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Abstract— An equivalent circuit formulation for power
system analysis was demonstrated to improve robustness of
Power Flow and enable more generalized modeling, including
that for RTUs (Remote Terminal Units) and PMUs (Phasor
Measurement Units). These measurement device models,
together with an adjoint circuit based optimization framework,
enable an alternative formulation to Power System State
Estimation (SE) that can be solved within the equivalent circuit
formulation. In this paper, we utilize a linear RTU model to
create a fully linear SE algorithm that includes PMU and RTU
measurements to enable a probabilistic approach to SE. Results
demonstrate that this is a practical approach that is well suited
for real-world applications.
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Power System State Estimation (SE) plays a crucial role in
the Power Systems operations tool-chain. It uses
measurement data and a Power Grid topology model to
estimate the most likely state of a system. The original
formulation of this widely studied problem was introduced by
Schweppe [1], formulating it as a nonlinear weighted least
squares optimization algorithm. Therein, the power system
state is defined as a set of complex bus voltages in polar
coordinates, leading to a highly nonlinear formulation that is
known to be challenging to solve. In fact, even modern state
estimators suffer from convergence issues in real-world
scenarios [2].

SE algorithms traditionally consider data from Remote
Terminal Units (RTUs), which are deployed as part of Power
Systems’ Supervisory Control and Data Acquisition
(SCADA) systems. A second type of measurement device,
the Phasor Measurement Unit (PMU) measures synchronized
voltage and current phasors with high precision using
geolocation systems. Algorithms exclusively considering
PMU measurements are linear if they are formulated in
cartesian coordinates [3], [4]. These linear SEs have been
deployed to modern PS operations [3]. However, their
success is limited by the amount of installed PMUs in today’s
systems [5]. To make use of both types of measurement
devices hybrid SE approaches were developed [6], [7].

Alternative approaches to Schweppe’s SE formulation
exist. Notably, direct noniterative approaches considering
SCADA data were recently proposed in [8] and [9].
Additionally, it has been shown that a cartesian coordinate
formulation can lead to improved convergence [10]. A SE
formulation based on the Current Injection Method (CIM) for
Power Flow (PF) is proposed in [11].
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The CIM was originally proposed as a formulation to solve
the PF problem [12]. Building on it, the equivalent circuit
formulation (ECF) was shown to enable robust PF
convergence using circuit simulation techniques [13]. In
addition, the ECF can incorporate any physics based model,
including that from measurement devices such as PMUs and
RTUs [14]. Using this modeling approach and an
optimization toolbox, a linear state estimation algorithm was
introduced in [15]. Separately, it was demonstrated that it is
possible to extend the ECF to natively solve optimization
problems, including SE, within the same framework [16]—
[18].

Deployed in EMS systems, state estimators operate under
hard time constraints. Since numerical approaches to
probabilistic analysis are computationally intensive, only a
few probabilistic SE approaches for special applications have
been proposed [19],[20]. However, probabilistic approaches
to general PS analysis have many advantages. According to
[19], advantages of a probabilistic SE approach are: reduced
standby resources, better ability to quantify voltage
variabilities with intermittent renewable generation. [19] also
discusses the possibility of probability-based market
products. Makarov discusses advantages of a probabilistic PS
planning and operations in [21] and further argues that not
implementing a probabilistic approach would lead to
“increasing risk of system failures, blackouts and near-
misses”, and “less economical system operation while
addressing unexpected situations”, among others. This
suggests that a probabilistic SE could play a major part in
comprehensive probabilistic PS analyses. For example,
probabilistic SE naturally leads to probabilistic contingency
analysis improving risk-awareness.

In this paper, we propose an algorithm for probabilistic SE.
We use the modeling capabilities of the ECF to include a
previously discussed PMU [14] and an RTU model that is
mathematically equivalent to a recently introduced linear
RTU model [15], thus defining a fully linear optimization-
based SE algorithm that is solved completely within the ECF
framework. Finally, we leverage the low computational cost
and guaranteed solution of this algorithm to create a Monte
Carlo based probabilistic SE.

