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Abstract — Recent advances have shown that the circuit 
simulation algorithms that allow for solving highly nonlinear 
circuits of over one billion variables can be applicable to power 
system simulation and optimization problems through the use 
of an equivalent circuit formulation. It was demonstrated that 
large-scale (80k+ buses) power flow simulations can be robustly 
solved, independent of the initial starting point. In this paper, 
we extend the electronic circuit-based G-min stepping 
homotopy method to power flow simulations. Preliminary 
results indicate that the proposed algorithm results in 
significantly better simulation runtime performance when 
compared to existing homotopy methods. 

Index Terms—equivalent circuit formulation, G-min stepping, 
homotopy method, Tx-stepping, robust power flow analysis. 

I. INTRODUCTION 
The ongoing transformation of electrical power networks 
towards a “smarter” grid encompasses numerous challenges. 
For instance, the integration of renewable energy resources 
within the power grid can possibly affect its performance as 
well as disrupt its stability at the transmission level by 
reversing the traditionally assumed directions of power 
flows [1]. Moreover, as a backbone of reliable and resilient 
power grid operation and planning, a robust power flow 
simulator that can be further scalable to joint transmission 
and distribution simulations [2] is a necessity in order to 
cope with these challenges. Hence, the revived research 
interest in improving the existing power flow modeling and 
simulation algorithms.  

The industry standard for the simulation of power flow 
problems is based on the ‘PQV’ formulation [3], wherein the 
bus voltage magnitude and angle state variables define the 
steady-state response of the system, while the network 
constraints are modeled in terms of real and reactive power 
mismatch equations. The operating point of the power grid 
is then obtained through iteratively solving the nonlinear set 
of equations by numerical algorithms, such as the Newton 
Raphson (NR) or the Gauss-Seidel method. However, the 
nonlinear power balance equations are known to diverge for 
ill-conditioned cases operating at the edge of voltage 
collapse as well as suffer from lack of robustness in large-
scale simulations (>50k buses), where the knowledge of a 
good initial guess to start the numerical algorithm can be 
challenging to determine. Thus, robust and scalable 
convergence properties of a power flow problem defined in 
terms of the ‘PQV’ formulation, as well as convergence to 
physical high voltage solutions remain a challenge [2].  

There have been many attempts to tackle the problem of 
robust power flow convergence. In [4], authors propose a 
polynomial homotopy method to explore the power flow 
solution space and further locate all of the power flow 
solutions. This method was, however, shown to efficiently 
work only for small power flow test cases, and its 
generalization to include the real-life constraints was not 
explored. A different approach was introduced in [5] where 
a homotopy that traces a path from a DC to AC power flow 
solution is proposed. Soon after, [6] demonstrated that 
neglecting the reactive power within the DC power flow 
analysis represents a challenge that further causes this 
homotopy to trace the path of nonphysical low voltage 
solutions. Lastly, the Continuation Power Flow (CPF) [7] is 
proposed for the power flow test cases operating at the edge 
of voltage collapse and is applied by sequentially varying the 
system loading factors while resolving the power flow 
problem. However, the success of CPF is fully depended on 
the power flow solution obtained at the nominal loading, 
which can be as challenging to determine for the large-scale 
real-life test cases. 

 Extensive and well supported research work within the 
circuit simulation community has developed powerful 
simulation algorithms that are, today, capable of solving 
highly nonlinear problems with over one billion of variables. 
It was shown that contrary to the generalized NR damping 
methods that limit the NR-step vector by a constant factor 
[8], more robust and stable convergence properties are 
achieved by separately limiting each of the circuit variables 
within the NR-step vector [9]-[11]. More importantly, the 
equivalent circuit formalism [11] further allowed for 
development of scalable homotopy methods to ensure 
efficient convergence properties of large-scale circuits. For 
instance, one of the most popular homotopy methods, G-min 
stepping [12]-[14], shorts the complete circuit by connecting 
a large conductance from each node to the ground. The 
initially shorted operating point is then trivial, and the 
solution of the original circuit is obtained by gradually 
relaxing these added conductances. 

