
introducing some extra mutual information terms:

R1(U) =
[ k∑

i=1

dih(Xi1|U,Xi2)−
m∑

j=1

cjh(AjX1|U,AjX2)
]

=
[ k∑

i=1

dih(Xi1|U,X2)−
m∑

j=1

cjh(AjX1|U,X2)
]

−
[ m∑

j=1

cjI(AjX1;X2|U,AjX2)
]

=: R̃1(U)− I1(U).

The above steps are justified as follows. First, it is easy to
check that Xi1 ⊥⊥ {Xl2}l 6=i conditioned on (U,Xi2). This
means that, for all 1 ≤ i ≤ k, h(Xi1|U,Xi2) = h(Xi1|U,X2).
Also, we may verify the Markov chain (conditioned on U )
AjX2 → X2 → AjX1, which gives the equality

h(AjX1|U,AjX2) = h(AjX1|U,X2) + I(AjX1;X2|U,AjX2).

Similar reasoning for R2 gives

R2(U) =
[ k∑

i=1

dih(Xi2|U,Xi1)−
m∑

j=1

cjh(AjX2|U,AjX1)
]

=
[ k∑

i=1

dih(Xi2|U,X1)−
m∑

j=1

cjh(AjX2|U,X1)
]

−
[ m∑

j=1

cjI(AjX2;X1|U,AjX1)
]

=: R̃2(U)− I2(U).

Substituting the expressions for R1(U) and R2(U) in the
expansion (16), we arrive at

s(X1, X2 | U) = R̃1(U) + R̃2(U)− T3(U)− I1(U)− I2(U)

(a)

≤ S(X1) + S(X2)− T3(U)− I1(U)− I2(U)

(b)

≤ S(X1) + S(X2)− T3(U). (17)



Here, Step (a) uses pX1|U (·|U), pX2|U (·|U) ∈ P(r). Step (b)
uses the non-negativity of the cj and of I1(U) and I2(U).

Combining equations (15) and (17) gives

s(X1, X2 | U) ≤ S(X1) + S(X2).

Taking the supremum on the left hand side over auxiliary
random variables U yields the claimed subadditivity result.

Proof of Theorem 3: Having proved the key subadditivity
step, the proof follows the steps outlined in [16, Appendix
II]. Start with two independent copies X∗1 , X

∗
2 , of the maxi-

mizing distribution; form the new pair
(

X∗
1 +X∗

2√
2

,
X∗

1−X
∗
2√

2

)
of

(potentially dependent) distributions; and argue from the proof
of subadditivity and the maximality of X∗1 , X

∗
2 that X∗

1 +X∗
2√

2

and X∗
1−X

∗
2√

2
are independent, implying that X∗1 , X

∗
2 have to

be Gaussians. To make the technical aspects of these steps go
through, we need to use perturbed versions of the functions
and distributions considered. The detailed proof can be found
in [25].

Remark 1: In [25] we present some new forms of inequali-
ties that arise from Theorem 3. An example of a new inequality
of this form is a non-trivial lower bound for h(X1+Y,X2+Y )
when (X1, X2) ⊥⊥ Y , under some mild assumptions.

V. CONCLUSION

We established a new inequality that unifies the BLI and
the EPI by identifying a new class of entropic functionals
for which a subadditivity property holds. There are several
interesting research directions that are worth pursuing. We did
not address the questions of uniqueness of extremizers for
the family of functionals that we considered. Finally, although
our results generalize the BLI and the EPI to vector random
variables with more general independence properties, these
independence properties are still quite restrictive. It would
be interesting to establish similar entropy inequalities under
weaker independence conditions.
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Lieb inequality: Entropic duality and Gaussian optimality. Entropy,
20(6):418, 2018.

[16] Y. Geng and C. Nair. The capacity region of the two-receiver Gaussian
vector broadcast channel with private and common messages. IEEE
Transactions on Information Theory, 60(4):2087–2104, 2014.

[17] T. Courtade and J. Jiao. An extremal inequality for long Markov
chains. In Communication, Control, and Computing (Allerton), 2014
52nd Annual Allerton Conference on, pages 763–770. IEEE, 2014.

[18] H. Kim, B. Nachman, and A. El Gamal. Superposition coding is almost
always optimal for the Poisson broadcast channel. IEEE Transactions
on Information Theory, 62(4):1782–1794, 2016.

[19] Z. Goldfeld. MIMO Gaussian broadcast channels with common, private
and confidential messages. In Information Theory Workshop (ITW), 2016
IEEE, pages 41–45. IEEE, 2016.

[20] T. Yang, N. Liu, W. Kang, and S. S. Shitz. An upper bound on the
sum capacity of the downlink multicell processing with finite backhaul
capacity. In 2017 IEEE International Symposium on Information Theory
(ISIT), pages 2053–2057. IEEE, 2017.

[21] X. Zhang, V. Anantharam, and Y. Geng. Gaussian optimality for deriva-
tives of differential entropy using linear matrix inequalities. Entropy,
20(3):182, 2018.

[22] T. A. Courtade. A strong entropy power inequality. IEEE Transactions
on Information Theory, 64(4):2173–2192, 2018.

[23] A. Dembo, T. M. Cover, and J. A. Thomas. Information theoretic
inequalities. Information Theory, IEEE Transactions on, 37(6):1501–
1518, 1991.

[24] S. Beigi and C. Nair. Equivalent characterization of reverse Brascamp-
Lieb-type inequalities using information measures. In 2016 IEEE
International Symposium on Information Theory (ISIT), pages 1038–
1042. IEEE, 2016.

[25] V. Anantharam, V. Jog, and C. Nair. Unifying the Brascamp-Lieb
inequality and the entropy power inequality. arXiv preprint, 2019.

[26] C. Nair. An extremal inequality related to hypercontractivity of Gaussian
random variables. Information Theory and Applications Workshop
(2014), 2014. Available at http://chandra.ie.cuhk.edu.hk/pub/papers/
manuscripts/ITA14.pdf.

http://chandra.ie.cuhk.edu.hk/pub/papers/manuscripts/IZS14.pdf
http://chandra.ie.cuhk.edu.hk/pub/papers/manuscripts/IZS14.pdf
http://chandra.ie.cuhk.edu.hk/pub/papers/manuscripts/ITA14.pdf
http://chandra.ie.cuhk.edu.hk/pub/papers/manuscripts/ITA14.pdf

	Introduction
	Preliminaries and notation
	Main results
	Subadditivity lemma
	Conclusion
	References

