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Extracting robust and accurate features via a robust
information bottleneck

Ankit Pensia, Varun Jog, and Po-Ling Loh

Abstract—We propose a novel strategy for extracting features
in supervised learning that can be used to construct a classifier
which is more robust to small perturbations in the input space.
Our method builds upon the idea of the information bottleneck,
by introducing an additional penalty term that encourages the
Fisher information of the extracted features to be small when
parametrized by the inputs. We present two formulations where
the relevance of the features to output labels is measured
using either mutual information or MMSE. By tuning the
regularization parameter, we can explicitly trade off the opposing
desiderata of robustness and accuracy when constructing a
classifier. We derive optimal solutions to both robust information
bottleneck formulations when the inputs and outputs are jointly
Gaussian, proving that the optimally robust features are also
jointly Gaussian in this setting. We also propose methods for op-
timizing variational bounds on the robust information bottleneck
objectives in general settings using stochastic gradient descent,
which may be implemented efficiently in neural networks. Our
experimental results for synthetic and real data sets show that the
proposed feature extraction methods indeed produce classifiers
with increased robustness to perturbations.

I. INTRODUCTION

Over the past decade, deep learning algorithms have rev-
olutionized modern machine learning, achieving superhuman
performance in several diverse scenarios such as image clas-
sification [1], machine translation [2], and strategy games [3].
These algorithms are distinguished by their ability to solve
complex problems by processing massive data sets efficiently
with the help of large-scale computing power. On the other
hand, as deep learning algorithms are gradually adopted in
high-stakes applications such as autonomous driving, disease
diagnosis, and legal analytics, it has become increasingly
important to ensure their interpretability [4], fairness [5], and
security [6]. In particular, the lack of “robustness” of neural
networks (explained in more detail below) has become a
significant concern.

It was observed in Szegedy et al. [7] that the high accuracy
of trained neural networks may be compromised under small
(nearly imperceptible) changes in the inputs [8]. Perhaps more
alarmingly, empirical studies suggest the existence of certain
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“universal adversarial perturbations” that can thwart any neural
network architecture [9]. Following these observations, the
research area of robust machine learning has seen tremendous
activity in recent years. Briefly stated, research in robust
machine learning considers various threat models and proposes
strategies to attack and defend neural networks. More recently,
various researchers have proposed certifiable defenses; i.e., de-
fenses that are provably robust against all possible adversaries.
We briefly describe some relevant work below.

Data augmentation is a popular method for increasing
the robustness of neural networks [10], [1], [11], wherein a
training data set is enlarged using artificial training points
constructed with small perturbations of the inputs. Some
authors [12], [13] suggest augmenting the data set by carefully
chosen perturbation directions that approximate worst-case
perturbations, the latter of which are infeasible to compute
exactly in high dimensions. Another approach is to smooth
the decision boundaries of a trained neural network using
a preprocessing step such as randomized smoothing [14],
[15], [16], which may lead to computable certificates on the
robustness of a neural network classifier [17], [18], [19], [15],
[20]. On the other hand, many of the methods for defending
against adversarial attacks which initially showed promise
have subsequently been broken [21].

Recent work suggests that high accuracy and high robust-
ness may in fact be in conflict with each other [22], [23],
which may even be a fundamental defect of any classifier [24],
[25], [26], [27]. This has suggested certain tradeoffs between
maximally robust and maximally accurate classification: If
it is desirable to train a classifier which is robust to small
perturbations in the inputs, it may be necessary to forego
the level of accuracy obtained when such a restriction is not
present.

Tsipras et al. [23] and Ilyas et al. [28] have suggested
a dichotomy between “robust” and “non-robust” features.
Although precise definitions of “robust features” are still
elusive—with this paper providing a possible interpretation
according to the magnitude of a conditional Fisher information
term—intuitively, a robust feature is a function of the input that
is robust to small perturbations of the input. Both robust and
non-robust features might be useful for classification, but an
adversary may perturb the input to render non-robust features
irrelevant for classification. One approach for building a robust
classifier would therefore be to train a classifier which only
operates on the robust features.

Motivated by these lines of work, we propose a new
method—the robust information bottleneck—for extracting
features that are simultaneously robust and useful. We char-



acterize robustness in terms of an appropriately defined no-
tion of Fisher information, and quantify usefulness in terms
of mutual information and estimation error. Our method is
heavily inspired by the information bottleneck objective of
Tishby et al. [29], which we will review in detail. A crucial
difference between Tishby et al.’s objective and ours is the
quantities being traded-off in the extracted features: accuracy
and compression in Tishby et al. vs. accuracy and robustness
in our work.

The explicit trade off between robustness and accuracy in
the robust information bottleneck is reminiscent of the work
of Zhang et al. [26], who propose a different regularizer
to promote robustness at the cost of accuracy. Also worth
mentioning is the work of Achille and Soatto [30], [31], where
both mutual information and Fisher information were used to
measure the degree to which the parameters of a learning
algorithm “memorize” the training data set. In this paper,
we are concerned with the output of the algorithm; i.e., the
features, rather than the parameters.

The remainder of the paper is organized as follows: In
Section II, we review the information bottleneck methodology
and introduce the versions of the robust information bottleneck
objective that will be studied in this paper. In Section III, we
derive properties of the proposed Fisher information regular-
izer, which encourages robustness of the extracted features.
In Section IV, we rigorously derive solutions to the robust
information bottleneck objective when the inputs and outputs
are jointly Gaussian, and interpret the results. In Section V,
we present a variational optimization framework for obtaining
approximate solutions in the case of general distributions. We
provide simulation results on synthetic and real data sets in
Section VI, and conclude with a discussion in Section VII.

Notation: Random variables will be denoted by capital
letters (X,Y, Z), their support will be denoted by calligraphic
letters (X ,Y,Z), and their densities will be denoted via
subscripts (pX , pY , pZ). Random vectors will be written as
column vectors, and when X = (X1, . . . , Xn)> and Y =
(Y1, . . . , Ym)>, we will denote (X,Y ) = (X>, Y >)>. For
a vector v ∈ Rp, we write v↓ to denote the vector with
components rearranged in decreasing order. For two vectors
v, w ∈ Rp, we write v↓ � w↓ to indicate that w↓ majorizes
v↓, meaning that for all 1 ≤ k ≤ p, we have

∑k
i=1(v↓)i ≤∑k

i=1(w↓)i, and
∑p
i=1(v↓)i =

∑p
i=1(w↓)i. We use [n] to

denote the set {1, . . . , n}.
For a matrix A ∈ Rp×p, let λ(A) denote the (multi)set

of eigenvalues of A. Let λmin(A) and λmax(A) denote the
minimum and maximum eigenvalues, respectively. Let ‖A‖F
denote the Frobenius norm. Let diag(a1, . . . , ap) denote the
p × p diagonal matrix with (a1, . . . , ap) on the diagonal. We
write Id to denote the d × d identity matrix. In the linear
algebraic statements throughout the paper, we will generally
consider the singular value decomposition (SVD) to be the
“thin SVD.” We write Cov(X) to denote the covariance matrix
of a random vector X; and when Y is another random vector,
we write Cov(X,Y ) to denote the covariance matrix of the
concatenated vector (X,Y ). We write Cov(X|Y ) to denote
the average conditional covariance matrix of X , where the
integral is taken with respect to the density of Y . We will

denote the entropy of a discrete random variable X by H(X),
and the differential entropy of a continuous random variable
X by H(X), as well.

