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ABSTRACT

Construction tasks involve various activities composed of one or more body motions. It is
essential to understand the dynamically changing behavior and state of construction workers to
manage construction workers effectively with regards to their safety and productivity. While
several research efforts have shown promising results in activity recognition, further research is
still necessary to identify the best locations of motion sensors on a worker’s body by analyzing
the recognition results for improving the performance and reducing the implementation cost.
This study proposes a simulation-based evaluation of multiple motion sensors attached to
workers performing typical construction tasks. A set of 17 Inertial Measurement Unit (IMU)
sensors is utilized to collect motion sensor data from an entire body. Multiple machine learning
algorithms are utilized to classify the motions of the workers by simulating several scenarios
with different combinations and features of the sensors. Through the simulations, each IMU
sensor placed in different locations of a body is tested to evaluate its recognition accuracy
toward the worker’s different activity types. Then, the effectiveness of sensor locations is
measured regarding activity recognition performance to determine relative advantage of each
location. Based on the results, the required number of sensors can be reduced maintaining the
recognition performance. The findings of this study can contribute to the practical
implementation of activity recognition using simple motion sensors to enhance the safety and
productivity of individual workers.

INTRODUCTION
Monitoring the behavior and working state of construction workers is a challenging task due to

the dynamic nature of construction projects. Since construction tasks involve various physical
activities consisted of one or more body motions, understanding the ever-changing activities and



motions of the workers is necessary to manage the workers effectively in order to improve safety
and productivity. Construction projects, in general, require excessive and repetitive physical
activities, which arouses the strong need for understanding the worker’s activities and motions
for ensuring and improving the safety, health, and productivity of individual workers.

To recognize motions of the construction workers, machine learning algorithms have been
utilized to classify motion sensor data. Several research efforts have shown promising action
recognition performance using the motion sensor data. However, there is a lack of understanding
about appropriate locations of motion sensors on a worker’s body to better recognize the motions
and activity classifications. Motion sensor data, such as acceleration and angular velocity, varies
widely depending on its location on the body. Thus, the understanding the locations of each
sensor and its impact on motion recognition can be used to improve the recognition performance
and reduce the implementation cost. Hence, this study proposes a simulation-based evaluation of
motion sensor locations on a construction worker’s body. Seventeen inertial measurement unit
(IMU) sensors are used to capture the motions from the entire body while the worker is
performing typical construction tasks. Five machine learning algorithms are utilized to classify
the motions. By simulating several scenarios with different combinations and features of the
sensors, each IMU sensor located on different parts of the body is evaluated, and the locations
with higher recognition rates are determined.

LITERATURE REVIEW
Two approaches have been widely utilized to recognize human’s motions and activities, which

are 1) image-based approach and 2) sensor-based approach. While the image-based approach
collects motion data by extracting feature points or a 2D or 3D skeleton model from images, the
sensor-based approach collects motion data from sensors including accelerometer, gyroscope,
and magnetometer which are usually located on body joints.

Several research studies utilize RGB-D cameras, e.g., Kinect, which provide depth information
that can be used to build 2D or 3D skeleton model of a human (Escorcia et al. 2012; Han and
Lee 2013; Michel et al. 2017; Yu et al. 2017). A 2D skeleton model developed from Kinect
images was used to recognize the leading postures of unsafe behaviors (Yu et al. 2017).
Assuming that leading postures play a role as the precursor of unsafe behaviors, the ranges of
joint angles of the leading postures were determined through an experimental study. Multiple
cameras, 3D camcorder, and Kinect were used to generate the 3D skeleton model (Han and Lee
2013). By comparing the skeleton model and motion templates, unsafe behaviors during ladder
climbing were recognized. A machine learning algorithm, e.g., the support vector machine
classifier, was deployed to recognize construction workers’ actions using a 3D skeleton model
generated by Kinect (Escorcia et al. 2012). While RGB-D camera or multiple cameras provide
useful information for motion recognition, several efforts have been made to achieve the same
purpose using a single camera (Kim et al. 2016; Peddi et al. 2009; Yang et al. 2016). Machine



learning classifiers using image-based descriptors were developed to recognize various
construction activities (Yang et al. 2016). Although this study did not show satisfactory
performance for every activity, the study provided an insight into how images from a single
camera can be used for construction activity recognition. However, the image-based approach
still has a limitation that occlusion between objects can result in incomplete object detection
which may lead decrease of a recognition rate.

