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ABSTRACT  
 

Construction tasks involve various activities composed of one or more body motions. As construction projects are 

labor-intensive and heavily rely on manual tasks, understanding the ever-changing behavior and activities is es- 

sential to manage construction workers effectively regarding their safety and productivity. While several research 

efforts have shown promising results in automated motion and activity recognition of the workers using motion 

sensors, there is still a lack of understanding about how motion sensors' numbers and their locations affect the 

performance of the recognition, which can contribute to improving the recognition performance and reducing 

the implementation cost. Moreover, further research is necessary to seek the motion recognition model that ac- 

curately identifies various motions using motion sensors attached to the workers' bodies. This study proposes a 

construction worker's motion recognition model using the Long Short-Term Memory (LSTM) network based on 

an evaluation of the effectiveness of motion sensors' numbers and locations to maximize motion recognition per- 

formance. The evaluation is conducted by generating different datasets containing motion sensor data collected 

from the sensors located on different body parts. Comparing the performance of five machine learning models 

trained using the datasets, the desired numbers and locations of motion sensors are identified. The quasi-experi- 

mental test with multiple subjects is conducted to validate the findings of the evaluation. Based on the findings, 

the LSTM network for recognizing construction workers' motions is developed. The LSTM network classifies vari- 

ous motions of the workers that can be utilized as primitive elements for monitoring the workers regarding their 

safety and productivity. 

 
 

 

1. Introduction 

 
One essential way to achieve success in construction projects is to 

monitor and manage construction workers' activities and working condi- 

tions. Since construction projects are labor-intensive and heavily rely on 

manual tasks, monitoring and understanding the ever-changing activi- 

ties and motions of the workers are necessary to effectively manage the 

workers for improving safety and productivity. Construction projects, 

in general, require excessive and repetitive physical activities, which 

arouses the strong need for understanding the worker's activities and 

motions for ensuring and improving the safety and productivity of indi- 

vidual workers. 

Posture-related safety risks have been one of the major concerns in 

construction projects that should be addressed. According to the Con- 

struction Chart Book from the center for construction research and 

training (CPWR) [1], the rate of Work-related MusculoSkeletal Disor- 

ders (WMSDs) in the construction industry (34.6 per 10,000 Full-Time 

Equivalent workers, FTEs) in 2015 was 16% higher than the rate for 

all industries (29.8 per 10,000 FTEs). WMSDs are the work-related in 

juries of the muscles, tendons, joints, and nerve tissues [1]. These in- 

juries are caused by repetitive movement, high force exertion, vibration, 

and awkward body posture, which are frequently observed from con- 

struction workers [2]. Although several efforts have been made to mit- 

igate the posture-related safety risks of the workers, existing methods 

such as training, education, and observation by a site manager are not 

sufficient to manage the risks. Even identifying the risks from multiple 

workers at an individual level, which should be prior to deploying safety 

measures, is still challenging. Therefore, the workers' activities and mo- 

tions have to be individually monitored to identify and mitigate pos- 

ture-related safety risks in jobsites. 

Meanwhile, the construction industry has experienced a lagging im- 

provement or even a decline in productivity while other industries 

showed a noticeable improvement in productivity [3]. As the construc- 

tion industry is naturally labor-intensive, labor productivity directly 

affects construction productivity [4]. Since 1995, labor productivity 

growth in global construction industries has been only about 1% while 

it is 2.8% in the overall industry [5]. Although there is notable la-     

bor productivity growth in several sections such as multi-family hous 
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ing and industrial construction in the U.S., the sections considered ac- 

counted for less than 10% of the total hours in construction in 2012 [6]. 

To improve labor productivity in construction projects, it is essential to 

measure labor productivity at the individual level. However, the current 

practices rely on manual methods, e.g., sampling through observation. 

Those methods are not only labor-intensive but also error-prone, and it 

is challenging to measure the productivity of multiple workers in the 

individual level using those methods. To facilitate the individual-level 

measurement of productivity, monitoring individual workers' activities 

should be preceded. Since construction tasks inherently involve repeti- 

tive physical activities, identification of workers' motions can be a useful 

clue to understanding the activities of the workers. 

This study focused on recognizing individual construction workers' 

motions such as standing, bending, squatting, and twisting. These mo- 

tions commonly made by the workers can be used as primary elements 

to understand working conditions, including the safety and productiv- 

ity of the workers performing construction tasks. For example, bending 

and squatting motions can be used to recognize unsafe posture from the 

workers performing heavy material lifting tasks. Likewise, an idle state 

of workers can be detected by monitoring workers' motions. This infor- 

mation can be used for analyzing work efficiency and productivity. 

This study proposes a construction worker's motion recognition 

model using the Long Short-Term Memory (LSTM) network based on an 

evaluation of the effectiveness of motion sensor locations to maximize 

motion recognition performance. Through multiple implementations of 

machine learning classifiers with different numbers of motion sensors 

and their locations, the effectiveness is investigated to find the reason- 

able numbers and the locations of the sensors. A set of wearable motion 

sensors including 17 Inertial Measurement Units (IMUs) is used to col- 

lect the motion dataset from a subject performing material handling ac- 

tivities such as lifting, carrying, and placing. Five machine learning al- 

gorithms for classifying motions from the sensor data are implemented 

to evaluate the effectiveness of the numbers and locations of the motion 

sensors. By selecting a part or entire dataset based on the locations, dif- 

ferent datasets are generated and utilized to train and test motion classi- 

fication models. The effectiveness of the number and locations of motion 

sensors is evaluated by comparing the performance of the models. A new 

dataset is collected from a quasi-experimental test where multiple sub- 

jects perform the same material handling activities. This dataset is used 

for validating the finding of the evaluation. Based on the findings, the 

Long-Short Term Memory (LSTM) network for recognizing construction 

workers' motions is developed. The dataset collected from the quasi-ex- 

periment test is used to develop the LSTM model. Using the developed 

motion recognition model, various motions of construction workers that 

can be utilized as primitive elements for monitoring the workers can be 

properly recognized. 