II. PROBLEM FORMULATION

Consider a data set (X,Y ) ∼ pXY , where X is thought
of as a sample corresponding to a label Y . The information
bottleneck theory proposed in Tishby et al. [29] is a variational
principle used for extracting as much relevant information
about Y from X as possible, while achieving the largest
possible compression of X . Using mutual information to
measure “relevance” and “compression,” Tishby et al. [29]
proposed the optimization problem

inf
pT |X(·|·)

{I(T ;X)− γI(T ;Y )} . (1)

The extracted feature, denoted by T , is a random function of
X generated by the kernel pT |X . Since it does not directly
depend on Y , we have the Markov chain Y → X → T .
The parameter γ > 0 trades off compression and relevance of
the extracted features T . The information bottleneck principle
has subsequently been applied to learning problems [32],
[33], [34]. More recently, information bottleneck theory has
also been used to gain insight into the training of deep
neural networks. By measuring the information content of
different layers in a network, it was observed that layers in
a neural network undergo two separate phases, one consisting
of a memorization phase where both I(T ;X) and I(T ;Y )
increase, and a compression phase where I(T ;X) decreases
while I(T ;Y ) continues to increase [35], [36].

Broadly speaking, a “bottleneck” formulation trades off
two quantities; in the information bottleneck, these quantities
are relevance and compression, each measured using mutual
information. In this paper, we seek a formulation that trades off
relevance and robustness. Depending on the specific learning
problem under consideration, one may measure relevance and
robustness using variety of metrics. We present two natural
formulations below.

A. Measuring relevance

In the information bottleneck formulation, relevance is
captured by the term I(Y ;T ). Apart from mutual information
being a natural quantity to consider, we may also justify
I(Y ;T ) via results such as Feder and Merhav [37, Theorem
1], which bounds the optimal classification error in terms of
I(Y ;T ). Additional discussion concerning the suitability of
I(Y ;T ) may be found in Shamir et al. [38].

As an alternative to mutual information, we will mea-
sure relevance via the minimum MSE for a predictor of Y
constructed using T : mmse(Y |T ) = E[(Y − E(Y |T ))2] =
tr (Cov(Y |T )). This notion is particularly useful when Y
takes a continuum of values as opposed to a finite number of
categories, and the goal is to estimate Y rather than pinpoint
Y exactly.
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B. Measuring robustness

Intuitively, a feature T is robust if small perturbations in
X do not change the distribution of T significantly. We may
think of the distribution of T as being parametrized by X .
The sensitivity (being the opposite of robustness) of T to X
may then be measured using the (statistical) Fisher information
Φ(T |X), given below:

Φ(T |X)

=

∫
X

(∫
T

∥∥∇x log pT |X(t|x)
∥∥2

2
pT |X(t|x)dt

)
pX(x)dx

:=

∫
X

Φ(T |X = x)pX(x)dx.

Under mild regularity conditions on the densities of X and
T , we have Φ(T |X) = J(X|T ) − J(X), where J(X) =
E
[
‖∇x log pX(x)‖22

]
and

J(X|T ) =

∫
pT (t)

(∫
‖∇x log pX|T (x|t)‖22px|t(x|t)dx

)
dt

(cf. Appendix E). The quantity J(·) is often called the infor-
mation theorist’s Fisher information, which is different from
the statistical Fisher information Φ(·|·).

Naturally, Fisher information is not the only measure of
robustness (or sensitivity) one may use. As we will show in
Section III, however, the Fisher information satisfies several
properties which make it an attractive measure of sensitivity.

C. Robust information bottleneck objective

Since we want to extract features that are simultaneously
relevant and robust, we define the features determined by the
robust information bottleneck to be the optimum of

inf
pT |X(·|·)

{mmse(Y |T ) + βΦ(T |X)} , or (2)

inf
pT |X(·|·)

{−I(T ;Y ) + βΦ(T |X)} , (3)

depending on what notion of “relevance” is being employed.

D. Examples

Before proceeding further, we describe two examples in the
case when the input distribution is a Gaussian mixture. We will
illustrate the instantiation of the Fisher information term as a
regularizer, and return to these examples in the simulations to
follow in Section VI-A.

Suppose Y takes values +1 := (1, 1)> and −1 :=
(−1,−1)>, with probability 1/2 each. Conditioned on
Y = +1, the distribution of X is N (+1,Diag(σ2

1 , σ
2
2));

and conditioned on Y = −1, the distribution of X is
N (−1,Diag(σ2

1 , σ
2
2)). (This is identical to an example con-

sidered in Ilyas et al. [28].)

Example 1. In the first setting of interest, we will consider
random features T parametrized by w := (w1, w2)> ∈ R2 as
T = w>X + ξ, where ξ ∼ N (0, 1).

Example 2. We will also consider a setting where T is a bi-
nary feature taking values ±1, following a logistic distribution
with parameter w: P(T = 1|X = x) = 1

1+exp(−x>w)
.

The following two lemmas derive convenient closed-form
expressions for the Fisher information, without making any
assumptions on the distribution of X . However, we will use
them to analyze the settings of Examples 1 and 2, respectively,
when X follows a Gaussian mixture, in which case it will be
simpler to assess the quality of the extracted features.

Lemma 1. Suppose T = AX + ε, where ε ∼ N(0, I). Then
Φ(T |X) = ‖A‖2F , so adding a Fisher information penalty is
in this case equivalent to `2-regularization.

As Lemma 1 shows, the Fisher information directly encodes
the signal-to-noise ratio (SNR) of the channel from X to T . If
the SNR is low, small changes in X have less of an effect on
the distribution of T , meaning the features are more robust. In
addition to quantifying this insight, Lemma 1 will be useful for
our calculations later. The proof is contained in Appendix A-
C. Now suppose we instead extract a binary feature. The proof
of the following lemma is contained in Appendix A-D:

Lemma 2. Suppose T ∈ {+1,−1} is a binary feature such
that P(T = 1 | X = x) = 1

1+exp(−x>w)
. Then Φ(T |X =

x) = ‖w‖22 · P(T = 1 | X = x) · P(T = −1 | X = x).

The empirical approximation to Φ(T |X) =
∫

Φ(T |X =
x)pX(x)dx will be

1

n

n∑
i=1

Φ(T |X = xi) =
‖w‖22
n

n∑
i=1

P(T = 1|X = xi)

· P(T = −1|X = xi). (4)

We see from the formula in Lemma 2 that the Fisher penalty
encourages more confident predictions. At the same time,
the norm ‖w‖2 is encouraged to be small, relating to the
discussion of the SNR following Lemma 1. In Section VI-A,
we detail experiments that show how the Fisher penalty indeed
encourages adversarial robustness.

Remark 1. Note that the expression (4) has previously shown
up in Wager et al. [39] as a “quadratic noising penalty,”
which is a first-order approximation of a regularizer obtained
by adding noise to inputs when performing maximum like-
lihood estimation in logistic regression. This appears to be
merely coincidental: A key difference in our setting is that the
conditional probabilities appearing in the expression are for
the feature T conditioned on X = xi, whereas the setting of
Wager et al. [39] involves the probabilities of Y conditioned
on X = xi.

III. ROBUSTNESS PROPERTIES OF FISHER INFORMATION

One of our motivations for using the Fisher information as
a proxy for sensitivity is its amenability to analysis. Indeed,
the Fisher information is a well-studied quantity in both
information theory and estimation theory [40]. In this section,
we collect several compelling reasons for using the Fisher
information.

a) Relation to Cramér-Rao bound: The Cramér-Rao
inequality [41] (or its generalization, the van Trees inequality)
states that for a parameter Θ ∼ pΘ and a family of distri-
butions pX|Θ, we have mmse(Θ|X) ≥ 1

Φ(X|Θ)+J(Θ) . In other
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words, high robustness (low Φ(X|Θ)) leads to lower accuracy
(a larger lower bound on mmse(Θ|X)).

b) Scaling properties of Fisher information: Fisher in-
formation, mutual information, and MMSE are all invariant to
changes in the scale (or indeed, any smooth bijective transfor-
mation) of T . The invariance under bijective transformations
of T is critical—it would be unnatural to expect an extracted
feature to become more (or less) robust by simply taking
functions of that feature. The following standard lemma (see,
for example Cover & Thomas [42]) makes this statement more
precise. The proof is contained in Appendix A-A.