For sensor-based approaches, smartphones are widely used because smartphones have embedded
sensors for recognizing motions including accelerometer and gyroscope, and it is a cost-effective
way to collect data (Akhavian and Behzadan 2016; Bayat et al. 2014; Kwapisz et al. 2011; Nath
et al. 2017; Yang 2009). The study by Akhavian and Behzadan (2016) analyzed the productivity
of construction worker through a machine learning classification method using data from
accelerometer and gyroscope embedded in a smartphone. The study measures the time spent on
each activity using the classifier and analyzes productivity. Other studies solely used
acceleration data to train machine learning classifiers for recognizing human activities (Bayat et
al. 2014; Kwapisz et al. 2011; Yang 2009). Although these studies showed promising
classification performance, target activities are limited to daily activities such as running,
dancing, and walking which are not descriptive enough to fully recognize specific construction
tasks. A study by Nath et al. (2017) used two smartphones and embedded accelerometers and
gyroscopes to analyze the construction worker’s ergonomic posture while the worker is
performing screw driving tasks. On the other hand, Valero et al. (2017) used a separately
developed sensor system to identify angular thresholds for detecting motions of construction
workers. The study utilizes multiple sensors so that the data can represent motions in more
detail. Cho et al. (2018) utilized motion sensors to detect the unsafe posture of exoskeleton
wearers. However, there is still a lack of understandings of how to determine locations and the
number of sensors to recognize the construction worker’s motions.

METHODOLOGY
The proposed study follows the procedure shown in Figure 1. Each step of the procedure will be

explained in the following subsections.

Identify motion candidates — Collect data
Define body nodes Deploy five classifiers
Define feature vector Analyze classification performance
Generate simulation scenarios

Figure 1. Evaluation procedure of sensor locations.




Identify motion candidates

The following motions for typical construction tasks are selected as motion candidates; standing,
bending, squatting, walking, twisting, working overhead, kneeling, and using stairs. Each of the
bending, squatting, and kneeling activities is divided into three classes (such as bending-up,
bending-down, and bending) to reduce the loss of information caused by transitions of motions.
For example, bending-up and bending-down motions indicate transitional motions from the
bending motion to other motions or vice versa. Hence, fourteen motion classes are used in this
study.

Define body nodes

Neck Head

Left Shoulder Right Shoulder

Left Forearm Right Forearm
Left Arm = Spine*
Hip Right Arm
Left Hand Right Hand
Left Thigh Right Thigh
Left Leg Right Leg
Left Foot Right Foot
* interpolated @® IMU sensor
(a) (b)

Figure 2. (a) Body nodes and (b) wearable sensor locations.

As shown in Figure 2 (a), 21 body joints or body parts are designated as nodes for simulation.
Among the 21 nodes, 4 nodes located on the spine can be tracked by interpolation between the
neck and hip nodes. Thus, the integrated wearable sensor system only requires 17 IMU sensors
(red dots in Figure 2 (b)) to collect data from all the nodes.

Define feature vector

Once the nodes are defined, feature vectors are constructed using data from three types of
sensors (accelerometer, gyroscope, and magnetometer), embedded in each IMU. Each feature
vector is used as input of machine learning classifiers. As shown in Figure 3, each node with a
single IMU generates a feature set composed of 13 values including quaternion (4 values),
acceleration (3 values), velocity (3 values), and angular velocity (3 values). Feature sets from
multiple nodes are concatenated to construct an overall feature vector. The generated feature
vectors are used as training and test data for machine learning classifiers. Each data contains a
discrete and time-independent motion state.
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Figure 3. Formation of the feature vector.

Generate simulation scenarios
To identify the impact of the sensor locations on motion recognition performance, simulation
scenarios are generated by considering different combinations of the selected nodes. Table 1
shows the combinations of nodes used in the simulation. Each scenario uses a different
dimension for the feature vector depending on the number of selected nodes.

Table 1. Combinations of nodes used in the simulation

Selected nodes

Selected nodes

Combination (The number of nodes) Combination (The number of nodes)
1 All nodes (21) 17 Right Foot (1)
2 Upper body (15) 18 Left Thigh (1)
3 Lower body (7) 19 Left Leg (1)
4 Core nodes™ (7) 20 Left Foot (1)
5 Hip and Head (2) 21 Right Shoulder (1)
6 Hip and Neck (2) 22 Right Arm (1)
7 Hip and Spine (5) 23 Right Forearm (1)
8 Head and Neck (2) 24 Right Hand (1)
9 Head and Spine (5) 25 Left Shoulder (1)
10 Neck and Spine (5) 26 Left Arm (1)
11 Hip (1) 27 Left Forearm (1)
12 Head (1) 28 Left Hand (1)
13 Neck (1) 29 Spine 3 — close to Neck (1)
14 Spine (4) 30 Spine 2 (1)
15 Right Thigh (1) 31 Spine 1 (1)
16 Right Leg (1) 32 Spine 0 — close to Hip (1)
*Head, Neck, Spine, and Hip
RESULTS