Our results include a comparison of the deterministic part
of our SE algorithm to the standard SE approach. Further, we
demonstrate the unique features of a probabilistic SE by
incorporating network uncertainties into the analysis. Finally,
we discuss the scalability of this algorithm to real-world
scenarios.
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I. BACKGROUND

A. AC Power System State-Estimation

Most state-of-the-art AC state estimators (ACSE) include
measurements from RTUs, which sample voltage, current,
and power magnitudes. Measurements from PMUs, which
sample at higher rates and capture relative angle information
are generally not included. As already mentioned, the ACSE
can be formulated as a weighted least squares (WLS)
algorithm with the objective function:

min (z - h(x)) W (z = h(x)) (1)

where z is the vector of RTU measurements that includes real
and reactive power injection at nodes, voltage magnitude at
the bus nodes and real and reactive power flows across the
branches, x is a vector of voltage state variables, h is a vector
valued measurement function describing the nonlinear
relationship between estimated state and measurements, and
W is a diagonal weight matrix, where each term corresponds
to the inverse of the variance of a given measurement
(1/02). Notably, simplified decoupled linear versions of this
algorithm exist [22]. However, this paper is concerned with
an alternative algorithm to ACSE including PMU
measurements.

B. Equivalent Circuit Formulation

In the equivalent circuit formulation (ECF) for Power
Flow, power systems are modeled in terms of current and
voltage state variables. The ECF is formulated in cartesian
coordinates using KCL equations on each node. Contrary to
the classic PQV formulation for PF with a nonlinear network
model and linear equations for constant power models,
formulating PF in the ECF results in a fully linear PS network
model, including linear models for transmission lines,
transformers, and phase shifting transformers [13]. However,
nonlinearities are now found in constant power models like
the PQ-load model or the PV-generator model. The generic
expression of a PF problem formulated with the ECF can be
written in matrix form as

YoV +1(V) =0, (2)

where Y5 is a linear bus admittance matrix, V is the voltage
state vector and (V) is a nonlinear function in terms of the
state variables that contains the nonlinear PF models.

To numerically find a solution to this nonlinear problem
the Newton-Raphson (NR) algorithm is used. The ECF uses
the circuit formalism to solve the nonlinear problem. More
precisely, nonlinear models are iteratively linearized and
mapped into equivalent circuit elements, enabling the use of
circuit simulation techniques to solve otherwise hard-to-solve
problems [23].
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Fig. 1 Transmission line pi-model.
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Fig. 2 ECF representation of a transmission line pi-model.

Fig. 1 and Fig. 2 show the mapping of a transmission line
pi-model (Fig. 1) to its representation within the ECF (Fig.
2). We derive the series elements of this model by
formulating Ohm’s law between buses i and k:

= §
R, +jX,
where V, is the complex voltage difference between the two
buses and I is the complex current flowing through the series
elements R; and X;. Eq. (3) is further split into real and
imaginary parts and formulated it in terms of currents

R X
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To map equations (4) and (5) to equivalent circuits, terms
relating a voltage to its own current are interpreted as
conductances, whereas terms that relate a current to a
different voltage are represented by voltage-controlled
current sources. Shunt elements of this model are derived in
the same way. Finally, the equivalent circuit elements of each
model are translated into matrix entries and included in
Yo of Eq. (2).

Nonlinear models are linearized and further translated into
equivalent circuit elements using similar steps. The main
difference is that contributions of nonlinear elements are
updated for each NR iteration until convergence. Since
nonlinear models are not included in the proposed SE
formulation, we refer to [13] for a detailed discussion of
handling nonlinear elements within the ECF and achieving
robust convergence using circuit simulation techniques.

C. Circuit Theoretic Optimization

Interestingly, it is possible to extend the ECF to solve
optimization problems fully within the formulation. This was
demonstrated for a PF feasibility optimization in [17], for AC
Optimal Power Flow in [16], and SE in [18]. Because of its
applicability for many optimization problems in power
systems and beyond it was named equivalent circuit
programming (ECP). ECP bases on adjoint-network theory
[24]. Importantly, adjoint network-based approaches have
been proposed in the power systems domain before [25], [26].

II. STATE ESTIMATION IN THE ECF

AC Power System State Estimation (SE) can be formulated
as an ECP optimization problem. This is done by first
defining ECF measurement models for PMUs and RTUs that
include variables reflecting measurement error. After
integrating these models into a PS topology model, an
optimization algorithm minimizing these variables can be
defined. Notably, the PS topology model is the same that is
used for PF, including branches, transformers, and shunts.
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A. PMU Model

A PMU measurement model consists of synchronized real
and imaginary voltage measurements on a bus, as well as real
and imaginary current measurements for branches from that
bus. Both types of measurements are combined in the PMU
model using current source conductances, as seen in Fig. 3.
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Fig. 3 Split Circuit Model of PMU measurements.