Lemma 3. Let Y → X → T be a Markov chain, such that T
is an Rd-valued random vector. Let f : Rd → Rd be a smooth
bijection. Then the following equalities hold:

1) I(X;T ) = I(X; f(T )), I(Y ;T ) = I(Y ; f(T )),
mmse(Y |T ) = mmse(Y |f(T )), and Φ(T |X) =
Φ(f(T )|X).

2) If T = (T1, T2) is such that T2 ⊥⊥ (T1, X, Y ),
then I(X;T ) = I(X;T1), I(Y ;T ) = I(Y ;T1),
mmse(Y |T ) = mmse(Y |T1), and Φ(T |X) = Φ(T1|X).
In other words, the independent component T2 may be
ignored when characterizing the optimal solution to the
robust information bottleneck.

The standard information bottleneck formulation is invariant
not only to transformations of T , but also to transformations
of X and Y . This is not the case for the robust informa-
tion bottleneck formulation, since Φ(T |X) 6= Φ(T |f(X))
in general. This is another attractive property of the robust
information bottleneck formulation: If data are preprocessed
so that the distribution pX(·) is squeezed along a certain
direction—for example, by multiplying X by a diagonal
matrix diag(1, 1, . . . , 1, ε)—the robustness with respect to
perturbations along the final dimension should be reduced in
comparison to the other directions. The standard information
bottleneck formulation is blind to such transformations and
extracts the same features regardless of transformations of X ,
whereas the robust information bottleneck adapts to the scaling
of pX(·).

c) Robustness implies compression: In the formulation
(3), we do not have the I(X;T ) term that is present in the
standard information bottleneck formulation. In the following
lemma, we show that the I(X;T ) term is controlled by
the Φ(T |X) term. Thus, the robust features learnt are also
approximately compressed. A concern with this formulation
could be that the value of I(X;T ) may be arbitrarily large at
the optimum of formulation (3), leading to features that are
not concise, although they may be robust. Our next lemma,
proved in Appendix A-B, shows that this cannot happen and
that robustness also implies compression:

Lemma 4. Let X ∼ pX be an Rp-valued random variable,
and let T be an extracted feature via the channel pT |X . Then
the following inequality holds:

I(X;T ) ≤ H(X)− p

2
log

2πep

Φ(T |X) + J(X)
. (5)

In particular, if Φ(T |X) is bounded from above, then so is
I(X;T ).

d) Data processing inequality for Fisher information:
Having extracted robust features T , we first note that any
classifier that uses T to predict Y is guaranteed to be robust,
as well. This supports the observation of Ilyas et al. [28],
who show empirically that classifiers trained using “robust”
features are also robust. Lemma 5 has previously appeared in
Zamir [43], but we include a different proof in Appendix B-A.

Lemma 5. Let Y → X → T → Ŷ be a Markov chain. Here,
we think of T as an extracted feature and Ŷ as a prediction
of Y using T . The sensitivity of Ŷ to perturbations in X is
measured by Φ(Ŷ |X). Then Φ(Ŷ |X) ≤ Φ(T |X). In other
words, the output Ŷ is at least as robust as the extracted
features T .

e) Relation to mutual information: The following
lemma, which follows from deBruijn’s identity, is proved
in Appendix B-B. It provides an interpretation of the term
Φ(T |X) in terms of regularizing the effect of small perturba-
tions to the mutual information:

Lemma 6. Suppose Z ∼ N(0, I) is a standard normal
random variable that is independent of (X,Y, T ). Then
I(X;T )− I(X +

√
δZ;T ) = δ

2Φ(T |X) + o(δ).

Lemma 6 shows that adding the Fisher information term
Φ(T |X) encourages the mutual information between X and
T to only change slightly under small Gaussian perturbations.
Intuitively, this captures the idea that T cannot be too sensitive
to X .

f) Relation to adversarial perturbations: Another way to
interpret the Fisher information term is as follows: Let ε > 0
and let u be a unit vector. An extracted feature T will be
considered robust for a particular X = x if the distributions
pT |X(·|X = x) and pT |X(·|X = x+ εu) are not too different
for any choice of u and all small enough ε. The difference
between these two distributions could be measured by a
number of metrics, but we focus on the KL divergence here.
Note that the KL divergence provides an upper bound on the
total variation distance, and also bounds Wasserstein distances
in certain special cases [44]. (Wasserstein distance is the metric
of study in recent work on distributional robustness [45], [46];
however, the goal of such studies is to directly learn neural
network models that are distributionally robust to the inputs,
rather than our intermediate step of extracting robust features.)

The proof of the following result is contained in Ap-
pendix B-C:

Lemma 7. Let ‖u‖2 = 1. Let x+ εu be a small perturbation
of x in the direction u. Then

D(pT |X=x+εu‖pT |X=x) =
ε2

2
Φ(T |X = x) + o(ε2).

Since the right-hand expression does not depend on the
direction u, Lemma 7 shows that when x is perturbed ar-
bitrarily in a ball of radius ε, the corresponding distribution
of T lies in a KL-ball of radius ε2

2 Φ(T |X = x) around the
distribution pT |X=x(·|X = x). Requiring Φ(T |X = x) to
be small on average is equivalent to requiring Φ(T |X) to
be small, so adding this term as a penalty encourages the
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algorithm to extract features that are robust to arbitrary `2-
perturbations, on average. Note that this is identical to the
objective of adversarial training in Madry et al. [13].

Finally, we show that the upper bound on the KL divergence
in Lemma 7 can be translated into a direct guarantee on ro-
bustness. Consider a (deterministic) classifier g : T → Y that
maps extracted features to a predicted label, and a classifier
f : X → Y defined by f(x) := arg maxy pT |X=x(g(t) = y).
In practice, we could approximate the value of f by generating
random features according to the distribution T |X = x, apply-
ing the map g, and taking the majority vote over the result. The
main idea, which is motivated by an argument found in Zhang
and Liang [16], is to use the fact that an upper bound on the KL
divergence between distributions implies an upper bound on
total variation distance. Hence, if we have an input x ∈ X such
that the classification margin, defined by marginf (x, y) :=
pT |X=x(g(t) = y)−maxz 6=y pT |X=x(g(t) = z), is sufficiently
large, then we should also have f(x′) = f(x) when x′ is
contained in a small ball around x.

For the result to follow, we assume that the o(ε2) bound
on the remainder in Lemma 7 is uniform over all choices of
x, which holds if the third-degree differential of pT |X=x with
respect to x is uniformly bounded. The proof is provided in
Appendix B-D.

Lemma 8. For any ε, η > 0, we have

P
(
f(x′) = f(x) ∀x′ ∈ Bε(x)

)
≥ P(x ∈ Bη)− ε2Φ(T |X) + o(ε2)

η
, (6)

where Bη :=
{
x ∈ X : marginf (x, f(x)) >

√
η
}

.

The expression on the right side of inequality (6) provides a
lower bound on the probability that a randomly chosen input
is robust to perturbations of magnitude ε in any direction.
Furthermore, the lower bound is higher when P(x ∈ Bη)
is larger; i.e., the distribution on X is such that a larger
fraction of points have high margin. To further interpret
Lemma 8, suppose the distributions of X and T |X are fixed,
and consider the effect of adjusting the parameters ε or η.
If we increase ε, the ball Bε(x) in which the classifier is
guaranteed to be robust becomes larger; however, the right side
of inequality (6) decreases, leading to a weaker probabilistic
guarantee. On the other hand, if we decrease η to increase the
probability P(x ∈ Bη) appearing in the lower bound, the term
ε2Φ(T |X)+o(ε2)

η also increases. Thus, we see that tradeoffs exist
in determining the optimal choices of both ε and η.