2. Motion recognition in construction: current state and 

knowledge gaps 

2.1. Motion recognition in construction 

 
Motion recognition, in general, refers to a pattern recognition 

method of recognizing human motion states using sensors, such as ac- 

celerometer, gyroscopes, and cameras [7]. Motions, here, are defined 

as postures or actions that humans take during any activities. An ac- 

tivity includes one or multiple motions. For example, a material lift- 

ing activity includes multiple motions such as standing, bending, and 

squatting. Motion recognition has been widely utilized to monitor work- 

ing conditions regarding the safety and productivity of construction 

workers. While the state-of-the-art motion recognition techniques gener- 

ally use machine learning algorithms to recognize motion patterns from 

the sensor data, motion recognition techniques can be categorized into 

two approaches based on the type of the sensors used: vision-based ap- 

proaches and motion sensor-based approaches. 

Two approaches have a similar system structure: generating a 

dataset, extracting features, which is often omitted from the deep learn- 

ing-based model, training and validating, and testing. However, each ap- 

proach is distinguishable depending on how to generate a dataset and 

train a model for obtaining the desired result. The current state of those 

approaches is reviewed in the following section. 

2.1.1. Vision-based motion recognition 

Vision-based motion recognition techniques utilize one or multiple 

vision cameras to capture construction workers' motions or activities. 

2D or 3D vision cameras can be used. Images captured by the vision 

cameras are used as a dataset for training and testing machine learn- 

ing classifiers that recognize motions or activities of construction work- 

ers from the images or for extracting a body skeleton model in a digital 

format from the images. This approach has been utilized in construc- 

tion projects [8–19]. Convolutional Neural Networks (CNNs) trained us- 

ing the pre-trained network and monocular images are utilized to rec- 

ognize three activities of ironworkers, e.g., walking, transporting, and 

steel bending [15]. Three channel images including a RGB, optical flow, 

and gray image are used to extract features from the original images.  

In addition to recognizing motions and activities, there are several ef- 

forts to deploy the motion recognition technique for safety purposes.   

A deep learning network composed of Convolutional Neural Network 

(CNN) and Long Short-Term Memory (LSTM) is developed to detect un- 

safe actions of construction workers from 2D videos [10]. An integrated 

deep learning model recognizes unsafe actions without extensive pre- 

processing. 3D joint angles are estimated from a single image using a 

CNN for ergonomic analysis of construction workers [13]. The trained 

classifiers in this study recognize motions of body parts such as arm, 

back, and leg. 3D skeleton models are extracted from a 3D camcorder 

which includes two lenses to detect unsafe actions of construction work- 

ers [12,18]. Han and Lee [18] utilizes a similarity measurement tech- 

nique which is one of the machine learning algorithms to compare ac- 

tions with the pre-defined template actions. An action of reaching far to 

a side on the ladder, which can cause a falling accident due to loss of 

balance, is selected as a test case in this study. The similarity measure- 

ment and comparison techniques for recognizing construction workers' 

actions are implemented in a case study to validate the unsafe action de- 

tection system [8]. 3D joint angles are estimated from skeleton models 

obtained from depth images [12]. The angles are utilized as criteria to 

identify unsafe behaviors of construction workers. The value ranges of 

key joint parameters such as the angle of knees and angle of elbows are 

determined through a series of experiments using a depth camera [17]. 

Unsafe behaviors are identified by comparing the joint angles, which are 

measured by a depth camera to the determined ranges. 

Vision-based motion recognition techniques have several advantages 

of system implementation. First of all, data collecting devices such as 2D 

and 3D cameras do not disturb construction workers' activities. Compar- 

ing to the sensor-based motion recognition, there is no need to attach 

any device to the human body, which may incur discomfort. Also, ex- 

isting infrastructure, if available, e.g., CCTV, on jobsites can be utilized 

to collect data. However, it is still challenging to detect motions from 

the workers when they are occluded by other objects, or outside of the 

camera's field of views. Moreover, vision-based methods are sensitive 

to weather conditions and usually require higher computational capac- 

ity than sensor-based methods to process data in training and deploying 

steps. 

2.1.2. Motion sensor-based motion recognition 

Motion sensor-based motion recognition techniques use various 

types of sensors such as accelerometer, gyroscope, and pressure sen 
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sor. These sensors are utilized alone or embedded in one device. Re- 

cently, Inertial Measurement Units (IMUs) have been widely used be- 

cause three types of sensors — accelerometer, gyroscope, and magne- 

tometer — are combined in one sensor. By attaching these sensors to 

subjects' bodies (i.e., construction workers), sensor signals containing in- 

formation about their movements are collected. Here, one or multiple 

IMU sensors are utilized to collect the data. The collected data is clas- 

sified into specific motions or activities. Similar to the typical model 

development process of the vision-based motion recognition, the sensor 

data is used for training and testing machine learning classifiers. To en- 

able the classifiers to learn distinguishable characteristics of the data, 

feature extraction  is conducted  in a data  pre-processing step [20–29]. 

The feature extraction has been done in general classification tasks using 

machine learning algorithms to reduce the dimensionality of the data 

because raw data in high dimensionality contain redundant data which 

is not necessary for the classification. By selecting and/or integrating 

variables of the data, the features describing the data efficiently are ex- 

tracted. 