The currents through the source conductances Gpy; are a
measure of measurement error. This can be seen by assuming
measurements that perfectly depict the state of the system.
For this set of measurements, the voltages at the PMU
model’s terminals VTI?iIHN would be equal to the measured

voltages Vv, resulting in zero currents through the source
conductances Gpyyy. Any measurement error would change
this equilibrium and induce currents flowing through the
source conductances. Hence, an algorithm to minimize
measurement errors can be designed by minimizing the
currents through these source conductances.

B. Linear RTU Model

Remote Terminal Units (RTUs) measure current and
voltage magnitudes and the power factor angles between
current and voltages. These measurements are then converted
into values of voltage magnitude and real and reactive powers
[27]. This conversion simplifies including measurement data
into the classic SE formulation that is formulated in terms of
powers [1]. However, the original measurements lend
themselves better for formulations using currents and
voltages as state variables.

Our RTU model condenses multiple branch-current
measurements into one net bus-injection current
measurement [15]. While some amount of measurement
information is lost with this compression, we gain a fully
linear RTU model that enables our probabilistic SE
algorithm. We believe that the resulting probabilistic system
state and its associated information gain makes up for this
initial information loss. Notably, a post-processing step can
extract single current measurement quality information or
give information about a branch model’s quality.

The model maps the condensed measurements into an
equivalent admittance at the measurement voltage.

= " = M fcos(gy) +sin(ow)]  (6)

M M
Here, V,, is the measured bus voltage magnitude. Its
equivalent admittance Y,, = (Gy + jBy) can be found by
either wusing the converted power measurement
Seru: (Prry + jQgrry), or the condensed original current
measurement Iy, and the power factor angle measurement
¢y - To complete the RTU model, the measurement
admittance Yy, is further augmented by current sources. Non-
zero values of these current sources indicate measurement-
error. Hence, the source contributions are later minimized in
the SE optimization algorithm. Notably, this is similar to the

earlier mentioned feasibility PF algorithm [17]. The
equivalent circuit model of the RTU is depicted in Fig. 4.

A mathematically equivalent linear RTU model was
recently proposed in [15], where RTU measurements are
represented by current sources. Therein, an optimization
problem is further defined and solved using general purpose
optimization solvers. This paper proposes an algorithm that
is fully solved within the ECF.
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Fig. 4 Equivalent circuit of the linear RTU model.
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C. Defining the SE optimization problem

We discussed how both measurement models include a
metric for measurement error. Based on these metrics, we can
now define a minimization-based SE algorithm

. 1 R 2 1 RI [|2
min Te = E"IGPMU(V)HZ + E ”IRTU”Z (7)
that is subject to network constraints defined by the power
system topology:
np
I+ Z[Gi VE-VE -B(V/ -Vl =0 (8)
k=1
np
I+ ) [G WV =V + B -=VH] =0 (9)
k=1

Here, V; = VR + jV! and V, = VE + jV! are the complex
bus voltages at bus i and k, respectively, G; is the bus
admittance, B; the bus susceptance, and the summation is
over each of the ngz branches connected to bus i. The bus
injection I = IF +jI! further depends on the type of
measurement device on the bus. An RTU’s contribution to it
is:

IF =G, VR — BV} + 1§y (10)

I = GV + B VR + iy (112)
where Y, =G, +jB, is the RTU’s measurement
admittance defined in (6), and I, are the currents to be
minimized. For a PMU measured bus we assume a single
current injection measurement without loss of generality and
arrive at (compare Fig. 3):

I = Iy + 1o (12)
Importantly, Ig};’MU, the current through the PMU’s source

conductance Gpyy, is a dependent variable and can be
expressed by formulating Ohm’s law

RI  _ R, R,
IGPMU - GPMU(Vi = Vemy (13)

where Vplf‘;,lu are the real and imaginary voltage
measurements. Notably, all constraints of this optimization
(8)-(13) are linear. This problem can be solved using any
optimization toolbox.
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D. Probabilistic Linear State Estimation

In this paper, we are solving this SE optimization problem
as an ECP problem within the ECF framework. For this, we
represent the network constraints by an aggregation of primal
and dual network models (see [17] for details) as well as
primal and dual measurement models. To obtain the best
estimate of the network state, we minimize the norm of the
currents  ( Ig;MU and I, ) that correspond to the
measurement errors. Since all models exclusively comprise
of linear circuit elements and the objective function is
quadratic, this formulation results in a fully linear State
Estimation algorithm.

