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ARTICLE INFO ABSTRACT

Construction tasks involve various activities composed of one or more body motions. As construction projects are
labor-intensive and heavily rely on manual tasks, understanding the ever-changing behavior and activities is es-
sential to manage construction workers effectively regarding their safety and productivity. While several research
efforts have shown promising results in automated motion and activity recognition of the workers using motion
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Deep learning sensors, there is still a lack of understanding about how motion sensors' numbers and their locations affect the
Long short-term memory performance of the recognition, which can contribute to improving the recognition performance and reducing
the implementation cost. Moreover, further research is necessary to seek the motion recognition model thatac-
curately identifies various motions using motion sensors attached to the workers' bodies. This study proposes a
construction worker's motion recognition model using the Long Short-Term Memory (LSTM) network based on
an evaluation of the effectiveness of motion sensors' numbers and locations to maximize motion recognition per-
formance. The evaluation is conducted by generating different datasets containing motion sensor data collected
from the sensors located on different body parts. Comparing the performance of five machine learning models
trained using the datasets, the desired numbers and locations of motion sensors are identified. The quasi-experi-
mental test with multiple subjects is conducted to validate the findings of the evaluation. Based on the findings,
the LSTM network forrecognizing construction workers' motions is developed. The LSTM network classifies vari-
ous motions of the workers that can be utilized as primitive elements for monitoring the workers regarding their

safety and productivity.

juries of the muscles, tendons, joints, and nerve tissues [1]. These in-
juries are caused by repetitive movement, high force exertion, vibration,

1. Introduction

One essential way to achieve success in construction projects is to
monitor and manage construction workers' activities and working condi-
tions. Since construction projects are labor-intensive and heavily rely on
manual tasks, monitoring and understanding the ever-changing activi-
ties and motions of the workers are necessary to effectively manage the
workers for improving safety and productivity. Construction projects,
in general, require excessive and repetitive physical activities, which
arouses the strong need for understanding the worker's activities and
motions for ensuring and improving the safety and productivity of indi-
vidual workers.

Posture-related safety risks have been one of the major concerns in
construction projects that should be addressed. According to the Con-
struction Chart Book from the center for construction research and
training (CPWR) [1], the rate of Work-related MusculoSkeletal Disor-
ders (WMSDs) in the construction industry (34.6 per 10,000 Full-Time
Equivalent workers, FTEs) in 2015 was 16% higher than the rate for
all industries (29.8 per 10,000 FTEs). WMSDs are the work-related in-
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and awkward body posture, which are frequently observed from con-
struction workers [2]. Although several efforts have been made to mit-
igate the posture-related safety risks of the workers, existing methods
such as training, education, and observation by a site manager are not
sufficient to manage the risks. Even identifying the risks from multiple
workers at an individual level, which should be prior to deploying safety
measures, is still challenging. Therefore, the workers' activities and mo-
tions have to be individually monitored to identify and mitigate pos-
ture-related safety risks in jobsites.

Meanwhile, the construction industry has experienced a lagging im-
provement or even a decline in productivity while other industries
showed a noticeable improvement in productivity [3]. As the construc-
tion industry is naturally labor-intensive, labor productivity directly
affects construction productivity [4]. Since 1995, labor productivity
growth in global construction industries has been only about 1% while
it is 2.8% in the overall industry [5]. Although there is notable la-
bor productivity growth in several sections such as multi-family hous-
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ing and industrial construction in the U.S., the sections considered ac-
counted for less than 10% of the total hours in construction in 2012 [6].
To improve labor productivity in construction projects, it is essential to
measure labor productivity at the individual level. However, the current
practices rely on manual methods, e.g., sampling through observation.
Those methods are not only labor-intensive but also error-prone, and it
is challenging to measure the productivity of multiple workers in the
individual level using those methods. To facilitate the individual-level
measurement of productivity, monitoring individual workers' activities
should be preceded. Since construction tasks inherently involve repeti-
tive physical activities, identification of workers' motions can be a useful
clue to understanding the activities of the workers.

This study focused on recognizing individual construction workers'
motions such as standing, bending, squatting, and twisting. These mo-
tions commonly made by the workers can be used as primary elements
to understand working conditions, including the safety and productiv-
ity of the workers performing construction tasks. For example, bending
and squatting motions can be used to recognize unsafe posture fromthe
workers performing heavy material lifting tasks. Likewise, an idle state
of workers can be detected by monitoring workers' motions. This infor-
mation can be used for analyzing work efficiency and productivity.

This study proposes a construction worker's motion recognition
model using the Long Short-Term Memory (LSTM) network based on an
evaluation of the effectiveness of motion sensor locations to maximize
motion recognition performance. Through multiple implementations of
machine learning classifiers with different numbers of motion sensors
and their locations, the effectiveness is investigated to find the reason-
able numbers and the locations of the sensors. A set of wearable motion
sensors including 17 Inertial Measurement Units (IMUs) is used to col-
lect the motion dataset from a subject performing material handling ac-
tivities such as lifting, carrying, and placing. Five machine learning al-
gorithms for classifying motions from the sensor data are implemented
to evaluate the effectiveness of the numbers and locations of the motion
sensors. By selecting a part or entire dataset based on the locations, dif-
ferent datasets are generated and utilized to train and test motion classi-
fication models. The effectiveness of the number and locations of motion
sensors is evaluated by comparing the performance of the models. A new
dataset is collected from a quasi-experimental test where multiple sub-
jects perform the same material handling activities. This dataset is used
for validating the finding of the evaluation. Based on the findings, the
Long-Short Term Memory (LSTM) network for recognizing construction
workers' motions is developed. The dataset collected from the quasi-ex-
periment test is used to develop the LSTM model. Using the developed
motion recognition model, various motions of construction workers that
can be utilized as primitive elements for monitoring the workers can be
properly recognized.