Machine learning classifiers trained using motion sensor data are uti- 

lized for various purposes in construction projects. First, unsafe actions 

of construction workers are detected [20,24,29]. Insole pressure sensors 

are used to detect construction workers' loss of balance which can cause 

fall accidents [24]. Five types of machine learning algorithms  — Arti- 

ficial Neural Network (ANN), Decision Tree (DT), Random Forest (RF), 

k-Nearest Neighbor (k-NN), and Support Vector Machine (SVM) — are 

implemented in this study. Supervised motion tensor decomposition en- 

ables efficient data processing for implementing a SVM classifier [20]. 

Binary classification on near-miss falls is implemented using one-class 

SVM with motion data from the wearable IMU sensors [29]. Second, 

motion and activity recognition is utilized to calculate the productive 

time of construction workers for understanding productivity [22,23]. 

Productive time is calculated by classifying activities of the workers us- 

ing motion sensor data. Lastly, the identification of motions and activ- 

ities of construction workers is conducted using machine learning al- 

gorithms [20,21,26,28,30,31]. [21] uses a smartphone, which embeds 

IMU inside, attached to a worker's arm to collect motion sensor data. 

Five types of machine learning algorithms — ANN, DT, k-NN, Logistic 

Regression, and SVM — are implemented in this study. [28] utilizes a 

wristband-type accelerometer to recognize activities of masonry work 

from workers. Different window sizes for data pre-processing are im- 

plemented with four machine learning algorithms — k-NN, ANN, DT, 

and SVM — to investigate their impacts on classification performance. A 

SVM classifier is developed to classify mason workers into an expert and 

inexpert group using a set of 17 wearable IMUs [30]. Motion patterns of 

workers with different levels of expertise are investigated in this study. 

A convolutional LSTM model recognizes 8 motions of workers using 5 

IMUs located on a head, chest, upper arm, right thigh, and right calf 

[31]. In this study, IMU data in a certain time period are segmented into 

input data and convolution layers are adopted to the data. Two LSTM 

layers followed by the convolution layers are used to learn sequential 

patterns of the data. 

Also, motion sensor data are utilized to recognize motions and ac- 

tivities of construction workers without machine learning algorithms 

[27,32–36]. A network system of wearable IMU sensors enables recog- 

nition of construction workers' motions [32]. Motions that can cause 

musculoskeletal disorders are monitored using two wearable IMU sen- 

sors attached to a hardhat and back of safety vest [36]. Tilt angles of the 

upper body are calculated using IMUs to detect unsafe postures of work- 

ers in this study. Fall risk assessment is conducted using IMUs attached 

to the ankle of construction workers [27,33–35]. Gait stability, which 

can be an indicator of fall risks, is evaluated using the IMUs. 

Motion sensor data contain information about movements of con- 

struction workers carrying data collection devices that can be used 

directly for recognizing motions and activities. Compared to the im 

age data, motion sensor data processing requires smaller computational 

capacity in data pre-processing, classification model training, and imple- 

mentation steps. Also, the occlusions made by obstacles do not disturb 

data collection, which is one of the main disadvantages of vision-based 

techniques (i.e., line-of-sight issue). Moreover, the impact of lighting 

conditions on the motion sensor-based system is not significant while 

the performance of the vision-based system can be affected by the light- 

ing conditions. Other impractical issues, that the vision-based system 

has, include the fixed camera's limited field of view, disclosing worker's 

privacy at the unnecessary level, and camera system maintenance (e.g., 

power supply, cable management, relocation of cameras as construction 

progresses). In this study, thus, the motion sensor-based approach is se- 

lected based on the practical advantages over the vision-based approach. 

2.2. Knowledge gaps 

 
Although there have been several efforts to recognize construction 

workers' motions and activities using motion sensors, the use of the mo- 

tion sensors is not based on empirical knowledge. To be specific, the 

locations and the numbers of motion sensors are selected where move- 

ments are reflected sufficiently and discomfort from the sensors can be 

minimized. However, this selection is made without information about 

how different locations and numbers of sensors can affect motion recog- 

nition performance. Moreover, current efforts have low potential to be 

deployed in different tasks of construction projects because the classi- 

fiers trained for recognizing the specific activities are only applicable to 

the particular task. A limited number of target activities also hinders the 

deployment of the developed models in complicated and congested tasks 

that involve various motions and activities. To address these issues, this 

study proposes an evaluation of the effectiveness of different locations 

and numbers of motion sensors on motion recognition performance and 

a deep-learning network that recognizes various motions of construction 

workers that can be utilized as primitive elements for monitoring the 

workers. 

3. Methodology 

 
This study is composed of three steps; [1] dataset generation and 

evaluation of the effectiveness of the numbers and locations of motion 

sensors on motion recognition performance, [2] quasi-experimental test 

for validation of the findings, and [3] development of LSTM model for 

recognizing construction workers' motions. Fig. 1 illustrates a frame- 

work of the proposed study. 

3.1. Evaluation of the effectiveness of the numbers and locations of motion 

sensors 

The evaluation is conducted through the following steps: dataset gen- 

eration, machine learning algorithm implementation, and identification 

of the numbers and locations of motion sensors showing the best motion 

recognition performance. 

3.1.1. Dataset generation 

 
1) Target motion classes 

 
The following motions observed from typical construction tasks (e.g., 

material handling tasks) are selected as target motion classes: stand- 

ing, bending, squatting, walking, twisting, working overhead, kneeling, 

and using stairs. Three motions — bending, squatting, and kneeling 

— are divided into three motions, such as bending-up, bending, and 

bending-down, to reduce the loss of information caused by the tran- 

sition of motions, thus 14 motions in total. For example, bending-up 

and bending-down are transitioning motions from the bending mo 
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tion to other motions and vice versa, respectively. 

 
2) Body node definition 

Fig. 1. A framework of the proposed study. 