This linear algorithm enables a probabilistic approach to
SE that is able to capture additional uncertainties prevalent in
power system models. Mainly, these are inherent
uncertainties in the system topology model, in addition to the
noise in grid measurements. Traditional state estimation
approaches are generally deterministic and do not consider
this variability. Hence, the results of a state estimation do not
reflect the full possible distribution of states, leaving the grid
operator less informed about the system. A probabilistic
analysis of the estimated system state, including both
measurement noise and network uncertainties, enables a
much better understanding of possible grid states.

To implement this stochastic SE, we extended our
prototype tool SUGAR (Simulation with Unified Grid
Analysis and Renewables) that has previously been shown to
have a robust framework for Monte Carlo based probabilistic
analysis [28] with RTU and PMU measurement models. This
SUGAR C++ implementation features a thread-level parallel
Simple Random Sampling Monte Carlo engine that uses a
fast modern pseudo random number generator with excellent
statistical properties [29]. A hierarchical algorithm efficiently
creates and evaluates Monte Carlo samples in parallel.
Uncertainties for our SE algorithm are integrated by re-
introducing measurement uncertainties as stochastic
variables into our measurement models. Additionally, any
other model parameter can be specified as a stochastic
variable.

III. RESULTS

We generate synthetic measurement data to validate our
SE formulation using the following approach: First, we solve
a power flow base case. This power flow solution is
interpreted as the true system state, with a vector of complex

state-voltages denoted as X. Then, based on statistical inputs,
either PMU or RTU measurement models are randomly
assigned to every bus of the system, thereby replacing the
original power flow models on that bus. The power flow
topology remains unchanged. Finally, we assign
measurement values to each PMU and RTU by
superimposing randomly created measurement errors on the
pre-calculated true system states. In the following
experiments, the assignment of a PMU or RTU model to a
certain bus remains unchanged when multiple SE samples are
created.

We examine the state estimation algorithms using the
following measures:

%= (& -X)" (% -X) (14)
Xmax = max| X — X| (15)
r,=(z=h®) (z = (D) (16)

here x, is the sum of squared errors over the real and
imaginary voltage state variables, X4, IS the maximum
voltage vector deviation, and 7; is the sum of squared
measurement residuals of the optimization.

A. Comparison against Static AC — WLS State Estimator

First, we compare the deterministic ECF based SE
algorithm with the Matpower implementation of a traditional
AC WLS SE algorithm [30] that was adapted to include
current injection measurements on each bus. As previously
mentioned, phasor measurements are generally not part of
this WLS formulation. However, our current formulation
requires at least one phasor measurement to set the system’s
reference angle. To enable a valid comparison between the
two algorithms, we select a zero-injection node to set the
reference angle of the system. This eliminates the influence
of the PMU’s current phasor measurement for this
comparison.

A second difference between the two formulations is how
the weights are applied to different measurements. The WLS
algorithm weighs every single measurement value by the
matrix W that scales its influence within the objective (1).
Our formulation does not include every measurement in the
objective function but maps them into models that are further
used in the optimization. Hence, only weighting of
measurement models as a whole is possible. In order to be
conservative in this comparison, we weigh individual
measurements within the WLS estimator by the inverse of
their standard deviations, whereas within the ECF based
algorithm we weigh each measurement model equally.

