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Abstract — Recent advances have shown that the circuit
simulation algorithms that allow for solving highly nonlinear
circuits of over one billion variables can be applicable to power
system simulation and optimization problems through the use
of an equivalent circuit formulation. It was demonstrated that
large-scale (80k+ buses) power flow simulations can be robustly
solved, independent of the initial starting point. In this paper,
we extend the electronic circuit-based G-min stepping
homotopy method to power flow simulations. Preliminary
results indicate that the proposed algorithm results in
significantly better simulation runtime performance when
compared to existing homotopy methods.

Index Terms—equivalent circuit formulation, G-min stepping,
homotopy method, Tx-stepping, robust power flow analysis.

I. INTRODUCTION

The ongoing transformation of electrical power networks
towards a “smarter” grid encompasses numerous challenges.
For instance, the integration of renewable energy resources
within the power grid can possibly affect its performance as
well as disrupt its stability at the transmission level by
reversing the traditionally assumed directions of power
flows [1]. Moreover, as a backbone of reliable and resilient
power grid operation and planning, a robust power flow
simulator that can be further scalable to joint transmission
and distribution simulations [2] is a necessity in order to
cope with these challenges. Hence, the revived research
interest in improving the existing power flow modeling and
simulation algorithms.

The industry standard for the simulation of power flow
problems is based on the ‘PQV’ formulation [3], wherein the
bus voltage magnitude and angle state variables define the
steady-state response of the system, while the network
constraints are modeled in terms of real and reactive power
mismatch equations. The operating point of the power grid
is then obtained through iteratively solving the nonlinear set
of equations by numerical algorithms, such as the Newton
Raphson (NR) or the Gauss-Seidel method. However, the
nonlinear power balance equations are known to diverge for
ill-conditioned cases operating at the edge of voltage
collapse as well as suffer from lack of robustness in large-
scale simulations (>50k buses), where the knowledge of a
good initial guess to start the numerical algorithm can be
challenging to determine. Thus, robust and scalable
convergence properties of a power flow problem defined in
terms of the ‘PQV’ formulation, as well as convergence to
physical high voltage solutions remain a challenge [2].
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There have been many attempts to tackle the problem of
robust power flow convergence. In [4], authors propose a
polynomial homotopy method to explore the power flow
solution space and further locate all of the power flow
solutions. This method was, however, shown to efficiently
work only for small power flow test cases, and its
generalization to include the real-life constraints was not
explored. A different approach was introduced in [5] where
a homotopy that traces a path from a DC to AC power flow
solution is proposed. Soon after, [6] demonstrated that
neglecting the reactive power within the DC power flow
analysis represents a challenge that further causes this
homotopy to trace the path of nonphysical low voltage
solutions. Lastly, the Continuation Power Flow (CPF) [7] is
proposed for the power flow test cases operating at the edge
of voltage collapse and is applied by sequentially varying the
system loading factors while resolving the power flow
problem. However, the success of CPF is fully depended on
the power flow solution obtained at the nominal loading,
which can be as challenging to determine for the large-scale
real-life test cases.

Extensive and well supported research work within the
circuit simulation community has developed powerful
simulation algorithms that are, today, capable of solving
highly nonlinear problems with over one billion of variables.
It was shown that contrary to the generalized NR damping
methods that limit the NR-step vector by a constant factor
[8], more robust and stable convergence properties are
achieved by separately limiting each of the circuit variables
within the NR-step vector [9]-[11]. More importantly, the
equivalent circuit formalism [11] further allowed for
development of scalable homotopy methods to ensure
efficient convergence properties of large-scale circuits. For
instance, one of the most popular homotopy methods, G-min
stepping [12]-[14], shorts the complete circuit by connecting
a large conductance from each node to the ground. The
initially shorted operating point is then trivial, and the
solution of the original circuit is obtained by gradually
relaxing these added conductances.

Recent advances [15]-[21] in power system simulation
and optimization problems have demonstrated that modeling
the steady-state response of a power system in terms of
current, voltage and admittance state variables allows for
more robust and scalable convergence properties, governed
by the application of circuit simulation techniques. For
instance, the recently introduced Tx-stepping homotopy
method [17] was shown to eliminate low voltage
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convergence issues that represents one of the drawbacks of
traditional ‘PQV’ based homotopy methods [6]. This is
achieved by “virtually” shorting every bus in the power
system to a slack bus, which further enforces the homotopy
to trace the path of a high voltage solution [17]. Furthermore,
Tx-stepping demonstrated good scalability properties,
thereby allowing the robust simulations of large-scale power
flow problems (80k+ buses), as well as combined
transmission and distribution analysis without loss of
generality [15].