2. Motion recognition in construction: current state and
knowledge gaps

2.1. Motion recognition in construction

Motion recognition, in general, refers to a pattern recognition
method of recognizing human motion states using sensors, such as ac-
celerometer, gyroscopes, and cameras [7]. Motions, here, are defined
as postures or actions that humans take during any activities. An ac-
tivity includes one or multiple motions. For example, a material lift-
ing activity includes multiple motions such as standing, bending, and
squatting. Motion recognition has been widely utilized to monitor work-
ing conditions regarding the safety and productivity of construction
workers. While the state-of-the-art motion recognition techniques gener-
ally use machine learning algorithms to recognize motion patterns from
the sensor data, motion recognition techniques can be categorized into

Automation in Construction xxx (Xxxx) Xxx-xxx

two approaches based on the type of the sensors used: vision-based ap-
proaches and motion sensor-based approaches.

Two approaches have a similar system structure: generating a
dataset, extracting features, which is often omitted from the deep learn-
ing-based model, training and validating, and testing. However, each ap-
proach is distinguishable depending on how to generate a dataset and
train a model for obtaining the desired result. The current state of those
approaches is reviewed in the following section.

2.1.1. Vision-based motion recognition

Vision-based motion recognition techniques utilize one or multiple
vision cameras to capture construction workers' motions or activities.
2D or 3D vision cameras can be used. Images captured by the vision
cameras are used as a dataset for training and testing machine learn-
ing classifiers that recognize motions or activities of construction work-
ers from the images or for extracting a body skeleton model in a digital
format from the images. This approach has been utilized in construc-
tion projects [8—19]. Convolutional Neural Networks (CNNs) trained us-
ing the pre-trained network and monocular images are utilized to rec-
ognize three activities of ironworkers, e.g., walking, transporting, and
steel bending [15]. Three channel images including a RGB, optical flow,
and gray image are used to extract features from the original images.
In addition to recognizing motions and activities, there are several ef-
forts to deploy the motion recognition technique for safety purposes.
A deep learning network composed of Convolutional Neural Network
(CNN) and Long Short-Term Memory (LSTM) is developed to detect un-
safe actions of construction workers from 2D videos [10]. An integrated
deep learning model recognizes unsafe actions without extensive pre-
processing. 3D joint angles are estimated from a single image using a
CNN for ergonomic analysis of construction workers [13]. The trained
classifiers in this study recognize motions of body parts such as arm,
back, and leg. 3D skeleton models are extracted from a 3D camcorder
which includes two lenses to detect unsafe actions of construction work-
ers [12,18]. Han and Lee [18] utilizes a similarity measurement tech-
nique which is one of the machine learning algorithms to compare ac-
tions with the pre-defined template actions. An action of reaching far to
a side on the ladder, which can cause a falling accident due to loss of
balance, is selected as a test case in this study. The similarity measure-
ment and comparison techniques for recognizing construction workers'
actions are implemented in a case study to validate the unsafe action de-
tection system [8]. 3D joint angles are estimated from skeleton models
obtained from depth images [12]. The angles are utilized as criteria to
identify unsafe behaviors of construction workers. The value ranges of
key joint parameters such as the angle of knees and angle of elbows are
determined through a series of experiments using a depth camera [17].
Unsafe behaviors are identified by comparing the joint angles, which are
measured by a depth camera to the determined ranges.

Vision-based motion recognition techniques have several advantages
of system implementation. First of all, data collecting devices such as 2D
and 3D cameras do not disturb construction workers' activities. Compar-
ing to the sensor-based motion recognition, there is no need to attach
any device to the human body, which may incur discomfort. Also, ex-
isting infrastructure, if available, e.g., CCTV, on jobsites can be utilized
to collect data. However, it is still challenging to detect motions from
the workers when they are occluded by other objects, or outside of the
camera's field of views. Moreover, vision-based methods are sensitive
to weather conditions and usually require higher computational capac-
ity than sensor-based methods to process data in training and deploying
steps.

2.1.2. Motion sensor-based motion recognition
Motion sensor-based motion recognition techniques use various
types of sensors such as accelerometer, gyroscope, and pressure sen -
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sor. These sensors are utilized alone or embedded in one device. Re-
cently, Inertial Measurement Units (IMUs) have been widely used be-
cause three types of sensors — accelerometer, gyroscope, and magne-
tometer — are combined in one sensor. By attaching these sensors to
subjects' bodies (i.e., construction workers), sensor signals containing in-
formation about their movements are collected. Here, one or multiple
IMU sensors are utilized to collect the data. The collected data is clas-
sified into specific motions or activities. Similar to the typical model
development process of the vision-based motion recognition, the sensor
data is used for training and testing machine learning classifiers. To en-
able the classifiers to learn distinguishable characteristics of the data,
feature extraction is conducted in a data pre-processing step [20—29].
The feature extraction has been done in general classification tasks using
machine learning algorithms to reduce the dimensionality of the data
because raw data in high dimensionality contain redundant data which
is not necessary for the classification. By selecting and/or integrating
variables of the data, the features describing the data efficiently are ex-
tracted.

Machine learning classifiers trained using motion sensor data are uti-
lized for various purposes in construction projects. First, unsafe actions
of construction workers are detected [20,24,29]. Insole pressure sensors
are used to detect construction workers' loss of balance which can cause
fall accidents [24]. Five types of machine learning algorithms — Arti-
ficial Neural Network (ANN), Decision Tree (DT), Random Forest (RF),
k-Nearest Neighbor (k-NN), and Support Vector Machine (SVM) — are
implemented in this study. Supervised motion tensor decomposition en-
ables efficient data processing for implementing a SVM classifier [20].
Binary classification on near-miss falls is implemented using one-class
SVM with motion data from the wearable IMU sensors [29]. Second,
motion and activity recognition is utilized to calculate the productive
time of construction workers for understanding productivity [22,23].
Productive time is calculated by classifying activities of the workers us-
ing motion sensor data. Lastly, the identification of motions and activ-
ities of construction workers is conducted using machine learning al-
gorithms [20,21,26,28,30,31]. [21] uses a smartphone, which embeds
IMU inside, attached to a worker's arm to collect motion sensor data.
Five types of machine learning algorithms — ANN, DT, k-NN, Logistic
Regression, and SVM — are implemented in this study. [28] utilizes a
wristband-type accelerometer to recognize activities of masonry work
from workers. Different window sizes for data pre-processing are im-
plemented with four machine learning algorithms — k-NN, ANN, DT,
and SVM — to investigate their impacts on classification performance. A
SVM classifier is developed to classify mason workers into an expert and
inexpert group using a set of 17 wearable IMUs [30]. Motion patterns of
workers with different levels of expertise are investigated in this study.
A convolutional LSTM model recognizes 8 motions of workers using 5
IMUs located on a head, chest, upper arm, right thigh, and right calf
[31]. In this study, IMU data in a certain time period are segmented into
input data and convolution layers are adopted to the data. Two LSTM
layers followed by the convolution layers are used to learn sequential
patterns of the data.