 
Based on the nodes used in each combination, input vectors are de- 

fined separately. As shown in Fig. 3, each node with a single IMU gen- 

erates a feature set composed of 13 values: quaternion (4 values), accel- 

eration (3 values), velocity (3 values), and angular velocity (3 values). 

Twenty-one body joints or body parts throughout the entire body 

shown in Fig. 2(a) are designated as body nodes for the evaluation. The 

wearable sensor set of 17 IMUs shown in Fig. 2(b) is utilized to collect 

the motion sensor data from the nodes. Four nodes located on the spine 

where sensors do not exist are generated by interpolating between the 

neck and hip nodes. 

3) Node combinations 

 
As shown in Tables 1, 32 node combinations are defined by select- 

ing different numbers of nodes located in different positions. Each com- 

bination forms a unique dataset in different dimensions based on the 

number of the nodes used. By utilizing different nodes for generating 

datasets, different impacts of the numbers and locations of the sensors 

are reflected in the datasets. The evaluation includes 32 implementa- 

tions of machine learning algorithms with 32 node combinations to in- 

vestigate the performance of motion recognition for evaluating the ef- 

fectiveness of different numbers and locations of motion sensors on the 

recognition performance. 

4) Input vector formation 

These values are calculated using the data from three types of sensors 

such as accelerometer, gyroscope, and magnetometer embedded in each 

IMU. Feature sets from multiple nodes in each node combination are 

concatenated to form an input vector. The length of the input vectors 

varies depending on the number of nodes in the node combinations. The 

generated input vectors are used as training and testing data for machine 

learning classifiers. Each data contains a discrete and time-independent 

motion state. 

3.1.2. Machine learning algorithm implementation 

Once the datasets generated from 32 different node combinations are 

created, five machine learning algorithms — logistic regression, k-near- 

est neighbor, multilayer perceptron, random forest, and support vec- 

tor machine — are implemented. These algorithms are supervised  ma- 

chine learning classification algorithms that categorize data from the 

prior information, i.e., the labeled data [37]. Different types of ma- 

chine learning classification algorithms that have been widely utilized 

for motion and activity recognition [21,24,28,29] are deployed to in 

 

 

Fig. 2. (a) Defined body nodes; (b) wearable IMUs' locations and their visualization. 
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Node combinations used in the evaluation. 

 
Selected nodes (the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Input vector formation. 

 

 

Selected nodes (the 

method for classification that consists of a combination of decision trees 

[24,40]. The classification performance of a single decision tree clas- 

sifier is improved by integrating the bootstrap aggregating (bagging) 

method and randomization in the selection [40]. This method is fast, 

scalable, and robust to noise [37]. Support vector machine classifier is a 

model that classifies data based on the selection of the hyperplane that 

maximizes the margin between the hyperplane and data points [11]. 

While the support vector machine is a linear classifier, non-linearity can 

be handled by using kernels that project the data from the original fea- 

ture space to a high dimensional space using non-linear kernel function. 

A single implementation of the five abovementioned machine learn-  

ing classifiers using the dataset from the particular node combination is 

repeated 32 times to simulate all cases, i.e., node combinations. 10-folds 

cross-validation is used in each implementation to find hyper-parame- 

ters of the classifiers and evaluate the classifiers. 10-folds cross-valida- 

tion is a model validation technique in which the training data is ran- 

domly divided into 10 equal parts (folds). Each fold is used as the testing 

dataset, and remaining folds are used as the training dataset. By doing 

10-folds cross-validation, the best hyper-parameters can be properly se- 

lected, and the classifiers can be evaluated as generalized classifiers that 

show the desired classification performance with unseen data. 

 
3.1.3. Identification of the desired numbers and locations of the motion 

sensors 

The desired numbers and locations of motion sensors for construc- 

tion workers' motion recognition are identified by comparing the clas- 

sification performance of all classifiers implemented using 32 differ- 

ent datasets. This selection is based on an assumption that the classi- 

fier trained using the reduced number of the motion sensors located on 

particular positions shows comparable classification performance to the 

classifier trained using all sensors located throughout the entire body. 

The selected number and location of motion sensors are directly utilized 

to develop an LSTM motion recognition model for construction workers. 

3.2. Quasi-experimental test 

vestigate common findings regardless of the types of the classification 

algorithms utilized. 

Logistic regression is a linear model that calculates the class mem- 

bership probability for one of two categories in the data [38]. This 

model is fit by Maximum-likelihood estimation that estimates the co- 

efficients of the model that minimize the error of the calculated prob- 

abilities to the one in the data. Logistic regression can handle non- 

linearity because an activation function is used. In addition, the out- 

put of the logistic regression model is interpretable because it is calcu- 

lated as a probability. K-nearest neighbor is a non-parametric classifi- 

cation method based on the k number data point in the feature space 

[28,39]. This method assigns an unseen data to a class that has the 

largest number of data among its k-nearest data point. Euclidean dis- 

tance in the feature space is the metric to determine the distance be- 

tween the data points. Hence, the k-nearest neighbor method does not 

require a training process. Also, this method has only one hyper-para- 

meter, i.e., k (the number of data points to be considered). It enables 

easy implementation of the method. Multilayer perceptron is a neural 

network classification model that describes the problems in a network 

of directed graphs, whose nodes are represented as artificial neurons 

and the weighted directed edges in the graphs are connections between 

the neurons [39]. The weights and bias of the network are computed  

by the backpropagation technique that iteratively updates the weights 

and bias based on the error rate obtained in the previous iteration.      