In this paper, we extend the circuit simulation G-min
stepping homotopy method to power flow analysis. It is
demonstrated that in contrast to the Tx-stepping method that
virtually shorts the whole network to a slack bus, the G-min
stepping homotopy is locally applied at each bus, and thus
preserves the network topology information. Our results
suggest that the initial homotopy solution is now closer to
the actual steady-state grid response, which significantly
improves convergence properties in terms of iteration count,
when compared to the Tx-stepping and other traditionally
developed ‘PQV’ based homotopy methods, such as CPF.
Most importantly, it is shown that the proposed algorithm
naturally incorporates challenging industry required power
flow models, such as remote voltage control devices that
require special handling within the Tx-stepping method [17].
Lastly, promising preliminary simulation result comparisons
that indicate the efficiency and robustness of the proposed
algorithm are presented and discussed.

II. BACKGROUND

A. Equivalent Circuit Formulation

As any other electrical circuit, an electrical power system
is governed by physical conservation laws, namely
Kirchhoff’s Current and Voltage Laws (KCL and KVL) that
define the relationship between the currents and voltages
within the power system. Hence, modeling and analyzing the
power grid response in terms of current and voltage variables
represents the most natural way of characterizing the power
system in analysis problems, and as such is used in the early
days of power system simulations [22] as well as first
implemented on a digital computer [23]. However, these first
formulations based on current and voltage state variables
were later shown to represent “derivative-free” numerical
algorithms [23], such as fixed-point iteration that are
characterized by slow convergence properties, especially to
a solution with a desired tolerance.

To address the problem of slow convergence of existing
power system steady-state simulators, Tinney and Hart [3]
implemented the first sparse power flow simulator based on
the power mismatch formulation solved with the NR
method. The power mismatch formulation was shown to
reduce the size of the problem, which was valuable for the
memory-constrained computers in the mid-20" century, and
also required fewer nonlinear iterations to converge. Most
importantly, it was demonstrated that the Jacobian matrix of
a power mismatch formulation defined by the basic power
flow models is positive definite [24], which is in contrast to
the current/voltage formulation that can introduce negative
eigenvalues to the Jacobian as part of the voltage-controlled
PV bus model, and hence results in possible convergence
issues [16]. Therefore, the power mismatch formulation
became accepted as an industry standard particularly for
transmission level power grids. However, positive

definiteness of a Jacobian matrix does not guarantee
convergence, and after the computing power of early
computers increased, it was realized that as in the case with
any other generic NR based algorithm, the convergence of
power mismatch-based power flow is dependent on the
initial starting point, particularly with the increase in size of
the test cases [24].

The recently introduced equivalent circuit formulation
based on current and voltage state variables has shown to
overcome the challenges introduced in modeling the
voltage-controlled PV nodes, by utilizing the equivalent
circuit formalism and adapting the NR step limiting
algorithms and homotopy methods developed within the
circuit simulation community [9]-[14]. Herein, we provide a
brief overview of the current/voltage formulation and the
representation of the power flow problem in terms of
equivalent split-circuit models.

Consider a power system given by the set of buses V',
with a set of generators G and load demands D that are
subsets of V', connected by a set of network elements, Ty,
modeled at a fundamental frequency. Furthermore, let V; =
Vg + jV;; represent the phasor voltage of bus i with its real
and imaginary components respectively, while the phasor
I; = Ip; +jI;; is the current injected from the bus to the
RLC transmission network comprised by the elements T. It
is important to note that the RLC transmission network
remains linear within current/voltage formulations, while
nonlinearities are introduced locally at each bus and
correspond to the current injection models that constrain real
and reactive powers, as well as bus voltage magnitudes [15].

Next, the complete set of governing KCL equations is
split into its real and imaginary components. This is
necessary to prevent the analyticity issues introduced by the
complex conjugate operator in constraining the real and
reactive powers (defined for i*"* bus as P, and Q;) of
nonlinear current injection models that would prevent the
applicability of the NR algorithm. For instance, the current
injection model of the i bus is given as:

- Pi—Jjo;
[ =—— 1
= (1)
The complex current function from (1) is then split to obtain:
_ PiVei + Qi 2
o Vii + Vi
PV — QiViy
I; = W (3)
Ri T Vi

Lastly, in the case of a PV bus that aims to control the voltage
magnitude of a bus ¢, the reactive power is treated as an
additional control variable for which the voltage magnitude
constraint is added as:

VRZ,C + V12c - Vszet =0 “4)
where V,, represents the voltage set point at bus c.