Also, motion sensor data are utilized to recognize motions and ac-
tivities of construction workers without machine learning algorithms
[27,32-36]. A network system of wearable IMU sensors enables recog-
nition of construction workers' motions [32]. Motions that can cause
musculoskeletal disorders are monitored using two wearable IMU sen-
sors attached to a hardhat and back of safety vest [36]. Tilt angles of the
upper body are calculated using IMUs to detect unsafe postures of work-
ers in this study. Fall risk assessment is conducted using IMUs attached
to the ankle of construction workers [27,33-35]. Gait stability, which
can be an indicator of fall risks, is evaluated using the IMUs.

Motion sensor data contain information about movements of con-
struction workers carrying data collection devices that can be used
directly for recognizing motions and activities. Compared to the im -
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age data, motion sensor data processing requires smaller computational
capacity in data pre-processing, classification model training, and imple-
mentation steps. Also, the occlusions made by obstacles do not disturb
data collection, which is one of the main disadvantages of vision-based
techniques (i.e., line-of-sight issue). Moreover, the impact of lighting
conditions on the motion sensor-based system is not significant while
the performance of the vision-based system can be affected by the light-
ing conditions. Other impractical issues, that the vision-based system
has, include the fixed camera's limited field of view, disclosing worker's
privacy at the unnecessary level, and camera system maintenance (e.g.,
power supply, cable management, relocation of cameras as construction
progresses). In this study, thus, the motion sensor-based approach is se-
lected based on the practical advantages over the vision-based approach.

2.2. Knowledge gaps

Although there have been several efforts to recognize construction
workers' motions and activities using motion sensors, the use of the mo-
tion sensors is not based on empirical knowledge. To be specific, the
locations and the numbers of motion sensors are selected where move-
ments are reflected sufficiently and discomfort from the sensors can be
minimized. However, this selection is made without information about
how different locations and numbers of sensors can affect motion recog-
nition performance. Moreover, current efforts have low potential to be
deployed in different tasks of construction projects because the classi-
fiers trained for recognizing the specific activities are only applicable to
the particular task. A limited number of target activities also hinders the
deployment of the developed models in complicated and congested tasks
that involve various motions and activities. To address these issues, this
study proposes an evaluation of the effectiveness of different locations
and numbers of motion sensors on motion recognition performance and
a deep-learning network that recognizes various motions of construction
workers that can be utilized as primitive elements for monitoring the
workers.

3. Methodology

This study is composed of three steps; [1] dataset generation and
evaluation of the effectiveness of the numbers and locations of motion
sensors on motion recognition performance, [2] quasi-experimental test
for validation of the findings, and [3] development of LSTM model for
recognizing construction workers' motions. Fig. 1 illustrates a frame-
work of the proposed study.

3.1. Evaluation of the effectiveness of the numbers and locations of motion
sensors

The evaluation is conducted through the following steps: dataset gen-
eration, machine learning algorithm implementation, and identification
of the numbers and locations of motion sensors showing the best motion
recognition performance.

3.1.1. Dataset generation
1) Target motion classes

The following motions observed from typical construction tasks (e.g.,
material handling tasks) are selected as target motion classes: stand-
ing, bending, squatting, walking, twisting, working overhead, kneeling,
and using stairs. Three motions — bending, squatting, and kneeling
— are divided into three motions, such as bending-up, bending, and
bending-down, to reduce the loss of information caused by the tran-
sition of motions, thus 14 motions in total. For example, bending-up
and bending-down are transitioning motions from the bending mo -
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Fig. 1. A framework of the proposed study.

tion to other motions and vice versa, respectively.
2) Body node definition

Twenty-one body joints or body parts throughout the entire body
shown in Fig. 2(a) are designated as body nodes for the evaluation. The
wearable sensor set of 17 IMUs shown in Fig. 2(b) is utilized to collect
the motion sensor data from the nodes. Four nodes located on the spine
where sensors do not exist are generated by interpolating between the
neck and hip nodes.

3) Node combinations

As shown in Tables 1, 32 node combinations are defined by select-
ing different numbers of nodes located in different positions. Each com-
bination forms a unique dataset in different dimensions based on the
number of the nodes used. By utilizing different nodes for generating
datasets, different impacts of the numbers and locations of the sensors
are reflected in the datasets. The evaluation includes 32 implementa-
tions of machine learning algorithms with 32 node combinations to in-
vestigate the performance of motion recognition for evaluating the ef-
fectiveness of different numbers and locations of motion sensors on the
recognition performance.

4) Input vector formation

————— Head
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‘-\_“\‘
e
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Based on the nodes used in each combination, input vectors are de-
fined separately. As shown in Fig. 3, each node with a single IMU gen-
erates a feature set composed of 13 values: quaternion (4 values), accel-
eration (3 values), velocity (3 values), and angular velocity (3 values).
These values are calculated using the data from three types of sensors
such as accelerometer, gyroscope, and magnetometer embedded in each
IMU. Feature sets from multiple nodes in each node combination are
concatenated to form an input vector. The length of the input vectors
varies depending on the number of nodes in the node combinations. The
generated input vectors are used as training and testing data for machine
learning classifiers. Each data contains a discrete and time-independent
motion state.