By using a non-linear activation function, multilayer perceptron model 

can be applied to complicated problems. Moreover, this method is ro- 

bust to irrelevant input and noise [37]. Random forest is an ensemble 

 
The findings of the evaluation are validated through the quasi-exper- 

imental test. For the evaluation, the dataset collected from a single sub- 

ject performing the defined target motions in a lab-environment is used. 

Since motion patterns vary by individual workers, the dataset collected 

from a single subject may be biased. Therefore, the new data collected 

from three subjects involved in the quasi-experimental test is utilized to 

validate the findings of the evaluation. The subjects are advised to per- 

form typical material handling tasks such as lifting, carrying, and plac- 

ing in an environment similar to an actual jobsite. While the subject in 

the evaluation is advised to make predefined motions in which their dis- 

tribution is balanced, the subjects in the quasi-experimental test are ad- 

vised to perform typical material handling tasks, such as lifting, carry- 

ing, and placing, without considering the balance so that the collected 

dataset can reflect the characteristics of the tasks. Meanwhile, the raw 

data of IMUs including acceleration, angular velocity, and magnetic field 

is used to form input vectors in the quasi-experimental test to minimize 

the effects of pre-processing the calculation of quaternion and velocity 

in the evaluation. 

3.3. Development of the LSTM model for recognizing construction workers' 

motions 

The five implemented machine learning classifiers categorize each 

input vector to a class independently. This means that every single 

moment is classified into a single motion individually. However, the 

worker's motions have to be interpreted as a result of a sequence of mo 

Combination number of nodes) Combination number of nodes) 

1 All nodes (21) 17 Right foot (1) 

2 Upper body (15) 18 Left thigh (1) 

3 Lower body (7) 19 Left leg (1) 

4 Core nodes* (7) 20 Left foot (1) 

5 Hip and head (2) 21 Right shoulder (1) 

6 Hip and neck (2) 22 Right arm (1) 

7 Hip and spine (5) 23 Right forearm (1) 

8 Head and neck (2) 24 Right hand (1) 

9 Head and spine (5) 25 Left shoulder (1) 

10 Neck and spine (5) 26 Left arm (1) 

11 Hip (1) 27 Left forearm (1) 

12 Head (1) 28 Left hand (1) 

13 Neck (1) 29 Spine 3 – close to 

   neck (1) 

14 Spine (4) 30 Spine 2 (1) 

15 Right thigh (1) 31 Spine 1 (1) 

16 Right leg (1) 32 Spine 0 – close to 

   hip (1) 
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tions. A particular motion can be taken after a sort of motions. For ex- 

ample, bending motion is a result of a sequence of stooping movements 

from standing or walking motions. In other words, the motions are sig- 

nificantly correlated with the previous motions. This temporal charac- 

teristic is considered by extracting features from segmented data using 

windows in the existing studies [20–29]. However, it is not an effective 

way to reflect the order of motions in a sequence. Moreover, the selec- 

tion of the types of features significantly affects the performance of the 

classifier. 

To recognize the motions considering a sequence of previous mo- 

tions, the LSTM model is developed to recognize construction workers' 

motions considering a sequence of motions. LSTM is a recurrent neural 

network designed to learn sequential information using memory cells 

that stores and outputs information facilitating the learning of temporal 

relationships on long time scales [41]. LSTM uses the concept of gat- 

ing that is a mechanism based on pointwise multiplication operations 

and activation functions, which allow the information to be selectively 

added to the cell or removed from the cell. Fig. 4 illustrates the basic 

structure of the LSTM network. 

The information flow in the LSTM cell is as follows. First, input val- 

ues xi and hidden state from the previous state ht−1 pass through the 

forget gate ft. The output of the gate is the value between 0 and 1 that 

represent complete removal of the information and complete retention 

of the information, respectively. Next, the input gate takes the two val- 

ues xi and ht−1 to consider new information to be stored in the new   

cell state Ct. Meanwhile, the values pass through the input modulation 

gate   with a hyperbolic tangent activation function so that the output 

value ranges between −1 and 1 that reflects the amount of the infor- 

mation to be forgotten. Subsequently, the old cell state Ct−1 is updated 

into the new cell state Ct by multiplying the old cell state and the out 

put of the forget gate, and then by adding the multiplication of the out- 

put of the input gate and input modulation gate. After that, the output 

gate takes input values and the old hidden state, xi and ht−1, using a sig- 

moid activation function to decide the parts of the cell state that will be 

the output. Lastly, the cell state Ct passes through a hyperbolic tangent 

function, and it is multiplied by the output of the output gate to calcu- 

late the new hidden state ht. Using these gates, the cell state is updated. 

The equations of the gates and states are as follows: 

 

 
(1) 

 

 
where σ is the sigmoid function defined as σ(x) = (1 + e−x)−1, it, ft, ot, 

, Ct, and ht are the outputs of the input gate, forget gate, output gate, 

input modulation gate, cell state, and hidden state at time t, respec- 

tively, ⨂ is a pointwise multiplication operator, Wxi, Wxf, Wxo, Wxc, Vhi, 

Vhf, Vho, Vhc are the coefficient matrix, bi, bf, bo, bc are bias vectors. The 

coefficient matrix and bias vectors are learnable parameters. By updat- 

ing these parameters, the model learns the amount of information that 

passes through the LSTM cell. 

In the proposed study, the two-stacked LSTM network is developed 

in which two LSTM cells are connected to make the network deeper. 

Fig. 5 illustrates the structure of the developed LSTM network. In the 

network, the sequence of input vectors that are from the same dataset 

used in the quasi-experimental test is fed into a fully connected layer 

followed by a Rectified Linear Unit (ReLU) layer. This technique is im 

 

 

Fig. 4.  A structure of the LSTM network. 