As it can be seen from (2)-(4), the governing PV bus
equations are now represented by real valued functions.
Hence, the first order Taylor expansion can be utilized to
linearize the corresponding nonlinearities. For instance, the
linearized real current from (2) is given as:

oIk . oIk . oIk,
IKTY = 1K, + S AV + =2 AV, + a—g‘
i
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To map this expression to the equivalent split-circuit
representation, the term from (5), where the real current is
proportional to the real voltage across it, represents a
conductance by Ohm’s Law, while the terms proportional to
the voltage of the other circuit or the reactive power are
represented by controlled current sources. Lastly, the
constant terms known from the previous iteration are lumped
together and represented by a constant current source, hence
defining the split-circuit model as shown in Fig. 1.
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Fig. 1. Real sub-circuit of a PV bus model.

After applying the same methodology to each of the
power flow models defined within the current/voltage
formulation, the complete set of governing circuit equations
is now linearized and can be iteratively solved until
convergence to an operating point, which corresponds to NR
converging to a solution. Furthermore, the equivalent circuit
perspective now allows for understanding the physical
meaning behind each of the components of a power flow
Jacobian matrix that can be used to develop the NR-step
limiting techniques based on the physical characteristics of
the problem, as shown in [17]. Lastly, a detailed description
of the power flow circuit models that can also include any
physics-based model, such as induction motors or power
electronics, as well as facilitate a joint transmission and
distribution power flow analyses can be found in [15]-[21].

B. Homotopy Methods

Exploring and applying path tracing homotopy methods
for solving general nonlinear problems has been attracting
the research interest from the early days of numerical
analysis. In general, a homotopy method can be
mathematically defined as:

H(x,p) = (1= wF(x) + uG(x), pe[01] (6)
where F (x) is an original nonlinear problem defined in terms
of a vector of state variables x, while G(x) represent the
initial homotopy problem for which the solution can be
trivially obtained. Lastly, p is a homotopy factor that is
varied in discrete steps from 1 to 0 while the homotopy
problem H (x, p) is iteratively resolved by using the solution
from the previous homotopy step as an initial guess.

To further address the application of homotopy methods
within an equivalent circuit formulation of a power flow
problem, we provide a brief discussion on the recently
introduced Tx-stepping method. Namely, Tx-stepping
homotopy obtains a solution of a power flow problem [17]
by embedding the homotopy factor u to linear series and
shunt network elements and transformer model, as given by:

Gym + JBiem = (WY + 1)(Gyyn + jBiem) (7
tw=t+A -t (®)
gph(.u) = (1 - ﬂ)gph (9)

where Gy, + jBy, represents the series branch admittance,
Y represents an admittance scaling factor, while t and
O, are the transformer tap and the phase shifting angle
respectively.

The power flow system equations are then sequentially
solved while gradually decreasing the homotopy factor until
a solution to the original power flow problem is found.
Initially, the homotopy factor is set to one, and the power
flow circuit is virtually “shorted” to a slack bus. Hence, the
operating point of the power flow is governed by a slack bus
magnitude and voltage angle and can be robustly obtained.
By then gradually decreasing the embedded homotopy factor
U to zero, Tx-stepping sequentially relaxes the initially
shorted power flow circuit toward its original state, while
using the solution from the previous sub-problem to
initialize the next homotopy decrement.

Importantly, the Tx-stepping method significantly
improved simulation robustness in terms of independence on
the starting point used to initialize the power flow problem.
However, results suggest that its initial solution can be
sometimes far away from the actual operating point, thus
requiring a lot of homotopy iterations needed to converge to
the solution of the original problem. Therefore, to further
address the problem of simulation efficiency, we extend the
idea of the circuit simulation G-min stepping homotopy
method to solving the power flow problem with aim that the
locally applied homotopy would provide a better starting
point, and thus ensuring the shorter homotopy path to the AC
power flow solution.

II1. EXTENDING THE G-MIN STEPPING TO POWER
FLOW SIMULATION

Obtaining the DC operating point of highly-nonlinear
circuits represents the essential as well as the most
challenging problem for SPICE simulations [10],[13] that
can require the application of homotopy methods to ensure
convergence. As one of the most popular methods used in
SPICE, the G-min stepping [12],[14] connects a large
conductance from every circuit node to the ground. The
solution to such modified circuit is then trivial, namely zero,
and the operating point of the original circuit is obtained by
sequentially relaxing the connected homotopy conductances.