Recent advances [15]-[21] in power system simulation 
and optimization problems have demonstrated that modeling 
the steady-state response of a power system in terms of 
current, voltage and admittance state variables allows for 
more robust and scalable convergence properties, governed 
by the application of circuit simulation techniques. For 
instance, the recently introduced Tx-stepping homotopy 
method [17] was shown to eliminate low voltage 
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convergence issues that represents one of the drawbacks of 
traditional ‘PQV’ based homotopy methods [6]. This is 
achieved by “virtually” shorting every bus in the power 
system to a slack bus, which further enforces the homotopy 
to trace the path of a high voltage solution [17]. Furthermore, 
Tx-stepping demonstrated good scalability properties, 
thereby allowing the robust simulations of large-scale power 
flow problems (80k+ buses), as well as combined 
transmission and distribution analysis without loss of 
generality [15].  

In this paper, we extend the circuit simulation G-min 
stepping homotopy method to power flow analysis. It is 
demonstrated that in contrast to the Tx-stepping method that 
virtually shorts the whole network to a slack bus, the G-min 
stepping homotopy is locally applied at each bus, and thus 
preserves the network topology information. Our results 
suggest that the initial homotopy solution is now closer to 
the actual steady-state grid response, which significantly 
improves convergence properties in terms of iteration count, 
when compared to the Tx-stepping and other traditionally 
developed ‘PQV’ based homotopy methods, such as CPF. 
Most importantly, it is shown that the proposed algorithm 
naturally incorporates challenging industry required power 
flow models, such as remote voltage control devices that 
require special handling within the Tx-stepping method [17]. 
Lastly, promising preliminary simulation result comparisons 
that indicate the efficiency and robustness of the proposed 
algorithm are presented and discussed.  

II. BACKGROUND  
A. Equivalent Circuit Formulation 
As any other electrical circuit, an electrical power system 

is governed by physical conservation laws, namely 
Kirchhoff’s Current and Voltage Laws (KCL and KVL) that 
define the relationship between the currents and voltages 
within the power system. Hence, modeling and analyzing the 
power grid response in terms of current and voltage variables 
represents the most natural way of characterizing the power 
system in analysis problems, and as such is used in the early 
days of power system simulations [22] as well as first 
implemented on a digital computer [23]. However, these first 
formulations based on current and voltage state variables 
were later shown to represent “derivative-free” numerical 
algorithms [23], such as fixed-point iteration that are 
characterized by slow convergence properties, especially to 
a solution with a desired tolerance.  

To address the problem of slow convergence of existing 
power system steady-state simulators, Tinney and Hart [3] 
implemented the first sparse power flow simulator based on 
the power mismatch formulation solved with the NR 
method. The power mismatch formulation was shown to 
reduce the size of the problem, which was valuable for the 
memory-constrained computers in the mid-20th century, and 
also required fewer nonlinear iterations to converge. Most 
importantly, it was demonstrated that the Jacobian matrix of 
a power mismatch formulation defined by the basic power 
flow models is positive definite [24], which is in contrast to 
the current/voltage formulation that can introduce negative 
eigenvalues to the Jacobian as part of the voltage-controlled 
PV bus model, and hence results in possible convergence 
issues [16]. Therefore, the power mismatch formulation 
became accepted as an industry standard particularly for 
transmission level power grids. However, positive 

definiteness of a Jacobian matrix does not guarantee 
convergence, and after the computing power of early 
computers increased, it was realized that as in the case with 
any other generic NR based algorithm, the convergence of 
power mismatch-based power flow is dependent on the 
initial starting point, particularly with the increase in size of 
the test cases [24]. 

The recently introduced equivalent circuit formulation 
based on current and voltage state variables has shown to 
overcome the challenges introduced in modeling the 
voltage-controlled PV nodes, by utilizing the equivalent 
circuit formalism and adapting the NR step limiting 
algorithms and homotopy methods developed within the 
circuit simulation community [9]-[14]. Herein, we provide a 
brief overview of the current/voltage formulation and the 
representation of the power flow problem in terms of 
equivalent split-circuit models. 