IV. JOINTLY GAUSSIAN VARIABLES

In general, it is impossible to obtain closed-form expressions
for the solutions to the optimization problems (2) and (3).
However, as in the case of the canonical information bot-
tleneck, the optimization problems become more tractable
when (X,Y ) have a jointly Gaussian distribution [47]. In this
section, we derive explicit formulas for the solutions to the
optimization problems in order to develop some theoretical
intuition for the similarities and differences between the robust

information bottleneck formulations, and to verify that the
extracted features are in fact meaningful in special cases.
We will assume throughout this section that Σx � 0 and
Cov(Y |X) = Σy − ΣyxΣ−1

x Σxy � 0. We do not impose
any restrictions on the dimensionality of Y in relation to the
dimensionality of X (which we will denote by p).

A. Information bottleneck formulation

We first study the information bottleneck formulation (3).
The optimality of Gaussians in the standard information bot-
tleneck formulation was proved in Globerson and Tishby [48].
The proof relies on the invariance of mutual information to lin-
ear bijective transformations and the optimality of Gaussians
in the conditional entropy power inequality. The Fisher infor-
mation term in our formulation precludes using such linear
transformations or standard entropy inequalities. Instead, our
proof uses a technique for establishing information inequalities
pioneered by Geng and Nair [49] (see also Lieb [50] and
Carlen [51]). Geng and Nair showed that it is enough to
establish certain subadditivity relations for functionals in order
to establish Gaussian optimality; this strategy has been used to
prove a variety of entropy and information inequalities in the
past few years [52], [53], [54], [55]. The proof of optimality
is provided in detail in Appendix C, and we only provide a
proof sketch here.

1) Optimality: Let (XG, YG) be jointly Gaussian random
variables. We express YG = CXG+ξ, where ξ is independent
of X , and rewrite the robust information bottleneck formula-
tion as

sup
pT |XG (·|·)

{I(T ;YG)− βΦ(T |XG)}

=

[
sup

pT |XG (·|·)

{
−H(YG|T )− βJ(XG|T )

}]
+H(YG) + βJ(XG).

Since we are only concerned with the optimizing distribution
pT |XG , we shall focus on the optimization problem in the
square brackets. Consider the function f defined on the space
of densities pX over Rp: f(X) := −H(CX+ξ)−βJ(X) :=
−H(Y )−βJ(X), where we use Y := CX+ξ to indicate the
output channel that scales the input by C and adds Gaussian
noise ξ to the scaled input. The upper-concave envelope of
f , denoted by F is defined as follows: For every distribution
p, express p as a convex combination of distributions pi such
that

∑n
i=1 piλi = p, and define

F (p) = sup
n≥1

sup∑n
i=1 λipi=p

n∑
i=1

λif(pi).

If T is a discrete random variable taking n values satisfying
pX|T=i = pi and pT (i) = λi, then

n∑
i=1

λif(pi) = f(X|T ) :=

n∑
i=1

pT (i)f(X|T = i).
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Thus, an equivalent way to think of the upper-concave enve-
lope is through such auxiliary random variables T , as follows:

F (X) = sup
pT |X

f(X|T ) = sup
pT |X(·|·)

{−H(Y |T )− βJ(X|T )} ,

where we allow |T | to be countably large for now. Note
that the optimization problem in the square brackets above
is equivalent to finding the optimizing T in the upper-concave
envelope of f at the particular distribution XG. Define a
lifting of f to pairs of random variables (or equivalently, to
probability distributions over Rp × Rp):

f(X1, X2) := −H(Y1, Y2)− βJ(X1, X2).

As before, Yi = CXi + ξi for i ∈ {1, 2}, where ξ1 and ξ2
are i.i.d. and independent of (X1, X2). Let F (X1, X2) be the
upper-concave envelope of f(X1, X2). Our main result is the
following subadditivity lemma (see Appendix C for a more
accurate statement):

Lemma 9. For any pair of random variables (X1, X2), we
have F (X1, X2) ≤ F (X1) + F (X2).

Next we prove the following lemma whose detailed proof
is in Appendix C. (The proof of this lemma is lengthy, but the
techniques employed are becoming relatively standard in the
information theory literature.)

Lemma 10. Consider the optimization problem V (K) :=
supCov(X)�K f(X). The optimizer is a unique Gaussian ran-
dom variable X∗ ∼ N (0,K∗), with K∗ � K. In particular,
f(X∗) = F (X∗) = V (K).

Returning to the robust information bottleneck formulation
for jointly Gaussian (XG, YG) ∼ pXGYG , let Cov(XG) = K.
Let X∗ ∼ N (0,K∗) be the optimizer that achieves V (K).
Let X ′ ⊥⊥ X be such that X ′ ∼ N (0,K −K∗), so X∗ +X ′

has the same distribution as XG. It is easy to check that
F (XG) ≥ f(XG|X ′) = f(X∗) = V (K). However, we also
have F (XG) ≤ F (X∗) = V (K), where the first inequality
comes from the fact that X∗ maximizes both f and F . This
shows that the optimal joint distribution (T,XG) may be taken
to be (X ′, XG); i.e., T = X ′. Since (X ′, XG) are jointly
Gaussian, this proves that it is enough to consider random
variables T that are jointly Gaussian with XG to solve the
optimization problem (3). Note that the joint distribution of

(XG, T ) has covariance
(

K K −K∗
K −K∗ K −K∗

)
. Thus, we

may write T = DXG + N , where D = (K −K∗)K−1 and
N ∼ N (0, (K − K∗) − (K − K∗)K−1(K − K∗)). Since
the scaling of T does not matter, we can also rewrite the
optimizing T as T = D̃X + Ñ , where

D̃ =
[
(K −K∗)− (K −K∗)K−1(K −K∗)

]−1/2

· (K −K∗)K−1, and

Ñ ∼ N (0, I). (7)

This completely identifies the optimal robust feature T in
formulation (3).

2) Identity covariance: We now derive an explicit form of
the optimal feature map in the case when Σx is a multiple of
the identity. The proof of the following theorem is contained
in Appendix D-A.

Theorem 1. Suppose Σx = σ2
xI . Let B = (Σy −

ΣyxΣ−1
x Σxy)−1/2ΣyxΣ−1

x , and let B = V ΛW> be the
SVD. Let Λ = diag(`1, . . . , `k), where the diagonal ele-
ments are sorted in decreasing order. For each i ≤ k,
define di = arg mind∈[0,1]

{
1
2 log

(
σ2
xd
`i

+ 1
)

+ β
σ2
xd

}
, and let

D = diag(d1, . . . , dk). Let Û be the permutation matrix
which sorts the diagonal entries of D in increasing order,
and let U = WÛ>. An optimal feature map is then given by
T = 1

σx
(D−1 − I)1/2U>X + ε, where ε ∼ N(0, Ik).

To summarize, the optimal projection directions are given
by a permutation/rearrangement of the right singular vectors
W appearing in the SVD of B, together with appropriate
rescalings obtained by optimizing univariate functions. As will
be described in further detail in Section IV-C, this resembles
the solution to the usual information bottleneck.

Remark 2. As stated in Theorem 1, we can always find an
optimal feature map into k dimensions, where k = rank(B).
On the other hand, it is possible that the optimal feature map
could be expressible in even fewer dimensions, e.g., if some of
the di’s are equal to 1.