 

Fig. 5.  The structure of the proposed LSTM network. 
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plemented to improve the network's performance [42]. ReLU is one of 

the activation functions that have been widely used because it outper- 

forms the sigmoid function. Subsequently, two layers of LSTM cells fol- 

low the ReLU layer. Dropout technique is implemented in the second 

LSTM cells to regularize the network, which allows the network to avoid 

overfitting and improve performance. In the case of LSTM, the dropout 

technique excludes the recurrent components such as input, output, and 

hidden state from the update process probabilistically. At the second 

LSTM cell layer, the last output of the sequence of the input vectors is 

only fed into the fully connected layer because the model recognizes the 

motion at the end of the sequence of motions. Finally, the output of the 

fully connected layer is fed into the softmax layer to convert class scores 

into probabilities so that the motion with the highest probability can be 

identified. 

4. Implementation and result 

 
4.1. Evaluation of the effectiveness of the numbers and locations of motion 

sensors 

4.1.1. Data acquisition 

A wearable set of 17 IMUs, a commercial product named Perception 

Neuron, shown in Fig. 2(b) was used to collect the data from a subject 

performing the defined 14 target motions with a 28-lb concrete block 

(Fig. 4). In the lab environment, the subject performed material han- 

dling tasks including lifting, carrying, and placing with random order 

of motions. Fig. 6 shows examples of the target motions. Meanwhile, 

the subject's motions were simultaneously videotaped to be used as the 

ground truth for labeling the data. In total, 18,350 data points were col- 

lected. Each data point has 273 values; each IMU has 13 values and 21 

IMUs on 21 nodes. To label the dataset, the authors matched timestamps 

of the dataset with the recorded videos manually. 

4.1.2. Machine learning algorithm implementation 

Five machine learning algorithms were implemented using Scikit-

learn, which is a machine learning library for the Python pro- 

gramming language. The dataset collected was split into training and 

testing 

data that occupy 60% and 40% of the entire dataset, respectively. The 

dataset was randomly shuffled to minimize the effect of the order in the 

dataset. Each machine learning algorithm was implemented 32 times  

to simulate all cases of 32 node combinations. Each implementation in- 

cluded 10-folds cross-validation to find the best hyperparameters. As a 

result, the overall accuracy of five machine learning classifiers was de- 

rived as shown in Fig. 7. 

4.1.3. Identification of the desired numbers and locations of the motion 

sensor 

Among five classifiers, a random forest classifier showed the best 

classification performance in most cases. Table 2 shows the accuracy 

of the random forest classifier for all node combinations. Based on the 

assumption that the classifier trained using the reduced number of the 

motion sensors located on particular positions shows comparable clas- 

sification performance to the one using all sensors located throughout 

the entire body, the two classifiers trained using two combinations, com- 

bination 5 and combination 6, showed similar classification accuracy. 

To be specific, the accuracy of the classifier trained using combination 

1 that utilizes all nodes is the highest accuracy, 79.83%. Compared to 

the highest accuracy, the classifiers from node combinations 5 and 6 

showed 76.17% and 75.44%, respectively. They are only 3.66% and 

4.39% lower than the highest accuracy although they use two nodes, 

which is only 10% of the total number of nodes of the highest accuracy 

case. 

These two cases have a common characteristic; two nodes are lo- 

cated on the position at a certain distance. This indicates that the data 

from each node captures the different movement of body parts so that 

the data can represent different motions effectively and properly. Node 

combination 8 can be a counterexample. While the number of nodes 

used in node combination 8 was the same as node combinations 5 and 

6, its accuracy was much lower than those of node combinations 5   

and 6. It is because node combination 8 includes two nodes located on 

positions close to each other, which was not capable of representing 

the motion effectively. This tendency was observed from the results of 

other machine learning classifiers except the logistic regression classi 

 

 
 

Fig. 6. Examples of the target motions; bending and squatting. 

 

Fig. 7.  The accuracy of five machine learning classifiers. 

 
7 
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Table 2 

Accuracy of Random Forest classifier. 

 

Selected nodes 

(the number of 

 

 

Selected 

nodes (the 

number of 

Combi. nodes) Accuracy Combi. nodes) Accuracy 

 
1 All nodes (21) 0.7983 17 Right foot 

(1) 

 
0.2791 

2 Upper body (15) 0.7729 18 Left thigh (1) 0.5941 

3 Lower body (7) 0.7440 19 Left leg (1) 0.5973 

4 Core nodes (7) 0.7658 20 Left foot (1) 0.5090 

5 Hip and head 

(2) 

6 Hip and neck 

(2) 

7 Hip and spine 

(5) 

8 Head and neck 

(2) 

9 Head and spine 

(5) 

0.7617 21 Right 

shoulder (1) 

0.7544 22 Right arm 

(1) 

0.7713 23 Right 

forearm (1) 

0.6811 24 Right hand 

(1) 

0.7606 25 Left shoulder 

(1) 

0.6844 

 
0.6431 

 
0.6134 

 
0.6222 

 
0.6762 

 

 

 

 
 

Fig. 8. The quasi-experimental test environment and data collection method. 

 
As a result of the classifier implementation, the confusion matrix 

10 Neck and spine 0.7635 26 Left arm (1) 0.6158 was derived as shown in Fig. 9. The heat-map type of confusion ma- 
(5) 

11 Hip (1) 0.6849 27 Left forearm 

(1) 

0.6171 
trix shows the results of the classification and the number of each case. 