Consider a power system given by the set of buses 𝒩, 
with a set of generators 𝒢 and load demands 𝒟 that are 
subsets of 𝒩, connected by a set of network elements, 𝒯%, 
modeled at a fundamental frequency. Furthermore, let 𝑉'( =
𝑉*,( + 𝑗𝑉.,( represent the phasor voltage of bus 𝑖 with its real 
and imaginary components respectively, while the phasor 
𝐼1( = 𝐼*,( + 𝑗𝐼.,( is the current injected from the bus to the 
RLC transmission network comprised by the elements 𝒯%. It 
is important to note that the RLC transmission network 
remains linear within current/voltage formulations, while 
nonlinearities are introduced locally at each bus and 
correspond to the current injection models that constrain real 
and reactive powers, as well as bus voltage magnitudes [15]. 

Next, the complete set of governing KCL equations is 
split into its real and imaginary components. This is 
necessary to prevent the analyticity issues introduced by the 
complex conjugate operator in constraining the real and 
reactive powers (defined for 𝑖23 bus as 𝑃( and 𝑄() of 
nonlinear current injection models that would prevent the 
applicability of the NR algorithm. For instance, the current 
injection model of the 𝑖23 bus is given as: 

𝐼1( =
𝑃( − 𝑗𝑄(
𝑉' ∗

 (1) 

The complex current function from (1) is then split to obtain: 

𝐼*,( =
𝑃(𝑉*,( + 𝑄(𝑉.,(
𝑉*,(8 + 𝑉.,(8

 (2) 

𝐼.,( =
𝑃(𝑉.,( − 𝑄(𝑉*,(
𝑉*,(8 + 𝑉.,(8

 (3) 

Lastly, in the case of a PV bus that aims to control the voltage 
magnitude of a bus 𝒄, the reactive power is treated as an 
additional control variable for which the voltage magnitude 
constraint is added as: 

𝑉*,:8 + 𝑉.,:8 − 𝑉;<28 = 0 (4) 
where 𝑉;<2 represents the voltage set point at bus 𝑐. 
As it can be seen from (2)-(4), the governing PV bus 

equations are now represented by real valued functions. 
Hence, the first order Taylor expansion can be utilized to 
linearize the corresponding nonlinearities. For instance, the 
linearized real current from (2) is given as: 

𝐼*,(?@A = 𝐼*,(? +
𝜕𝐼*,(?

𝜕𝑉*,(
Δ𝑉*,( +

𝜕𝐼*,(?

𝜕𝑉.,(
Δ𝑉.,( +

𝜕𝐼*,(?

𝜕𝑄(
Δ𝑄( (5) 
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To map this expression to the equivalent split-circuit 
representation, the term from (5), where the real current is 
proportional to the real voltage across it, represents a 
conductance by Ohm’s Law, while the terms proportional to 
the voltage of the other circuit or the reactive power are 
represented by controlled current sources. Lastly, the 
constant terms known from the previous iteration are lumped 
together and represented by a constant current source, hence 
defining the split-circuit model as shown in Fig. 1. 

 
Fig. 1. Real sub-circuit of a PV bus model. 

After applying the same methodology to each of the 
power flow models defined within the current/voltage 
formulation, the complete set of governing circuit equations 
is now linearized and can be iteratively solved until 
convergence to an operating point, which corresponds to NR 
converging to a solution. Furthermore, the equivalent circuit 
perspective now allows for understanding the physical 
meaning behind each of the components of a power flow 
Jacobian matrix that can be used to develop the NR-step 
limiting techniques based on the physical characteristics of 
the problem, as shown in [17]. Lastly, a detailed description 
of the power flow circuit models that can also include any 
physics-based model, such as induction motors or power 
electronics, as well as facilitate a joint transmission and 
distribution power flow analyses can be found in [15]-[21]. 

B. Homotopy Methods 
Exploring and applying path tracing homotopy methods 

for solving general nonlinear problems has been attracting 
the research interest from the early days of numerical 
analysis. In general, a homotopy method can be 
mathematically defined as: 

𝐻(𝑥, 𝜇) = (1 − 𝜇)𝐹(𝑥) + 𝜇𝐺(𝑥),			𝜇 ∈ [0,1] (6) 
where 𝐹(𝑥) is an original nonlinear problem defined in terms 
of a vector of state variables 𝑥, while 𝐺(𝑥) represent the 
initial homotopy problem for which the solution can be 
trivially obtained. Lastly, 𝜇 is a homotopy factor that is 
varied in discrete steps from 1 to 0 while the homotopy 
problem 𝐻(𝑥, 𝜇) is iteratively resolved by using the solution 
from the previous homotopy step as an initial guess. 