In the attempt to directly apply the G-min stepping to the
simulation of power flow, one can realize that its direct
application is not feasible mainly due to the voltage-
controlled buses in the power grid. For instance, adding a
large conductance from every bus to ground forces the bus
voltages to zero, and thus violates the voltage-control
constraints (4). Hence, in order to develop a homotopy
method that does not modify the linear network models as
well as acts locally at each bus, we first seek to define an
initial problem that can be trivially solved to initialize the
homotopy, while accurately approximating the nonlinear
voltage-control PV and constant power PQ buses.

Herein, we propose a two-stage algorithm that first
relaxes the nonlinear bus models in order to determine the
values of homotopy admittance Gy + jBy that now by
Circuit Substitution theorem [11] correspond to the
relaxation error between the powers injected by the bus
models of the original and relaxed power flow problems. In
the second stage, the determined “error” admittances as well
as the operating point of the relaxed power flow problem are
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used to initialize a homotopy problem H (x, i) that is further
sequentially solved until the Gy + jBy admittances are
reduced to zero. The rest of the section provides a detailed
description of the proposed two-stage algorithm, whose
flowchart can be seen in Fig. 4.

A. Stage I: Relaxing the power flow and determining
the homotopy admittance

Consider a power system defined in terms of nonlinear
current injection equations as described in II.-A. Herein, we
introduce the relaxed current injection PV and PQ bus
models, as well as discuss the corresponding relaxation
errors that can be represented in terms of admittances and
further used to initialize the homotopy in Stage II.

1. Relaxing a PV bus

To remove the nonlinearities introduced by the PV
voltage-control bus, we replace it by the two linear
independent current sources in real and imaginary circuits
(KCL equations). Furthermore, the addition of two current
state variables requires the addition of two extra equations in
order to solve the set of KCL equations. Hence, we add the
two linear equations constraining the voltage of a bus
controlled by the PV node model (4), to the voltage set point
of the original power flow problem V.., and the angle
Op¢ determined from the solution of a DC power flow
problem, as shown in Fig. 2.

Real Circuit Imag. Circuit

Iri: Vr,c = Vset COSOpc,c I1i:Vie = Vser sinOpc ¢

Fig. 2.Relaxed voltage control PV bus model.

Note from Fig. 2, the relaxed PV bus model naturally
handles both self-control (i = c¢) and remote-control bus
(i # ¢) models, whereas the independent current sources are
connected to the control bus, while the voltage constraints
are given for the controlled bus.

Importantly, DC Power Flow (DC PF) represents a
simplified linear PF formulation that is solved to determine
voltage angle approximations, while the grid voltage
magnitudes are assumed to be equal to 1, and the system
reactive powers are omitted. Hence, the real power supplied
by the relaxed PV bus model from Fig. 2 will differ from set
PV bus power of the original power flow problem (Pg,;),
unless the voltage angles of AC and DC PF problems are
identical. Furthermore, this “relaxation error” can be
expressed in terms of admittance given at the bus voltage
magnitude as:

In Ve +1;,Vp; P
Gh,pv — R, 12?,1 Iél 1,i - — set . (10)
Vi + Vi Vii + Vi

Furthermore, the Circuit Substitution theorem [11]
states that if a voltage operating point of a node (bus) is
known, all the shunt connected elements of the bus can be
replaced by the independent voltage source. Furthermore, if
the circuit remains unchanged, the power absorbed by the
voltage source will correspond to the power absorbed by the
shunt node elements. Hence, it can be implied that if an

additional G pyy conductance from (10) is added in parallel
with the nonlinear PV bus model (see Fig. 3), the power flow
solution will correspond to the solution of the relaxed
problem. Therefore, this “relaxation error” from (10) further
defines a homotopy conductance corresponding to a PV bus
that will be sequentially stepped down in Stage II of the
algorithm, while by Circuit Substitution theorem, the
reactive power supplied by the relaxed model, also
corresponds to the solution of the first homotopy problem,
ie.u=1.

2. Relaxing a PQ bus

Next, we consider a remaining nonlinear PQ bus model.
It should be noted that a constant PQ element can be seen as
an admittance that absorbs the set real and reactive powers
at a given power flow operating point. Therefore, we relax
the PQ bus by replacing it with an admittance defined in
terms of set powers at the nominal bus voltage magnitude
(Vg), unless the bus voltage is controlled, in which case we
evaluate the admittance at a given voltage set point.
PL—jQ,
A .