3) General covariance, small β: In the case when Σx
is a general psd matrix, we can also derive a closed-form
expression for the optimal feature map in settings where β is
not too large. The following result is proved in Appendix D-B:

Theorem 2. Suppose β is sufficiently small. Let C =

Σ
−1/2
x Σxy(Σy − ΣyxΣ−1

x Σxy)−1/2 and suppose Σxy has
full column rank. Consider the SVDs C = WΛV > and
(C>Σ−1

x C)−1 = UDU>. Define D̃ = diag(d̃1, . . . , d̃k)

to be a diagonal matrix with d̃i =
1+
√

1+4di/β

2di/β
, where

D = diag(d1, . . . , dk). Let SΓS> be the SVD of
ΛV >UD̃−1U>V Λ − I . An optimal feature map is given by
T = Γ1/2S>W>Σ

−1/2
x X + ε, where ε ∼ N(0, Ik).

As seen in the proof of the theorem, the required upper
bound on β can be expressed in terms of the spectra of
(Σx,Σy,Σxy).

Remark 3. Note that the scenarios considered in Theorems 1
and 2 have a nonempty intersection—namely, when Σx = σ2

xI
and β is not too large. However, it is not entirely straightfor-
ward to compare the two expressions for T in the theorems,
since the formulas for the two settings are derived using
different proof strategies. Also note that our optimality proofs
do not imply the uniqueness of an optimal feature map; indeed,
as shown in Lemma 3 earlier, any bijective transformation of
T leads to the same objective function value.

B. MMSE formulation

We now consider the MMSE formulation (2). As in the
previous section, we will provide a proof sketch for optimality
that may be converted into a rigorous proof by following the
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steps in Appendix C. Moreover, we will derive the optimal
form of T when (XG, YG) are jointly Gaussian, expressed in
terms of their associated covariance matrices.

1) Optimality: Using the chain rule for Fisher information
in Appendix E, we have the following lemma:

Lemma 11. The optimization objective in formulation (2) can
be equivalently expressed as

min
pT |X(·|·)

{mmse(Y |T ) + βΦ(T |X)}

= tr(Cov(Y )) + βJ(X)

− max
pT |X(·|·)

{tr(Cov(Y |T ))− βJ(X|T )} .

Proof. Note that mmse(Y |T ) = tr
(

Cov(Y ) − Cov(Y |T )
)

and Φ(T |X) = J(X|T ) − J(X), where the second equation
follows from Lemma 26. Since the joint distribution pXY is
fixed, we may remove the tr(Cov(Y )) and J(X) terms from
the optimization objective and arrive at the desired result.

As in Section IV-A, we express YG as YG = CXG + ξ.
Define the function f(X) := tr(Cov(CX + ξ)) − βJ(X)
on the space of densities pX over X , and let F (·) be
the upper concave-envelope of f defined as F (X) :=
suppT |X(·|·) {tr(Cov(CX + ξ|T ))− βJ(X|T )}. Define a lift-
ing of F to pairs of random variables as

F (X1, X2) = max
pT |X1,X2

(·|·)

{
tr(Cov(CX1+ξ1, CX2+ξ2|T ))

− βJ(X1, X2|T )
}
.

The main step is to establish a subadditivity lemma, analogous
to Lemma 9:

Lemma 12. The function F is subadditive, i.e., F (X1, X2) ≤
F (X1) + F (X2).

The proof is essentially identical to that of Lemma 9, relying
on the chain rule and data processing properties of Fisher
information. We shall also omit the proof of the lemma below,
since it follows the steps outlined in Geng and Nair [49], and
also in our Appendix C:

Lemma 13. Consider the optimization problem V (K) :=
supCov(X)�K f(X). Then the optimizer of the above problem
is a unique Gaussian random variable X∗ ∼ N (0,K∗) with
K∗ � K. In particular, f(X∗) = F (X∗) = V (K).

Let Cov(XG) = K. Let X∗ be the optimizer that achieves
V (K). Identifying the optimal T can now be done by follow-
ing the exact same steps as in Section IV-A. In particular, we
may take T = DXG + N (or D̃XG + Ñ ), where D and N
are as identified in Section IV-A.

2) Identity covariance: The following theorem derives a
closed-form expression for the optimal feature map in the case
when Σx is a multiple of the identity. The proof is contained
in Appendix D-C.

Theorem 3. Suppose Σx = σ2
xI . Let 0 < λ1 ≤ · · · ≤ λk

denote the ordered nonzero eigenvalues of ΣxyΣyx. Define
U ∈ Rp×k to be the matrix with columns equal to the ordered

unit eigenvectors corresponding to (λ1, . . . , λk). For 1 ≤ i ≤
k, define di =

√
λi
β − 1 if λi ≥ β, and di = 0 otherwise, and

let D = diag(d1, . . . , dk). Then an optimal choice of features
is given by T = 1

σx
D1/2U>X + ε, where ε ∼ N(0, Ik).

C. Comparison between solutions
Now that we have derived explicit formulae for the optimal

feature maps in several settings (Theorems 1, 2, and 3), it is
instructive to compare the solutions. All of the feature maps
may be expressed as T = AX + ε, with ε ∼ N(0, Ik), with
A = D̃Ũ>Σ

−1/2
x , where D̃ ∈ Rk×k is an appropriate diagonal

matrix and Ũ ∈ Rp×k is a matrix with k orthonormal columns,
taken from the spectral decomposition of some matrix function
of (Σx,Σy,Σxy).

Digging a bit deeper, we see that the scaling matrix D̃ will
generally depend critically on the value of the regularization
parameter β. In particular, as β → ∞, successive entries of
D̃ will be truncated to 0 (e.g., di → 1 in Theorem 1 and
di → 0 in Theorem 3). This same behavior is manifest in
the canonical information bottleneck formulation for jointly
Gaussian variables (cf. Theorem 3.1 of Chechik et al. [47]).
The transition points are accordingly referred to as “critical
points” for β. In our formulation, where the regularization
parameter β trades off robustness and accuracy, it is natural
that larger values of β will lead to zeroing out features (which
are then very robust but completely useless in prediction); at
the other extreme, small values of β lead to a full feature map
which preserves all eigenvectors, regardless of the magnitude
of the corresponding eigenvalues.

Turning to Ũ , the matrix varies according to the robust
bottleneck formulation. Comparing the two identity covariance
cases, we see that for the information bottleneck formulation
(Theorem 1), we are interested in the right singular vectors of
(Σy−ΣyxΣxy)−1/2Σyx. In the case of the MMSE formulation
(Theorem 3), we are interested in the eigenvectors of ΣxyΣyx.

For concreteness, we consider the following examples in
which the optimal feature maps may be compared directly:

Example 3 (One-dimensional labels). First consider the case
when Y is 1-dimensional. The formula given in Theorem 1 for
the mutual information formulation when Σx = σ2

xI results
in the matrix B being a multiple of the vector Σyx, so that
UT = WT =

Σyx
‖Σyx‖2 . Thus, we have T = α1ΣyxX+ε, where

α1 is a constant depending on β. Similarly, the formula in
Theorem 3 for the MMSE formulation when Σx is a multiple
of the identity implies that U =

Σxy
‖Σxy‖2 , so that we also have

T = α2ΣyxX + ε for a different constant α2 depending on
β. As remarked above, both α1 and α2 will become 0 when
β exceeds an appropriate threshold, which differs depending
on the formulation.

In the case when Σx is arbitrary, Theorem 2 implies that the
matrix C is a multiple of Σ

−1/2
x Σxy . Then W =

Σ−1/2
x Σxy

‖Σ−1/2
x Σxy‖2

,

and T = α3ΣyxΣ−1
x X + ε. Note in particular that the

projection ΣyxΣ−1
x X also arises as the solution to canonical

correlation analysis (CCA).