To further address the application of homotopy methods 
within an equivalent circuit formulation of a power flow 
problem, we provide a brief discussion on the recently 
introduced Tx-stepping method. Namely, Tx-stepping 
homotopy obtains a solution of a power flow problem [17] 
by embedding the homotopy factor 𝜇	to linear series and 
shunt network elements and transformer model, as given by:  

𝐺?P + 𝑗𝐵?P = (𝜇Υ + 1)(𝐺?P + 𝑗𝐵?P) (7) 
𝑡(𝜇) = 𝑡 + (1 − 𝑡)𝜇 (8) 
𝜃U3(𝜇) = (1 − 𝜇)𝜃U3 (9) 

where 𝐺?P + 𝑗𝐵?P represents the series branch admittance, 
Υ represents an admittance scaling factor, while 𝑡 and 
𝜃U3	are the transformer tap and the phase shifting angle 
respectively. 

The power flow system equations are then sequentially 
solved while gradually decreasing the homotopy factor until 
a solution to the original power flow problem is found. 
Initially, the homotopy factor is set to one, and the power 
flow circuit is virtually “shorted” to a slack bus. Hence, the 
operating point of the power flow is governed by a slack bus 
magnitude and voltage angle and can be robustly obtained. 
By then gradually decreasing the embedded homotopy factor 
𝜇 to zero, Tx-stepping sequentially relaxes the initially 
shorted power flow circuit toward its original state, while 
using the solution from the previous sub-problem to 
initialize the next homotopy decrement. 

Importantly, the Tx-stepping method significantly 
improved simulation robustness in terms of independence on 
the starting point used to initialize the power flow problem. 
However, results suggest that its initial solution can be 
sometimes far away from the actual operating point, thus 
requiring a lot of homotopy iterations needed to converge to 
the solution of the original problem. Therefore, to further 
address the problem of simulation efficiency, we extend the 
idea of the circuit simulation G-min stepping homotopy 
method to solving the power flow problem with aim that the 
locally applied homotopy would provide a better starting 
point, and thus ensuring the shorter homotopy path to the AC 
power flow solution. 

III. EXTENDING THE G-MIN STEPPING TO POWER 
FLOW SIMULATION 

Obtaining the DC operating point of highly-nonlinear 
circuits represents the essential as well as the most 
challenging problem for SPICE simulations [10],[13] that 
can require the application of homotopy methods to ensure 
convergence. As one of the most popular methods used in 
SPICE, the G-min stepping [12],[14] connects a large 
conductance from every circuit node to the ground. The 
solution to such modified circuit is then trivial, namely zero, 
and the operating point of the original circuit is obtained by 
sequentially relaxing the connected homotopy conductances. 

In the attempt to directly apply the G-min stepping to the 
simulation of power flow, one can realize that its direct 
application is not feasible mainly due to the voltage-
controlled buses in the power grid. For instance, adding a 
large conductance from every bus to ground forces the bus 
voltages to zero, and thus violates the voltage-control 
constraints (4). Hence, in order to develop a homotopy 
method that does not modify the linear network models as 
well as acts locally at each bus, we first seek to define an 
initial problem that can be trivially solved to initialize the 
homotopy, while accurately approximating the nonlinear 
voltage-control PV and constant power PQ buses.  

Herein, we propose a two-stage algorithm that first  
relaxes the nonlinear bus models in order to determine the 
values of homotopy admittance 𝐺V + 𝑗𝐵V that now by 
Circuit Substitution theorem [11] correspond to the 
relaxation error between the powers injected by the bus 
models of the original and relaxed power flow problems. In 
the second stage, the determined “error” admittances as well 
as the operating point of the relaxed power flow problem are 
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used to initialize a homotopy problem 𝐻(𝑥, 𝜇) that is further 
sequentially solved until the 𝐺V + 𝑗𝐵V admittances are 
reduced to zero. The rest of the section provides a detailed 
description of the proposed two-stage algorithm, whose 
flowchart can be seen in Fig. 4.  