The vertical axis indicates the true labels, and the horizontal axis indi- 

cates the predicted label. The diagonal values are the number of the in- 
12 Head (1) 0.6893 28 Left hand (1) 0.6110 

13 Neck (1) 0.6871 29 Spine 3 (1) 0.7298 

14 Spine (4) 0.7639 30 Spine 2 (1) 0.7310 

15 Right thigh (1) 0.6032 31 Spine 1 (1) 0.7365 

16 Right leg (1) 0.5658 32 Spine 0 (1) 0.6833 
 

 

 
 

fier. In the cases of node combinations including one node, the accuracy 

was significantly lower than the one from node combinations including 

two nodes. Therefore, the use of two motion sensors located in a certain 

distance is expected to show similar motion recognition performance to 

the use of 17 motion sensors located throughout the entire body. 

4.2. Quasi-experiment test 

 
Based on the findings of the evaluation, the quasi-experimental test 

with three subjects was conducted in the environment similar to a con- 

struction site. Hip and neck from node combination 6 were selected as 

the sensor mounting position because their locations are easy to mount 

sensors. To collect the data from the subjects, data collection devices 

developed by Robotics and Intelligent Construction Automation Labo- 

ratory (RICAL) group at Georgia Institute of Technology were utilized. 

The devices were carried by the subjects wearing the safety vests with 

two pockets on the neck and hip as shown in Fig. 8. The devices have 

a wireless communication module for Wi-Fi and Bluetooth communica- 

tions, a processing unit, and IMU so that they can automatically upload 

and store the IMU data to a cloud server. Three subjects were asked to 

perform material handling tasks including lifting, carrying, and placing 

with a 28-lb concrete block same as the task performed in the evalua- 

tion. 

A dataset containing 32,396 data points was collected from the sub- 

jects. The data from two devices were concatenated to form input vec- 

tors and normalized to have a unit norm. Thus, each data point has 18 

values; each data point from one device contains 9 values (3-axis accel- 

eration, 3-axis gyroscope, and 3-axis magnetic field). Then, the dataset 

was also shuffled and split into training data and testing data that oc- 

cupy 60% and 40% of the entire dataset, respectively. The random forest 

classifier that showed the highest accuracy in the evaluation was imple- 

mented using the Scikit-learn library. 10-folds cross-validation was uti- 

lized to find the hyper-parameters. 

stances classified correctly while the off-diagonal values are the number 

of the instances classified incorrectly. The accuracy, weighted precision, 

and weighted recall are 82.39%, 83.02%, and 83.10%, respectively. The 

weighted precision and recall are calculated considering the number of 

data in each class. ‘Using stairs’ motions were not observed in the test. 

Comparing this accuracy to the accuracy of the classifier in the evalu- 

ation, the classifier trained using the dataset of the quasi-experimental 

test shows similar classification performance. 

4.3. Development of the LSTM model for recognizing construction workers' 

motions 

The LSTM motion recognition model was developed using Tensor- 

flow, which is an artificial intelligence library using data flow graphs 

to build models. A computer equipped with Intel® Core(TM) i7-8650U 

CPU, Intel® UHD Graphics 620, and 16 GB RAM was used to imple- 

ment the model. The model utilized the same dataset collected from 

the quasi-experimental test. After two data from two data collection de- 

vices were concatenated and normalized, 40 input vectors were seg- 

mented into a sequence as an input of the LSTM model. Since the 30 

data points were collected in each second, one sequence contains the 

data collected every 1.3 s. The overlap ratio of the grouping was 95%, 

which means 95% of the data are shared between adjacent sequences. As 

a result of the sequence segmentation, 16,178 data points (i.e., 16,178 

sequences) were obtained. The shape of the generated sequential dataset 

was 16,178 by 18 by 40. Once the dataset was modified in the format of 

the sequential data, the dataset was shuffled and split into training data 

and test data that occupy 70% and 30% of the total dataset, respectively. 

Then, the training data was split again into training data and validation 

data; the training data was used in the actual learning process and the 

validation data was used in the fine-tuning process. The test data was 

used to evaluate the performance of the model. 

The tuned hyper-parameters of the model are as shown in Table 3. 

The parameters were tuned by adjusting the values while observing the 

optimization loss and accuracy of the train and validation sets. As a re- 

sult, the losses and accuracy over iterations with the tuned hyper-para- 

meters were recorded as shown in Figs. 10 and 11. The losses over it- 

eration graphs showed that the losses were converged enough after 350 

epochs, and the difference between train loss and validation loss was 

small enough, which means the model was well-trained without over 
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Table 3 

Hyper-parameters of the developed LSTM model. 

Fig. 9. Confusion matrix of the classification of the quasi-experimental test dataset. 

 
tion was applied. As a result, the developed LSTM model showed the 

accuracy of 94.73% on the test set. Fig. 12 and Fig. 13 show the con- 

fusion matrixes of the result without normalization and with normaliza- 

tion, respectively. Kneeling-up and kneeling-down motion were omitted 

from the result because these motions were taken during a very short 

time that was less than 0.3 s. Since the label of the sequences was deter- 

mined as the dominant label in the sequence, those two motions were 

omitted even if they were in the sequences. 

To evaluate the developed LSTM model, precision-recall curves for 

each motion class were derived as shown in Fig. 14. Precision-recall 

(PR) curves are evaluation measures for classification that allows the 
visualization of the performance of the classifier at a range of thresh- 

fitting. Overfitting happens when the model is too closely fit the par- 

ticular dataset and it shows low performance on the unseen data. To 

avoid the overfitting, l2 norm regularization with the L2 regulariza- 

tion factor 0.0008 and a dropout technique were implemented. Dropout 

probability was set to 0.2 only in the training process. This means that 

the recurrent connections in LSTM cells were excluded with 20% of 

probability. The dropout technique was only deployed in the learning 

process on the train set. Adam optimizer [43] was used to minimize a 

loss function, i.e., the cross-entropy of the result after the softmax func 

olds [44]. PR curves are used to evaluate binary classification models 

trained using an imbalanced dataset where one class occupies a larger 

portion in the dataset than the other class. Since the dataset used in de- 

veloping the LSTM model is an imbalanced dataset with multi classes, 

PR curves for each class are obtained. In the PR curves, the closer the 

curve is to a right upper corner, the better the classifier is. The PR 

curves for each class can be interpreted as a single value by calculat- 

ing the area under the curve. The area ranges from 0 to 1, where 0 in- 

dicates the classifier completely failed to classify the data and 1 indi 

Hyper-parameter Value 

The number of hidden units 64 

L2 regularization factor 0.0008 

Learning rate 0.0017 

The number of epochs 400 

Batch size 128 

Dropout probability 0.2 
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Fig. 10.  Train and validation losses over iterations. 