Collect data and deploy five classifiers



A dataset containing 18,350 data points is collected from a subject performing the aforementioned
motions with a 28-1b concrete block (Figure 4). Subject’s motions are simultaneously videotaped
to be used as the ground truth. Once the dataset is collected, five machine learning classifiers
including logistic regression, k-nearest neighbors, multilayer perceptron, random forest, and
support vector machine classifiers are deployed to recognize the motions from the dataset.
Different sizes of the feature vector dimension based on the simulation scenarios are used to train
and test the classifiers. 10-fold cross-validation is implemented to validate the classification
performance. Hyper-parameters of each classifier are also tuned through the 10-fold cross-
validation process.

Figure 4. Bending and squatting motion examples.

Analyze classification performance

As shown in Figure 5, each classifier is evaluated in terms of accuracy which is the evaluation
metric for the suitability of different sensor placement locations. As expected, the model using
all nodes showed the best recognition performance. Among the five classifiers, random forest
classifier showed the best performance in all cases. It is noteworthy that the model with two
nodes located within a certain distance, such as combinations 5 and 6 as shown in Table 2,
showed similar recognition performance compared to the model with all nodes. In the case of the
single node scenarios, scenarios containing upper body nodes showed better recognition
performance than the ones containing lower body nodes. While each classifier shows a different
accuracy for the same scenario, varying the node combination for each classifier resulted in
similar trends for accuracy.

Simulation results

—e—Logistic Regression
—s—Kk-Nearest Neighbors

Multilayer Perceptron

=e—Random Forest

Accuracy

0.3000 =e=Support Vector Machine

4 5§ 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Node combination index

Figure 5. Simulation results with 32 node combinations



Table 2. Classification accuracy of Random Forest classifier

Combination  Selected nodes Accuracy Combination  Selected nodes Accuracy
1 All nodes 0.7983 17 Right Foot 0.2791
2 Upper body 0.7729 18 Left Thigh 0.5941
3 Lower body 0.7440 19 Left Leg 0.5973
4 Core nodes 0.7658 20 Left Foot 0.5090
5 Hip and Head 0.7617 21 Right Shoulder 0.6844
6 Hip and Neck 0.7544 22 Right Arm 0.6431
7 Hip and Spine 0.7713 23 Right Forearm 0.6134
8 Head and Neck 0.6811 24 Right Hand 0.6222
9 Head and Spine 0.7606 25 Left Shoulder 0.6762
10 Neck and Spine 0.7635 26 Left Arm 0.6158
11 Hip 0.6849 27 Left Forearm 0.6171
12 Head 0.6893 28 Left Hand 0.6110
13 Neck 0.6871 29 Spine 3 0.7298
14 Spine 0.7639 30 Spine 2 0.7310
15 Right Thigh 0.6032 31 Spine 1 0.7365
16 Right Leg 0.5658 32 Spine 0 0.6833
CONCLUSION

This study investigated the impacts of IMU sensor locations on the motion recognition
performance through a simulation. A set of 17 wearable IMU sensors was used to collect the
motion data from the entire body. Five machine learning classifiers were deployed to evaluate
their recognition performance based on the motion sensor locations. Comparing to the best
performance node combination which includes all 17 nodes, the node combinations containing
two nodes located in a certain distance, such as neck and hip or head and hip, showed similar
motion recognition performance. It is an important finding in this study that fewer motion sensors
can show a similar performance with the fully loaded sensors if their locations are selected with
the understanding of their effectiveness based on the locations. Thus, a motion sensor-based
system can effectively recognize worker’s various motions with the reduced number of motion
sensors, thus decreasing the implementation cost.

Future study will focus on several issues. First of all, the training dataset needs to be further
collected from various subjects to improve the generality of the dataset. Since human motions
vary depending on individual working behaviors, the dataset from the various subjects is essential
to better represent the motions of construction workers. Second, the formation of the feature
vector will be further investigated to achieve a better recognition accuracy. Raw data of IMU
sensors is rarely used as input of existing motion recognition system. Instead, statistical features
are extracted from the raw data and utilized as the input. These features may affect the recognition
performance, and evaluation of the sensor location may also be changed.
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