A. Stage I: Relaxing the power flow and determining 
the homotopy admittance 

Consider a power system defined in terms of nonlinear 
current injection equations as described in II.-A. Herein, we 
introduce the relaxed current injection PV and PQ bus 
models, as well as discuss the corresponding relaxation 
errors that can be represented in terms of admittances and 
further used to initialize the homotopy in Stage II. 

1. Relaxing a PV bus 
To remove the nonlinearities introduced by the PV 

voltage-control bus, we replace it by the two linear 
independent current sources in real and imaginary circuits 
(KCL equations). Furthermore, the addition of two current 
state variables requires the addition of two extra equations in 
order to solve the set of KCL equations. Hence, we add the 
two linear equations constraining the voltage of a bus 
controlled by the PV node model (4), to the voltage set point 
of the original power flow problem 𝑉;<2, and the angle 
𝜃WX	determined from the solution of a DC power flow 
problem, as shown in Fig. 2. 

 
Fig. 2.Relaxed voltage control PV bus model. 

Note from Fig. 2, the relaxed PV bus model naturally 
handles both self-control (𝑖 = 𝑐) and remote-control bus 
(𝑖 ≠ 𝑐) models, whereas the independent current sources are 
connected to the control bus, while the voltage constraints 
are given for the controlled bus. 

Importantly, DC Power Flow (DC PF) represents a 
simplified linear PF formulation that is solved to determine 
voltage angle approximations, while the grid voltage 
magnitudes are assumed to be equal to 1, and the system 
reactive powers are omitted. Hence, the real power supplied 
by the relaxed PV bus model from Fig. 2 will differ from set 
PV bus power of the original power flow problem (𝑃;<2), 
unless the voltage angles of AC and DC PF problems are 
identical. Furthermore, this “relaxation error” can be 
expressed in terms of admittance given at the bus voltage 
magnitude as:  

𝐺3,Z[ =
𝐼*,(𝑉*,( + 𝐼.,(𝑉.,(
𝑉*,(8 + 𝑉*,(8

−
𝑃;<2

𝑉*,(8 + 𝑉*,(8
 (10) 

Furthermore, the Circuit Substitution theorem [11] 
states that if a voltage operating point of a node (bus) is 
known, all the shunt connected elements of the bus can be 
replaced by the independent voltage source. Furthermore, if 
the circuit remains unchanged, the power absorbed by the 
voltage source will correspond to the power absorbed by the 
shunt node elements. Hence, it can be implied that if an 

additional 𝐺3,Z[ conductance from (10) is added in parallel 
with the nonlinear PV bus model (see Fig. 3), the power flow 
solution will correspond to the solution of the relaxed 
problem. Therefore, this “relaxation error” from (10) further 
defines a homotopy conductance corresponding to a PV bus 
that will be sequentially stepped down in Stage II of the 
algorithm, while by Circuit Substitution theorem, the 
reactive power supplied by the relaxed model, also 
corresponds to the solution of the first homotopy problem, 
i.e.	𝜇 = 1.  

2. Relaxing a PQ bus 
Next, we consider a remaining nonlinear PQ bus model. 

It should be noted that a constant PQ element can be seen as 
an admittance that absorbs the set real and reactive powers 
at a given power flow operating point. Therefore, we relax 
the PQ bus by replacing it with an admittance defined in 
terms of set powers at the nominal bus voltage magnitude 
(𝑉\), unless the bus voltage is controlled, in which case we 
evaluate the admittance at a given voltage set point. 

𝐺Z] + 𝑗𝐵Z] =
𝑃 − 𝑗𝑄^
𝑉\8

 (11) 

As we sought, the relaxed power flow problem is now 
represented by a linear RLC circuit and its solution can be 
trivially obtained. However, the real and reactive powers 
absorbed by the admittance from (11) will in general differ 
from the set real and reactive powers (𝑃_ and 𝑄_). This 
respective relaxation error can be defined in terms of 
additional conductance and susceptance values as:  

𝐺3,Z] =
𝑃_
𝑉_8

− 𝐺Z] (12) 

𝐵3,Z] = −
𝑄_
𝑉_8

− 𝐵Z] (13) 

where 𝑉_ represents the relaxed power flow bus voltage 
magnitude operating point of bus 𝑙. 