TABLE 1: ECF SE PERFORMANCE MEASURES FOR DIFFERENT SYSTEMS'

Xg % Clggy, Xmax T Clogy T, & Clogy
#1 | 6.50e-3 | 8.00e-3 | 1.14e-2 | 1.25e-2 | 2.04e-2 | 2.29e-2
#2 | 3.80e-3 | 4.60e-3 | 7.30e-3 | 8.00e-3 | 3.67e-2 | 3.95e-2
#3 2.25e-2 | 2.76e-2 | 0.97e-2 | 1.04e-2 4.38e-1 4.72e-1
#4 | 5.92e-2 | 7.16-e2 | 1.31e-2 | 1.43e-2 4.05e-1 4.49e-2
#5 1.04e-1 | 1.26e-1 | 1.27e-2 | 1l.41e-2 1.22 1.29

Table 1 shows performance measures of the ECF based SE
algorithm for five openly available power system test cases
[31], [32]. Synthetic sets of measurements were created using
the methodology described earlier in this section with the
following statistics: RTUs have 1% normally distributed real
and reactive power injection measurement uncertainty, and
0.4% voltage magnitude measurement uncertainty. The
single PMU that sets the reference angle within the ECF is
assumed to be a perfect measurement. Its source conductance
Gpyy 18 set to 10 p.u. All uncertainties are based on the
measures’ “true states”.

To perform a wvalid comparison between the two
algorithms, we ran multiple SE samples until we reached an
accuracy such that at least one performance measure ((14)-
(16)) was within +5% of its mean with 99% confidence. On
average 544 instances were run for each case.

! #1: IEEE-118 bus system; #2: case ACTIVSg500; #3:1888-bus RTE model; #4: case_ ACTIVSg2000; #5: 6515-bus RTE model.
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TABLE 2 WLS SE PERFORMANCE MEASURES FOR DIFFERENT SYSTEMS'

Xg £ Clogy, Xmax £ Clooy T, & Clogy,
#1 | 3.60e-3 | 4.60e-3 | 7.20e-3 | 8.00e-3 | 2.20e-3 | 2.30e-3
#2 | 2.30e-3 | 2.90e-3 | 4.80e-3 | 5.40e-3 | 8.90e-3 | 9.00e-3
#3 1.07e-2 | 1.33e-2 | 7.10e-3 | 7.60e-3 3.54e-2 3.57e-2
#4 | 2.44e-2 | 3.06e-2 | 7.70e-3 | 8.50e-3 | 3.58e-2 | 3.6le-2
#5 | 6.33e-2 | 7.92e-2 | 8.40-e3 | 9.30e-3 1.25 1.26

From Table 2 we see slightly better results for the nonlinear
WLS SE formulation as compared to our linear ECF based
State Estimator (Table 1). Notably, this is under conditions
that are designed to compare a best-case scenario for the
WLS, where weighting can be applied due to good
knowledge of uncertainties, and possible divergence is
avoided by good initial conditions.

Different to the nonlinear WLS approach, our formulation
guarantees a solution due to its linearity and is superior to the
WLS algorithm in terms of computational complexity. This
enables a probabilistic approach to SE, resulting in a more
complete (probabilistic) picture of a system’s state.

B. Probabilistic State Estimation

We study our probabilistic algorithm on the 1888-bus RTE
system model of the French transmission grid that is openly
available [31]. This system size is a realistic abstraction of a
regional size grid operator in the US. NYPA’s EMS model
for example comprises of around 1600 buses [33].

Our algorithm is tested in the following way: We
synthetically create a single set of measurement data, where
10% of system buses are randomly selected to be PMU
measured. Of these PMUs, 40% are assumed to be perfect
measurements. The remaining 60% of PMUs have 0.02%
uncertainty for all their measures (i.e. real and imaginary
currents and voltages). All other buses are RTU measured
with RTU uncertainties identical to the previous experiment.
Additionally, we add network model uncertainties that are
defined in Table 3.

TABLE 3 STANDARD DEVIATIONS OF NORMALLY DISTRIBUTED UNCERTAINTY
VALUES OF TRANSMISSION LINE AND TRANSFORMER SERIES ELEMENTS

Network uncertainties oz[% of mean] 0x[% of mean]
Transmission line 5% 0.5%
Transformer 1% 0.1%

Fig. 5 shows selected results from a probabilistic SE
simulation with one million samples. The probabilistic
density functions (PDFs) in Fig. 5 depict the voltage
magnitude and angle of bus 1337 and the real and reactive
branch flow on the branch that connects the buses 1337 and
311, which has one of the highest loadings in the system. The
(PDFs) without network uncertainties are shown in green,
whereas the PDFs with network uncertainties are shown in
blue. It can be seen that the true system state X, shown as a
red-dotted line, is within the distributions for all PDFs.
Moreover, we observe low influences of network
uncertainties for voltage angle and real power in Fig. 5.
However, standard deviations of the voltage magnitude and
reactive power distributions were raised by 4.95%, and
21.3%, respectively.