As we sought, the relaxed power flow problem is now
represented by a linear RLC circuit and its solution can be
trivially obtained. However, the real and reactive powers
absorbed by the admittance from (11) will in general differ
from the set real and reactive powers (P, and @Q;). This
respective relaxation error can be defined in terms of
additional conductance and susceptance values as:

GPQ +]BPQ =

Py
Grpo = V_zz — Gpq 12)
Q
Bypo =— V_zz — Bpg (13)

where V; represents the relaxed power flow bus voltage
magnitude operating point of bus (.

Finally, the Circuit Substitution theorem [11] implies
that connecting the admittance from (12)-(13) in parallel
with a nonlinear PQ element (see Fig. 3) ensures that the
operating point of a nonlinear power flow corresponds to the
solution of the relaxed problem. Therefore the “relaxation
error” computed in (12)-(13) also represents the homotopy
admittance related to the nonlinear PQ elements.

PV bus PQ bus

PV P
Gy,py ()

Gu,po (1)
+ jBu,po(1)

Fig. 3. Adding the homotopy conductance to nonlinear PV and PQ bus
models.

B.  Stage II: G-min stepping

With the homotopy conductance and susceptance values
determined from the first stage of proposed algorithm, we
use the operating point of the relaxed power flow together
with the Gppy,Gppe and Bppo to define the initial
homotopy problem. Namely, by connecting the homotopy
admittance in parallel to the nonlinear bus model from (2)-
(3) as shown in Fig. 3, and using the real and imaginary
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voltage set points as well as reactive power supplied by the
relaxed control bus model to initialize the nonlinear power
flow. Notably, by Circuit substitution theorem, the solution
to such power flow problem is equal to the already
determined relaxed power flow solution. Hence, with the
homotopy factor u embedded within the computed
admittances from (10), (12)-(13) as:

Gupv(W) = UG py (14)
Gupo(t) + jBupo() = (Grpg + jBrpe)  (15)
the solution to the original power flow problem is
determined by sequentially decreasing the homotopy
admittances, while resolving the power flow problem and
using the solution of the previous homotopy point to
initialize the power flow at a next homotopy step.

Parse input file

Solve DC-PF

bl

Generate parameters
for relaxed bus
models

i
Solve Relaxed Power
Flow
|

) ,B
staGE T

G-min

s STAGE I

Q
o)
2
D
=
b]
<
D
=
b
<

PP

Initialize Homotopy

Solve Power Flow
YES N
NO m

YES
Power Flow

Solution
Found

i

Reduce
step by 2

Progress
towards u = 0

Fig. 4. Proposed 2-Stage G-min stepping algorithm.

The flowchart in Fig. 4 shows that the proposed G-min
stepping from stage 2 of the algorithm applies dynamical
stepping towards the original power flow problem. Namely,
after the relaxed problem is solved to obtain the initial
operating point as well as the respective homotopy
admittances, the algorithm directly tries to obtain the
solution of the original problem (u — 0). Furthermore, if the
case diverges after assigned maximum iteration count, the
step of homotopy factor u is cut back by half, until a power
flow convergence is achieved. Lastly, once the homotopy
factor for which the power flow converges is found, it is
dynamically stepped towards zero again, until the solution of
the original problem is determined.

Iv. SIMULATION RESULTS

To demonstrate the efficiency and robustness of the
proposed homotopy method, the G-min stepping algorithm
is implemented within a MATLAB prototype
implementation of our circuit simulator SUGAR (Simulation
with Unified Grid Analyses and Renewables), while the
MATPOWER solver [25] was used to determine the DC
power flow angle solutions. All the simulations were run on

a MacBook Pro 2.9 GHz Intel Core i7, for the MATPOWER
test cases including, European PEGASE test cases as well as
the recently developed Synthetic cases ranging up to 70k
buses [26]-[27].

First, in comparing the proposed G-min stepping and the
Tx-stepping homotopy methods, it is important to note that
the latter one is based on iteratively solving a relaxed
problem used to start the homotopy. Namely, the Stage I of
the propose algorithm solves a linear relaxed power flow
problem that can further trivially indicate and locate the
possible low voltage regions of the test case without the need
of an iterative algorithm. On the other side, the Tx-stepping
seeks to find an initial system response due to the large
admittances used to “virtually” short the system, which can
in general require a few iterations depending on the value of
Y scaling factor.