Finally, the Circuit Substitution theorem [11] implies 
that connecting the admittance from (12)-(13) in parallel 
with a nonlinear PQ element (see Fig. 3) ensures that the 
operating point of a nonlinear power flow corresponds to the 
solution of the relaxed problem. Therefore the “relaxation 
error” computed in (12)-(13) also represents the homotopy 
admittance related to the nonlinear PQ elements. 

 
Fig. 3. Adding the homotopy conductance to nonlinear PV and PQ bus 

models. 

B. Stage II: G-min stepping 
With the homotopy conductance and susceptance values 

determined from the first stage of proposed algorithm, we 
use the operating point of the relaxed power flow together 
with the 𝐺3,Z[,	𝐺3,Z] and 𝐵3,Z] to define the initial 
homotopy problem. Namely, by connecting the homotopy 
admittance in parallel to the nonlinear bus model from (2)-
(3) as shown in Fig. 3, and using the real and imaginary 

+ +

_ _!",$ !%,$
&",$ &%,$

!",$: &",' = &)*+ cos /01,' !%,$: &%,' = &)*+ sin /01,'

Real Circuit Imag. Circuit

PV
!",$%(')

PQ
!",$) '
+ +,",$) '

PV bus PQ bus

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on June 01,2020 at 20:28:17 UTC from IEEE Xplore.  Restrictions apply. 



voltage set points as well as reactive power supplied by the 
relaxed control bus model to initialize the nonlinear power 
flow. Notably, by Circuit substitution theorem, the solution 
to such power flow problem is equal to the already 
determined relaxed power flow solution. Hence, with the 
homotopy factor 𝜇 embedded within the computed 
admittances from (10), (12)-(13) as:  

𝐺V,Z[(𝜇) = 𝜇𝐺3,Z[ (14) 
𝐺V,Z](𝜇) + 𝑗𝐵V,Z](𝜇) = 𝜇a𝐺3,Z] + 𝑗𝐵3,Z]b (15) 

the solution to the original power flow problem is 
determined by sequentially decreasing the homotopy 
admittances, while resolving the power flow problem and 
using the solution of the previous homotopy point to 
initialize the power flow at a next homotopy step. 

  
Fig. 4. Proposed 2-Stage G-min stepping algorithm. 

The flowchart in Fig. 4 shows that the proposed G-min 
stepping from stage 2 of the algorithm applies dynamical 
stepping towards the original power flow problem. Namely, 
after the relaxed problem is solved to obtain the initial 
operating point as well as the respective homotopy 
admittances, the algorithm directly tries to obtain the 
solution of the original problem (𝜇 → 0). Furthermore, if the 
case diverges after assigned maximum iteration count, the 
step of homotopy factor 𝜇 is cut back by half, until a power 
flow convergence is achieved. Lastly, once the homotopy 
factor for which the power flow converges is found, it is 
dynamically stepped towards zero again, until the solution of 
the original problem is determined.  

IV. SIMULATION RESULTS  
To demonstrate the efficiency and robustness of the 

proposed homotopy method, the G-min stepping algorithm 
is implemented within a MATLAB prototype 
implementation of our circuit simulator SUGAR (Simulation 
with Unified Grid Analyses and Renewables), while the 
MATPOWER solver [25] was used to determine the DC 
power flow angle solutions. All the simulations were run on 

a MacBook Pro 2.9 GHz Intel Core i7, for the MATPOWER 
test cases including, European PEGASE test cases as well as 
the recently developed Synthetic cases ranging up to 70k 
buses [26]-[27]. 

First, in comparing the proposed G-min stepping and the 
Tx-stepping homotopy methods, it is important to note that 
the latter one is based on iteratively solving a relaxed 
problem used to start the homotopy. Namely, the Stage I of 
the propose algorithm solves a linear relaxed power flow 
problem that can further trivially indicate and locate the 
possible low voltage regions of the test case without the need 
of an iterative algorithm. On the other side, the Tx-stepping 
seeks to find an initial system response due to the large 
admittances used to “virtually” short the system, which can 
in general require a few iterations depending on the value of 
Υ scaling factor. 
Furthermore, in contrast to the Tx-stepping, the initial 

operating point of the G-min stepping homotopy is obtained 
without modifying the linear network elements. As our 
results presented in Table 1 suggest, this as a consequence 
has a “closer” operating point from which the G-min 
homotopy algorithm is started.  