Example 4 (Orthogonal covariance vectors). The formulas for
optimal feature maps are somewhat more complicated when
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Y has more than one dimension. For illustration, we consider
a somewhat contrived case where the columns of Σxy are
orthogonal, so that the spectral decompositions are easier to
analyze. (For example, this setup can be achieved by linearly
transforming the data as in Chechik et al. [47].) First suppose
Σx = I . Then the formula in Theorem 3 for the MMSE
formulation implies that U is the matrix with columns equal
to the renormalized columns of Σxy , and the feature map is
given by T = Σ̃yxX + ε, where we have used Σ̃yx to denote
a matrix with each row of Σyx scaled by a (possibly different)
constant that depends on β.

Turning to the formula in Theorem 1 for the mutual infor-
mation formulation, we see that B = (Σy−ΣyxΣxy)−1/2Σyx.
In general, the columns of the matrix W may be somewhat
different from the columns of Σxy; we will have T = W̃TX+ε,
where W̃ again denotes a matrix with rescaled columns of
W . However, note that the matrix ΣyxΣxy is diagonal, so
if we further impose the constraint that Σy is a diagonal
matrix, the columns of W are indeed rescaled versions of the
columns of Σxy . (Similarly, note that if Σx is allowed to be an
arbitrary matrix, the formula provided in Theorem 2 results
in an optimal feature map which can look quite different from
the projections involving rescaled columns of Σxy .)

V. VARIATIONAL BOUNDS

Although our work is motivated by robustness considera-
tions in deep learning, the framework we have developed thus
far does not involve any assumptions that the classifier we
employ for predicting Y from T is a neural network. In this
section, we see how properties of neural networks may be
leveraged for the purpose of optimization.

The objectives (2) and (3) are intractable to minimize explic-
itly except in certain special cases, so we propose to minimize
appropriate upper bounds. Inspired by a recent line of work
on variational approximations to the information bottleneck
objective [34], we describe the upper bounds and a tractable
optimization procedure that uses minibatch stochastic gradient
descent. We shall restrict ourselves to kernels pT |X(·|·) that
are parametrized by θ. Let K ∈ N. Specifically, we consider
pT |X(·|x) = N (µ(x; θ),Σ(x; θ)), where µ(·; θ) and Σ(·; θ)
are the mean and variance of a Gaussian density parametrized
by θ. We shall also assume that Σ(x; θ) is a diagonal matrix
with entries σ2

i (x; θ), for i ∈ [K]. For neural networks, the
parameters θ correspond to the weights of a network that takes
inputs x and has 2K outputs corresponding to µi and σ2

i .

A. Bound on I(Y ;T )

We propose to use a variational bound for I(Y ;T ) derived
in Alemi et al. [34]. Let Ŷ be the estimate of Y based on T .
This means that we have the Markov chain Y → X → T →
Ŷ . A lower bound on I(Y ;T ) is given by

I(Y ;T ) ≥
∫
pXY (x, y)pT |X(t|x) log pŶ |T (y|t)dxdydt.

Using the empirical distribution, this bound evaluates to
1
N

∑N
i=1

∫
pT |X(t|xi) log pŶ |T (yi|t)dt. In other words, the

variational approximation to I(Y ;T ) is essentially the cross-
entropy loss.

B. Bound on mmse(Y |T )

The MMSE has the variational characterization
mmse(Y |T ) = inff :T→Y E(Y − f(T ))2, where the
infimum is achieved by the conditional expectation function
f∗(t) = E(Y |T = t). Calculating f∗ requires evaluating
the posterior pY |T (y|t), which we wish to avoid. Thus, we
propose to use the upper bound mmse(Y |T ) ≤ E(Y − f̃(T ))2,
for a suitable function f̃ : T → Y that is easy to compute.
This function f̃ may be parametrized by some parameters φ,
which will be updated during iterations of stochastic gradient
descent. (See Section V-D for details.)

C. Exact expression for Φ(T |X)

The term Φ(T |X) may be efficiently optimized in its
original form, and we do not need to derive variational bounds
for it. To see this, note that

Φ(T |X) =

∫
X

Φ(T |X = x)pX(x)dx.

We have

pT |X(t|x) = 1√
(2π)k

∏k
i=1 σ

2
i (x)

exp

(
−

k∑
j=1

(tj − µj(x))2

2σj(x)2

)
.

We may explicitly calculate Φ(T |X = x):

Φ(T |X = x) =

∫
Rk
‖∇x log pT |X(t|x)‖22pT |X(t|x)dt

=

∫
Rk

∥∥∥∥∥−
k∑
j=1

∇xσj(x)

σj(x)
+

k∑
j=1

(tj − µj(x))

σj(x)2
∇xµj(x)

+

k∑
j=1

(tj − µj(x))2

σj(x)3
∇xσj(x)

∥∥∥∥∥
2

2

· 1√
(2π)k

∏k
j=1 σ

2
j (x)

exp

− k∑
j=1

(tj − µj(x))2

2σj(x)2

 dt.

What is essential is to compute the derivative of Φ(T |X) with
respect to θ.

D. Evaluating stochastic gradients

a) Stochastic gradient for mmse(Y |T ): Suppose we
have a data set {(xi, yi) : i ∈ [n]}. The empirical distribution
is Pn(x, y) := 1

n

∑n
i=1 δ(xi, yi), and the empirical version of

the variational approximation to the MMSE term is

EPn

[
(Y − f̃(T ))2

]
=

1

n

n∑
i=1

∫
Rk

(yi − f̃(t;φ))2pT |X(t|xi; θ)dt,

where we have have explicitly included the parameters φ and
θ to indicate that they parametrize f̃ and pT |X , respectively.
Note that SGD involves calculating the gradient of this func-
tion in with respect to φ and θ, so it is critically important
to evaluate these derivatives in a computationally feasible
manner. We will employ the reparametrization trick of Kingma
and Welling [56].
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Note that we may write

T = µ(x; θ) + Σ(x; θ)1/2ε =: τ(x, ε; θ),

where ε ∼ N (0, I). Rewriting the MMSE integral, we then
have

1

n

n∑
i=1

∫
Rk

(yi − f̃(t;φ))2pT |X(t|xi; θ)dt

=
1

n

n∑
i=1

∫
Rk

(yi − f̃(τ(xi, ε; θ);φ))2pε(ε)dε.

Furthermore, we may approximate the integral over ε by re-
sampling ε11, . . . , εmn from the distribution pε, and computing

1
nm

∑n
i=1

∑m
j=1(yi − f̃(τ(xi, εij ; θ);φ))2εij .

Finally, note that the gradient of this function with respect
to θ (or φ) may be calculated easily using backpropagation,
since we may use the trained neural networks to evaluate the
functions τθ and f̃φ, as well as the gradients of these functions
with respect to either their parameters or their inputs. This
shows how to take the gradient of the MMSE term.

b) Stochastic gradient for I(Y ;T ) (as in Alemi et
al. [34]): The reparametrization trick applied to the empirical
version of the variational approximation to I(Y ;T ) is given
by

1

N

N∑
i=1

∫
pT |X(t|xi; θ) log pŶ |T (yi|t;φ)dt

=
1

N

N∑
i=1

∫
log pŶ |τ(X,ε;θ)(yi|τ(xi, ε; θ);φ)p(ε)dε.

The gradient of the right hand side with respect to θ is given
by

∇θ

[
1

N

N∑
i=1

∫
log pŶ |τ(X,ε;θ)(yi|τ(xi, ε; θ);φ)p(ε)dε

]

=
1

N

N∑
i=1

∫
∇θ
[
log pŶ |τ(X,ε;θ)(yi|τ(xi, ε; θ);φ)

]
p(ε)dε.