Interestingly, the probabilistic algorithm allows us to make
statements about probability of states. This is not possible in
a deterministic setting. We find, for example that the
probability of an absolute value of real power flow on the
presented branch of greater than 15 p.u. is 0.244%.
Alternatively, we find that there is less than a 1% chance for

the real power flow on this branch to be higher than 14.73
p-u. (with a 99% confidence interval of + 0.0023 p.u.).
Statements of this sort are a valuable addition for system
awareness and can lead to improved risk awareness, which is
especially pertinent in modern grids with ever increasing
uncertainties and reduced margins of error.

The algorithm to estimate confidence intervals of
percentiles in MC solutions is based on order statistics and
Binomial distribution [34]. Estimated confidence intervals
are an important measure to characterize the quality of MC
results. These algorithms can either be used to approximate
the amount of necessary MC samples prior to running the
simulation, or they can be calculated during the simulation to
finalize the algorithm when the required accuracy is reached.

%107

¥ ¥
s 1 s 1
1

probability density
S

probability density
-

1039 104 1041 1042 1043 1.044 1.045 105 -10 95 9
Voltage Magnitude @1337 [p.u.] Voltage Angle @1337 []
‘- SE + network uncertainties B S == = = True State ‘

107

x

’ |

>

probability density
probability density
S

~

155 -15 -145 14 135 -13 1 12 14 16 18

Real Power @(1337-311) [p.u.] Reactive Power @(1337-311) [p.u.]

Fig. 5 Selected probabilistic density functions (PDFs) of our SE algorithm
for the 1888-bus RTE case, with (blue) and without (green) including
network uncertainties, and the true state of the system.

C. Performance and Scaling of the Algorithm

The linear probabilistic algorithm that was implemented in
C++ was used to evaluate the 10® Monte Carlo samples of
the 1888-bus case in 7 minutes and 9 seconds on an Intel
Xeon server CPUs (E5-2680) running on 2.40GHz using 45
of 56 possible threads. Monte Carlo samples of this algorithm
are independent and have close to constant runtime, hence it
is expected to scale linearly with additional CPUs.
Additionally, it has been shown that similar (nonlinear)
algorithms have single iteration runtimes of under one second
for systems with close to 10° buses [16]. This suggests that
our algorithm has the potential to scale well enough to be
used in an operations setting for up to continental grid
interconnection sized systems on currently available
hardware.

D. Discussion and Paths forward

A Simple Random Sampling Monte Carlo approach
requires a big sample size to arrive at statistically valuable
results. Methods to reduce this sample count while
maintaining accuracy under certain assumptions exist. They
commonly referred to as Quasi Monte Carlo methods.
Alternatively, statistical theories like the Extreme Value
Theory or the Large Deviation Theory can be applied to
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improve the statistical quality of statements of this kind. We
aim to study applicability of both approaches in future.

Our current algorithm assumes independence of every
probabilistic variable, which is generally not the case.
Measurements that are only connected through a single
network connection, or more general measurements that are
in close proximity to each other, are likely to have some
correlation with each other. Future work will consider adding
models of these correlations to further improve the quality of
the results.

IV. CONCLUSION

This paper proposes a Monte Carlo based linear
probabilistic State Estimation algorithm. It formulates SE as
optimization problem that is expressed in terms of equivalent
circuit models. A linear RTU model and a linear PMU model
together with a linear topology model facilitate this fully
linear algorithm without simplifications. We compare our
approach with the traditional WLS formulation for SE for
different systems. With similar estimation quality, our
approach is found to be computationally superior and is
provably convergent. Leveraging this attribute, we
implement a probabilistic SE algorithm by reintroducing
measurement uncertainties. To further demonstrate
advantages of this probabilistic approach we add network
model uncertainties as variables. Results suggest that our
linear probabilistic SE algorithm is well suited for use under
operational time-constraints for medium sized systems and
may scale up to interconnection sized systems. Finally,
possible future refinements such as Quasi-MC approaches,
model correlations, and potentially useful statistical theories
are discussed.
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