3.1.2. Machine learning algorithm implementation

Once the datasets generated from 32 different node combinations are
created, five machine learning algorithms — logistic regression, k-near-
est neighbor, multilayer perceptron, random forest, and support vec-
tor machine — are implemented. These algorithms are supervised ma-
chine learning classification algorithms that categorize data from the
prior information, i.e., the labeled data [37]. Different types of ma-
chine learning classification algorithms that have been widely utilized
for motion and activity recognition [21,24,28,29] are deployed to in -

@ IMU sensor

(b)

Fig. 2. (a) Defined body nodes; (b) wearable IMUs' locations and their visualization.
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Table 1
Node combinations used in the evaluation.

Selected nodes (the Selected nodes (the

Combination number of nodes) Combination number of nodes)

1 All nodes (21) 17 Right foot (1)

2 Upper body (15) 18 Left thigh (1)

3 Lower body (7) 19 Left leg (1)

4 Core nodes* (7) 20 Left foot (1)

5 Hip and head (2) 21 Right shoulder (1)

6 Hip and neck (2) 22 Right arm (1)

7 Hip and spine (5) 23 Right forearm (1)

8 Head and neck (2) 24 Right hand (1)

9 Head and spine (5) 25 Left shoulder (1)

10 Neck and spine (5) 26 Left arm (1)

11 Hip (1) 27 Left forearm (1)

12 Head (1) 28 Left hand (1)

13 Neck (1) 29 Spine 3 — close to
neck (1)

14 Spine (4) 30 Spine 2 (1)

15 Right thigh (1) 31 Spine 1 (1)

16 Right leg (1) 32 Spine 0 — close to
hip (1)

Feature set of a single node
Lo o ]ella]la]a]lw]v]vw][w][w]w]

Quxy, : Quaternion, A, » : Acceleration, V.5, - : Velocity, Wy, : Angular velocity

1 : the number of the selected nodes

Featureset 1 | Feature set 2

Input vector

Fig. 3. Input vector formation.

vestigate common findings regardless of the types of the classification
algorithms utilized.

Logistic regression is a linear model that calculates the class mem-
bership probability for one of two categories in the data [38]. This
model is fit by Maximum-likelihood estimation that estimates the co-
efficients of the model that minimize the error of the calculated prob-
abilities to the one in the data. Logistic regression can handle non-
linearity because an activation function is used. In addition, the out-
put of the logistic regression model is interpretable because it is calcu-
lated as a probability. K-nearest neighbor is a non-parametric classifi-
cation method based on the k number data point in the feature space
[28,39]. This method assigns an unseen data to a class that has the
largest number of data among its k-nearest data point. Euclidean dis-
tance in the feature space is the metric to determine the distance be-
tween the data points. Hence, the k-nearest neighbor method does not
require a training process. Also, this method has only one hyper-para-
meter, i.e., k (the number of data points to be considered). It enables
easy implementation of the method. Multilayer perceptron is a neural
network classification model that describes the problems in a network
of directed graphs, whose nodes are represented as artificial neurons
and the weighted directed edges in the graphs are connections between
the neurons [39]. The weights and bias of the network are computed
by the backpropagation technique that iteratively updates the weights
and bias based on the error rate obtained in the previous iteration.
By using a non-linear activation function, multilayer perceptron model
can be applied to complicated problems. Moreover, this method is ro-
bust to irrelevant input and noise [37]. Random forest is an ensemble
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method for classification that consists of a combination of decision trees
[24,40]. The classification performance of a single decision tree clas-
sifier is improved by integrating the bootstrap aggregating (bagging)
method and randomization in the selection [40]. This method is fast,
scalable, and robust to noise [37]. Support vector machine classifier is a
model that classifies data based on the selection of the hyperplane that
maximizes the margin between the hyperplane and data points [11].
While the support vector machine is a linear classifier, non-linearity can
be handled by using kernels that project the data from the original fea-
ture space to a high dimensional space using non-linear kernel function.
A single implementation of the five abovementioned machine learn-
ing classifiers using the dataset from the particular node combination is
repeated 32 times to simulate all cases, i.e., node combinations. 10-folds
cross-validation is used in each implementation to find hyper-parame-
ters of the classifiers and evaluate the classifiers. 10-folds cross-valida-
tion is a model validation technique in which the training data is ran-
domly divided into 10 equal parts (folds). Each fold is used as the testing
dataset, and remaining folds are used as the training dataset. By doing
10-folds cross-validation, the best hyper-parameters can be properly se-
lected, and the classifiers can be evaluated as generalized classifiers that
show the desired classification performance with unseen data.

3.1.3. Identification of the desired numbers and locations of the motion
sensors

The desired numbers and locations of motion sensors for construc-
tion workers' motion recognition are identified by comparing the clas-
sification performance of all classifiers implemented using 32 differ-
ent datasets. This selection is based on an assumption that the classi-
fier trained using the reduced number of the motion sensors located on
particular positions shows comparable classification performance to the
classifier trained using all sensors located throughout the entire body.
The selected number and location of motion sensors are directly utilized
to develop an LSTM motion recognition model for construction workers.

3.2. Quasi-experimental test

The findings of the evaluation are validated through the quasi-exper-
imental test. For the evaluation, the dataset collected from a single sub-
ject performing the defined target motions in a lab-environment is used.
Since motion patterns vary by individual workers, the dataset collected
from a single subject may be biased. Therefore, the new data collected
from three subjects involved in the quasi-experimental test is utilized to
validate the findings of the evaluation. The subjects are advised to per-
form typical material handling tasks such as lifting, carrying, and plac-
ing in an environment similar to an actual jobsite. While the subject in
the evaluation is advised to make predefined motions in which their dis-
tribution is balanced, the subjects in the quasi-experimental test are ad-
vised to perform typical material handling tasks, such as lifting, carry-
ing, and placing, without considering the balance so that the collected
dataset can reflect the characteristics of the tasks. Meanwhile, the raw
data of IMUs including acceleration, angular velocity, and magnetic field
is used to form input vectors in the quasi-experimental test to minimize
the effects of pre-processing the calculation of quaternion and velocity
in the evaluation.