For a given realization of ε, the gradient inside the integral is
easily computed via backpropagation. An unbiased stochastic
gradient is computed by sampling ε ∼ N (0, I) one or more
times and averaging the calculated gradients.

c) Stochastic gradient for Φ(T |X): We now express the
Fisher information term using the reparametrization above:

Φ(T |X) ≈ EPn [Φ(T |X = x)]

=
1

n

n∑
i=1

∫
Rk

∥∥∥∥∥−
k∑
j=1

∇xσj(xi)
σj(xi)

+

K∑
j=1

(τ(xi, ε; θ)− µj(xi))
σj(xi)2

∇xµj(xi)

+

k∑
j=1

(τ(xi, ε; θ)− µj(xi))2

σj(xi)3
∇xσj(xi)

∥∥∥∥∥
2

2

pε(ε)dε.

(8)

Again, we may approximate the gradient by sampling from
the distribution pε and then computing stochastic gradients
with respect to θ using backpropagation. Note that this will
require us to calculate expressions such as ∇θ∇xµj(x) and
∇θ∇xσj(x), which may be computationally intensive depend-
ing on the dimension of x, but can still be obtained from the
trained neural network classifier τθ.

Altogether, we conclude that the variational approximations
to expressions (2) and (3) may be optimized using mini-batch
SGD.

VI. EXPERIMENTS

We now provide simulation results showing the behavior
of the feature extraction methods we have proposed. We
begin with a variety of experiments involving synthetic data
generated from a Gaussian mixture, and then provide exper-
iments on MNIST data. In the case of the Gaussian mixture
data, we optimized the MMSE formulation (2), the mutual
information formulation (3), and the standard information
bottleneck (1). For our MNIST data studies, we performed
the variational optimization approach presented in the previous
section applied to the mutual information formulation (3).

A. Gaussian mixture

We begin by conducting simulations for the setting de-
scribed in Example 1. Figure 1 shows point clouds of 1000
points for the case of σ2

1 = 2 and σ2
2 = 0.2. Note that in the

absence of adversarial perturbations, the decision boundary
of the optimal classifier should be close to the horizontal axis
(Classifier 1 in Figure 1). Equivalently, the angle of w∗ should
be close to 90◦. However, this classifier will not be optimal
if we require robustness to adversarial `2-perturbations: Since
the decision boundary is close to x1-axis, it is easy for the
adversary to perturb the x2-coordinate of a data point and
cause the classifier to make an error, since a large number
of points are near the boundary of Classifier 1. Thus, a
robust classifier should tilt the boundary slightly to protect
against `2-perturbations, leading to Classifier 2. This intuition
is formalized in equation (10) and Figure 2(a) below, where
we can see how the robustness of a classifier varies as the
angle of the linear classifier tilts.

We will now show that imposing robustness via a Fisher
information Φ(T |X) encourages a similar effect. By Lemma 1,
we have Φ(T |X) = ‖w‖22. Turning to the MMSE term, for
a given w, we denote the features T by Tw. First, we note
that conditioned on Y = +1 and −1, the distribution of Tw
is N (w1 +w2, w

2
1σ

2
1 +w2

2σ
2
2 + 1) and N (−w1−w2, w

2
1σ

2
1 +

w2
2σ

2
2+1), respectively. Let µw := w1+w2 and σ2

w := w2
1σ

2
1+

w2
2σ

2
2 + 1. We see that

P(Y = +1|Tw = t) =
exp

(
− (t−µw)2

2σ2
w

)
exp

(
− (t−µw)2

2σ2
w

)
+ exp

(
− (t+µw)2

2σ2
w

)
=

1

1 + exp
(
− 2µwt

σ2
w

) := αt,w.
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Fig. 1. Plot showing point clouds of 1000 samples for Example 1, with
σ2
1 = 2 and σ2

2 = 0.2. The class Y = +1 is centered at (1, 1) and the class
Y = −1 is centered at (−1,−1).

Furthermore, we have P(Y = −1|Tw = t) = 1−αt,w := ᾱt,w,
so we can write

mmse(Y |Tw) =
1

2

∫
2 (1− (αt,w − ᾱt,w))

2
p(t|Y = +1)dt

+
1

2

∫
2 (−1− (αt,w − ᾱt,w))

2
p(t|Y = −1)dt

=

∫
R

8α2
t,w√

2πσ2
w

e
− (t+µw)2

2σ2w dt = f

(
µw
σw

)
,

where f(a) := EZ∼N (a2,a2)
8

(1+e2Z)2
. Thus, the MMSE of w

depends only on the scalar µ2
w

σ2
w

. Monte Carlo approximation
shows that f(·) is a decreasing function on positive reals.

Combining the two calculations, the optimal w∗ solves the
optimization problem

arg min
w

f

(
µw
σw

)
≡ arg max

w

µ2
w

σ2
w

s.t. ‖w‖2 ≤ R s.t. ‖w‖2 ≤ R. (9)

Note that the optimal value in equation (9) is achieved at
‖w‖2 = R. A smaller value of R corresponds to increased
robustness in features.

We briefly describe the performance of linear classifiers in
the presence of an adversary. Consider linear classifiers of the
form sign(w>x). For such classifiers, adversarial accuracy in
the presence of ε-corruption in the `2-metric is given by

ε-Adversarial-Accuracy = P
{
Z ≥ ε‖w‖1 − µw√

w>Σw

}
, (10)

where ε = 0 corresponds to the accuracy of the classifier in the
absence of any adversary, and Z is a standard normal random
variable. It follows that the performance of such classifiers
depends on w only through its direction. We parametrize the
direction by θ, the angle between w and the horizontal axis,
measured counter-clockwise. As the level of perturbation ε
changes, the optimal θ∗ changes considerably. Figure 2(a)
shows the relationship between ε-Adversarial-Accuracy and
the classifier angle for different values of ε. From the figure,
we can see that the choice of classifier depends crucially on
the desired level of robustness.

We now show that the same phenomenon occurs for the
classifier obtained by solving equation (9) via a grid search.
Comparing Figures 2(a) and 2(b), we observe that these are
qualitatively the same: the angle of the optimal w∗ (where
the curves peak) reduces as more robustness is desired. In
Figure 2(a), additional robustness is imposed by increasing
adversary’s power ε; in Figure 2(b), it is imposed by reducing
the norm constraint R.
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Fig. 2. (a) Plot showing the adversarial accuracy for linear classifiers,
sign(w>x), as a function of the angle of w and ε, the maximum perturbation
allowed in the `2-metric. The adversarial accuracy of such a classifier depends
on w only through its direction, which we parametrize by the angle of w with
the horizontal axis, measured counter-clockwise. Different curves correspond
to different ε. Notice that the optimal classifier changes as ε increases. (b) Plot
showing the value of the objective function in equation (9) as a function of the
angle of w and R, where R corresponds to Φ(T |X) and µ2

w
σ2
w

corresponds
to MMSE(Y |T ). The plot shows that the behavior of the MMSE with a
constraint on Φ(T |X) is similar to the ε-Adversarial-Accuracy as a function
of ε. Primarily, the angle of the optimal w changes as the constraint (Φ(T |X))
changes, mirroring the trend in (a) where the angle of w∗ changes with the
desired level of robustness (ε). We take σ2

1 = 2 and σ2
2 = 0.2 for both plots.