TABLE I.  MAXIMUM ABSOLUTE VOLTAGE OPERATING POINT 
DEVIATION BETWEEN INITIAL HOMOTOPY AND ORIGINAL POWER FLOW 

PROBLEMS. 

Test Case G-min stepping Tx-stepping 
𝚫𝑽𝒎[p.u.] 𝚫𝑽𝒎 [p.u.] 

Case9241PEGASE 0.036936 0.279241 
ACTIVSg10k 0.015694 0.074387 

Case13659PEGASE 0.094310 0.259931 
ACTIVSg25k 0.015153 0.073212 
ACTIVSg70k 0.019341 0.095055 

Most importantly, as we can further imply from the total 
iteration counts and simulation runtime comparisons 
presented in Table 2 and Fig. 5 respectively, the less 
conservative initial homotopy problem of the G-min 
stepping algorithm consequently provides significant 
improvements in terms of the simulation efficiency.  

TABLE II.  TOTAL ITERATION COUNT COMPARISON. 

Test Case G-min stepping Tx-stepping 
Case9241PEGASE 13 49 
ACTIVSg10k 7 32 

Case13659PEGASE 22 411 
ACTIVSg25k 8 46 
ACTIVSg70k 45 233 

 
Fig. 5. Simulation runtime comparison between proposed G-min stepping 

and Tx-stepping homotopy methods. 

Continuation Power Flow (CPF) [7] homotopy defined 
in terms of traditional ‘PQV’ formulation and power 
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mismatch equations represents one of the more frequently 
used homotopy methods particularly in planning studies of 
power grid, where the generation and demand is 
increased/decreased in order to simulate extreme power grid 
operation conditions. Namely, to ensure the power flow 
convergence of the cases with scaled loading factors, the 
loading factor is sequentially varied starting from the power 
flow solution obtained for the initial loading of the test case, 
while resolving the power flow until the desired target 
loading is reached.  

Therefore, as a second experiment, we compare the 
proposed G-min stepping with the MATPOWER [25] 
implementation of the CPF algorithm. For this study we 
consider four synthetic test cases [26] representing: 

1. South Carolina (500 buses) 
2. Texas – ERCOT (2000 buses) 
3. Western Interconnect – WEC (10,000 buses) 
4. North Eastern region of USA (25,000 buses) 

and further increase the respective loading factors by 25%. 
The CPF is run for the default parameters in MATPOWER, 
and the obtained runtimes for each of the four examined test 
cases are compared in Fig. 6 with the runtimes obtained from 
solving the power flow with G-min stepping algorithm. 

 
Fig. 6. Simulation runtime comparison between proposed G-min stepping 
and Continuation Power Flow method. Note the significant improvement 

(order of magnitude) in simulation runtime efficiency.  

V. CONCLUSONS 
In this paper, we extended the circuit simulation G-min 
stepping homotopy method to solve the power flow problem. 
The proposed homotopy method is demonstrated to naturally 
incorporates the challenging, industry required power flow 
models, such as remote voltage control devices. 
Furthermore, with the presented preliminary results that 
indicate significant improvements in the simulation 
efficiency of the proposed G-min stepping in comparison to 
existing homotopy methods, it is important to emphasize the 
increase of total iteration count once a homotopy method is 
applied. Importantly, as shown in [15], the convergence of 
the well-conditioned power flow cases can be robustly 
obtained using the circuit simulation NR-step limiting 
techniques and is generally not dependent on the application 
of a homotopy method. However, as in the case of circuit 
simulators based on SPICE, efficient and robust homotopy 
methods should represent an important component of every 
power flow simulator. The component that can be called for 
in the worst-case scenarios, when the power flow solution 
cannot be obtained with any of the NR step limiting 
techniques or during the convergence to a physically 
meaningless solution, i.e. low voltage solution. 
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