3.3. Development of the LSTM model for recognizing construction workers'
motions

The five implemented machine learning classifiers categorize each
input vector to a class independently. This means that every single
moment is classified into a single motion individually. However, the
worker's motions have to be interpreted as a result of a sequence of mo-
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tions. A particular motion can be taken after a sort of motions. For ex-
ample, bending motion is a result of a sequence of stooping movements
from standing or walking motions. In other words, the motions are sig-
nificantly correlated with the previous motions. This temporal charac-
teristic is considered by extracting features from segmented data using
windows in the existing studies [20—-29]. However, it is not an effective
way to reflect the order of motions in a sequence. Moreover, the selec-
tion of the types of features significantly affects the performance of the
classifier.

To recognize the motions considering a sequence of previous mo-
tions, the LSTM model is developed to recognize construction workers'
motions considering a sequence of motions. LSTM is a recurrent neural
network designed to learn sequential information using memory cells
that stores and outputs information facilitating the learning of temporal
relationships on long time scales [41]. LSTM uses the concept of gat-
ing that is a mechanism based on pointwise multiplication operations
and activation functions, which allow the information to be selectively
added to the cell or removed from the cell. Fig. 4 illustrates the basic
structure of the LSTM network.

The information flow in the LSTM cell is as follows. First, input val-
ues x; and hidden state from the previous state /,-; pass through the
forget gate f;. The output of the gate is the value between 0 and 1 that
represent complete removal of the information and complete retention
of the information, respectively. Next, the input gate takes the two val-
ues x; and A,-; to consider new information to be stored in the new
cell state C,. Meanwhile, the values pass through the input modulation
gate E‘, with a hyperbolic tangent activation function so that the output
value ranges between —1 and 1 that reflects the amount of the infor-
mation to be forgotten. Subsequently, the old cell state C,-, is updated
into the new cell state C; by multiplying the old cell state and the out-

Y
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put of the forget gate, and then by adding the multiplication of the out-
put of the input gate and input modulation gate. After that, the output
gate takes input values and the old hidden state, x; and 4,-,, using a sig-
moid activation function to decide the parts of the cell state that will be
the output. Lastly, the cell state C, passes through a hyperbolic tangent
function, and it is multiplied by the output of the output gate to calcu-
late the new hidden state 4,. Using these gates, the cell state is updated.
The equations of the gates and states are as follows:

i{, =0 {Wﬂx, + Vih_| + bx—)
fi=o(Wyx, + Vih,_ +bp)
oy=0 (wal + Vr’ruh[—l + bu)

C, = tanh (W,.x, + V},.h,_, + b,)
C=t@ . +i Q7T
h, = o,®tanh (C)

where O is the sigmoid function defined as o(x) = (1 + ¢ ™)~ Ui, Jir00
¢, C,, and h, are the outputs of the input gate, forget gate, output gate,
input modulation gate, cell state, and hidden state at time t, respec-

€]

tively, ® is a pointwise multiplication operator, Wy, Wi, Wo, Wies Viis
Vit Vior Vie are the coefficient matrix, by, by, b,, b. are bias vectors. The
coefficient matrix and bias vectors are learnable parameters. By updat-
ing these parameters, the model learns the amount of information that
passes through the LSTM cell.

In the proposed study, the two-stacked LSTM network is developed
in which two LSTM cells are connected to make the network deeper.
Fig. 5 illustrates the structure of the developed LSTM network. In the
network, the sequence of input vectors that are from the same dataset
used in the quasi-experimental test is fed into a fully connected layer
followed by a Rectified Linear Unit (ReLU) layer. This technique is inr
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plemented to improve the network's performance [42]. ReLU is one of
the activation functions that have been widely used because it outper-
forms the sigmoid function. Subsequently, two layers of LSTM cells fol-
low the ReLU layer. Dropout technique is implemented in the second
LSTM cells to regularize the network, which allows the network to avoid
overfitting and improve performance. In the case of LSTM, the dropout
technique excludes the recurrent components such as input, output, and
hidden state from the update process probabilistically. At the second
LSTM cell layer, the last output of the sequence of the input vectors is
only fed into the fully connected layer because the model recognizes the
motion at the end of the sequence of motions. Finally, the output of the
fully connected layer is fed into the softmax layer to convert class scores
into probabilities so that the motion with the highest probability can be
identified.

4. Implementation and result

4.1. Evaluation of the effectiveness of the numbers and locations of motion
sensors

4.1.1. Data acquisition

A wearable set of 17 IMUs, a commercial product named Perception
Neuron, shown in Fig. 2(b) was used to collect the data from a subject
performing the defined 14 target motions with a 28-1b concrete block
(Fig. 4). In the lab environment, the subject performed material han-
dling tasks including lifting, carrying, and placing with random order
of motions. Fig. 6 shows examples of the target motions. Meanwhile,
the subject's motions were simultaneously videotaped to be used as the
ground truth for labeling the data. In total, 18,350 data points were col-
lected. Each data point has 273 values; each IMU has 13 values and 21
IMUs on 21 nodes. To label the dataset, the authors matched timestamps
of the dataset with the recorded videos manually.

4.1.2. Machine learning algorithm implementation

Five machine learning algorithms were implemented using Scikit-
learn, which is a machine learning library for the Python pro-
gramming language. The dataset collected was split into training and
testing
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data that occupy 60% and 40% of the entire dataset, respectively. The
dataset was randomly shuffled to minimize the effect of the order inthe
dataset. Each machine learning algorithm was implemented 32 times
to simulate all cases of 32 node combinations. Each implementation in-
cluded 10-folds cross-validation to find the best hyperparameters. As a
result, the overall accuracy of five machine learning classifiers was de-
rived as shown in Fig. 7.