Figure 3(a) shows the relation between the norm constraint
R and the ε-Adversarial-Accuracy for several values of ε.
As expected, as R → 0, the extracted feature becomes
independent of X and the accuracy tends to 50%. For ε = 0,
i.e., without any adversarial perturbation, the accuracy of the
classifier degrades monotonically as we constrain the norm
to be smaller. The curve corresponding to ε = 1.1 is more
insightful, showing that the performance of the classifier in-
creases at first as we constrain ‖w‖2 to be smaller. If we further
increase the constraint (making R smaller), the extracted
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Fig. 3. (a) Plot showing the adversarial accuracy for the solution of the
robust information bottleneck (9) as a function of the norm constraint R and
the maximum perturbation ε allowed in the `2-metric. For each R, we solve
the optimization problem in equation (9) and then calculate its adversarial
accuracy for different ε. (b) Plot showing the angle of the linear classifier as
a function of the norm constraint R. For each R, we have ‖w∗‖2 = R, so
we parametrize w∗ by its angle with horizontal axis. The angle of the optimal
w∗ changes with Φ(T |X), the desired level of robustness.

feature tends toward Gaussian noise and the performance
degrades. Figure 3(b) shows how the angle of the optimal
w∗ changes with the norm constraint on R. As R→∞, this
angle is close to 90◦, whereas as R→ 0, it tends to 45◦.

We now compare the behavior of equation (9) with the usual
information bottleneck of Tishby et al. [29]. We again consider
the features Tw of the form wTX + Z, where Z ∼ N(0, 1).
We solve the optimization problem in equation (11) using a
grid search:

arg min
w

I(Tw;Y )

s.t. I(Tw;X) ≤ Q. (11)

As Tw is a mixture of two univariate Gaussian distributions,
we estimate the entropy of T using a Monte Carlo estimate.
We report the results in Figure 4. Note that the angle of w∗

does not change with the constraint on I(T ;X). As seen in
Figure 2(a), the angle of the robust linear classifier changes
with increasing ε—an intuitive trend that is successfully mim-

icked by the robust information bottleneck in Figure 2(b).
Why does the information bottleneck behave so differently?
Simply stated, unlike Φ(T |X), the term I(X;T ) is invariant
to linear bijective transformations of X . Thus, the information
bottleneck formulation is blind to the skewed variances—
which are crucial in our example—and returns the same linear
classifier for different constraints on I(X;T ). This example
also illustrates how compressed features may not always be
robust.
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Fig. 4. (a) Plot showing the adversarial accuracy of the standard information
bottleneck as a function of the constraint on I(T ;X) and ε, the maximum
perturbation allowed in the `2-metric. For each I(T ;X), we solve the
optimization problem in equation (11) and then calculate its adversarial
accuracy for different ε. (b) Plot showing the angle of the linear classifier
as a function of the constraint on I(T ;X). The angle of the optimal w∗ does
not change with I(T ;X)—a departure from the trends observed in Figure 2.

B. MNIST data

We now describe our experiments on the MNIST data set.
We use the variational bounds described in Section V for
the mutual information formulation (cf. Section V-A) and
implement the Fisher information term Φ(T |X) as a regular-
izer with coefficient β. Recall that we consider pT |X(·|x) =
N (µ(x; θ),Σ(x; θ)), where (µ(x; θ),Σ(x; θ)) are the mean
and (diagonal) covariance matrix of a K-dimensional Gaus-
sian distribution. We evaluate the adversarial robustness of
the neural networks using the Fast Gradient Sign Method
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(FGSM) [12] with ε = 0.1, with 10 random initializations
for each example. As our model is inherently stochastic,
we make the final prediction by taking an average over 12
samples from the posterior. This allows the adversary to obtain
a consistent estimate of the gradient. We approximate the
stochastic integral in equation (8) with a single sample from
the corresponding Gaussian distribution. As both the loss
function and the regularizer have a sum structure, we use
the Adam optimizer. We implemented our experiments using
Tensorflow and the Adversarial robustness toolbox [57].

We first consider a simple one-layer architecture. The model
architecture is 784 − 2K with K = 10, without any non-
linearity. The model is thus a variant of multiclass logistic
regression with stochastic logits. The first K values of the last
layer encode the mean, and the remaining K values encode the
variance of the features after a softplus transformation, similar
to Alemi et al. [34]. For each value of β, we train the model
for 150 epochs. Figure 5 reports the effect of the regularization
coefficient β on clean accuracy and adversarial accuracy.
As β grows, the adversarial accuracy improves, while the
test accuracy decreases. We also ran experiments with the
variational information bottleneck, i.e., γ > 0 and β = 0.
The clean accuracy behaves (w.r.t. γ) similar to Figure 5(a),
but we did not observe any trend similar to Figure 5(b). With
the same setup as above, the best adversarial accuracy was
8%.

To show that this phenomenon is also observed in more
complicated networks, we consider a simple fully-connected
multilayer architecture: 784− 100− 20− 2K. We use ReLU
activations in all layers except the last layer, which is linear.
Given the features T = t, the output of the classifier is a
simple soft-max layer of the features (without any weights).

For each β, we train the network for 200 epochs. Fig-
ure 6 shows the effect of β on the adversarial accuracy.
The adversarial accuracy increases at first as we increase
the regularization coefficient, supporting the claim that Fisher
regularization leads to increased adversarial robustness. If
we further increase the regularization coefficient, increased
robustness comes at the expense of accuracy and leads to
degraded performance. This trend is similar to the case of
ε = 1.1 in Figure 3(a). We also tested this model against more
powerful projected gradient descent (PGD) attacks. Although
the absolute adversarial accuracy when using PGD attacks is
lower compared to that obtained for an FGSM attack, the
relative adversarial accuracy follows a trend identical to that
in Figure 6.

VII. DISCUSSION

The research directions explored in this paper were inspired
by recent work in adversarial machine learning. In particular,
we were intrigued by the notion of a seemingly unavoidable
tradeoff between robustness and accuracy, and the existence of
a dichotomy between robust and non-robust features. A bottle-
neck formulation lends itself naturally to modeling a tradeoff
between robustness and accuracy; quantifying these notions
via information and estimation theory, we have proposed the
robust information bottleneck as a new variational principle
for extracting maximally useful robust features.
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Fig. 5. Plots showing the clean accuracy and adversarial accuracy of multi-
class logistic regression as a function of the regularization coefficient β. Panel
(a) reports the test accuracy of the model, and panel (b) reports the relative
adversarial accuracy as a function of β. We evaluate against the FGSM
attack with ε = 0.1 and 10 random initializations. The baseline accuracy
corresponds to the case when β = 0, which is 14.31%.

Like the standard information bottleneck, the robust infor-
mation bottleneck formulation references only the data distri-
bution, making it extremely general. Applying the principle
for specific classes of features (e.g., linear or logistic) leads
to feature-specific regularization terms. This means that one
need not decide a priori to use an `1- or `2-regularizer, but
may instead use a regularization penalty corresponding to the
Fisher information term discussed in this paper. Furthermore,
we showed that the Fisher information term satisfies a host
of properties that make it ideally suited to characterize ro-
bustness. The robust information bottleneck is most clearly
understood in the case of jointly Gaussian data: We showed
that the optimally robust features in this setting are also jointly
Gaussian with the data, and examined connections to the
solution of the canonical information bottleneck.

Lastly, we showed that it is computationally easy to extract
features via the robust information bottleneck optimization
using a variational approximation, and that a classifier trained
on robust features extracted via the robust information bottle-
neck principle is indeed robust to simple adversarial attacks.
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Fig. 6. Plot showing the effect of β on clean accuracy and adversarial accuracy
of multilayer neural networks. Panel (a) shows that clean accuracy decreases
as we increase β. Panel (b) shows the relative adversarial accuracy of the
neural networks as a function of the regularization coefficient β. We evaluate
adversarial accuracy against the FGSM attack with ε = 0.1 and 10 random
initializations. The baseline accuracy corresponds to the case when β = 0,
which is 2.6%.

Although we were able to defeat the classifier using stronger
classes of adversarial attacks, our work in this paper suggests
that a deeper investigation of Fisher regularization in neural
networks is likely to be fruitful.
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