Furthermore, in contrast to the Tx-stepping, the initial
operating point of the G-min stepping homotopy is obtained
without modifying the linear network elements. As our
results presented in Table 1 suggest, this as a consequence
has a “closer” operating point from which the G-min
homotopy algorithm is started.

TABLEI.  MAXIMUM ABSOLUTE VOLTAGE OPERATING POINT
DEVIATION BETWEEN INITIAL HOMOTOPY AND ORIGINAL POWER FLOW
PROBLEMS.

G-min stepping Tx-stepping
Test Case AV p[p.u.] AV, [pou.]
Case9241PEGASE 0.036936 0.279241
ACTIVSgl0k 0.015694 0.074387
Casel3659PEGASE 0.094310 0.259931
ACTIVSg25k 0.015153 0.073212
ACTIVSg70k 0.019341 0.095055

Most importantly, as we can further imply from the total
iteration counts and simulation runtime comparisons
presented in Table 2 and Fig. 5 respectively, the less
conservative initial homotopy problem of the G-min
stepping algorithm consequently provides significant
improvements in terms of the simulation efficiency.

TABLEIL.  TOTAL ITERATION COUNT COMPARISON.
Test Case G-min stepping Tx-stepping
Case9241PEGASE 13 49
ACTIVSgl0k 7 32
Casel3659PEGASE 22 411
ACTIVSg25k 8 46
ACTIVSg70k 45 233

10° Simunlation Runtime Comparison G-min vs. Tx-stepping

I 7x-Stepping

Il G-min Stepping|
ACTIVSg25k ACTIVSg70k

—
(=]
]

Runtime [sec]

-
o_n

II l II

case9241PEGASE ACTIVSg10k casel3659PEGASE

Fig. 5. Simulation runtime comparison between proposed G-min stepping
and Tx-stepping homotopy methods.

Continuation Power Flow (CPF) [7] homotopy defined
in terms of traditional ‘PQV’ formulation and power
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mismatch equations represents one of the more frequently
used homotopy methods particularly in planning studies of
power grid, where the generation and demand is
increased/decreased in order to simulate extreme power grid
operation conditions. Namely, to ensure the power flow
convergence of the cases with scaled loading factors, the
loading factor is sequentially varied starting from the power
flow solution obtained for the initial loading of the test case,
while resolving the power flow until the desired target
loading is reached.

Therefore, as a second experiment, we compare the
proposed G-min stepping with the MATPOWER [25]
implementation of the CPF algorithm. For this study we
consider four synthetic test cases [26] representing:

1. South Carolina (500 buses)

2. Texas — ERCOT (2000 buses)

3. Western Interconnect — WEC (10,000 buses)
4. North Eastern region of USA (25,000 buses)

and further increase the respective loading factors by 25%.
The CPF is run for the default parameters in MATPOWER,
and the obtained runtimes for each of the four examined test
cases are compared in Fig. 6 with the runtimes obtained from
solving the power flow with G-min stepping algorithm.

Runtime Ci

: G-min st vs. C ion Power Flow

NorthEast

- Continuation Power Flow - MATPOWER|
- G-min Stepping - SUGAR

=)
)

O)

Total Simulation Runtime [sec]

9, =3
% =

-2
10
SouthCarolina

Fig. 6. Simulation runtime comparison between proposed G-min stepping
and Continuation Power Flow method. Note the significant improvement
(order of magnitude) in simulation runtime efficiency.

V.CONCLUSONS

In this paper, we extended the circuit simulation G-min
stepping homotopy method to solve the power flow problem.
The proposed homotopy method is demonstrated to naturally
incorporates the challenging, industry required power flow

models, such as remote voltage control devices.
Furthermore, with the presented preliminary results that
indicate significant improvements in the simulation

efficiency of the proposed G-min stepping in comparison to
existing homotopy methods, it is important to emphasize the
increase of total iteration count once a homotopy method is
applied. Importantly, as shown in [15], the convergence of
the well-conditioned power flow cases can be robustly
obtained using the circuit simulation NR-step limiting
techniques and is generally not dependent on the application
of a homotopy method. However, as in the case of circuit
simulators based on SPICE, efficient and robust homotopy
methods should represent an important component of every
power flow simulator. The component that can be called for
in the worst-case scenarios, when the power flow solution
cannot be obtained with any of the NR step limiting
techniques or during the convergence to a physically
meaningless solution, i.e. low voltage solution.
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