4.1.3. Identification of the desired numbers and locations of the motion
sensor

Among five classifiers, a random forest classifier showed the best
classification performance in most cases. Table 2 shows the accuracy
of the random forest classifier for all node combinations. Based on the
assumption that the classifier trained using the reduced number of the
motion sensors located on particular positions shows comparable clas-
sification performance to the one using all sensors located throughout
the entire body, the two classifiers trained using two combinations, com-
bination 5 and combination 6, showed similar classification accuracy.
To be specific, the accuracy of the classifier trained using combination
1 that utilizes all nodes is the highest accuracy, 79.83%. Compared to
the highest accuracy, the classifiers from node combinations 5 and 6
showed 76.17% and 75.44%, respectively. They are only 3.66% and
4.39% lower than the highest accuracy although they use two nodes,
which is only 10% of the total number of nodes of the highest accuracy
case.

These two cases have a common characteristic; two nodes are lo-
cated on the position at a certain distance. This indicates that the data
from each node captures the different movement of body parts so that
the data can represent different motions effectively and properly. Node
combination 8 can be a counterexample. While the number of nodes
used in node combination 8 was the same as node combinations 5 and
6, its accuracy was much lower than those of node combinations 5
and 6. It is because node combination 8 includes two nodes located on
positions close to each other, which was not capable of representing
the motion effectively. This tendency was observed from the results of
other machine learning classifiers except the logistic regression classi-

Fig. 6. Examples of the target motions; bending and squatting.
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Fig. 7. The accuracy of five machine learning classifiers.
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Table 2
Accuracy of Random Forest classifier.

Selected
nodes (the
number of

Selected nodes
(the number of

Combi. nodes) Accuracy Combi. nodes) Accuracy
1 All nodes (21) 0.7983 17 Right foot 0.2791
(&)

2 Upperbody (15)  0.7729 18 Leftthigh (1)  0.5941

3 Lowerbody (7) 0.7440 19 Leftleg (1) 0.5973

4 Core nodes (7) 0.7658 20 Left foot (1) 0.5090

5 Hip and head 0.7617 21 Right 0.6844
2) shoulder (1)

6 Hip and neck 0.7544 22 Right arm 0.6431
@ (1

7 Hip and spine 0.7713 23 Right 0.6134
5) forearm (1)

8 Head and neck 0.6811 24 Righthand 0.6222
@ )

9 Head and spine 0.7606 25 Left shoulder 0.6762
(&) (¢

10 Neck and spine 0.7635 26 Leftarm (1) 0.6158
(&)

11 Hip (1) 0.6849 27 Leftforearm 0.6171

M

12 Head (1) 0.6893 28 Left hand (1) 0.6110

13 Neck (1) 0.6871 29 Spine 3 (1) 0.7298

14 Spine (4) 0.7639 30 Spine 2 (1) 0.7310

15 Right thigh (1) 0.6032 31 Spine 1 (1) 0.7365

16 Rightleg (1) 0.5658 32 Spine 0 (1) 0.6833

fier. In the cases of node combinations including one node, the accuracy
was significantly lower than the one from node combinations including
two nodes. Therefore, the use of two motion sensors located in a certain
distance is expected to show similar motion recognition performance to
the use of 17 motion sensors located throughout the entire body.

4.2. Quasi-experiment test

Based on the findings of the evaluation, the quasi-experimental test
with three subjects was conducted in the environment similar to a con-
struction site. Hip and neck from node combination 6 were selected as
the sensor mounting position because their locations are easy to mount
sensors. To collect the data from the subjects, data collection devices
developed by Robotics and Intelligent Construction Automation Labo-
ratory (RICAL) group at Georgia Institute of Technology were utilized.
The devices were carried by the subjects wearing the safety vests with
two pockets on the neck and hip as shown in Fig. 8. The devices have
a wireless communication module for Wi-Fi and Bluetooth communica-
tions, a processing unit, and IMU so that they can automatically upload
and store the IMU data to a cloud server. Three subjects were asked to
perform material handling tasks including lifting, carrying, and placing
with a 28-1b concrete block same as the task performed in the evalua-
tion.

A dataset containing 32,396 data points was collected from the sub-
jects. The data from two devices were concatenated to form input vec-
tors and normalized to have a unit norm. Thus, each data point has 18
values; each data point from one device contains 9 values (3-axis accel-
eration, 3-axis gyroscope, and 3-axis magnetic field). Then, the dataset
was also shuffled and split into training data and testing data that oc-
cupy 60% and 40% of the entire dataset, respectively. The random forest
classifier that showed the highest accuracy in the evaluation wasimple-
mented using the Scikit-learn library. 10-folds cross-validation was uti-
lized to find the hyper-parameters.
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Data collection
devices

Fig. 8. The quasi-experimental test environment and data collection method.

As a result of the classifier implementation, the confusion matrix
was derived as shown in Fig. 9. The heat-map type of confusion ma-
trix shows the results of the classification and the number of each case.
The vertical axis indicates the true labels, and the horizontal axis indi-
cates the predicted label. The diagonal values are the number of the in-
stances classified correctly while the off-diagonal values are the number
of the instances classified incorrectly. The accuracy, weighted precision,
and weighted recall are 82.39%, 83.02%, and 83.10%, respectively. The
weighted precision and recall are calculated considering the number of
data in each class. 'Using stairs’ motions were not observed in the test.
Comparing this accuracy to the accuracy of the classifier in the evalu-
ation, the classifier trained using the dataset of the quasi-experimental
test shows similar classification performance.