 

Fig. 11.  Train and validation accuracy over iterations. 

 
cates the classifier completely classified the data. The areas are shown in 

the legend of graphs in Fig. 14. The area of the averaged precision-re- 

call for overall classes was 0.98. While the areas of the major motions 

including standing, bending, squatting, walking, twisting, working over- 

head, and kneeling were larger than 0.90, the areas of the transitioning 

motions including bending-up, bending-down, squatting-up, and squat- 

ting-down were smaller than those of the major motions. 

5. Discussion 

 
In the evaluation, various cases, where the different number of mo- 

tion sensors located on different body parts were used to train ma- 

chine learning classifiers, were investigated to identify the desired num- 

bers and locations of the motion sensor for recognizing construction 

workers' motions. By comparing the accuracy of each case, the cases 

 
where two motion sensors located on the body parts in a certain dis- 

tance showed the similar accuracy with the case where all motion sen- 

sors were utilized throughout the body. This indicates that the num- 

ber of motion sensors required to recognize construction workers' mo- 

tion can be reduced if their locations are selected based on the under- 

standing of the effectiveness of the numbers and locations of the mo- 

tion sensors. This finding was validated through the quasi-experimental 

test with multiple subjects. This is important because motion recognition 

systems can be efficiently designed with fewer sensors and still provide 

reliable performance in fields. 

The target motion classes considered in the evaluation, quasi-ex- 

perimental test, and development of LSTM model were 14 motions, 

which is more than one of the existing motion recognition models.     

In general, the more motions or activities that are considered, the 
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Fig. 12. Confusion matrix of the result of the LSTM model without normalization. 

 
more difficult a classifier is trained or the larger the dataset is required. 

Hence, the current research efforts focus on recognizing particular mo- 

tions of interest. In the proposed study, 13 motions were successfully 

recognized using the LSTM model with an accuracy of 94.73%. Com- 

pared to the best-performed accuracy of 82.39% among the five con- 

ventional machine learning algorithms, the developed LSTM network 

showed significantly higher accuracy. It was found that the developed 

model outperformed the existing motion and activity recognition meth- 

ods in terms of accuracy, the number of classes, and the number of sen- 

sors as shown in Table 4. For example, compared to the convolutional 

LSTM [31], the developed LSTM model showed higher accuracy with 

fewer number of sensors and more number of target classes. This indi- 

cates that the developed model learned sequential patterns of the mo- 

tions from the raw sensor data better than the one in which convolu- 

tional layers were adopted to the raw data. 

The results of the quasi-experimental test show inherent motion dis- 

tributions of the material handling tasks. For example, among 4853 se- 

quential data points in the testing data, 2885 points were classified     

as ‘Walking’ motions. This indicates that the subjects spent more than 

50% of their working time on carrying material or moving their po- 

sition for the next material. Similarly, 932 points were classified as 

‘Standing’ motions which mean the subjects were idling during about 

20% of their working time. This distribution is naturally observed be- 

cause carrying material is the most time-consuming activity in the 

material handling tasks while lifting or placing a material takes less 

 
time than carrying. Therefore, with the motion distributions of workers, 

their behavior can be individually monitored and analyzed. 

The developed LSTM model recognized the major motions with very 

high accuracy. For example, the areas under PR curves of standing, 

walking, working overhead, and kneeling were over 0.99. This indi- 

cates that most instances in these motions were correctly classified. On 

the other hand, some of the motions such as bending-down and squat- 

ting-down motions showed smaller areas under PR curves than the other 

motions. It is because they are the transitioning motions, which are the 

motions between the major motions. The data corresponded to the tran- 

sitioning motions contain less distinguishable patterns. However, the use 

of the transitioning motions has a strong advantage that allows the ma- 

jor motions to have more distinguishable patterns. Considering the ap- 

plications of motion recognition models in construction projects, the ma- 

jor motions are the motions of interest for safety and productivity mea- 

surements. Therefore, the use of the transitioning motions can improve 

the practicality of the developed motion recognition model. 

The successful implementation of the LSTM model was possible 

with the lower-performance computer because the size of the input 

data used in this study was much smaller than the one used in the 

existing efforts. Specifically, high-performance computers are required 

to process image data in the vision-based model because the model 

typically includes multiple convolutional layers and pooling layers to 

learn features from the images. However, in the case of the proposed 
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Fig. 13. Confusion matrix of the result of the LSTM model with normalization. 

 

Fig. 14.  Precision-recall curves for each motion class. 

 
model, the dataset was a 16,178×18×40 matrix with float numbers. 

Thus, the model was able to be implemented without a high-perfor- 

mance computer. 

The proposed study has several limitations. First, the datasets used 

in the evaluation, quasi-experimental test, and development of 

 
the LSTM model were not collected from real construction workers. 

The subjects involved in the study were students who are majoring in 

civil engineering. Hence, the dataset might not accurately represent con- 

struction workers' motions. Next, the datasets were imbalanced. Among 

14  target  motions,  the  walking  motion  occupied  more  than  half of 
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Comparison of the performance with existing methods. 
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