4.3. Development of the LSTM model for recognizing construction workers'
motions

The LSTM motion recognition model was developed using Tensor-
flow, which is an artificial intelligence library using data flow graphs
to build models. A computer equipped with Intel® Core(TM) i7-8650U
CPU, Intel® UHD Graphics 620, and 16 GB RAM was used to imple-
ment the model. The model utilized the same dataset collected from
the quasi-experimental test. After two data from two data collection de-
vices were concatenated and normalized, 40 input vectors were seg-
mented into a sequence as an input of the LSTM model. Since the 30
data points were collected in each second, one sequence contains the
data collected every 1.3 s. The overlap ratio of the grouping was 95%,
which means 95% of the data are shared between adjacent sequences. As
a result of the sequence segmentation, 16,178 data points (i.e., 16,178
sequences) were obtained. The shape of the generated sequential dataset
was 16,178 by 18 by 40. Once the dataset was modified in the format of
the sequential data, the dataset was shuffled and split into training data
and test data that occupy 70% and 30% of the total dataset, respectively.
Then, the training data was split again into training data and validation
data; the training data was used in the actual learning process and the
validation data was used in the fine-tuning process. The test data was
used to evaluate the performance of the model.

The tuned hyper-parameters of the model are as shown in Table 3.
The parameters were tuned by adjusting the values while observing the
optimization loss and accuracy of the train and validation sets. As a re-
sult, the losses and accuracy over iterations with the tuned hyper-para-
meters were recorded as shown in Figs. 10 and 11. The losses over it-
eration graphs showed that the losses were converged enough after 350
epochs, and the difference between train loss and validation loss was
small enough, which means the model was well-trained without over -



K. Kim and Y.K. Cho

Automation in Construction xxx (Xxxx) Xxx-xxx

Corfusson matria

Standing 5 o 1 Ll /(1] 3

Bendngug- 0 13 g H -] 1 k|

Bendimg - L H 192 E 3 1t 1

[ ] ] (-] -] ixx -] ] 1

Squalting g - 3 L] 1 3 # ) 1

Squatting - 13 2 ) L& 2 57 3

% sumiegoows- 3 0 1 m 3 7% n
E |
4

Wisllang - B3 [} 2 L] 1 & [

Twmikng " | 9 i 2 Q b} &

working owerhead - 9 L ] -] -] o [

Ereakng-Up - L] -] 1 & & ¥ [

Wrplineg - I 1 : [+ F 13 [+

EreelngDown - O L] ] -] -] 1 i

Uhing stairs = . . ' . . .

: 2 7 f T §

1 & i ¥ 1 4

® U8 §f 3 & f

[ 7 -4 S

X 3

S

1464
[T 1 o o 13 o
113 L] (<] o o o
Ty N A 8 3 o
1604
w0 i o o [ ]
i g3 143 L] o i o
™ 8 o o 7 o 1503
127 1 Q o - o
1.3 1] o 3 o
N 3
s M4 o 0 2 0
-+ (=] ) o [+ o
10 1 8 8 4 o
- 300
b1’ L] 1 [ a4 ']
13 o [:] o 10 o
" ; ] " ; ‘0
3 z 3 S F 5
g 2 £ 7 ¥ 5
: F F 3 & 3%
4
Food i

Predicted Libal

Fig. 9. Confusion matrix of the classification of the quasi-experimental test dataset.

Table 3
Hyper-parameters of the developed LSTM model.

Hyper-parameter Value
The number of hidden units 64

L2 regularization factor 0.0008
Learning rate 0.0017
The number of epochs 400
Batch size 128
Dropout probability 0.2

fitting. Overfitting happens when the model is too closely fit the par-
ticular dataset and it shows low performance on the unseen data. To
avoid the overfitting, /, norm regularization with the L2 regulariza-
tion factor 0.0008 and a dropout technique were implemented. Dropout
probability was set to 0.2 only in the training process. This means that
the recurrent connections in LSTM cells were excluded with 20% of
probability. The dropout technique was only deployed in the learning
process on the train set. Adam optimizer [43] was used to minimize a
loss function, i.e., the cross-entropy of the result after the softmax func-

tion was applied. As a result, the developed LSTM model showed the
accuracy of 94.73% on the test set. Fig. 12 and Fig. 13 show the con-
fusion matrixes of the result without normalization and with normaliza-
tion, respectively. Kneeling-up and kneeling-down motion were omitted
from the result because these motions were taken during a very short
time that was less than 0.3 s. Since the label of the sequences was deter-
mined as the dominant label in the sequence, those two motions were
omitted even if they were in the sequences.

To evaluate the developed LSTM model, precision-recall curves for
each motion class were derived as shown in Fig. 14. Precision-recall
(PR) curves are evaluation measures for classification that allows the
visualization of the performance of the classifier at a range of thresh-
olds [44]. PR curves are used to evaluate binary classification models
trained using an imbalanced dataset where one class occupies a larger
portion in the dataset than the other class. Since the dataset used in de-
veloping the LSTM model is an imbalanced dataset with multi classes,
PR curves for each class are obtained. In the PR curves, the closer the
curve is to a right upper corner, the better the classifier is. The PR
curves for each class can be interpreted as a single value by calculat-
ing the area under the curve. The area ranges from 0 to 1, where 0 in-
dicates the classifier completely failed to classify the data and 1 indi -
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cates the classifier completely classified the data. The areas are shown in
the legend of graphs in Fig. 14. The area of the averaged precision-re-
call for overall classes was 0.98. While the areas of the major motions
including standing, bending, squatting, walking, twisting, working over-
head, and kneeling were larger than 0.90, the areas of the transitioning
motions including bending-up, bending-down, squatting-up, and squat-
ting-down were smaller than those of the major motions.

5. Discussion

In the evaluation, various cases, where the different number of mo-
tion sensors located on different body parts were used to train ma-
chine learning classifiers, were investigated to identify the desired num-
bers and locations of the motion sensor for recognizing construction
workers' motions. By comparing the accuracy of each case, the cases

where two motion sensors located on the body parts in a certain dis-
tance showed the similar accuracy with the case where all motion sen-
sors were utilized throughout the body. This indicates that the num-
ber of motion sensors required to recognize construction workers' mo-
tion can be reduced if their locations are selected based on the under-
standing of the effectiveness of the numbers and locations of the mo-
tion sensors. This finding was validated through the quasi-experimental
test with multiple subjects. This is important because motion recognition
systems can be efficiently designed with fewer sensors and still provide
reliable performance in fields.

The target motion classes considered in the evaluation, quasi-ex-
perimental test, and development of LSTM model were 14 motions,
which is more than one of the existing motion recognition models.
In general, the more motions or activities that are considered, the
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Fig. 12. Confusion matrix of the result of the LSTM model without normalization.

more difficult a classifier is trained or the larger the dataset is required.
Hence, the current research efforts focus on recognizing particular mo-
tions of interest. In the proposed study, 13 motions were successfully
recognized using the LSTM model with an accuracy of 94.73%. Com-
pared to the best-performed accuracy of 82.39% among the five con-
ventional machine learning algorithms, the developed LSTM network
showed significantly higher accuracy. It was found that the developed
model outperformed the existing motion and activity recognition meth-
ods in terms of accuracy, the number of classes, and the number of sen-
sors as shown in Table 4. For example, compared to the convolutional
LSTM [31], the developed LSTM model showed higher accuracy with
fewer number of sensors and more number of target classes. This indi-
cates that the developed model learned sequential patterns of the mo-
tions from the raw sensor data better than the one in which convolu-
tional layers were adopted to the raw data.

The results of the quasi-experimental test show inherent motion dis-
tributions of the material handling tasks. For example, among 4853 se-
quential data points in the testing data, 2885 points were classified
as 'Walking’ motions. This indicates that the subjects spent more than
50% of their working time on carrying material or moving their po-
sition for the next material. Similarly, 932 points were classified as
‘Standing’ motions which mean the subjects were idling during about
20% of their working time. This distribution is naturally observed be-
cause carrying material is the most time-consuming activity in the
material handling tasks while lifting or placing a material takes less

time than carrying. Therefore, with the motion distributions of workers,
their behavior can be individually monitored and analyzed.

The developed LSTM model recognized the major motions with very
high accuracy. For example, the areas under PR curves of standing,
walking, working overhead, and kneeling were over 0.99. This indi-
cates that most instances in these motions were correctly classified. On
the other hand, some of the motions such as bending-down and squat-
ting-down motions showed smaller areas under PR curves than the other
motions. It is because they are the transitioning motions, which are the
motions between the major motions. The data corresponded to the tran-
sitioning motions contain less distinguishable patterns. However, the use
of the transitioning motions has a strong advantage that allows the ma-
jor motions to have more distinguishable patterns. Considering the ap-
plications of motion recognition models in construction projects, the ma-
jor motions are the motions of interest for safety and productivity mea-
surements. Therefore, the use of the transitioning motions can improve
the practicality of the developed motion recognition model.

The successful implementation of the LSTM model was possible
with the lower-performance computer because the size of the input
data used in this study was much smaller than the one used in the
existing efforts. Specifically, high-performance computers are required
to process image data in the vision-based model because the model
typically includes multiple convolutional layers and pooling layers to
learn features from the images. However, in the case of the proposed
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Fig. 14. Precision-recall curves for each motion class.

model, the dataset was a 16,178x18x40 matrix with float numbers.
Thus, the model was able to be implemented without a high-perfor-
mance computer.

The proposed study has several limitations. First, the datasets used
in the evaluation, quasi-experimental test, and development of

the LSTM model were not collected from real construction workers.
The subjects involved in the study were students who are majoring in
civil engineering. Hence, the dataset might not accurately represent con-
struction workers' motions. Next, the datasets were imbalanced. Among
14 target motions, the walking motion occupied more than half of
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Table 4
Comparison of the performance with existing methods.

The The

number of Location(s) of number of
Method sensors the sensors classes Accuracy
k-NN [21] 1 Arm 5 79.79%
Multi-class SVM 1 ‘Wrist 4 88.10%
[28]
Convolutional 5 Head, arm, 8 85.20%
LSTM [31] chest, thigh, and

calf

RF in this study 2 Hip and neck 13 82.39%
The developed 2 Hip and neck 11 94.73%
LSTM in the this
study

the entire dataset. This is because the subjects spent the most time on
carrying the block. This imbalance might lead to a misestimation the
performance of the model. Although the performance on each class was
evaluated through PR curves, the overall performance of the model re-
lied on the particular motions such as the walking and standing. Lastly,
there is still a lack of the target motions in the dataset. While the
datasets contain 13 or 14 motions that construction workers typically
take during material handling tasks, construction tasks involve other
motions that were not considered in this study. However, these limita-
tions related to the dataset are expected to be overcome once more gen-
eralized and larger datasets are collected from actual construction work-
ers.

6. Conclusion

This paper evaluated the effectiveness of the motion sensors' num-
bers and locations on construction workers' bodies and an LSTM model
for recognizing their motions, which can be potentially used to measure
workers' safety and productivity. In the evaluation, each of 32 different
node combinations containing different numbers of motion sensors lo-
cated on different body parts was used to train five machine learning
classifiers. By comparing the performance of the classifiers, the desired
numbers and locations of the motion sensors regarding the classifica-
tion performance were identified. These findings were validated through
the quasi-experimental test. To improve classification performance, the
LSTM motion recognition model was developed. The same dataset used
in the quasi-experimental test was used to develop the LSTM model.
The model showed much higher classification performance on 13 mo-
tion classes than the conventional machine learning algorithms; the ac-
curacy increased from 82.39% to 94.73%.

The main contribution of this study is twofold. First, this study pro-
vided an insight into the influences of the use of motion sensors in
construction workers' motion recognition using a systematic approach.
By generating multiple datasets containing motion sensor data collected
from the sensors located on different body parts, the study investigated
how the numbers and locations of motion sensors affect the perfor-
mance of machine learning classifiers. Second, the LSTM network for
recognizing construction workers' motion was presented. The LSTM net-
work classifies 13 different construction workers' motions properly by
learning sequential patterns in the motion sensor dataset. This model is
expected to improve a construction worker monitoring mechanism for
safety and productivity management by automatically identifying the
workers' motions and working conditions.
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